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Abstract. Arctic methane (CHa) budgets are uncertain because field measurements often capture only fragments of the wet-to-
dry gradient that control tundra CHa fluxes. Wet hotspots are over-represented, while dry, net-sink sites are under-sampled. We
paired over 13,000 chamber flux measurements during peak growing season in July (2019-2024) from Trail Valley Creek in the
western Canadian Arctic with co-registered remotely sensed predictor variables to test how spatial resolution (1 m vs. 10 m) and
choice of machine-learning algorithm shape upscaled CH4 flux maps over our 3.1 km? study domain. Four algorithms for CHs
flux scaling (Random Forest (RF), Gradient Boosting Machine (GBM), Generalised Additive Model (GAM), and Support Vector
Regression (SVR)) were tuned using the same stack of multispectral indices, terrain derivatives and a six-class landscape
classification. Tree-based models such as RF and GBM offered the best balance of 10-fold cross-validated R? (< 0.75) and errors,
so RF and GBM were used in a subsequent step for upscaling to the study area. With 1 m resolution, GBM captured the full
range of microtopographic extremes and predicted a mean July flux of 99 mg CHs m™ month™". In contrast, RF, which smoothed
local extremes, yielded an average flux of 519 mg CHs m month™'. The disagreement between flux estimates using GBM and
RF correlated mainly with the Normalized Difference Water Index (NDWI), a moisture proxy, and was most pronounced in
waterlogged, low-lying areas. Aggregating predictors to 10 m averaged the sharp metre-scale flux highs in hollows and lows on
ridges, narrowing the GBM-RF difference to ~75 mg CHs m™ month™' while broadening the overall flux distribution with more

intermediate values. At 1 m, microtopography was the main driver. At 10 m, moisture proxies explained about half of the

variance. Our results demonstrate that: (i) ymetre predictors are indispensable for capturing the wet-dry microtopography and its

CHa signals, (ii) upscaling algorithm selection strongly controls prediction spread and uncertainty once that microrelief is
resolved, and (iii) coarser grids smooth local microtopographic details, resulting in flattened CH4 flux peaks and wider

distribution. At 10 m, however, flux estimates became more consistent between models and better represented broad moisture-

driven patterns, suggesting improved generalisability despite some loss of detail. All factors combined lead to potentially large

differences in scaled CH4 flux budgets, calling for a careful selection of scaling approaches, spatial predictor layers (e.g.,
vegetation, moisture, topography), and grid resolution. Future work should couple ultra-high-resolution imagery with temporally

dynamic indices to reduce upscaling bias along Arctic wetness gradients.

1 Introduction

The Arctic is warming nearly four times faster than the global average due to Arctic amplification feedbacks (Previdi et al., 2021;
AMAP, 2021; Rantanen et al., 2022; Ballinger et al., 2020). This rapid warming is of particular concern due to the substantial
quantities of organic carbon stored in wetland ecosystems of the circumpolar permafrost region (Hugelius et al., 2014; Schuur
et al., 2015; Turetsky et al., 2020; Olefeldt et al., 2016). Thaw exposure may mobilize part of the previously frozen carbon as
methane (CH4) (Ward et al., 2024), a greenhouse gas 28-34 times more potent than CO2 over 100 years (Koven et al., 2011;
Etminan et al., 2016; Nisbet et al., 2019; Saunois et al., 2020). Rising temperatures, therefore, risk to trigger, positive feedback
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in which permafrost degradation elevates CH4 emissions, further intensifying warming (Schuur et al., 2015; Walter Anthony et
al., 2018; Turetsky et al., 2020; Natali et al., 2021).

High-resolution CH4 flux measurements in tundra ecosystems remain sparse even during the growing season due to the Arctic's
remoteness, harsh climate, and logistical challenges (e.g., lengthy travel times, high fieldwork costs, sparse infrastructure, and

challenging equipment maintenance), which limits the number of long-term monitoring sites,(Delwiche et al., 2021). The primary

tools for plot- to ecosystem scale CH4 flux observations are flux chambers (Subke et al., 2021) and eddy covariance techniques,
respectively (Matthes et al., 2014; Baldocchi, 2003); however, the time window to conduct growing season chamber campaigns
is usually limited to a few months between June and September, and locations in the Arctic featuring eddy covariance towers are
few (Vogt et al., 2025). As a consequence, most synthesis studies aiming at constraining CHa budgets in the high northern
latitudes must rely on a limited database biased toward high-emitting sites near research stations and often overlooking areas
with net CH4 uptake (Mastepanov et al., 2013; Varner et al., 2021; Kuhn et al., 2021; Voigt et al., 2023c). Most tundra chamber
campaigns collect data only for short intervals, typically from a single day up to a few weeks during the growing season, and
many are conducted in just one growing season without repeated multi-year sampling or covering winter fluxes, which limits
their value for model benchmarking and interannual analysis (Varner et al., 2021; Kuhn et al., 2021; Riésénen et al., 2021;
Mastepanov et al., 2013; Treat et al., 2018).

Even where flux data exist, CHa fluxes can shift within metres because the relative position and seasonal movement of the water

table and the frost table create mosaics of anoxic (CHa - producing) and oxic (CHa - oxidising) soil (Frolking et al., 2011). These
redox contrasts are further modulated by microtopography, plant functional type, and surface moisture (Mastepanov et al., 2013;

Pirk et al., 2015; Kwon et al., 2017; Olefeldt et al., 2021). Because the water table and frost table rarely coincide at the same

depth across tundra microtopography, neighbouring microsites can experience very different oxic—anoxic conditions. Across the
Arctic tundra, surface types range from water-saturated zones, such as sedge fens, polygon centres, troughs and thaw slumps, to
better-drained features like hummocky ridges, palsas and gravelly uplands. These elements cover the entire CHa4 flux range, with
microtopographically lower, wetter zones acting as strong sources and microtopographically elevated, better-aerated zones often
functioning as net sinks (Rasénen et al., 2021; Bao et al., 2021; Yuan et al., 2024). Such small-scale heterogeneity frequently
occurs within a single 10 m pixel, so coarse maps or remote-sensing data products can combine zones of strong CH4 emission
and neighbouring areas that act as net CHas sinks (Knox et al., 2019; Treat et al., 2018). Without spatially explicit methods that
resolve this fine-scale heterogeneity, upscaling can introduce systematic biases. It may overestimate CH4 emissions when dry
areas that act as sinks are overlooked or underestimate them when narrow wet trenches surrounding dry patches are missed
(Résinen et al., 2021; Treat et al., 2018).

Ultra-high-resolution {<1-2 m) imagery from drones or commercial satellites can directly resolve fine-scale vegetation patterns

and microtopographic features (e.g., hummocks and hollows) in heterogeneous tundra landscapes, for example mapping plant

communities on dry polygon rims versus wet sedge hollows and other microrelief features that correspond to CHa “coldspots”
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hummocks, hollows) and landforms (e.g., dry palsas, wet trenches, etc.) that control small-scale variability in CHa fluxes are

aggregated into single pixels, blurring the fine-scale patterns of emission and uptake (Rasénen & Virtanen, 2019).

Data-driven approaches, including the machine-learning (ML) algorithms Random Forest (RF), Gradient Boosting Machine

(Deleted: Machi

(GBM), and Support Vector Regression (SVR), as well as the semi-parametric statistical model Generalised Additive Model
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(GAM), can integrate predictors derived from remote sensing products with flux measurements to upscale CHs from plot- and

ecosystem- to landscape scales (Knox et al., 2021; Yuan et al., 2024; Chen et al., 2024; Zhang et al., 2020, Ying et al. 2025).

Tree ensembles (RF, GBM) are particularly well suited for capturing complex interactions and handle multicollinearity, while
GAMs have the advantage of yielding interpretable smooth functions, and SVR excels with limited nonlinear data (Wood, 2017;
Smola & Scholkopf, 2004; Zhang et al., 2019). Model choice, predictor resolution and limited training data still generate large
spreads in upscaled Arctic tundra CHa fluxes, with ensemble estimates differing by roughly 25:50 % of the mean depending on
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the study (Peltola et al., 2019; McNicol et al., 2023; Chen et al., 2024; Résénen et al., 2021). Quantifying and reducing these
uncertainties are essential for robust CH4 budgets.

Here, we address these methodological challenges in a study aiming at upscaling CHz fluxes in a heterogeneous tundra landscape

in the western Canadian Arctic by pairing >13,000 peak growing season (July) chamber measurements collected over five years

with matched 1 m and 10 m remote sensing predictors and training fhree machine-learning algorithms (RF, GBM, SVR) and one

semi-parametric statistical model (GAM,). Our overarching aim is to reduce uncertainties in peak-season (July) CHs budgets for

the 3.1 km’ heterogeneous tundra around the Trail Valley Creek Research Station. We address this aim through four specific
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questions:

o Which remotely,sensed vegetation, moisture, and topographic characteristics best explain July CHa fluxes across a wet-

to-dry micro-site gradient?

o Does replacing freely available 10 m data (Sentinel-2, ArcticDEM) with metre imagery from drones and airborne lidar

lead to a detectable improvement in prediction accuracy and spatial detail?

o How do the fourynodelling approaches differ in predicted net flux magnitudes and spatial patterns?

o How do model choice, grid resolution, and their interaction shape the spatial patterns and uncertainty of our upscaled
CHg flux maps?

