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Abstract. High-frequency flood events in urban areas pose significant cumulative hazards. These floods are often difficult to 

detect and monitor using existing infrastructure, making the development of alternative approaches critical. This study presents 

the implementation of a computer vision-based urban flood monitoring network deployed in Cahokia Heights, Illinois, USA. 

Flood observations were collected at 30-minute intervals using consumer-grade trail cameras. Water surface elevations were 10 

estimated from the intersection of segmented flood masks with 2D-projected terrestrial lidar data. Flood extents and depths 

were extrapolated using a terrain depression-filling algorithm. Camera-derived peak flood extents and depths were compared 

to independent predictions from a 2D HEC-RAS Rain-on-Grid flood model. This procedure was applied to two flood events, 

one moderate and one severe, using imagery from two camera sites. For the severe event, water level estimates agreed closely 

between cameras, with a median difference of less than 3 cm and a peak difference of less than 2 cm. For the moderate event, 15 

differences were larger (median <10 cm, peak <16 cm). Agreement between modeled and camera-derived peak flood extents 

exceeded 90% for the severe event but ranged between 21% and 42% for the moderate event. We use the convergence and 

divergence of independent camera observations to infer differences in spatiotemporal flood connectivity, disconnected in the 

moderate event and connected in the severe one. This study demonstrates the utility of low-cost, camera-based systems for 

high-resolution monitoring of flood dynamics in complex urban environments and highlights their potential integration with 20 

hydrodynamic modeling. 

1 Introduction 

 Flooding is the single most economically destructive natural hazard within the United States. Between 1960 and 2016, 

an estimated 73% ($107.8 billion USD) of direct flood property damage in the United States occurred in urban areas (National 

Academy of Sciences Engineering and Medicine, 2019). The risk and impacts of urban flooding are projected to increase in 25 

coming decades, driven by climate change, expanding urban populations, and land-use change (O’Donnell and Thorne, 2019). 

For many regions, climate models project an increased frequency of short duration, high-intensity rainfall events, increasing 

flood risk in urban areas (Fowler et al., 2021). At the same time, the rate of urbanization in high flood-risk areas has outpaced 

other areas since 1985, increasing flood exposure risk of the general population (Rentschler et al., 2023). Together, climate 
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and population changes are projected to lead to an increase of 300 million people exposed to a 1% annual risk of flooding 30 

(Rogers et al., 2025).  

 Both current assessments and future projections of urban flood risk frequently find significant socioeconomic 

disparities related to flood risk exposure both at national and local scales (Fan et al., 2025). At the national level, lower income 

nations are experiencing more rapid floodplain urbanization (Mazzolini et al., 2020). For individual cites, vulnerable 

communities – including low-income communities and communities of color – are both exposed to more frequent flooding 35 

and experience disparate impacts (Ma et al., 2024; Selsor et al., 2023; Qiang, 2013). Neighborhood-scale differences in flood 

exposure, which can be driven by local differences in impervious area, microtopography, and stormwater infrastructure, are 

often not resolvable in metropolitan or regional-scale flood assessments (Helmrich et al. 2021; Schubert et al, 2024). Mitigating 

these small-scale spatial differences in flood hazards requires equivalently high-resolution monitoring of flood frequency and 

intensity. Most often, this type of localized risk assessment cannot be accomplished without substantive cooperation and 40 

collaboration with impacted communities (Azizi et al., 2022). 

 Pluvial flooding, which occurs when precipitation intensity exceeds local drainage capacity, can significantly impact 

urban environments, perhaps making it surprising that it has received comparatively less attention from researchers and 

policymakers (Rosenzweig et al., 2018; Prokić et al., 2019). Unlike fluvial flooding, which is typically linked to overflowing 

rivers and streams, pluvial flooding is driven by local surface water accumulation, particularly during short-duration, high-45 

intensity rainfall events (Rosenzweig et al., 2018; Azizi et al., 2022). Pluvial flooding is particularly relevant in urban 

landscapes, where low-lying topography and high impervious surface coverage promote rapid runoff generation (Agonafir et 

al., 2023). In its early stages, pluvial flooding is often characterized by spatially isolated patches of water collecting in local 

topographic depressions (Rosenzweig et al., 2018; Mediero et al., 2022; Cea et al., 2025). As rainfall continues, these patches 

may overflow and merge, creating dynamic and expanding flood networks (Samela et al., 2020). Urban topography and 50 

infrastructure, such as roads, buildings, and stormwater systems, exert strong control on these patterns, simultaneously 

directing, constraining, or amplifying surface flow (Balaian et al., 2024; Beteille et al., 2025; Fan et al., 2020). Engineered 

drainage, such as stormwater systems, can far exceed soil infiltration in urbanized watersheds (Agonafir et al., 2023). 

