We thank the reviewer for the thorough and constructive comments. This valuable feedback
has helped us identify several aspects that required clearer explanation and refinement,
particularly concerning model description, data representativeness, and methodological
transparency.We will carefully address all points raised and provide corresponding
clarifications, additional analyses, and improved figures and tables in the revised manuscript.
Our detailed responses to each comment are provided below.

RC: The selection and parameterization of the used machine learning and regression models
need to be better described. First, it could have been worthwhile to test also other machine
learning methods, such as extreme gradient boosting that has performed well in many recent
model comparisons. Second, the parameterization for the different models need to be
elaborated. Gradient boosting and support vector regression are both very sensitive to
parameter settings but there is no description at all whether different parameter combinations
were tested. Additionally, for support vector regression, it should be detailed what kernel for
used. For generalized additive models, it should be described what kind of smoother functions
were used and whether the unimportant variables were penalized in the model building.
Furthermore, there should be no multicollinear predictor variables in generalized additive
models. Was the cross-correlation between predictors checked? Random forest is less sensitive
to parameterization but the model performance can be boosted with variable selection. If
variable selection is conducted, the variable importance results of the model are also more
robust.

AC: We agree that a clearer description of model selection and parameterization will improve
the manuscript, particularly for a non-expert audience in machine learning models.

We appreciate this comment and agree that it is important to justify our choice of boosting
algorithm. We initially selected Gradient Boosting Machines (GBM) because they are efficient,
widely applied in environmental modeling, and provide strong performance with moderate
tuning complexity. Since XGBoost is an advanced implementation of the same gradient-
boosting framework, we also evaluated it during model selection. The comparison showed that
XGBoost did not improve predictive skill relative to GBM for our dataset. At 1-m resolution,
GBM performed significantly better (median RMSE = 0.0157 vs. 0.0196, Wilcoxon p = 0.03).
At 10-m resolution, the two models performed equivalently (p = 0.31). These differences are
small and do not alter any scientific interpretation. Therefore, we retained GBM as the more
efficient and interpretable boosting model in the main analysis. Because GBM and XGBoost
belong to the same model family and behave similarly here, expanding the methodological
scope further would not provide additional insight.

RC: Furthermore, there should be no multicollinear predictor variables in generalized additive
models. Was the cross-correlation between predictors checked? Random forest is less sensitive
to parameterization but the model performance can be boosted with variable selection. If
variable selection is conducted, the variable importance results of the model are also more
robust.

AC: We appreciate the reviewer’s comment regarding the need to evaluate multicollinearity.
To ensure that collinearity does not bias model inference, we performed a comprehensive
diagnostic combining Spearman correlation analysis, Variance Inflation Factor (VIF), and



GAM concurvity evaluation. Spearman’s rank correlations showed that all predictor pairs were
weak to moderate (|p| < 0.6), except for NDVI and NDWI, which were strongly negatively
correlated (p = -0.93 at 1 m and p = -0.98 at 10 m resolution). This strong correlation is
ecologically expected, as vegetation greenness and surface wetness co-vary in Arctic tundra
environments. However, these variables capture different biophysical processes, NDVI
representing photosynthetic capacity / canopy structure, and NDWI reflecting near-surface
water availability, and removing NDWI from the model decreased goodness-of-fit (R? from
0.25 to 0.24 in the linear comparison), indicating that it provides non-redundant information.
VIF (Variance Inflation Factor) values across all predictors were < 6 (maximum 5.4 for NDVI-
NDWI), remaining below commonly applied thresholds of concern (VIF > 10). GAM
concurvity estimates were consistently low (< 0.3 for all smooth terms), confirming that the
non-linear responses modeled in GAMs are not driven by hidden redundancies among
predictors. These combined diagnostics demonstrate that multicollinearity is well within
acceptable limits and does not compromise model stability or interpretability; therefore, we
retained both NDVI and NDWI in the predictor set. The results of the multicollinearity
diagnostics are now provided in the Supplementary Material.

RC: The measured CH4 flux data should be described better. In remote sensing-based
upscaling, there should be spatially representative data for the whole study area. It is now
unclear whether this is the case. When looking at Figure 1, it seems that the sampling is very
concentrated in a few locations. It is rightfully written in the limitations section, that the
sampling could have been better. However, the sampling should be described in the methods
section more. How many measurement points were there in total? Do the points represent the
total spatial heterogeneity in the study area? How many measurements for each point? How
the points are divided into the different landscape classes? How the point locations were
chosen, was the sampling purposeful? Were there boardwalks or how the measurements were
conducted in the plots? If there were boardwalks, do they impede the remote sensing signals
over the plot locations? Were the RS-based observations of the plots taken from a single pixel
or a larger neighborhood? Are the different measurements and plots independent and does the
potential spatial and temporal autocorrelation affect model results?

AC: We thank the reviewer for raising important points regarding spatial representativeness.
In this study, flux upscaling is based on pixel-level statistical learning, where each flux-
predictor pair is treated as an independent spatial observation. After restricting data to July to
ensure temporal comparability across years, the I1m dataset contains 13,384 spatial
observations distributed across the dominant land-cover types at Trail Valley Creek: tussock
tundra (46.7%), dwarf-shrub tundra (29.9%), lichen-dominated uplands (19.2%), and sedge
wetlands (4.6%). These classes span the full moisture gradient from dry uplands to wet
depressions, ensuring that the major ecological contrasts relevant to methane emissions are
well represented. At 10 m resolution, predictors are derived from Sentinel-2 land cover, which
differs in class definitions from the field-based mapping. Thus, representativeness is evaluated
separately at this scale, resulting in a highly consistent spatial distribution (46.4% tussock,
29.5% dwarf shrubs, 19.3% lichen, 3.6% sedges), with tall shrubs additionally represented
because the Sentinel-2 land-cover product includes this class and the coarser pixel footprint
captures shrub canopies more effectively. Full class distributions for both resolutions are
reported in the Supplementary Material.