Optimising a data-driven upscaling approach based on these questions allows us to produce July CHa flux maps with pixel-level

uncertainty, improving peak-season emission estimates and guiding where additional measurements or higher-resolution imagery

would most reduce prediction error.

2 Materials and Methods
2.1 Study site

The study site is the undulating tundra landscape of the Trail Valley Creek (TVC) Research Station, about 55 km north of the
town of Inuvik, NT, in the western Canadian Arctic east of the Mackenzie River Delta (Fig. 1). TVC lies in the Southern Arctic
ecozone and contains continuous permafrost, with thickness ranging from 100 to 150 m (Marsh et al., 2008). Our analyses focus

on a ~3.1 km? section of this 57 km? basin with elevations ranging from 41 to 102 m a.s.l. The 1991 - 2020 climate normals for

Inuvik are a mean annual air temperature of —7 °C, mean annual precipitation of ~250 mm, and a frost-free period (the interval
with minimum air temperatures above 0 °C) of roughly 78 days (Environment and Climate Change Canada, 2024). The soils are
classified as organic cryosols, with an upper peat horizon approximately 0.2-0.5 m thick overlying mineral silty-clay subsoil

(Petrone et al., 2000). The vegetation at TVC is highly diverse, reflecting the microtopography and moisture gradients. Isolated

patches of white and black spruce (Picea glauca, P. mariana) occur in valley bottoms and on slopes. Tall shrub tundra, dominated
by green alder (Alnus alnobetula) and featuring scattered willows and dwarf birch, can be found on hill slopes and alongside

streams. Riparian zones feature dense willow thickets reaching up to 2 metres in height. Upland areas support dwarf shrub tundra
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with dense stands of dwarf birch (Betula glandulosa), Labrador tea (Ledum palustre) and mountain cranberry (Vaccinium vitis-
idaea), interspersed with mosses and lichens. Flat, poorly drained areas are dominated by tussock-forming sedges (Eriophorum
and Carex), alongside moss and scattered shrubs. Exposed uplands and polygon rims are covered by lichen mats and low dwarf
shrubs. Mosses, especially Sphagnum and Polytrichum species, are prevalent in wetter microhabitats. Snow depth and winter
soil temperatures are highest in the tall shrub and tussock zones and lowest in the lichen tundra (Griinberg et al., 2020; Marsh et

al., 2010)Although TVC represents a single site, its strong microtopographic and vegetation heterogeneity reflects the wet-dry

gradients typical of Arctic continuous-permafrost lowlands. Similar mosaics of sedge wetlands, dwarf-shrub uplands, and lichen

tundra occur across large parts of the western Canadian Arctic and other low-relief tundra landscapes, suggesting that the scale

effects we document are broadly transferable,
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Figure 1. Map of the study area showing the location of the area of interest (outlined with white polygon), with CH4 flux measurement
locations marked with yellow circles. The inset map in the upper left corner highlights the region in which the Trail Valley Creek
(TVC) research station is located (marked with a yellow triangle on the overview map and a white triangle on the detailed map).
Background satellite imagery sources: © Maxar 2025, provided by Esri, acquired on 12 July 2024. Area of interest aerial imagery:
Rettelbach et al., 2024.

2.2 Data sources

This study combines field-based CHa_flux measurements with remotely sensed and meteorological data to build and evaluate
spatially explicit models of CHs exchange. The chamber flux data provide the response variable for model training, while the

meteorological records include air temperature (AT), photosynthetically active radiation (PAR), and thawing degree days (TDD)

as dynamic atmospheric drivers. Remotely sensing datasets supply spatial predictors describing vegetation, surface moisture,

terrain structure, and landscape classification at two spatial resolutions (1 m and 10 m). The resulting predictor stacks were then

used to train and compare the four modelling approaches described in Sect. 2.3.

2.2.1 CHs flux data

We used a combination of continuous and campaign-based CHa flux measurements to capture spatial and temporal variability in
CHa. The dataset includes previously published automated chamber observations made in 2019 and 2021 (Voigt et al., 2023a),
and campaign-based manual chamber observations made in 2019 (Voigt et al., 2023b) and in 2022 to 2024 (Ivanova et al., 2025).
Manual chamber measurements from 2022 to 2024 were collected as part of this study. The main measurement protocols,

chamber specifications, instrumentation, and flux calculation methods for each campaign are summarized in Table 1.
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Table 1. S y of CH, flux measurement protocols and instrumentation used at TVC, 2019-2024.
Year 2019, 2021 2019 2022-2024
Method Automated Manual Manual
Number of microsites 18 13 37
Chamber size and shape 30-45 L, hemispherical 17 L, cylindrical 17 L, cylindrical
Los Gatos Research Enhanced Picarro G4301 LI-COR LI-7810 Trace Gas

Gas analyzer

Performance Greenhouse Gas
Analyser (Rackmount GGA-

GasScouter (Picarro,
Inc., Santa Clara, CA,

Analyzer (LI-COR
Biosciences, Lincoln, NE,

24EP 911-0010, Los Gatos) USA) USA)
Measurement frequency 1 Hz 1 Hz 1 Hz
Enclosure time 3 min 5 min 2-4 min

Flux calculation method

Linear regression (default);

Linear or nonlinear
regression with the Math

Linear regression with

exponential fit for large fluxes Works Inc., Natick, MA, | bootstrapping (R)
USA)
Reference Voigt et al., 2023a Voigt et al., 2023b Ivanova & Gockede, 2025

The complete dataset included 13,384 CH4 flux measurements collected between 1 July and 31 July (2019-2024) under both

light and dark conditions. Our chamber measurements cover the spatial heterogeneity of the ~3.1 km? study area, ensuring

representation of key CHa controlling gradients.

Flux measurements were collected across the full range of microtopographic and vegetation conditions within the AOL

Observations were distributed across tussock tundra, dwarf shrubs, lichen-dominated uplands, and sedge wetlands at both spatial

resolutions. The sampling distribution closely matched the mapped area fractions of these classes in the AOI (Fig. S1)

confirming robust ecological representativeness. Detailed percentages for both map area and flux sampling are provided in Fig.

S1. Repeated measurements under different meteorological conditions also provide independent temporal variability for model
training. On average, each microsite was measured 50-450 times depending on year and instrument type, resulting in a total of

13,384 individual chamber observations across 68 unique locations (microsites). Of these, 1,093 fluxes were measured manually

using closed chambers, while 12,291 were collected using an automated chamber system (Fig. 1). For manual chamber

measurements, collars were installed in the soil prior to the actual measurements to ensure a tight sealing of the volume enclosed

by the chamber hood. For these locations, no boardwalks were installed to access the site, but activities close to the site before

and during the measurements itself were avoided as much as possible to keep potential disturbances to a minimum. These narrow

boardwalks did not overlap with the chamber footprints, and therefore should not affect remote sensing data at 1m resolution

while an impact on 10m pixels is considered minimal. For each flux measurement, ancillary data recorded include coordinates,

PAR (measured as photosynthetic photon flux density (PPFD; pmol m? s'), air temperature, land cover type, and time of day

(when available).

2.2.2 Climatic data

AT data were obtained from the Trail Valley Creek meteorological station operated by Environment and Climate Change Canada

— Meteorological Service of Canada (ECCC, 2024). The station is located within the study area at 68°44'46.8"N,
133°30'06.4" W, at an elevation of 85 m a.s.l. (Climate ID: 220N005; WMO ID: 71683; TC ID: XTV). The original data were
recorded at hourly resolution and were downsampled to 3-hour intervals to match the temporal resolution of the model

predictions. PAR data were obtained from the NASA POWER dataset (Langley Research Center, 2024) at a spatial resolution

of 1 km. These data provided temporally dynamic inputs for model training and prediction.
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2.2.3 Remotely sensed data

We assembled two separate but equivalent predictor stacks, one with a cell size of 1 m and one with 10 m. Both cover the same

area of interest (AOI, Fig. 1), use the same map projection, and pass through the same preprocessing workflow (Ivanova et al.,

2025). JThe AOI was delineated along natural drainage lines on three sides, and the Inuvik-Tuktoyaktuk Highway along the

western poundary. An image stack yefers to a set of co-registered raster layers (multispectral indices and terrain derivatives) that
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share the same grid and extent, To facilitate comparison between datasets of different spatial resolutions, we summarized all

predictors in Table A1. It lists each variable with its data source, spatial resolution (1 m, 10 m, or non-spatial), and whether it is

static or dynamic. Variables derived from UAV imagery are used at 1 m resolution, while Sentinel-2 and ArcticDEM products

are used at 10 m.