Depending on their capacity, and condition, stormwater infrastructure can both alleviate flooding when functional but also 

contribute to surface runoff when drainage capacity is exceeded (Tran et al., 2024).  55 

 Despite its frequency and growing relevance, pluvial flooding is often excluded from traditional flood risk 

assessments (Rosenzweig et al., 2018; Prokić et al., 2019). Whereas fluvial flooding tends to drive large, low-recurrence events, 

pluvial flooding is associated with higher-frequency, lower-magnitude events – often termed “nuisance floods” because they 

do not typically pose an immediate threat to public safety (Rosenzweig et al., 2018). However, their cumulative socio-

economic impact over time can rival that of rare, extreme flood events, especially when the broader impacts of flood damage 60 

include transportation disruption, public health risks, and wastewater ingress into buildings (Moftakhari et al., 2017; Ten 

Veldhuis, 2011; Ten Veldhuis et al., 2010). In the Netherlands, the 10-year cumulative impact of smaller pluvial floods was 

estimated to nearly equal to the damage of a single 125-year recurrence flood event (Ten Veldhuis, 2011). In the United States, 
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damage from pluvial floods is typically excluded from the National Flood Insurance Program, making it difficult to estimate 

their total economic impact (Azizi et al., 2022; National Academy of Sciences Engineering and Medicine, 2019). However, a 65 

recent study found that 87% of flood insurance claims for properties outside the FEMA-defined 100-year floodplain between 

1978 and 2021 were likely related to pluvial flooding, with over 68% linked to events with less than a one-year recurrence 

interval (Nelson-Mercer et al., 2025). Similar findings in the United Kingdom found that 83% of reported flood damages 

occurred outside of designated floodplains or coastal areas, indicative of local pluvial flooding. Further, these reported damages 

were likely to affect properties repeatedly, highlighting the cumulative impacts of high frequency events (Dawson et al., 2008). 70 

Although data gaps remain, these recent studies provide strong evidence that pluvial flooding poses a widespread and 

frequently underestimated risk, motivating more comprehensive monitoring and inclusion of pluvial floods in flood risk 

assessments (Rosenzweig et al., 2018; National Academy of Sciences Engineering and Medicine, 2019). 

 Monitoring and predicting pluvial nuisance floods present distinct challenges. Traditional fluvial monitoring 

infrastructure, such as stream gages and water surface sensors, is not suited to detect disparate flood patches disconnected from 75 

the monitoring river system or stream (Song et al., 2024; Griebaum et al., 2017). Flood extents extrapolated from water surface 

levels recorded by these sensors tend to underestimate pluvially-driven flood extents, which can occur even when stream levels 

are below flood stage (Cea et al., 2025). To overcome these limitations, researchers have increasingly turned to distributed 

sensor networks to better capture the spatial heterogeneity of urban flooding (Lo et al., 2015; Song et al., 2024; Zhong et al., 

2024; Mydlarz et al., 2024; Mousa et al., 2016; Azizi et al., 2022). However, both contact sensors (e.g., pressure transducers) 80 

and non-contact sensors (e.g., radar, ultrasonic) face operational challenges in urban settings, including limited installation 

locations and sensitivity to local disturbances (Song et al., 2024). Further, water level sensors of this nature, even when spatially 

distributed, only record point measurements of water level, which require further interpolation to create spatially extensive 

flood maps. Satellite-based and UAV remote sensing offer broader spatial coverage and, thus, have become widely used tools 

for flood extent mapping across a range of environments and scales (Allen and Pavelsky 2018; Tellman et al., 2021; Chanda 85 

and Hossain, 2024). However, these methods are constrained both by coarse (>1 meter) spatial and temporal (>1 day return 

time) resolution, making them less effective for short-duration floods and small-scale urban nuisance flood events (Tarpanelli 

et al., 2022; Tulbure et al., 2022; Chanda and Hossain, 2024; Zhu et al., 2022; Composto et al., 2025).  

  In contrast, ground-based cameras offer a promising and scalable alternative, addressing the challenges of both in-

situ sensors and remote-sensing approaches (Lo et al., 2015). Ground-collected imagery provides spatially coherent 90 

measurements of flood extent within the camera’s field of view, capturing continuous water surfaces in each frame, rather than 

isolated point readings. When deployed using consumer-grade equipment or existing infrastructure, such as traffic or security 

systems, cameras provide a low-cost way to achieve broad spatial coverage across urban areas (Wang et al., 2024; Lo et al., 

2015). Cameras deliver high temporal resolution imagery through frequent image capture, enabling detailed tracking of flood 

dynamics over time. This near-continuous visual monitoring facilitates rapid flood detection and analysis, especially when 95 

combined with automated image processing techniques. Ground-collected images also capture rich contextual information, 
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including visible landmarks, infrastructure, and human activity, enhancing the interpretation of flood impacts and supporting 

more comprehensive urban flood management. 

 There are three broad approaches to camera-based flood monitoring. The first and most developed relies on 

identifying water levels relative to known benchmarks, such as topographic markers or staff gauges. This approach is 100 

particularly well-suited to river or reservoir environments, where stage progression and flooding is more predictable (Sabbatini 

et al., 2021; Chapman et al., 2022, 2024; Johnson et al., 2025). However, its applicability can be limited when flood extents 

are irregular or spread over complex urban terrain without extensive available benchmarks from which water levels can be 

derived. A second approach uses the fraction of an image classified as flooded to estimate water level and extent. This method 

requires the development of a quantitative correlation between flooded image fraction and water level (de Vitry et al., 2019; 105 

Vandaele et al., 2021). Hybrid methods combine both techniques, using image segmentation and reference objects to estimate 

flood depths. For example, Vandaele et al. (2021) used surveyed landmarks to constrain absolute water level. Liang et al. 

(2023) used the automated identification of street signs and humans in flood images to estimate water depth. While shown to 

be promising, these methods often depend on stable camera positions, consistent lighting, and persistent ground control points. 

