
We thank the reviewer for the thorough and constructive comments. This valuable feedback 

has helped us identify several aspects that required clearer explanation and refinement, 

particularly concerning model description, data representativeness, and methodological 

transparency.We will carefully address all points raised and provide corresponding 

clarifications, additional analyses, and improved figures and tables in the revised manuscript. 

Our detailed responses to each comment are provided below. 

 

RC: The selection and parameterization of the used machine learning and regression models 

need to be better described. First, it could have been worthwhile to test also other machine 

learning methods, such as extreme gradient boosting that has performed well in many recent 

model comparisons. Second, the parameterization for the different models need to be 

elaborated. Gradient boosting and support vector regression are both very sensitive to 

parameter settings but there is no description at all whether different parameter combinations 

were tested. Additionally, for support vector regression, it should be detailed what kernel for 

used. For generalized additive models, it should be described what kind of smoother functions 

were used and whether the unimportant variables were penalized in the model building. 

Furthermore, there should be no multicollinear predictor variables in generalized additive 

models. Was the cross-correlation between predictors checked? Random forest is less sensitive 

to parameterization but the model performance can be boosted with variable selection. If 

variable selection is conducted, the variable importance results of the model are also more 

robust. 

AC: We agree that a clearer description of model selection and parameterization will improve 

the manuscript, particularly for a non-expert audience in machine learning models.  

We appreciate this comment and agree that it is important to justify our choice of boosting 

algorithm. We initially selected Gradient Boosting Machines (GBM) because they are efficient, 

widely applied in environmental modeling, and provide strong performance with moderate 

tuning complexity. Since XGBoost is an advanced implementation of the same gradient-

boosting framework, we also evaluated it during model selection. The comparison showed that 

XGBoost did not improve predictive skill relative to GBM for our dataset. At 1-m resolution, 

GBM performed significantly better (median RMSE = 0.0157 vs. 0.0196, Wilcoxon p = 0.03). 

At 10-m resolution, the two models performed equivalently (p = 0.31). These differences are 

small and do not alter any scientific interpretation. Therefore, we retained GBM as the more 

efficient and interpretable boosting model in the main analysis. Because GBM and XGBoost 

belong to the same model family and behave similarly here, expanding the methodological 

scope further would not provide additional insight. 

 

RC: Furthermore, there should be no multicollinear predictor variables in generalized additive 

models. Was the cross-correlation between predictors checked? Random forest is less sensitive 

to parameterization but the model performance can be boosted with variable selection. If 

variable selection is conducted, the variable importance results of the model are also more 

robust. 

AC: We appreciate the reviewer’s comment regarding the need to evaluate multicollinearity. 

To ensure that collinearity does not bias model inference, we performed a comprehensive 

diagnostic combining Spearman correlation analysis, Variance Inflation Factor (VIF), and 



GAM concurvity evaluation. Spearman’s rank correlations showed that all predictor pairs were 

weak to moderate (|ρ| < 0.6), except for NDVI and NDWI, which were strongly negatively 

correlated (ρ = -0.93 at 1 m and ρ = -0.98 at 10 m resolution). This strong correlation is 

ecologically expected, as vegetation greenness and surface wetness co-vary in Arctic tundra 

environments. However, these variables capture different biophysical processes, NDVI 

representing photosynthetic capacity / canopy structure, and NDWI reflecting near-surface 

water availability, and removing NDWI from the model decreased goodness-of-fit (R2 from 

0.25 to 0.24 in the linear comparison), indicating that it provides non-redundant information. 

VIF (Variance Inflation Factor) values across all predictors were < 6 (maximum 5.4 for NDVI-

NDWI), remaining below commonly applied thresholds of concern (VIF > 10). GAM 

concurvity estimates were consistently low (< 0.3 for all smooth terms), confirming that the 

non-linear responses modeled in GAMs are not driven by hidden redundancies among 

predictors. These combined diagnostics demonstrate that multicollinearity is well within 

acceptable limits and does not compromise model stability or interpretability; therefore, we 

retained both NDVI and NDWI in the predictor set. The results of the multicollinearity 

diagnostics are now provided in the Supplementary Material. 