The 1 m stack is based on the RGB + NIR drone orthomosaic captured on 22 August 2018 by Rettelbach et al. (2024) andghe 1

m LiDAR-derived digital terrain model (DTM) from Lange et al. (2021). From these layers, we derived the Normalised
Difference Vegetation Index (NDVI; Rouse et al., 1974) and the Normalised Difference Water Index (NDWI; Gao, 1996;

McFeeters, 1996) as proxies for biomass and surface moisture, respectively.

opographic derivatives including slope, aspect,
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the Topographic Position Index (TPI, 30 m window), and the Topographic Wetness Index (TWI) were calculated with Whitebox )

Tools (Lindsay, 2016). A 30 m neighbourhood was used for TPI as this scale best captured local elevation contrasts typical of

heterogeneous microtopography.
The 10 m stack contains the same set of variables but at coarser spatial resolution. It combines multispectral information from
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with the 2018 drone campaign (Gorelick et al.,,2017). For the time-specific analysis, NDVI and NDWI were extracted from the
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nearest cloud-free scene within +10 days of each chamber measurement, with no temporal averaging and only cloud-free pixels

accepted. NDVI and NDWI were extracted from this composite, and the same set of terrain derivatives (slope, aspect, TPI, TWI)

was computed for consistency. A complete overview of all predictor variables, including data descriptions, resolution, temporal

variability, and references, is provided in Appendix Table Al. To link chamber measurements with remote sensing inputs

predictor values were extracted directly from the raster cell covering the chamber footprint, without spatial buffering. No spatial

averaging or neighbourhood smoothing was applied to the pixel values at extraction. All chamber measurements were kept as

individual records, even when multiple chambers or repeated measurements fell within the same 1 m or 10 m grid cell, to preserve

sub-pixel heterogeneity in vegetation and soil conditions.
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prior to glassification using a threshold of NDWI > 0 and manually checked against the drone orthomosaic to ensure the exclusion

of ponds and streams. All subsequent statistical analyses were restricted to terrestrial classes. A detailed description of the K

classification workflow, feature set, and accuracy assessment is provided in Text Al and Table A2

For broader application, the 10 m predictor stack is directly reproducible across the Arctic (Sentinel-2 Level-2A + ArcticDEM).
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In contrast, the 1 m stack depends on site-specific drone orthomosaics and LiDAR, which limits immediate circumpolar scaling ' Cr leted: full
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In addition, we also explored the potential of two datasets that are particularly relevant for Arctic-scale applications. The
Circumarctic Land cover Units (CALU) (Bartsch et al., 2024) provides a 10 m classification of vegetation physiognomy and soil
moisture regimes across the circumpolar Arctic tundra. The data product is based on the fusion of Sentinel-1 and Sentinel-2
imagery and was calibrated using over 3,500 field samples of soil and vegetation properties. One of the key strengths of CALU
is that it captures spatial gradients in surface wetness while using a consistent classification scheme across all Arctic regions.
This makes it possible to directly compare classes between distant sites across the Arctic, which is rarely achievable with site-
specific classifications. 20 of 23 land cover units are found across the AOI, but only 5 of those were covered by CHs4
measurements. The complete legend of CALU classes used in this study, including definitions, their occurrence within the AOI,
and whether CH4 flux measurements are available for each class, is presented in Table A3. Additionally, we considered a radar
interferometric (INSAR) dataset derived from Sentinel-1 data for 2018 - 2023 (Widhalm et al. 2025), which captures seasonal
ground subsidence rates in thawing degree days domain associated with thaw table (the uppermost soil that freezes and thaws
each year). The magnitude of the subsidence rates reflects soil moisture gradients (Widhalm et al. 2025).

Finally, we assessed the benefit of incorporating time-specific spectral indices (NDVI and NDWI) extracted from Sentinel-2
scenes close to each chamber measurement. We compared the effect of using these time-matched indices versus a seasonal
composite (July — August 2018) to test whether short-term variability in vegetation and moisture status improves model skill.

Although this approach relies on satellite scenes taken within a limited time window and may not align perfectly with the exact

in situ measurement date, it still offers a more detailed representation of changes in surface conditions than seasonal averages.
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To isolate the effects of scale, we selected 1 m and 10 m resolutions, as

from other potential sources of variation. As shown in Fig. 2, narrow, wet features such as polygonal trenches are captured at 1 " | chamber fluxes represent sub-metre patches, whereas most Arctic land cover
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Figure 2. Site-specific landscape classification (LC) and Normalized Difference Vegetation Index (NDVI) at two spatial resolutions:
1 m (panels A and C) and 10 m (panels B and D). Panels A and B show LC maps, while panels C and D show NDVI. Each panel includes
a black-framed inset highlighting a repr ive polygonal mire. Narrow, waterlogged microtopographic features such as wet
trenches remain distinct at 1 m resolution but blend into mixed pixels at 10 m. Background imagery: © Google Satellite Hybrid (Maxar,

2025).

2.3 Statistical analyses

The statistical analysis was structured into five sequential stages: (1) data preparation, (2) model training and evaluation, (3)

spatial prediction, (4) temporal aggregation and interpretation, and (5) variable importance analysis (Fig. 3). All steps were .-

applied identically to the 1 m and 10 m datasets to enable direct comparison of model behaviour and prediction outcomes across

spatial resolutions. [The analysis was implemented in R 4.3.2 (R Core Team, 2024).

2.3.1 Data preparation

The first step consisted in the preparation of the predictor datasets to explain spatio-temporal variability in CHa fluxes. In total

ten predictors were used: AT, PAR, TDD, NDVI, NDWI, slope, aspect, JTPI, TWI, and a six-class landscape classification (see

Appendix Table Al for details). The three meteorological variables (AT, PAR, and TDD) were treated as spatially uniform

across the ~3 km? study area, as it is covered by a single meteorological station. Their values varied only temporally, while all
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other predictors were spatially distributed but static over time during each model run. To assess potential multicollinearity,

pairwise correlations among predictors were calculated separately for the | m and 10 m datasets using Spearman’s rank

correlation.

2.3.2 Model training and evaluation

Second, we evaluated four modelling families for their ability to predict CH4 fluxes: random forests (RF), gradient-boosting
machines (GBM), generalized additive models (GAM), and support-vector regression (SVR). RF is a ML algorithm that builds
multiple decision trees on bootstrapped data. The mean of their outputs is then calculated. The averaging reduces noise and the

method reports easy-to-read variable-importance scores (Breiman 2001; Prasad et al. 2006). GBM also uses trees but adds them
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one after another. Each new tree learns from the errors of the current ensemble, which often reduces bias but requires careful
tuning to avoid over-fitting (Friedman 2001; Elith et al. 2008). Similar RF, GBM handles mixed predictor types, outliers, missing
values, and nonlinear relationships without preprocessing (Elith et al., 2008). GAM is a statistical technique that fits a smooth
curve to each predictor and then combines these curves to create a composite curve. The curves demonstrate how CHa changes
with each driver and provide reliable predictions beyond the training range (Hastie & Tibshirani, 1990; Wood, 2017). SVR is a
ML algorithm that fits a flexible line or surface that best follows the data while allowing small errors within a defined range. It
uses a mathematical function called a kernel to handle weak non-linear patterns, and is particularly effective when the dataset is
small or the relationships are not strongly linear (Cortes & Vapnik 1995; Smola & Schélkopf 2004). Each model was
implemented using the caret package in R (Kuhn 2008) for tuning and evaluation via stratified 10-fold cross-validation. We
used the R-packages ranger for RF (Wright & Ziegler, 2017), gbm for GBM (Greenwell et al. 2022), kernlab for SVR

(Karatzoglou et al. 2004), and mgcv for GAM (Wood, 2017). Model performance was assessed using five-fold cross-validation

based on out-of-fold predictions. Three complementary metrics were used: the coefficient of determination (R?), root mean

square error (RMSE), and mean absolute error (MAE). R? describes how well model predictions capture the variability of

observed CHa fluxes, RMSE emphasises large deviations, and MAE quantifies the average absolute difference between observed

and predicted values. R* and RMSE were the main criteria for evaluating predictive performance and selecting the best model

configurations, while MAE was reported as an additional indicator of absolute error, given the low mean CHa fluxes. All metrics

were _computed from cross-validated predictions using the yardstick package (Kuhn et al., 2025) to ensure consistent

implementation across all model types,

We tuned the key parameters of RF, GBM, SVR, and GAM using five-fold cross-validation with RMSE as the evaluation metric

(Text S1). For SVR, several kernel functions were tested and the radial basis function kernel provided the best performance.

GAMs were fitted using thin-plate regression splines for numeric predictors and penalization of uninformative smooth terms.
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CHa fluxes was the primary comparison metric because it penalizes large
deviations more strongly than a mean-absolute error (Chai & Draxler 2014).

h EDeleted: Root-mean-square error (RMSE) between measured and predicted

N

Multicollinearity among predictors was assessed using Variance Inflation Factors (VIF/GVIF) and GAM concurvity diagnostics.

and no predictors exceeded commonly used concern thresholds (Text S2, Table S2). Therefore, the full predictor set was retained

at both spatial resolutions.
In addition to the main predictor set, models were also trained with additional yariables available only at 10 m spatial resolution,

(o

including CALU land cover, INSAR-derived surface subsidence, and temporally dynamic NDVI and NDWI extracted for dates
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but were not included in the main inter-resolution comparison, as they were unavailable at 1 m resolution and would otherwise
bias scale-related analyses.

To disentangle the effects of spatial resolution and data source, we additionally aggregated the 1 m input dataset to 10 m
resolution using the same workflow. Continuous predictors were averaged within each 10 m grid cell, and categorical variables
(LC) were assigned based on the majority class. These aggregated data were then used to train and evaluate all models using the

same hyperparameter settings and cross-validation strategy as for the main analysis.