 A key limitation of image-only flood monitoring approaches is their difficulty in translating two-dimensional image 110 

pixel data into real-world flood depths, particularly in heterogeneous urban landscapes where water may accumulate in 

shallow, discontinuous patches. More advanced methods have addressed this challenge by integrating camera imagery with 

high-resolution topographic data, such as lidar or Structure-from-Motion (SfM) (Wang et al., 2024; Griesbaum et al., 2017). 

Pairing high-resolution topographic data products with known camera geometries allows floodwater-identified pixels to be 

geo-referenced and intersected with the underlying terrain, yielding spatially distributed flood depths even in settings where 115 

flood boundaries are irregular or flood waters evolve rapidly (Erfani et al., 2023; Eltner et al., 2018, 2021). As a result, these 

methods can overcome the spatial ambiguities inherent in image-based approaches and are particularly valuable in the complex 

topography of urban environments. However, most demonstrations of this technique have occurred in controlled or short-term 

deployments with stable cameras and ground control, with the notable exception of Blanch et al. (2025), which successfully 

applied projection-based stream level estimation over a continuous two-year period. The feasibility of its use for long-term 120 

flood monitoring in urban environments, with limited ground control, and frequently changing scene context, requires 

additional research. 

 Camera-based flood monitoring approaches ultimately rely on robust image segmentation to accurately identify water 

presence and extent. Traditional image processing techniques such as intensity thresholding and random-forest classification 

remain useful in structured environments (Chapman et al., 2024; Lo et al., 2015; Griesbaum et al., 2017), but most recent work 125 

has transitioned towards deep learning-based semantic segmentation models to classify water pixels (Erfani et al., 2023; Eltner 

et al., 2021; Wang et al., 2024). Architectures range from U-Net models (Vitry et al., 2019), to more complex vision 

transformers (Erfani et al., 2023; Zamboni et al., 2025), with many models achieving high segmentation accuracy when trained 

on domain-specific datasets. Indeed, a systematic evaluation of 32 network architectures trained on the same dataset of river 

images demonstrated the efficacy of the method, with 24 of the tested architectures achieving greater than 90% testing accuracy 130 
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(Wagner et al., 2023). The recent emergence of foundation models such as Segment Anything (SAM) (Kirillov et al., 2023; 

Ravi et al., 2024) has introduced the possibility of domain-agnostic water segmentation. Recent studies have demonstrated 

that with minimal fine tuning, these domain-agnostic foundation models can achieve comparable classification accuracy to 

state-of-the-art, domain-specific models (Moghimi et al., 2024; Wang et al., 2024).  

 In this study, we present a flexible and operationally oriented framework for monitoring urban flood extent and depth 135 

using time-lapse imagery from ground-based cameras in combination with terrestrial and aerial lidar data. Our implementation 

focuses on a community in Cahokia Heights, IL experiencing chronic pluvial flooding within the Mississippi River floodplain. 

Using consumer grade trail-cameras, we demonstrate accurate, centimeter-scale, water level estimation, and flood extent 

extrapolation, for two case study flood events. Our approach emphasizes adaptability to site conditions, minimal reliance on 

fixed benchmarks, and limited need for long-term infrastructure. As an independent benchmark, we compare our camera-140 

derived estimates with output from a two dimensional, HEC-RAS rain-on-grid hydrodynamic model, evaluating the efficacy 

of camera-based monitoring in operational flood modeling workflows. 

2 Methods 

2.1 Study site 

 145 
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Figure 1: (a) Study location of Cahokia Heights, IL (b) broader study area shaded relief (c) Terrestrial lidar point cloud extent and 
camera monitoring location field of view (FOV) (d) Cumulative elevation distributions (hypsometric curve) for the bare-earth lidar 
elevations for entire study area (black), and camera FOVs (orange and green, respectively). 

Flood monitoring efforts were conducted in collaboration with the Cahokia Heights community, located in St. Clair 

County, Illinois, within the Mississippi River Floodplain (Figure 1a). Cahokia Heights residents have long experienced chronic 150 

nuisance flooding, driven primarily by pluvial processes (U.S. EPA, 2021; Maganti, 2020; Colten, 1988; Schicht, 1965). 

Despite the occurrence of multiple impactful floods each year, the entirety of area presented in this study falls outside of FEMA 

defined Special Flood Hazard Areas (FEMA, 2003). This frequent flooding is attributable to both natural and engineered 

factors. The region's clay-rich floodplain soils exhibit poor drainage, and in combination with the low-relief landscape (Figure 

1b-d), water readily accumulates in surface depressions (USACE, 2023). Compounding these natural vulnerabilities, decades 155 

of infrastructure neglect have left the sewer and stormwater systems in disrepair. Many of the existing sewer and stormwater 

pipes are undersized or blocked, reducing drainage capacity and leading to recurrent sewage backups and drinking water 

contamination (USACE 2024). As a result, persistent flooding has caused significant property damage, disrupted the daily 

activities of residents, and compromised household plumbing systems (Musiker et al., 2021). At the time of this study, no 

formal flood monitoring infrastructure existed within the community.  160 

2.2 Community-scale monitoring network 

 To begin addressing this gap, eight time-lapse camera flood monitoring stations were installed in the fall of 2020 in 

collaboration with community residents. This study focuses on two of those stations, herein Sites A and B (Figure 1b). Cameras 

A and B are located on opposite sides of a residential neighborhood, approximately 190 meters apart, with non-overlapping 

fields of view. Camera A is positioned on a straight stretch of road on the eastern side of the neighborhood at an elevation of 165 

126.1 m (NAVD88). Camera B is located on the western side of the neighborhood, at a slightly lower elevation of 125.95 m, 

placed at a slight bend in the road (Figure 1c). Each monitoring station consists of a Blaze A52 trail-camera (16 MP, f4 mm) 

in a transparent-faced plastic housing mounted approximately 1.5 m off the ground on metal conduit pipe driven into the soil. 