 

RC: The measured CH4 flux data should be described better. In remote sensing-based 

upscaling, there should be spatially representative data for the whole study area. It is now 

unclear whether this is the case. When looking at Figure 1, it seems that the sampling is very 

concentrated in a few locations. It is rightfully written in the limitations section, that the 

sampling could have been better. However, the sampling should be described in the methods 

section more. How many measurement points were there in total? Do the points represent the 

total spatial heterogeneity in the study area? How many measurements for each point? How 

the points are divided into the different landscape classes? How the point locations were 

chosen, was the sampling purposeful? Were there boardwalks or how the measurements were 

conducted in the plots? If there were boardwalks, do they impede the remote sensing signals 

over the plot locations? Were the RS-based observations of the plots taken from a single pixel 

or a larger neighborhood? Are the different measurements and plots independent and does the 

potential spatial and temporal autocorrelation affect model results? 

AC: We thank the reviewer for raising important points regarding spatial representativeness. 

In this study, flux upscaling is based on pixel-level statistical learning, where each flux-

predictor pair is treated as an independent spatial observation. After restricting data to July to 

ensure temporal comparability across years, the 1m dataset contains 13,384 spatial 

observations distributed across the dominant land-cover types at Trail Valley Creek: tussock 

tundra (46.7%), dwarf-shrub tundra (29.9%), lichen-dominated uplands (19.2%), and sedge 

wetlands (4.6%). These classes span the full moisture gradient from dry uplands to wet 

depressions, ensuring that the major ecological contrasts relevant to methane emissions are 

well represented. At 10 m resolution, predictors are derived from Sentinel-2 land cover, which 

differs in class definitions from the field-based mapping. Thus, representativeness is evaluated 

separately at this scale, resulting in a highly consistent spatial distribution (46.4% tussock, 

29.5% dwarf shrubs, 19.3% lichen, 3.6% sedges), with tall shrubs additionally represented 

because the Sentinel-2 land-cover product includes this class and the coarser pixel footprint 

captures shrub canopies more effectively. Full class distributions for both resolutions are 

reported in the Supplementary Material. 



 

Observations are distributed throughout the ~3 km2 study area (Fig. 1), not concentrated around 

single access points. Manual chamber sites were selected to capture microtopographic and 

vegetation heterogeneity within each landform. Automated chambers were located in shrub-

dominated uplands and accessed via short boardwalks. CH4 fluxes were always measured 

directly beneath the chamber footprint; at 10 m resolution, boardwalks occupy only a negligible 

fraction of the pixel area and therefore do not influence the remote-sensing signal. Repeated 

observations at the same spatial locations were collected under varying meteorological 

conditions, so temporal variability contributes independent information for model learning.  

These additions clarify that the chamber dataset provides spatially and ecologically 

representative sampling of the key environmental gradients that control CH4 fluxes at Trail 

Valley Creek, fully supporting its suitability for remote-sensing-based upscaling. All details 

regarding sampling design, land-cover representation, field setup, and pixel-based data 

extraction will be explicitly documented in the revised Methods and Supplementary 

Information. 

RC: Landscape classification: How were the classes derived for the landscape classification; 

visual interpretation and field work experience of the site? Please describe in the main text 

what is the collection platform for the 1 m stack, drones? How many training and validation 

data points were there for the classification? How the training data can be the same for both 

resolutions? Do you mean that the location and LC class was the same but the training data 

was calculated from the respective RS datasets? Why there were no tall shrubs measurements 

for the 1 m spatial resolution but there were such measurements for the coarser spatial 

resolution? How the water pixels were masked before the classification? 