2.3.3 Spatial prediction

Third, two best-performing models (RF and GBM) were applied to a complete spatial predictor stack, a multi-layer raster
covering the entire study area without gaps. The stack included two types of layers. Static layers, such as NDVI, NDWI, slope,
aspect, TPI 30 m, TWI, and land cover, remained unchanged throughout July. In contrast, the meteorological layers (AT, TDD,
PAR) were spatially uniform but temporally dynamic. A temporal loop progressed from 1 July at 00:00 to 31 July at 23:59 in
three-hour steps. At each time step, the corresponding values of AT, PAR, and TDD were inserted into their respective layers in
the stack. The model then generated an instantaneous CHa flux raster in mg CHa m™ h! using the terra package (Hijmans 2023).

This routine resulted in 248 flux rasters for the whole month of July, produced per year and spatial resolution. To ensure
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consistency, areas with missing input values (e.g., water bodies) were excluded from predictions. In total, 5,952 CHa flux rasters

were generated (248 time steps x 2 models x 2 resolutions x 6 years).

2.3.4 Temporal aggregation and interpretation

Fourth, the predicted raster time series was aggregated using arithmetic operations in the terra package. Averaging over all time

steps resulted in July mean flux maps, while summing and multiplying by three converted instantaneous rates into cumulative

monthly fluxes. Six-year means and interannual variation (2019 to 2024) were calculated. To assess spatial mismatches yelated CDeIeted: Spatial )
to scale, the 1 mpredictions were aggregated to 10 m yesolution, and the aggregated 1 m maps gvere subtracted from the 10 m ) CDeIeted: due )
maps pixel-by-pixel to compute spatial differences. In addition, differences between the two tree-based model families, RF and e CDeIeted: effects were examined by differencing )
.. ( Deleted: and
GBM, were mapped to guantify structural uncertainty. To interpret these mismatches, Pearson correlations were calculated = Ebeleted o 1l %
™ X eleted: mean-flux
between jhe difference maps (resolution, or model-based) and individual predictor layers, ) .CD eleted: cell by cell, Similarly )
k CDeleted: capture )
2.3.5 Variable importance analysis “CDeIete d: we calculated )
Fifth, we conducted a separate variable importance analysis to identify the most influential predictors in each model. Variable ‘,’;:’CDeIeted: flux )
importance scores were extracted from the gross-validated, hyperparameter-optimised RF and GBM models using permutation ; %Deleted: based %
1 Deleted:
importance (ranger package; Wright & Ziegler, 2017) and relative influence (ghm package; Greenwell et al., 2022), respectively. : CDeIete - )
These scores were used to assess the consistency of predictor relevance across models and spatial resolutions._ Variable
importance scores for each model were normalized by dividing by the sum of all importance values within that model, resulting
in relative importance values ranging from 0 to 1.
1 Preparation 2 Model training 5 variable importance 1 Preparation 2 Mod
- Train RF, GBM, SVR, and i
: ’ g Extract predictor importance - Train RF, (
NDVI, NDWI, Slope, | ||| Gam with different settings. = K NDVI, NDWI, Slope, )| | gam with
Aspect, LC, TWI, TPI from all models to compare Aspect. LC. TWI. TPI with ¢
- Assess model performance pect, LG, ) i =
with RMSE. MAE. and R2 to relevance across methods and
i t, d I, resolutions. with RMSE
select best models.
select best
AIDDTAR AT, TDD, PAR
3 Spatial prediction 4 Temporal aggregation 3 Spatial p>e€iction
- Apply best-performing models (RF and - Compute yearly and multi-year July — P I
GBM) at both 1m and 10 m resolutions. CH, fluxes (2019-2024). G-BMpp ybbehsfl-per Ogﬁllgg mod|e§ (
- Dynamic predictors updated every 3 hours > - Assess interannual variability and ) at. ot .m au m resolution
for each day in July 2019-2024. model/resolution uncertainty. - Dynamic predictors updated every
- Total: 248 time steps x 2 models x 2 - Correlate flux differences with for each day In JU'V 2019-2024.
resolutions x 6 years = 5,952 CH, flux rasters. predictor layers. - Total: 248 time steps x 2 mod
resolutions x 6 years = 5,952 CH, flux
Beleted

Figure 3. Workflow for modelling and upscaling CH, fluxes in the designated study area. The analysis was performed separately for

1 m and 10 m spatial resolutions and comprised five primary stages: (1) Predictor preparation. (2) The training and tuning of models.
(3) Spatial prediction. (4) Temporal aggregation and evaluation. (5) Variable importance.
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3 Results and Discussion
3.1 Correlation between observed CH4 fluxes and single remote sensing parameters

This exploratory analysis examined how observed July CHs fluxes correlate with individual environmental variables at two
spatial scales (1 m and 10 m) to identify significant controls of CHa4 flux and how spatial resolution affects their predictive power.
Although the observed associations were generally weak, several clear patterns emerged across landscape classes and
environmental gradients.

Seasonal subsidence showed the strongest positive correlation, underscoring the explanatory power of this parameter for moisture
availability and related enhancements in CHa4 fluxes (Table 2). This is in line with observations linking InSAR-derived
subsidence to elevated CH4 fluxes in Arctic ecosystems (Sjogersten et al., 2023). Several moisture-related indices (NDWI, TWI,
TPI) show higher correlations at 10 m than at 1 m, because 10 m aggregation smooths microtopographic noise while 1 m retains
over-detailed, heterogeneous signals. This indicates that coarser resolution better captures landscape-scale hydrological

gradients. This finding is supported by Ruhoff et al. (2011), who demonstrated that TWI values stabilise and become more

spatially coherent at coarser resolutions, and by Riihiméki et al. (2021), who showed that TWI’s ability to predict soil moisture
improves when derived from coarser DEMs (e.g., 10-30 m). Conversely, the correlation with aspect weakened at 10 m, compared
to 1 m resolution, likely due to the loss of microtopographic detail when pixels are aggregated, as shown previously (Schoorl et
al., 2000; Vaze et al., 2010).

Temporally matched NDVI and NDWI show weaker correlation with CH4 fluxes compared to static indices. The reason may be

the limited effective temporal resolution of Sentinel-2: although the constellation has a nominal 5-day revisit, persistent Arctic
cloud cover often stretches the cloud-free gap well beyond 10 days (Runge & Grosse, 2019), producing a temporal mismatch

with chamber measurements.
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Table 2. Spearman rank-correlation coefficients (p) between July CHy flux and envir tal predictors at 1 m and 10 m spatial

resolution. Positive values indicate that higher predictor values coincide with higher CH4 emissi negative values indicate the

CH.

opposite. All correlations were computed using the full dataset. For vegetation and surface wetness predictors (NDVI, NDWI), both
static (July 2018) and temporally matched values (Sentinel-2 scenes within £10 days of each chamber measurement) are shown. The
column "10 m, temporal" reflects those temporally matched predictors. For predictors derived from static landscape characteristics
(e.g., TWI, Slope, TPI, Subsidence), 10 m and 10 m-temporal columns are merged as they do not vary in time. Significance levels:
**p <0.01, ***p <0.001.

Group Predictor 1m 10 m 10 m, temporal
Vegetation NDVI -0.289%** -0.295%** -0.082%*
NDWI 0.141%%* 0.24%%* -0.013
Surface wetness and soil
moisture
TWI 0.027** 0.235%**
Slope -0.187%%* -0.238%**
Topography Aspect 0.14%%* 0.035%**
TPI -0.162%%* -0.327%%%*
Ground subsidence Cumulative seasonal 0.534%**

subsidence

We examined CHa flux variation across the landscape classes and CALU units (Fig. 4A and Table B1). For example, sedge-

dominated landscape classes had the highest mean CHa flux (0.87 — 0.94 mg CHa m?h™'). Elevated fluxes in these systems are

likely driven by plant transport through aerenchymatous tissue during which CHa produced at depth bypasses the oxic zones,
11
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and enhanced (CH4 production resulting from high plant productivity and increased substrate availability via root exudates

(Olefeldt et al., 2013; Kwon et al., 2017). Tussock areas displayed the lowest flux values, with on average minor uptake of CH4
(-0.02 mg CHa m™ h''). These patterns were consistent with observations by Voigt et al. (2023c),

All pairwise differences between CHa flux distributions for the 1 m and 10 m products were statistically significant (Wilcoxon
rank-sum test, p < 0.0001). However, this result should be interpreted with caution due to the large sample sizes (even subtle

differences can appear significant). Jn some cases, the differences in median fluxes were small (e.g., sedges), while in others, the

resolution shift results in more substantial changes (e.g., dwarf shrubs: median increased from 0.05 to 0.19 mg CHam?h™). In
some cases, the flux sign even changed, for instance, lichen-dominated areas shift from weak uptake to weak emission. These

shifts likely reflect the effects of aggregation, where coarser resolution mixes surface types or blends microsites with different

flux patterns,
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Figure 4. Comparison of observed CHy fluxes across site-specific landscape classification at two spatial resolutions and CALU
vegetation classes. Panel A: CH, fluxes across five site-specific landscape classes with existing CHy4 flux measur M

were aggregated separately for 1 m and 10 m spatial resolution. Panel B: CHjy fluxes grouped by CALU (Circumarctic Land cover
Units) classes. CHy4 fluxes differed significantly between most CALU classes (p < 0.001, pairwise Wilcoxon test), except classes 10 and
3 (wetlands), where no significant difference was observed (p = 0.054). Boxplots show the distribution of fluxes for each group.
horizontal lines represent medians, boxes indicate the interquartile range, and whiskers extend to 1.5x the IQR. The red dashed lines
indicate zero fluxes.

map (Fig. 4B). CALU vegetation classes differed significantly in CHa flux, except between moist moss tundra, abundant moss,
prostrate to low shrubs (class 10) and permanent wetlands (class 3) (Fig. 4B, Table B2). Within CALU classes, average CHa
fluxes ranged from slight uptake in wetland class (-0.09 mg CHs m h™') to moderate emissions in moist tundra, abundant moss,
dwarf and low shrubs (CALU 11) (0.46 mg CHs m™ h!). Unexpectedly, the permanent wetland class showed (CHs uptake. This

category only included one area, where dry lichen areas dominate most of the area. Moreover, the 10 m resolution of CALU

likely leads to mixed pixels, where wetter spots were averaged with drier surroundings, reducing the apparent CHs emissions. In

contrast, many wet areas at our site were too small to be resolved as wetlands in CALU and were instead classified into other
categories.