Each camera is set to capture a 5,120 by 2,880-pixel resolution image and a five second video every 30 minutes. Due to 

excessive glare during nighttime operations, the cameras’ infrared flash was disabled, and ambient lighting from streetlights 170 

was used for nighttime operation. Images were retrieved approximately every two months during site visits, during which 

batteries and SD cards were replaced. Camera disturbances, motion, or damage were documented at each service interval. 

 This study draws on two primary sources of topographic data: a regional aerial lidar survey and terrestrial lidar 

acquired at each camera site in 2023. The aerial lidar dataset was collected across St. Clair County in 2019 as part of the USGS 

3D Elevation Program (3DEP) and the Illinois Height Modernization Program (ILHMP) (Aerial Services Inc, 2021; USGS, 175 

2022;). LAS-format point clouds were obtained for the study area, with an average point density of 4.0 points per m2. These 

data were interpolated into a 0.5-meter resolution digital terrain model (DTM) using inverse distance weighting (IDW), 

implemented via the Point Data Abstraction Library (PDAL) (PDAL Contributors, 2022). Additionally, a void-filled DTM at 
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the same resolution was created using triangulated irregular network (TIN) interpolation. This processed product is referred to 

throughout the paper as the USGS DTM. 180 

 While aerial lidar offers broad spatial coverage, it does not resolve fine-scale topographic features such as street curbs 

or shallow depressions common in urban environments. To capture these features, the aerial dataset was supplemented with 

high-density terrestrial lidar data collected in June 2023 using a Zeb Horizon GeoSLAM handheld scanner. The scanner emits 

300,000 near-infrared (930 nm) laser pulses per second, with an operational range of up to 100 meters and a reported point 

accuracy of approximately 6 mm (FARO, 2024). At each camera site, terrestrial scans covered an area of approximately 2,000 185 

m² and achieved point densities exceeding 1,000 points per m², with upwards of 100,000 points per m2 in the center of the 

survey area. Ground points were classified using a cloth simulation filter (CSF) in PDAL (Zhang et al., 2016), and bare-earth 

DTMs were interpolated at a 0.5 m resolution. 

 To enable geospatial integration with the USGS DTM, five to six reflective ground control points (GCPs) were 

deployed at sites A & B during each scan and surveyed with an Emlid Reach GNSS receiver. The location of each camera post 190 

was also surveyed and used as a GCP. Paired GCP survey locations (EUTM, NUTM, ZNAVD88) and the corresponding raw point-

cloud coordinates (XGCP, YGCP, ZGCP) were used to compute a rigid transformation matrix (PGCP) for each scan. Given the 

limited extent of each site, rotations about the x- and y-axes were neglected. Each terrestrial point cloud was then projected 

into a common coordinate system (NAD83/UTM Zone 15N) using the NAVD88 vertical datum. This transformation aligned 

the terrestrial lidar data with the USGS DTM, enabling direct elevation comparisons between the regional and site-specific 195 

models. The accuracy of co-registration was assessed by calculating vertical differences between the two DTMs at 0.5-meter 

resolution. Corrected GCP locations had a lateral Root Mean Square Error (RMSE) of 2.0 cm at Site A and 7.5 cm at Site B. 

Median elevation differences relative to the USGS DTM were 1.5 cm and 3.7 cm near road surfaces at Sites A and B, 

respectively. 

2.3 Case study flood events 200 

 The monitoring methodology was applied to two flood events in 2024: a moderate severity event on 14 May 2024, 

and a high-severity event on 04 July 2024. All times are given 24-hour Central Daylight Time (UTC-5). Image capture times 

for Cameras A and B were offset 14 minutes for the May event, and 9 minutes for the July event. The moderate severity flood 

event was triggered by 12 mm of rainfall over an 8-hour period. At Camera A, flooding was documented in 9 total images, 

capturing two distinct flood pulses. The first pulse was approximately two hours in duration, appearing in 4 consecutive images, 205 

followed by a 1.5-hour dry interval spanning three images, and then a second pulse observed across five images, for a 2.5-hour 

duration. During the early phase, the water surface remained below the ~20 cm street curb, resulting in partial shadowing and 

limited visibility of the flood extent. Peak inundation at Camera A was observed during the second pulse, at 17:51, when 

floodwaters overtopped the curb and extended into residential yards. At Camera B, the May 14 flood was captured in 13 

consecutive images, beginning at 14:05 and persisting through 20:05. Floodwaters appeared to peak at approximately 14:35, 210 
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completely inundating the roadway and advancing into adjacent yards. The continuous visibility of standing water throughout 

the observation period suggests sustained surface accumulation, characteristic of ineffective drainage during moderate rainfall. 