Observations are distributed throughout the ~3 km? study area (Fig. 1), not concentrated around
single access points. Manual chamber sites were selected to capture microtopographic and
vegetation heterogeneity within each landform. Automated chambers were located in shrub-
dominated uplands and accessed via short boardwalks. CH4 fluxes were always measured
directly beneath the chamber footprint; at 10 m resolution, boardwalks occupy only a negligible
fraction of the pixel area and therefore do not influence the remote-sensing signal. Repeated
observations at the same spatial locations were collected under varying meteorological
conditions, so temporal variability contributes independent information for model learning.

These additions clarify that the chamber dataset provides spatially and ecologically
representative sampling of the key environmental gradients that control CH4 fluxes at Trail
Valley Creek, fully supporting its suitability for remote-sensing-based upscaling. All details
regarding sampling design, land-cover representation, field setup, and pixel-based data
extraction will be explicitly documented in the revised Methods and Supplementary
Information.

RC: Landscape classification: How were the classes derived for the landscape classification;
visual interpretation and field work experience of the site? Please describe in the main text
what is the collection platform for the 1 m stack, drones? How many training and validation
data points were there for the classification? How the training data can be the same for both
resolutions? Do you mean that the location and LC class was the same but the training data
was calculated from the respective RS datasets? Why there were no tall shrubs measurements
for the 1 m spatial resolution but there were such measurements for the coarser spatial
resolution? How the water pixels were masked before the classification?

AC: The complete workflow for landscape classification is already described in Appendix Text
Al and Tables A2—A3, including data sources, training and validation design, and accuracy
metrics. We will clarify in the main text that the 1 m and 10 m classifications were produced
separately using the same training dataset but different input layers (drone + LiDAR at 1 m;
Sentinel-2 + ArcticDEM at 10 m), which naturally resulted in slightly different class
boundaries. Tall shrubs were present in the 1 m classification, but no CH4 flux measurements
overlapped with this class, so it was merged with dwarf shrubs for modelling. Water pixels
were masked before classification.

RC: Sentinel-2 preprocessing: Did you mask clouds, shadows and snow? Did you use also
cloudy data for calculating the average mosaic? An earlier study has shown that
average/median image calculation can be prone to include clouds/haze and 40th percentile
could work better (https://doi.org/10.1016/j.jag.2024.103659). How were the time-specific
NDVI and NDWI calculated? Based on one image only? How close was the image to the CH4
measurements? What was done for clouds?

AC: Sentinel-2 preprocessing steps are already described in Section 2.2.3 and Appendix Text
Al. We will clarify that all Sentinel-2 Level-2A scenes were cloud-, shadow-, and snow-
masked using the QA60 bitmask and Fmask algorithm before compositing. Only cloud-free
scenes were used to calculate the composite, and no cloudy pixels were included. The
composite was based on the median of all cloud-free scenes; we will test whether the 40th
percentile mosaic recommended by the cited study changes the results and will report this in



the revision. Time-specific NDVI and NDWI were calculated from the nearest available cloud-
free Sentinel-2 scene within £10 days of each CH4 measurement. Cloud-affected scenes were
excluded automatically through the same masking procedure.

RC: [190: Why NDVI and NDWI? Why not other indices such as NDMI? NDVI and NDWI
have typically very high negative correlation.

AC: NDMI was not included because our 1 m orthomosaic contains only RGB + NIR bands
and lacks the short-wave infrared (SWIR) channel required for NDMI computation. For
Sentinel-2 data (10 m), we tested NDMI but found it highly collinear with NDWI and providing
no improvement in model performance. NDVI and NDWI were therefore retained as the most
interpretable and widely used vegetation and moisture indices for high-latitude ecosystems.
Although the two indices are strongly negatively correlated (Spearman’s p =-0.93 at 1 m and
-0.98 at 10 m resolution) due to their shared NIR component, they describe distinct ecological
mechanisms: NDVI represents vegetation greenness and photosynthetic activity, while NDWI
captures surface and canopy moisture. Including NDWI improved model performance (AAIC
~ 100, AR? = 0.01), and the non-parametric models applied are robust to such predictor
correlations. Retaining both indices allows a more complete representation of vegetation-
moisture interactions characteristic of Arctic heterogeneous microtopography.

RC: [217: Is there kind of double counting if some of the variables are first used for landscape
classification and then again for the regression models together with the landscape
classification. Is the classification needed as a predictor in the regression analyses?

AC: We appreciate the reviewer’s thoughtful question. The landscape classification was
included as a categorical predictor to represent vegetation and microtopographic heterogeneity
that cannot be fully captured by continuous predictors such as NDVI, NDWI, or terrain indices.
Although some of these variables were among those used to derive LC, the classification was
based on a much broader set of spectral, texture, and topographic parameters (see Table A2).
LC therefore summarises complex, multi-source information into discrete ecological units
(e.g., sedge, tussock, or lichen patches) that reflect vegetation composition and hydrological
conditions. Including LC thus provides complementary ecological information rather than
redundant input, and models excluding LC performed less consistently across sites.

We will also take the remaining reviewer comments into account in the revised version,
basically accepting all suggested edits to further improve clarity, data description, and
consistency across sections.