Overlay analysis between our site-specific landscape classification and the CALU (Fig. 5) showed that each of our landscape

classes included 6-11 CALU classes (with coverage > 1 %), typically dominated by moist tundra, abundant moss, dwarf, and
low shrubs (CALU 11). This reflects differences in classification approaches: CALU aimed at representing vegetation diversity
and wetness gradients across the entire Arctic (Bartsch et al., 2024), whereas the site-specific landscape classification was

explicitly built for CHs flux modelling and therefore integrates fine-scale microtopography, surface-moisture patterns, and local
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vegetation._A_similar degree of cross-class mixing was observed for the 1 m classification (Fig. S2). indicating that these

differences are primarily driven by conceptual distinctions between classification schemes rather than spatial resolution.

While both CALU and our site-specific classifications captured broad vegetation and wetness gradients, tall-shrub areas were

clearly underrepresented in the flux dataset (< 1.5 % of points vs. ~20-30 % of the mapped area (Fig. S1). These zones often

coincide with wetter micro-depressions and drainage areas (Griinberg et al., 2020), suggesting that the wettest conditions are not

fully captured in the current sampling. Increasing coverage of these habitats would improve the robustness of flux comparisons

and reduce residual variability in future models.

Sedges 17% 8% 68% 1% 5% 1%
Tall shrubs + trees 1% 1% 1% 36% 49% 2% 1% 1% 7% 1%
% within 10m
e Dwarf shrubs 1% 2% 50% 43% 1% 1% LC ?!%SS
s 75
S 50
Tussock 1% 13% 18% 61% 2% 1% 3% -
0
Lichens 1% 12% 42% 32% 1% 1%
Water 5% 51% 7% 6% 4% 9% 2% 2% 1% 1% 1%

T T T R I N T ST U N A T I N ST R ST S
CALU

Figure 5. Pixel-wise cross-comparison between two 10 m land-cover products for the TVC study area. LC 10 m (this study): a site-
specific Sentinel-2 + ArcticDEM classification built (see SI Text 1). CALU (Circumarctic Land cover Units): published pan-Arctic
landcover units (full legend in Table A3). Each tile shows the fraction of pixels of a given CALU class that fall into that LC 10 m class;
row totals, therefore, equal 100 %. Values > 0.5 % are printed inside the tiles. Tiles that are coloured but unlabelled occur (< 0.5 %),
while blank tiles indicate class pairs that do not intersect within the AOI.

However, even within each CALU or LC class, flux variance remained high, underlining that vegetation type alone cannot
capture the full pattern of CHa fluxes without considering microtopography and moisture indices. Similar to the pan-Arctic
synthesis by Olefeldt et al. (2013), our findings support the view that the effects of key environmental parameters on CHa flux

should be considered jointly rather than independently. Additionally, soil temperature and soil moisture, key controls of CHs4

production and oxidation, (Wille et al., 2008; Mastepanov et al., 2013). were not included,as predictors in the present analysis

because no high-quality gridded datasets were available that matched the spatial resolution and thematic detail required for our
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modelling framework. These variables are planned for integration in future model development as suitable products become

available.

3.2 Evaluation of Model Accuracy

Our cross-validated modelling framework achieved predictive performance (R? from 0.53 to 0.87, Table 2) comparable to recent

CHa upscaling studies in the Arctic-boreal region, including both chamber- (e.g., Virkkala et al., 2023; Rasinen et al., 2021) and
eddy covariance-based studies (e.g., McNicol et al., 2023; Chen et al., 2024; Peltola et al., 2019; Tramontana et al., 2016).

Model evaluation at 1 m resolution revealed that SVR achieved the highest R? of 0.87, indicating strong predictive power.

However, this was accompanied by substantial errors (RMSE = 0.078, MAE = 0.019 of mean CH4 flux), suggesting high

sensitivity to skewed distributions and outliers, a known limitation of SVR when modelling non-Gaussian ecological data (Smola

& Schélkopf, 2004). In contrast, RF showed both high accuracy and robustness, combining highR? with the lowest errors among
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tested algorithms. This confirms the algorithm’s strength in capturing nonlinear interactions while being less sensitive to noise
and overfitting, as highlighted in ecological applications (Belgiu & Dragut, 2016; Résénen et al., 2021; Cutler et al., 2007). GBM

also showed strong performance, with low errors and consistent R? values, reflecting its capability to efficiently leverage key

predictors (Kamaérdinen et al., 2023; Natekin & Knoll, 2013). GAM, in contrast, had the weakest performance among all models
at 1 m resolution, with the lowest R? (0.62), highest RMSE (0.077), and highest MAE (0.025). This likely reflects the model’s

limited ability to capture sharp spatial variability in CH4 fluxes when localized structure is strong. GAMs rely on detecting

smooth nonlinear effects, but when predictors become noisy or spatially complex, the fitted splines lack the detail needed for
accurate prediction (Wood, 2017).

At 10 m resolution, RF not only achieved the lowest mean absolute and root-mean-square errors, but its R? and error metrics
also changed the least when we varied resolution or added temporally dynamic predictors, indicating the most consistent

performance in our experiments (Table 3).

GBM showed similarly low errors but a slightly lower R? (0.57). SVR achieved the highest R? (0.68), but this was offset by |

much higher prediction errors, indicating poor generalisation despite high apparent fit. GAM performed worst, with the lowest
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R? (0.53) and the highest RMSE (0.13).

Table 3. Performance of four models at 1 m and 10 m spatial resolutions. Metrics include R? (coefficient of determination), MAE (mean

absolute error), and RMSE (root mean square error). Bold values represent the best score for each metric within each resolution. The
“10 m” scenario includes models with temporally stable normalized difference vegetation index (NDVI) and normalized difference
water index (NDWI), while “10 m_temporal” refers to models using temporally dynamic indices, matched to the closest available date
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smoothed out. Similarly, GAM performance declines when predictors become more homogeneous, since spline functions can . spatial resolutions (Riihimiki et al., 2019), GAM loses explanatory power

because the fitted splines have insufficient detail to

- [Deleted: centralized and less variable, as often observed under coarser

no longer represent fine spatial gradients. In contrast, RF and GBM were more robust to this loss of detail because their ensemble

structure allows them to generalise better under coarser input conditions. Based on these results, we selected RF and GBM for effects lead to higher errors and reduced R2, particularly for models that
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repeated measurements under identical environmental conditions across years (Text S4, Fig. S7).
of data and predictor variables (Belgiu and Dragut, 2016).
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Including the temporal variability of the NDVI and NDWI values led to an average increase in R of approximately 0.11 for the

GAM, GBM and RF models at a resolution of 10 m (Table 3). SVR was the exception, showing a slight decrease in R? with no
reduction in errors. For the GAM model, this increase in explanatory power was accompanied by lower RMSE and MAE values,
indicating more accurate and robust performance. In contrast, both RF and GBM showed a higher R, but also exhibited increased
absolute errors, which may indicate overfitting to temporally dynamic predictors. This likely reflects the tendency of ensemble
models to capture noise in dynamic inputs when training data is limited (Barry and Elith, 2006; Chollet Ramampiandra et al.,
2023; Reichstein et al., 2019). Similar behaviour has been observed in other ecosystem carbon flux modelling studies, for
example, in neural network models that overfit to lagged meteorological inputs (Papale & Valentini, 2003). The GAM model
likely benefited from its ability to represent gradual ecological shifts through penalised smoothers, which reduces sensitivity to
noise (Berbesi & Pritchard, 2023). The limited improvement in performance for SVR may be due to its sensitivity to data

structure and lower flexibility when modelling smooth temporal trends in ecological datasets (Smola & Schélkopf, 2004).

3.3 Impact of model and resolution selection on CHs flux predictions

Because only meteorological variables changed over time, the interannual variation in the predicted maps arises from interactions
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between the static landscape predictors and varying atmospheric conditions, rather than from spatial changes in surface

characteristics. Different data-driven models can produce distinct spatial predictions even when trained on the same input data.