 The more severe, 04 July 2024 event that followed occurred in response to 82 mm of rainfall over 11 hours, preceded 

by an additional 10 mm of antecedent rainfall on 03 July 2024. Based on NOAA duration-frequency curves, this precipitation 

event corresponds to approximately a four-year recurrence interval (NOAA OWP, 2025). At Camera A, flooding was observed 215 

in 20 consecutive images, spanning from 08:45 to 17:45. Peak inundation occurred at 12:45, when floodwaters reached 

residential porches and exceeded the camera’s field of view. At Camera B, visible flooding began at 04:54 and was documented 

in 32 images, ending at 20:24. At its observed peak at 12:54, floodwaters completely flooded yards and reached the foundations 

of multiple homes. 

2.4 Water segmentation from images 220 
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Figure 2: Procedure for estimating flood extent from a flooded image at Site B.  Image and point cloud reference features are used 
to estimate camera pose and project points onto the image plane. The intersection with the flood mask gives the visible flood extent. 
Water surface elevation (WSE) is extracted from the edge elevations and propagated for the final, total flood extent. 

 Flooded pixels in each time-lapse image were segmented using SegmentAnything2 (SAM2) (Kirillov et al., 2023; 225 

Ravi et al., 2024) (Figure 2). Classifications were made using a pre-trained set of model weights. Image sequences were 

processed as videos to facilitate the tracking of identified flood regions across successive frames. Because SAM2 is not 

explicitly trained for water segmentation, a manual prompting approach was used, similar to the SAM-Six-Point method 

described by Zamboni et al. (2025). This approach relies on annotated point prompts that indicate the presence or absence of 

flooding at individual pixels within a reference image. 230 

 For a given flood event, the earliest image in which flooding was visible was annotated with three to five positive 

point prompts. These prompts were then used to segment the remaining image sequence. The visual confirmation of flooding 

was used to iteratively refine the segmentation, with additional positive prompts added to correct for false negatives (i.e., 

flooded areas classified as non-flooded), and negative prompts added to address false positives (i.e., non-flooded areas 

misclassified as flooded). This process continued until flood extents were satisfactorily delineated based on visual agreement 235 

with apparent surface water boundaries. The final output of this classification procedure is a binary flood mask for each image, 

where pixel values of one indicate flooded regions and values of zero indicate non-flooded areas. SAM2-predicted flood masks 

were evaluated against manually labeled flood extents to quantify segmentation accuracy using the Intersection-over-Union 

(IoU) metric. IoU is defined as the ratio of true positive water-classified pixels to the total of all true positives, false positives, 

and false negative pixels. 240 

 In addition to spatial classification, each flood mask was used to calculate a relative measure of flood severity per 

image. This was quantified as the flooded pixel fraction, or the number of pixels classified as water divided by the total number 

of pixels in the image. This ratio is referred to as the Static Observer Flooding Index (SOFI), following the approach of Vitry 

et al. (2019), providing a simple proxy for flood intensity as seen from a fixed observation point. 

2.5 Point cloud to image projection 245 

 The workflow for estimating floodwater elevation and extent relies on establishing a correspondence between features 

visible in time-lapse images and their three-dimensional coordinates within a georeferenced terrestrial point cloud. This 

correspondence requires knowledge of both the intrinsic parameters of each camera (such as focal length and sensor 

dimensions) and its extrinsic parameters, which describe the camera’s location and orientation in space, referred to as the 

camera pose. The projection of a three-dimensional point cloud (X, Y, Z) in world coordinates onto a two-dimensional pixel 250 

coordinate on the image plane (u, v), is defined by Equation (1): 

!
𝑢
𝑣
1
% = 𝐊𝐏)

𝑋
𝑌
𝑍
1

- ,                    (1) 
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where 

	𝐏 = [𝐑 ∣ 𝑡 ].                    (2) 

 255 

 This projection is governed by two key transformation matrices: the intrinsic matrix, K, a 3×3 matrix that encodes 

the camera’s internal geometry, including focal length and optical principal point, and the extrinsic matrix, P, which  

combines a rotation matrix, R, and translation vector, t, to describe the camera’s pose relative to the world coordinate frame, 

as shown in Equation (2). Together, these matrices enable transformation from world coordinates into image space. 

 Intrinsic parameters for each camera were estimated in a controlled, laboratory-based calibration using a checkerboard 260 

target with 25 mm squares printed on 216 mm by 279 mm paper. Between 20 and 30 images of the target were collected from 

multiple oblique angles. Collected images were processed using OpenCV, a standard computer vision library (Bradski, 2000), 

identifying checkerboard corners, computing the intrinsic matrix, K, and estimating a five-element distortion coefficient 

vector, d. This distortion matrix is used to correct projected pixel coordinates to improve accuracy of point to image projection.  

 The extrinsic camera pose matrix, P, was estimated based on a set of matched reference features with known locations 265 

in both image coordinates (u, v), and world coordinates (X, Y, Z). This process, known as the Perspective-n-Point (PnP) 

problem, yields an estimated camera pose denoted as PPnP. Feature matching was performed manually, with image coordinates 

of reference features labeled in ImageJ (Schindelin et al., 2012) and their corresponding world coordinates annotated from the 

terrestrial lidar point cloud using CloudCompare (CloudCompare, 2023). In the absence of permanent ground control points, 

static scene elements such as rooftops, fence posts, and utility poles were used as reference features. Between 20 and 30 such 270 

features were labeled for each camera. Point precision was limited by image resolution, point cloud noise, and the spatial 

resolution of the lidar scan.  