AC: The complete workflow for landscape classification is already described in Appendix Text 

A1 and Tables A2–A3, including data sources, training and validation design, and accuracy 

metrics. We will clarify in the main text that the 1 m and 10 m classifications were produced 

separately using the same training dataset but different input layers (drone + LiDAR at 1 m; 

Sentinel-2 + ArcticDEM at 10 m), which naturally resulted in slightly different class 

boundaries. Tall shrubs were present in the 1 m classification, but no CH4 flux measurements 

overlapped with this class, so it was merged with dwarf shrubs for modelling. Water pixels 

were masked before classification. 

 

RC: Sentinel-2 preprocessing: Did you mask clouds, shadows and snow? Did you use also 

cloudy data for calculating the average mosaic? An earlier study has shown that 

average/median image calculation can be prone to include clouds/haze and 40th percentile 

could work better (https://doi.org/10.1016/j.jag.2024.103659). How were the time-specific 

NDVI and NDWI calculated? Based on one image only? How close was the image to the CH4 

measurements? What was done for clouds? 

AC: Sentinel-2 preprocessing steps are already described in Section 2.2.3 and Appendix Text 

A1. We will clarify that all Sentinel-2 Level-2A scenes were cloud-, shadow-, and snow-

masked using the QA60 bitmask and Fmask algorithm before compositing. Only cloud-free 

scenes were used to calculate the composite, and no cloudy pixels were included. The 

composite was based on the median of all cloud-free scenes; we will test whether the 40th 

percentile mosaic recommended by the cited study changes the results and will report this in 



the revision. Time-specific NDVI and NDWI were calculated from the nearest available cloud-

free Sentinel-2 scene within 10 days of each CH4 measurement. Cloud-affected scenes were 

excluded automatically through the same masking procedure. 

 

RC: l190: Why NDVI and NDWI? Why not other indices such as NDMI? NDVI and NDWI 

have typically very high negative correlation. 

AC: NDMI was not included because our 1 m orthomosaic contains only RGB + NIR bands 

and lacks the short-wave infrared (SWIR) channel required for NDMI computation. For 

Sentinel-2 data (10 m), we tested NDMI but found it highly collinear with NDWI and providing 

no improvement in model performance. NDVI and NDWI were therefore retained as the most 

interpretable and widely used vegetation and moisture indices for high-latitude ecosystems. 

Although the two indices are strongly negatively correlated (Spearman’s ρ = -0.93 at 1 m and 

-0.98 at 10 m resolution) due to their shared NIR component, they describe distinct ecological 

mechanisms: NDVI represents vegetation greenness and photosynthetic activity, while NDWI 

captures surface and canopy moisture. Including NDWI improved model performance (AIC 

≈ 100, R2 ≈ 0.01), and the non-parametric models applied are robust to such predictor 

correlations. Retaining both indices allows a more complete representation of vegetation-

moisture interactions characteristic of Arctic heterogeneous microtopography. 

RC: l217: Is there kind of double counting if some of the variables are first used for landscape 

classification and then again for the regression models together with the landscape 

classification. Is the classification needed as a predictor in the regression analyses? 

AC: We appreciate the reviewer’s thoughtful question. The landscape classification was 

included as a categorical predictor to represent vegetation and microtopographic heterogeneity 

that cannot be fully captured by continuous predictors such as NDVI, NDWI, or terrain indices. 

Although some of these variables were among those used to derive LC, the classification was 

based on a much broader set of spectral, texture, and topographic parameters (see Table A2). 

LC therefore summarises complex, multi-source information into discrete ecological units 

(e.g., sedge, tussock, or lichen patches) that reflect vegetation composition and hydrological 

conditions. Including LC thus provides complementary ecological information rather than 

redundant input, and models excluding LC performed less consistently across sites. 

 

We will also take the remaining reviewer comments into account in the revised version, 

basically accepting all suggested edits to further improve clarity, data description, and 

consistency across sections. 

 