=

Different ML

Although well, documented, most ynachine-learning algorithms are not easily interpretable, whereas statistical approaches such

as GAMs provide more transparent relationships between predictors and fluxes. We therefore compare their spatial predictions

and simple diagnostics to assess reliability and guide model choice for CH4 upscaling. Our comparison of upscaled CHs flux
fields produced by the RF and GBM models showed that algorithm choice remained an important influence on spatial variability
in predicted CHa fluxes (Fig. 6). The GBM model generated higher local contrast and more pronounced extremes, especially at
1 m resolution, with pronounced peaks in wet, topographically complex areas, reflecting its greater sensitivity to extreme values

and local predictor variation. RF produced smoother, noise-resistant distributions, aligning with its known strength in

Zeneralising across heterogeneous landscapes (Résénen et al., 2021; Cutler et al., 2007). While RF yemains a robust and widely _

applied method for spatial upscaling (Cutler et al., 2007), our findings demonstrate that algorithm choice still affects spatial
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outcomes, with each model emphasising differentaspects of landscape variability. This highlights the value of including multiple

model types, not only for pptimising performance, but also for quantifying model-driven uncertainty in CHa flux upscaling.
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Figure 6. Predicted mean monthly CH; fluxes (mg CHs m month™') for July (averaged over 2019-2024), generated by two machine-

learning models: Random Forest (RF, panels A and B) and Gradient Boosting Machine (GBM, panels C and D). The panels A and C
shows predictions at 1 m resolution, and panels B and D right column at 10 m resolution. Each panel contains a black-framed zoom
window, which enlarges a representative section of the polygonal mire. Visual comparison of the two insets illustrates how the fine
wet-to-dry microtopography resolved at 1 m is smoothed when aggregated to 10 m. Background imagery: © Google Satellite Hybrid
(Maxar, 2025).

Interestingly, although GBM exhibited more spatial flux variability, the mean fluxes predicted by GBM were consistently lower
than those of RF. At 1 m, GBM averages 98.7 mg CHa m? month!, whereas RF averages 518.6 mg; at 10 m the values rise to
608.8 mg and 683.4 mg, respectively (Fig. 7A). This more than fivefold difference at 1 m resolution underscores the substantial

structural uncertainty that arises purely from algorithm selection, even when all predictors and training data are identical. At 10

m resolution, this discrepancy largely disappears because spatial aggregation smoothes microtopographic extremes and reduces

the influence of local outliers, making both models converge toward similar mean fluxes. Net-sink pixels accounted for 10.0 %
(RF) and 9.5 % (GBM) of the 1 m domain, but only 4.9 % (RF) and 4.4 % (GBM) at 10 m. CHa sink areas were spatially limited

and highly sensitive to scale. Pixels acting as net CHa sinks (i.e. with negative monthly fluxes) were located on well-drained

polygon rims and other lichen-dominated uplands where oxygen remained available throughout the summer. This allowed highly
efficient methanotrophs to oxidise CH4 faster than it was produced (Biasi et al., 2008). Resolving these units at a scale of 1 m
showed that they covered around 10% of the scene and significantly reduced the landscape-mean flux. However, coarsening to
10 m mixed the aerobic patches with adjacent wet hollows, reducing their mapped extent to approximately 4.5% and erasing
many uptake pixels. A comparable effect has been observed when chamber data were averaged across broader physiographic
units, shifting site-level balances from weak sinks to slight sources (Zona et al., 2016). This pronounced scale effect is consistent
with pan-Arctic syntheses, indicating that, although they cover only a small fraction of the surface, aerated uplands can offset a
significant proportion of wetland emissions, yet they are often obscured in coarse products and regional budgets (Olefeldt et al.,
2013; Kuhn et al., 2021). Our findings support recent assessments that retaining metre-scale information on microtopography,
vegetation, and soil moisture is essential for capturing sink behaviour and ultimately for refining carbon budgets in permafrost

regions, which currently indicate a small terrestrial CO: sink and a wetland CHa source (Treat et al., 2024).
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Both models predict a comparable overall flux range, but the main disagreement occurs in the intensity and spatial extent of

C" | d: Minimum and maximum fluxes remain similar between

intermediate values._ GBM also tends to produce stronger negative extremes, indicating higher sensitivity to localized sink

conditions. The residual model disagreement is driven less by the number of sink pixels than by their intensity. Minimum fluxes

predicted by GBM were consistently more negative than those from RF, with extremes of -147 mg CHsm™ month ! (1 m) and -

330 mg CHs mZmonth:! (10 m), compared to -45 and -33 mg CHam month ™! in RF, respectively. This suggests that GBM may |

emphasise CHa sink strength more than RF, even though the spatial extent of sinks is similar across models.
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At 1 m, GBM often responds more strongly to localized environmental extremes. These include areas with much higher soil

moisture, surface temperature spikes, or abrupt changed in microtopography that may only occur at the ynetre scale. This is due

to its sequential learning process, which can emphasize subtle but high-impact predictors. RF, in contrast, smooths local extremes
and yields more conservative area means. Because GBM-1 m produced a markedly lower AOI mean than RF, we treat this
behaviour as a potential systematic bias toward stronger sinks and hotspots. We therefore use RF-1 m as the reference budget
estimate and retain GBM-1 m as a sensitivity case to bracket structural uncertainty. At 10 m, aggregation reduces fine-scale
contrasts and the RF-GBM predictions converge. Pixel-wise standard deviations (Fig. 7B) reveal that RF is temporally more
stable, while GBM is more sensitive to inter-annual variation, particularly in wet or geomorphically complex areas.

Spatial differences between models and resolutions were calculated as pixel-wise subtraction (RF — GBM and 1 m — 10 m).

ensuring consistent direction of comparison across all analyses. Additional analysis of spatial differences between models (Fig.

B2) showed that several predictors were moderately to strongly correlated with the differences between RF and GBM predictions.

At 1 m resolution, the strongest correlation was observed for NDWI (-0.53), indicating that model disagreement was most

pronounced in wetter areas. NDVI (0.49) and Jandscape type (0.41) also showed strong positive correlations with model

differences, suggesting greater divergence in vegetated zones and across cover transitions. For the 10 m products, aspect (0.43)
became the only predictor for model differences above 0.4, implying that model choice matters most on directionally exposed
terrain once fine micro-relief is lost. Across both resolutions, NDWT exhibited consistent negative correlations, implying that
divergences are magnified in wetter and concave landforms that tend to accumulate water or thaw differently. These findings are
in line with Tagesson et al. (2013), who showed that adding satellite-derived NDWI improves CH4 flux modelling by capturing
moisture-driven variability.

Jhe full spatial difference maps for each model and resolution are provided in the supplementary Zotero dataset (Ivanova et al.
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Figure 7. Mean (CH, flux and interannual variability across the study area. (A) Mean monthly LHj flux predicted by RF and GBM
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models, averaged over the entire area of interest for the period July 2019 to 2024. (B) Pixel-wise interannual standard deviation of
predicted CHy fluxes for July months from 2019 to 2024, calculated separately for each model and resolution. Each boxplot shows the
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distribution of values across all pixels: the box spans the interquartile range (IQR, 25th to 75th percentile), the horizontal line within
the box indicates the median, and whiskers extend to 1.5<IQR. Points beyond the whiskers represent potential outliers.

Part of the disagreement between the two models, particularly at 10 m resolution, can be attributed to limited training data in

certain landscape types such as tall-shrub and complex wetland zones, which were sampled less intensively due to access

constraints. These classes show higher prediction uncertainty and stronger divergence between RF and GBM, as GBM amplifies

local extremes while RF tends to smooth them.

Model performance based on the aggregated 1 m data (10 m from 1 m) was nearly identical to that of the original 10 m models

with only small differences across algorithms. GBM and SVR showed slightly improved accuracy after aggregation, while RF

performed marginally worse and GAM remained nearly unchanged. These results indicate that the performance differences

between the 1 m and 10 m models reported above are mainly attributable to spatial resolution rather than to differences between

sensor-based and aggregated input data (see Text S4, Fig. S5, and Fig. S6).

3.4 Parameters importance in CHs flux prediction

Analysis of the relative importance of the predictors revealed fundamental differences between the RF and GBM models, and
how these differences change when moving from 1 m to 10 m resolution (Table B3). Significance was assessed using the

permutation method for each model and scale combination.

At the 1 m resolution, RF distributed importance fairly evenly across the topographic parameters. TPI (~22 %), Aspect (~2120),

and Slope (~18 %) showed comparably high influence, followed by Jandscape class (~16 %). All other predictors contributed

less than 10 %, and meteorological drivers collectively stayed below that level. This, topography-centred profile is consistent
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models under these conditions.{

CDeIeted: %)

CDeIeted: show comparable
h CDeIeted: Landscape

with the moderate intercorrelation among terrain metrics such as TPI, Slope, and TWI (Fig. B1), which share a common DEM

origin and partly capture overlapping relief and moisture patterns. Such behaviour aligns with the known tendency of random
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forests to distribute importance across correlated terrain drivers due to their random feature-selection mechanism (Résénen et

al., 2021; Cutler et al., 2007).