 Using these reference features, we estimated PPnP using the Efficient Perspective-n-Point Camera Pose Estimation 

(EPnP) algorithm (Lepitit et al., 2009) as implemented in OpenCV. A random sample consensus (RANSAC) procedure was 

applied iteratively solve for the optimal extrinsic camera post matrix, PPnP. For each of 10,000 random sub-samples of labeled 275 

reference points, PPnP was computed and evaluated by its reprojection error, defined as the Euclidean distance between each 

labeled image coordinate (ur, vr), and the associated projected world coordinate of the feature (urp, vrp). Points with a 

reprojection error exceeding 50 pixels were classified as outliers. The RANSAC iteration minimizing the number of outlier 

points was selected as the optimal camera pose matrix estimate, PPnP. Accuracy of the estimated camera locations was validated 

by comparing the recovered camera location with the known camera position extracted from the terrestrial lidar dataset. 280 

Additional laboratory experiments were conducted to verify the performance of this workflow (Supplementary Information).  

The estimated camera pose matrix, PPnP, is initially referenced to an arbitrary, local coordinate system of the terrestrial 

point cloud. To enable projection from topographic coordinates into image space, PPnP was composed with the inverse of the 

rigid-body transformation matrix PGCP, obtained during georeferencing, as Equation (3):	
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     !
𝑢
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𝐸
𝑁
𝑍
1

-               (3) 285 

 Equation (3) represents a final transformation pipeline that maps UTM/NADV88-referenced coordinates (E, N, Z) to 

corresponding image pixel coordinates (u, v). Using this framework, each point in the terrestrial lidar point-cloud is assigned 

a pixel location, enabling spatially coherent visualization and quantification of flood extent in the camera imagery (Figure 2). 

 A separate camera pose estimate was computed for each camera and flood event. For the moderate May 14 flood, 

Camera A’s pose was calculated using 18 reference features, yielding a median reprojection error of 6.83 pixels. The recovered 290 

camera location was offset 46 cm from the labeled camera center in the point cloud. For the July 4 event, pose estimation at 

Camera A used 24 features, resulting in a median reprojection error of 23.6 pixels and a reduced camera position offset to 6 

cm. For Camera B, the May 14 pose was calculated using 22 reference features, resulting in a median reprojection error of 

4.99 pixels. Due to camera movement following the lidar survey, estimated positional uncertainty can only be resolved as less 

than 1 m. The pose estimate at Camera B for the July 4 event used 16 reference features, yielding a reprojection error of 8.9 295 

pixels, again with a positional uncertainty below 1 m.  

2.6 Flood extent estimation 

 Flood extent estimation is based on the intersection of lidar-derived topography and image-derived water 

classifications. Using the established projection pipeline in Equation 2, each point in the terrestrial lidar point cloud is mapped 

to a corresponding image pixel. If a pixel is identified as flooded in the SAM2-derived binary segmentation mask, the 300 

associated terrestrial lidar point is classified as inundated. This set of inundated points represents the portion of the ground 

surface that is underwater at the time the image was captured. These inundated points are interpolated into a 0.05-meter 

resolution raster covering the visible flood extent in the image. To estimate water surface elevation (WSE), the highest 

elevations along the boundary of the inundated zone are used as a proxy for the maximum water level and the water surface is 

assumed to be flat. Edge pixels are extracted using a Canny Edge Detection filter, and the 90th and 95th percentiles of the 305 

extracted edge elevation distribution are used to represent a range of possible water surface levels (WSE₉₀ and WSE₉₅) to 

account for potential topographic noise or obstruction of the water edge in the time lapse images. 

 To estimate flood extent beyond the visible portion of the image, we apply an iterative flood-fill procedure to the 0.5 

m-resolution USGS DTM (Wu et al., 2018; Samela et al., 2020). Beginning at the lowest observed elevation within the camera's 

field of view, adjacent terrain cells are iteratively inundated if their elevation is below the target WSE, continuing until no 310 

additional cells meet this condition. The area of interest for the flood-fill implementation focused on the direct area spanning 

the two camera locations, approximately 500 m by 250 m, to avoid propagation into unobservable areas. This approach assumes 

no-flow resistance and instant water propagation. The resulting inundated area is then converted into a flood depth map by 

subtracting the DTM elevation from the estimated WSE. Repeating this process for each timestamped image yields a time 

series of inundation maps at 30-minute intervals and 0.5 m spatial resolution for each camera site. We perform this propagation 315 
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independently for each event at each monitoring site to assess the potential variability in estimated WSE derived from 

monitoring sites with distinct scene geometries and fields of view. 

2.7 Comparison to a pluvial flood model 

 Image-derived flood extents and depths were benchmarked against results from a two-dimensional pluvial flood 

model. This model is implemented using the Hydrologic Engineering Center’s River Analysis System (HEC-RAS), configured 320 

with a “rain-on-grid” unsteady boundary condition to simulate overland water flow across an 89.6 km² model domain covering 

the study site (USACE, 2022). The base terrain is the 0.5 m USGS DTM. Rainfall is uniformly applied to the domain, and 

water movement is governed by the diffuse-wave approximation of the shallow water equations. For the 14 May 2024, flood 

event, precipitation inputs were sourced from the station at St. Louis Downtown Airport (NWS:KCPS), approximately 6 km 

from the site. For the 04 July 2024, event, rainfall records from the USACE Mississippi River Station (USACE:ENGM7), 325 

located 8 km away, were used. Storm drain locations and connectivity assumptions are based on a survey by the Illinois 

Department of Natural Resources (IDNR, 2023; Heartlands Institute, 2023). Model roughness values are informed by National 

Land Cover Database (NLCD) (USGS, 2023) classifications and refined using road and building footprint data (Illinois State 

Water Survey, 2018). Model outputs were generated at the same spatial and temporal resolution as the image-derived flood 

datasets to enable direct comparison. Although image data informed general model development, no direct calibration against 330 

the imagery was performed. 

 To compare modeled and image-derived flood extents across consistent spatial scales, analyses were conducted at 

two levels: the neighborhood study area and the individual fields of view (FOV) for each camera (Figure 1b). FOV for Camera 

A during the moderate (severe) flood are estimated to be roughly 1,646 m2 (1,387 m2), with terrain elevations ranging from 

125.74 m (125.73 m) to 126.84 m (126.84 m). For Camera B, the field of view area is estimated as 1,442 m2 (1,360 m2 ) with 335 

an elevation range of 125.61m (125.56 m) to 126.56 m (126.53 m) for the moderate (severe) flood event. Differences in the 

total field of view reflect a 13.1° shift in orientation at Camera A and a 23.6° shift in orientation at Camera B between flood 

events. These differences in spatial coverage and viewing geometry are important for interpreting agreement or disagreement 

between modeled and image-derived flood extents. As such, we use distinct spatial footprints areas for each model-data 

comparison. 340 

  Our comparison focuses on quantifying the relative agreement in predicted flood extent between the two methods. 

The primary metric focuses on identifying regions where both the model and camera-based approaches indicate flooding – 

areas of mutual agreement in predicted inundation. This shared extent is expressed as Foverlap, the ratio of the number of pixels 

classified as flooded by both methods to the total number of pixels classified as flooded by either. The model domain includes 

areas separated from our camera sites by major roads and drainage canals. To provide a meaningful comparison between model 345 

output and our image-based methods, we spatially restricted our comparison to a region with the approximate bounds of the 

topographic depression containing the study neighborhood. Where flood extents overlap, we also compared modeled and 

observed water surface elevations and flood depths. 
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3 Results 

3.1 Visual flood observations 350 

Flood segmentation performed robustly across both monitoring sites and flood events. Following refinement using 

additional point prompts, image segmentation and classification produced accurate flood masks with strong agreement with 

manually labelled flood extents. For the moderate May 14 event, the mean intersection-over-union (IoU) for Site A was 91% 

(range 21%) and 93% (range 18%) for Site B. For the severe July 4 event, mean IoU was 90% (range of 14%) at Site A and 

93% (range 23%) at Site B. Refinement prompts successfully eliminated all whole-image false positives. Most discrepancies 355 

occurred when flood waters were partially occluded (e.g., by vegetation, fences, or vehicles) or where strong reflections caused 

misclassification. Fuzziness in flood boundaries increased further away from the camera, as pixel ground resolution decreased 

(Eltner et al., 2021). 

 
Figure 3: (a) SOFI time series for 14 May moderate severity case study event. Representative flooded images from (b) Site A and (c) 360 
Site B. Segmented flood masks are shown in blue. 
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Figure 4: (a) SOFI time series for 04 July severe case study event. Representative flooded images from (b) Site A and (c) Site B. 
Segmented flood masks are shown in blue. 

The segmented flood masks were used to quantify the spatial extent of visible flooding using the Static-Observer 365 

Flood Index (SOFI) (de Vitry et al., 2019) (Figure 3, 4). During the moderate May 14 event, two distinct flood pulses are 

observed at Site A, both with peaks in SOFI=0.04 (Figure 3a). These pulses are separated by dry conditions where SOFI=0. 

In contrast, SOFI values at Site B were consistently non-zero, indicating persistent flood inundation for the entire duration of 

the observational period. Peak SOFI at Site B during the moderate event is 0.40. At both sites, the range of SOFI during the 

July 4 severe flood is elevated compared to the moderate flood event, reflecting a wider range of water surface elevations 370 

imaged. During the rising limb of the severe flood at Site A, SOFI increased steadily from 0.05 to 0.27, where it stays within 

a range of 0.002 for 1.5 hours, before declining monotonically to 0.025 as floodwaters receded (Figure 4a). Values are higher 

for the entirety of the event at Site B, with SOFI=0.31–0.49. However, compared to Camera A, changes in SOFI during the 

flood event are more muted at Site B. These differences in SOFI magnitude and variability are likely driven by differences in 

scene geometry. At Site A, the camera is positioned farther from, and perpendicular to, the road capturing a broader view that 375 

includes a resident’s lawn in the foreground (Figure 3b, 4b). In contrast, Site B's camera has a tighter field of view focused 

exclusively on the road surface (Figure 3c, 4c). Although flooding begins on the road in both locations, the prominence of the 

roadway in Site B's imagery makes the flooding more visually dominant in the scene. These results demonstrate that SOFI 

provides a reliable metric for tracking relative changes in inundation at individual sites and accurately captures the timing and 

progression of pluvial flooding. However, a direct comparison of SOFI values between monitoring sites, and flood events, is 380 

complicated by variations in camera placement, viewing angle, and scene composition.  
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3.2 Water levels and flood extents 

Using the final projection pipeline in Equation (3), with a distortion correction applied (See Supplementary 

Information), water surface elevation (WSE) time series were estimated at 30-minute intervals at each monitoring site for each 

flood event. We report both WSE90 and WSE95, representing the 90th and 95th percentiles of water surface edge elevations.  385 