GBM showed a different pattern: again, no single parameter dominates, but five drivers spread across different input categories
(Slope, Landscape class, AT, TDD and NDWI) each explained about 14-16 % of the total, and none exceeds 20 %. This flatter
profile is based on the boosting process. Each new tree fixes the errors left by the previous one, so different predictors take turns
improving the model (Friedman, 2001). When several drivers reduce error by a similar amount, the model splits importance
among them (Kéméréinen et al., 2023).

When the resolution was coarsened to 10 m, pixel aggregation smoothed micro-relief, and both algorithms shifted toward
moisture-integrating drivers as primary explanatory influences. In RF, NDWI (~25 %) and Landscape class (~25 %) emerge as
joint leaders, NDVI rises to ~12 %, and all topographic parameters drop below 8 %. In GBM, the re-organisation is even stronger:
the moisture indicators NDWI (~25 %) and TWI (~19 %) together explained almost half of the total importance, while landscape
class follows at ~11 % and Slope and Aspect fall below 7 %. This pattern agrees with field evidence that moisture proxies
dominate CHa-flux prediction at coarser resolution, where fine-scale topographic details are lost (Tagesson et al., 2013; Wangari
et al., 2023). NDWI and TWI both integrate water content over several pixels, making them potential surrogates for local water-
table height and the extent of anoxic microsites that drive methanogenesis. NDWI is also sensitive to vegetation water and
phenology, allowing it to track water-table depth in peatlands (Meingast et al., 2014; Kalacska et al., 2018). TWI, which maps
landscape-scale water accumulation and thus redox and gas-diffusion controls, aligns with syntheses showing that water-table
fluctuations set the size of anoxic zones and largely govern CHa production and emission (Kaiser et al., 2018; Cui et al., 2024).
Landscape class and NDVI contributed complementary information on vegetation type and biomass, which modulate both
substrate supply and methane oxidation. In practical terms, upscaling to 10 m can still capture landscape-scale CHa patterns, but
only if robust moisture indices such as NDWI and TWI were included; purely geometric terrain drivers lose most of their

explanatory power once microtopography is averaged out.

The potential influence of CALU, subsidence, and temporally matched NDVI/NDWI indices was further examined in a separate

10 m model experiment (Text S3, Fig. S3).
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Figure 8 Mean relative importance (= SD) of environmental predictors for CH4 fluxes across two machine-learning models -Random
Forest (RF) and Gradient Boosting Machine (GBM) — evaluated at 1 m and 10 m spatial resolutions. Importance was estimated by
bootstrap resampling (n = 100) and is expressed as a percentage of total importance within each model. Predictors are grouped into
four categories: Meteorological drivers (thawing degree days, air temperature, photosynthetically active radiation),
Vegetation/Terrain (Normalized Difference Vegetation Index, landscape class), Topography (Topographic Position Index, aspect,
slope), and Hydrology/Moisture (Topographic Wetness Index, Normalized Difference Water Index). Abbreviations: TDD — thawing
degree days; PAR — photosynthetically active radiation; NDVI — Normalized Difference Vegetation Index; TPI — Topographic Position
Index; TWI — Topographic Wetness Index; NDWI — Normalized Difference Water Index.
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4 Conclusion

the key environmental and spectral drivers of CHa fluxes in heterogeneous Arctic tundra, evaluate

This study aimed to identi

how both model performance and predictor importance change with spatial resolution and across different data-driven models.

and assess the implications for upscaling CHa fluxes.

Subsidence, derived from InSAR, showed the highest correlation with observed CHs fluxes of all the tested predictors,

emphasising its value as a spatial proxy for soil moisture. It should therefore be included directly in CHa upscaling workflows,
particularly in permafrost landscapes where moisture conditions were key drivers of fluxes.

Although different models varied significantly in their estimates, RF and GBM provided the most consistent and reliable

upscaling results. At the highest spatial resolution, the two algorithms produced notably different flux magnitudes. reflecting

structural uncertainty linked to how each model handles local extremes. However, their robustness should be verified through

targeted sensitivity analyses, including tests with modified predictor sets, varied hyperparameters, and bootstrapped

subsampling, to assess the stability of variable importance and model performance, Significance of model predictors was found

to_be strongly scale-dependent. At a resolution of 1 m, the models derived most of their explanatory power from
microtopographic metrics, which capture the detailed elevation contrasts that distinguish between hummocks and hollows, as
well as localising CH4 hotspots. However, after aggregation to 10 m, these relief cues were diluted, causing a change in ranking:
moisture proxies NDWI and TWI became the principal drivers, together accounting for almost half of the explained variance.
This transition from terrain- to moisture-controlled importance highlights the fact that fine-scale mapping requires detailed

topographic data, whereas regional upscaling must prioritize robust hydrological indices. For AOI budgets we report RF at 1 m

resolution as the reference and use GBM at 1 m resolution as a sensitivity bound due to its amplification of metre-scale extremes.

Spatial resolution emerged as the important factor determining the predictive power data-driven upscaled CHa flux patterns,
exerting a stronger influence than model choice. At a resolution of 1 m, fine-scale heterogeneity was captured at a high degree
of detail, making it possible for models to distinguish between local sources and sinks of CH4. At 10 m, micro features merge
into mixed pixels, boosting mean fluxes and variability. This resulted in fine-scale sinks and hotspots disappearing, and in some
cases, fluxes being misclassified as a source of CHs in dry areas. Consequently, 10 m models produced higher mean fluxes and
broader flux distributions. However, some of these high values may be due to mixed-pixel artefacts rather than true local
emissions.

Our study findings imply that resolution is not simply a case of ‘the higher, the better’, and similarly, more complex ML methods

Moved up [2]: (Wille et al., 2008; Mastepanov et al., 2013), were not
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The study's limitations include unbalanced sampling across landscape types
and under-representation of extremely wet or microtopographically complex
areas. In particular, several landscape and CALU classes remain
undersampled, which limits the model’s ability to predict fluxes across all
types. Additionally, soil temperature and moisture, which are known to

.{_control CHs fluxes

(Deleted: , but are planned for integration in future model development. )
( Moved (insertion) [3] )

/
( Moved (insertion) [4] )
( Moved (insertion) [5] )

-
Moved up [4]: Although different models varied significantly in their
estimates, RF and GBM provided the most consistent and reliable upscaling
results.

\

may not necessarily yield better predictions. Although 1 m models captured fine-scale heterogeneity, 10 m models with !
temporally dynamic predictors improve explanatory power but increase prediction errors, likely due to overfitting to short-term

fluctuations. This suggests that, in some cases, /0 m resolution models can outperform | m resolution ones, particularly when

enhanced with well-timed spectral information — though caution is needed to balance fine-scale accuracy with broader spatial

generalisability.

Although this study focuses on a single Arctic wetland complex at Trail Valley Creek, the workflow and findings are broadly

transferable to other tundra environments. Ten-metre inputs from Sentinel-2 and ArcticDEM reproduce dominant moisture-

control patterns typical of Arctic lowlands, while metre-scale (drone + LiDAR) layers reveal fine sink—source contrasts but

require intensive data collection. Scale effects may vary across Arctic landscapes depending on topographic and vegetation

i( sensitivity analyses.
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NDWI and TWI became the principal drivers, together accounting for almost
half of the explained variance. This transition from terrain- to moisture-
controlled importance highlights the fact that fine-scale mapping requires
detailed topographic data, whereas regional upscaling must prioritize robust
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complexity, and could differ in more homogeneous or highly dissected terrain. Because the models remain correlative and July-

specific, extending the workflow across seasons and additional sites would strengthen generality and test the stability of the
observed scale effects. Future work should expand sampling into underrepresented landscape and vegetation classes, high-
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emission zones, methane uptake regions, and winter fluxes, and incorporate temporally dynamic predictors. Integrating theory-
guided time-series modelling approaches informed by ecological theory could enhance both the interpretability and accuracy of

CHa forecasts under complex seasonal dynamics, particularly when data availability is limited.
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Appendix A. Predictors from remote sensing and meteorological data

Table Al. Overview of predictor variables used in the CHy4 flux models. This table lists all environmental predictor variables considered
in the modelling framework. For each parameter, the spatial resolution (for remote sensing layers), source, short description, and
formulas for calculations are pr d (where licable). Parameters are grouped into six thematic categories: Meteorological
Drivers (e.g., PAR, AT, TDD), Vegetation / Land Cover (e.g., NDVI, landscape classification, CALU), Hydrology / Moisture Indicators
(e.g., NDWI, TWI), Topography (e.g., slope, aspect, TPI), and Surface Deformation (subsidence). Each variable is marked as either

static (unchanging during the study period) or dynamic (time-specific).
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Parameter Spatial resolution, | Derived from Description Te‘.‘“ﬁ‘?’.‘l‘ Pari\meter
variability type
AT Point Trail  Valley Dynamic | Meteorological
Creek Hourly air temperature measured Drivers
meteorological | at 2 m above ground level. Used
station as a dynamic meteorological
(Climate  ID: | driver for CHy flux models.
220N005;
WMO 1D:
71683; TC ID:
XTV).
Thawing Degree | Point Trail  Valley [Cumulative positive air Dynamic | Meteorological
Days (TDD) Creek temperature sum (above 0 °C) Drivers

meteorological
station
(Climate 1D:
220N005;
WMO ID:
71683; TC ID:
XTV).

used as a proxy for thaw energy
and season length. Calculated per
flux measurement period based on
air temperature from
meteorological station.

TDD =
Z?:l max(Tmean,i' 0) A(A4)

®  Tucani = mean daily air
temperature on day i

e n=number of days in the
accumulation period

e The max function ensures
only temperatures above
0°C are counted
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Text Al. Landscape classification

To classify land cover in the TVC area, we employed a supervised classification approach using multi-source remote sensing
data at 1 m and 10 m resolutions. The classification process was implemented in Google Earth Engine (GEE), enabling large-
scale data processing. A Random Forest (RF) classifier was chosen due to its ability to handle high-dimensional data, its
resistance to overfitting, and its suitability for land cover mapping. By applying a consistent classification framework at both 1
m and 10 m resolutions, this study enables direct comparisons of classification performance across spatial scales,

Training and Validation Data

The classification was trained using manually collected validation points that were assigned to six distinct land cover classes:
Dwarf Shrub, Tall Shrub, Sedges, Tussock, Lichen, and Water. To ensure statistical robustness, 80 % of the validation points
were used for model training, while the remaining 20 % were reserved for accuracy assessment.

Remote Sensing Data and Feature Extraction

To pptimise classification accuracy, we integrated spectral, texture, and topographic features derived from multiple remote

sensing sources. Sentinel-2 optical imagery at 10 m resolution was used for broad-scale classification, with images acquired

during the 2018 growing season (25 June,- 4 September 2018) to ensure that differences in land cover classification were due to

spatial resolution rather than changing environmental conditions, matching the same summer period as the 1 m drone survey.

Topographic features were extracted from ArcticDEM (2, m resolution) (Porter et al., 2023). At finer spatial scales, we

incorporated ultra-high resolution drone imagery (I m and 10 cm) from Rettelbach et al. (2024) and a digital terrain model
(DTM) (Lange et al., 2021).

To further enhance classification accuracy, we performed a Gray-Level Co-occurrence Matrix (GLCM) texture analysis of
NDVI, allowing us to incorporate information on vegetation heterogeneity. A 2 x 2 kernel was used for 10 m classification,

while a 20 x 20 kernel was applied at 1 m resolution to capture 20 m spatial patterns.

Table A2. Parameters used for the landscape classification. Abbreviations in the table: NDVI — Normalized Difference Vegetation

Index, NDWI — Normalized Difference Water Index, EVI — Enhanced Vegetation Index, SAVI — Soil-Adjusted Vegetation Index.
GLCM — Gray-Level Co-occurrence Matrix, TPI — Topographic Position Index, TWI — Topographic Wetness Index, DEM — Digital
Elevation Model. Spectral indices were derived from Sentinel-2 (10 m spatial resolution) and drone imagery (1 m spatial resolution

using the visible and near-infrared bands (Blue, Green, Red, NIR).

ISpatial
arameter IDescription [Formula (if applicable)
resolution,
. NIR — RED
DVI IMeasures vegetation greenness _— 10m, I m
NIR ¥ RED&
. Green — NIR
DWI Identifies water and moisture content] _— 10m, I m
Green ¥+ NIR:
. . . NIR — RED
VI Improves sensitivity to high biomass| 2.5 x 10m, I m
NIR " ¥76 X RED ="7.5XBlue + 1
' . (NIR — RED) x (1 + L)’ where
AVI Reduces soil brightness effects NIR+RED+L & 10m;1'm
L=0.5
Measures randomness in pixell
IGLCM Entropy Derived from NDVI 10m, 1 m
intensity
(GLCM Contrast  [Captures local texture variation Derived from NDVI 10m, I m
GLCM IMeasures uniformity in  image|
. IDerived from NDVI I0m, Tm
[Homogeneity texture
lope IMeasures terrain steepness Derived from DEM 2m, 1 m
spect Identifies terrain orientation Derived from DEM 2m,1m
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o . . ISpatial CDeIeted: Resolution
arameter IDescription [Formula (if applicable)
resolution, CFormatted: Font: Times New Roman
TPI 6m [Detects local terrain position Elevation - Mean(Elevation within 6m radius) 2m, 1 m CFormatted: Font: Times New Roman
p . - — - (Formatted: Font: Times New Roman
TPI 30m Identifies broader-scale landforms [Elevation - Mean(Elevation within 30m radius) [2m, 1 m CF tted: Font: Ti Now R
'ormatted: Font: Times New Roman
A
ln(m); where - CFormatted: Font: Times New Roman
TWI [Estimates soil moisture potential A = specific contributing area 2m, 1 m (Formatted: Font: Times New Roman
I8,= slope in radians CFormatted: Font: Times New Roman
Captures spectral variation in [mean and sd for each pixel of RGB and NIR]
and parameters 0m CFormatted: Font: Times New Roman
different wavelengths bands
Captures  spectral variation in |
and parameters ixel value of RGB and NIR bands 10 m CFormatted: Font: Times New Roman
different wavelengths
Classification Model and Accuracy Assessment
The Random Forest classifier was trained separately for 10 m Sentinel-2 data and 1 m drone-based data, with 200 decision trees
used in both cases. The trained models were then applied to classify the entire dataset. The overall accuracy was 0.76 for 1 m
resolution and 0.71 for 10 m resolution. Class-specific accuracies are provided in Table S1.
Export
Final classified maps at 10 m and 1 m resolutions were exported as GeoTIFF files for further analysis and comparison.
Table A3. Description of Circumarctic Land Cover Units (CALU) present in the study area. Class names and definitions are taken
from Bartsch et al. (2024). Additional columns indicate (i) whether the class is present within the area of interest (AOI), and (ii) whether
CHj flux measurements are available for this class.
CALU Descrintion Present| CHa4 ements CFormatted: Font: Times New Roman
class P in AOI available
Al Water yes CFormatted: Font: Times New Roman
2 shallow water/abundant macrophytes yes CFormatted: Font: Times New Roman
3 wetland, permanent yes yes CFormatted: Font: Times New Roman
4 wet to aquatic tundra (seasonal), abundant moss yes CFormatted: Font: Times New Roman
S moist to wet tundra, abundant moss, prostrate shrubs (Formatted: Font: Times New Roman
0 dry to moist tundra, partially barren, prostrate shrubs yes CFormatted: Font: Times New Roman
J dry tundra, abundant lichen, prostrate shrubs CFormatted: Font: Times New Roman
3 dry to aquatic tundra, dwarf shrubs (& sparse tree cover along treeline) yes CFormatted: Font: Times New Roman
9 dry to moist tundra, prostrate to low shrubs yes yes CFormatted: Font: Times New Roman
10 moist tundra, abundant moss, prostrate to low shrubs yes yes (Formatted: Font: Times New Roman
11 moist tundra, abundant moss, dwarf, and low shrubs yes yes CFormatted: Font: Times New Roman
12 moist tundra, dense dwarf, and low shrubs (& sparse tree cover along treeline) yes ] (Formatted: Font: Times New Roman
moist to wet tundra, dense dwarf, and low shrubs (& sparse tree cover along " (Formatted: Font: Times New Roman
13 treeline) yes ) CFormatted: Font: Times New Roman
14 moist tundra, low shrubs yes . ‘CFormatted: Font: Times New Roman
15 dry to moist tundra, partially barren yes yes S CFormatted: Font: Times New Roman
n § (Formatted: Font: Times New Roman
16 moist tundra, abundant forbs, dwarf to tall shrubs yes .
CFormatted: Font: Times New Roman
17 recently burned or flooded, partially barren yes B .CF ormatted: Font: Times New Roman
‘CFormatted: Font: Times New Roman
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18 forest (deciduous) with dwarf to tall shrubs yes CFormatted: Font: Times New Roman
19 forest (mixed) with dwarf to tall shrubs yes CFormatted: Font: Times New Roman
0 forest (needle leave) with dwarf and low shrubs yes (Formatted: Font: Times New Roman
1 partially barren yes (Formatted: Font: Times New Roman
22 snow/ice CFormatted: Font: Times New Roman
3 other (incl. shadow) yes CFormatted: Font: Times New Roman
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Appendix B. Results

Table B1. Summary statistics of observed CH, fluxes (mg CHs m h!) across site-specific landscape classes at 1 m and 10 m spatial ;

resolutions. The table reports the number of observations QN Obs), number of sites, where measurements were done (N sites), mean, /= :

first quartile (Q1), third quartile (Q3), minimum, and maximum CHj flux values for each landscape class at both resolutions.
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Table B2. Summary statistics of observed CHy4 fluxes (mg CHy m? h') across CALU classes. The table reports the number of
observations (n), mean, first quartile (Q1), third quartile (Q3), minimum, and maximum CHj flux values for each landscape class at

1090  both resolutions. Class descriptions are available in Bartsch et al. (2024).
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Figure B1. Spearman rank correlations between environmental predictors used in the CHy flux models at (left) 1 m and (right) 10
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Table B3. Relative importance [%] of environmental predictors for CH, flux models across spatial resolutions and algorithms. The
table shows the variable importance (in %) for each predictor derived from Random Forest (RF) and Gradient Boosted Machine
(GBM) models at 1 m and 10 m spatial resolution. Predictors are grouped by thematic category (e.g., Meteorological, Topographic).
Importance values reflect the mean contribution of each predictor to the model performance and standard deviations (+ SD).
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