During the May 14 flood event, WSE90 peaked twice at Site A, during each of the distinct flood pulses in the SOFI-

derived hydrograph (Figure 5a). WSL90 rose from 126.00 m at the onset of visible flooding, to peaks of 126.06 m and 126.04 

m, separated by a period of no-flooding for all images with SOFI=0. Following the second peak, water level declines to a 

minimum resolved water level of WSE90=125.94 m. These observations yield a range of image-derived water surface elevations 

of 11.3 cm. WSE95 at the same site ranged from 126.02 m to 126.13 m, peaking on the first and last images, reflecting a 390 

comparable 11.7 cm rise. In contrast, Site B experienced a broader range of water levels of approximately 34.5 cm m, with 

WSE90=125.84 to 126.18 m), and WSE95=125.88 to 126.23 (range=35.6 cm), reflecting a more continuous rise and fall in water 

levels, rather than then distinct pulses observed at Camera A.  Water levels at Sites A and B differed by a mean of 9.2 cm for 

WSE90 and 12.8 cm for WSE95, supporting the interpretation that the floodwaters occupied two disconnected patches, filling 

independently over the course of the event. Water level ranges for Sites A and B overlap for only a single image pair. Water 395 

level sensitivity to the elevation percentile used is similar between sites, with median ranges between WSE90 and WSE95 of 2.5 

cm  and 3.6 cm, for Sites A and B. Ranges between WSE90 and WSE95  were highest at low water levels, particularly at Site A, 

where maximum ranges of 13.1 cm and 19.0 cm occurred in the first and last images, compared to an average of 2.4 cm for 

the remaining images. At Site B, these ranges were generally smaller and more consistent, ranging between 1.8 cm and 7.6 

cm, with an average of 3.9 cm. 400 
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Figure 5: (a) Water surface elevations (WSE) estimated from image-lidar projection for the 14 May case study event. Flood-fill 
extents propagated from WSE90 at (b) Site A and (c) Site B. 

 During the more severe July 4 flood, water surface elevations rose substantially at both sites, characterized by clearly 

defined rising and falling limbs in both the SOFI and camera-derived hydrographs (Figure 6a). At Site A, WSE90 varied by 405 

over 35.7 cm and WSE95 over 27.9 cm, with peak water levels between 126.30 m and 126.32 m. At Site B, both WSE90 and 

WSE95 spanned a larger vertical range of 53.2 cm, with peak levels overlapping closely with those at Site A (126.28 to 126.30 

m), matching the peaks in the SOFI hydrograph within 30-minutes. The difference in maximum water surface elevations 

between sites were just 1.7 cm and 1.0 cm, strongly suggesting that floodwaters formed a single, hydraulically connected 

inundation zone spanning both monitoring locations. Compared to the May event, the range between WSE90 and WSE95 during 410 

the July flood was more consistent over time, with Site A showing a lower and more stable mean difference of 2.3 cm 

(range=7.9 cm), versus a mean difference of 3.9 cm (range=19.2 cm) at Site B. As in the earlier flood, uncertainty was greatest 

at the beginning and end of the event, when lower water levels produced a wider spread between WSE90 and WSE95. Water 

levels between sites agreed most closely on the rising limb of the flood, with WSE ranges overlapping across nearly every 

time step leading up to the peak. In contrast, the more gradual recession of floodwaters at Site B resulted in increasing 415 
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divergence during the falling limb. Despite these discrepancies, the rate and direction of change in water level remained largely 

consistent between cameras. 

 
Figure 6: (a) Water surface elevations estimated from image-lidar projection for the 04 July case study event. Flood-fill extents 
propagated from WSE90 at (b) Site A and (c) Site B. 420 

 Differences in water surface elevation between the May and July flood events directly influenced the connectivity 

and extent of resulting inundation, with important implications for interpreting flood dynamics. Flood-fill propagation using 

WSE90 values from Site A produced spatially restricted inundation, with a maximum inundated area of 1.1×10⁴ m², with 

flooding largely confined to a patch near Camera A, only connecting to Site B at each peak in WSE90 (Figure 5b,c). In contrast, 

when flood-fill is propagated using the higher WSE90 values from Site B, inundation extends to Site A until part way through 425 

the flood recession, including the period with no visible flooding at Site A (Figure 5b). The resulting maximum flood extent 

derived from Site B WSE90 was 2.0×10⁴ m², exceeding the Site A–based extent by 54.7%. Maximum flood depths propagated 

using the Site B-derived hydrograph were 9.8% greater than Site A, equivalent to 0.13 m. The maximum difference in 

propagated flood extents was 1.6×10⁴ m² (164%), driven by an 11.9 cm difference in WSE90 between Sites A and B. These 

differences resulted in a 91 cm m variation in maximum flood depth, with flood extents based on Site B's WSE90 values 430 
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producing inundation depths that were 102% greater. These differences are consistent with the presence of two distinct flood 

pulses at Site A and a more gradual and persistent rise at Site B. The significant difference in WSE90 between the sites supports 

the interpretation of transient connectivity, with sensitivity to threshold water levels contributing to large differences in mapped 

extent. 

In contrast, during the July 4 flood event, peak WSE90 values at Sites A and B differed by only 1.7 cm (Figure 6a), 435 

and flood-fill propagation from either site resulted in qualitatively similar inundation patterns (Figure 6b, c). Both flood-fills 

generated a single, continuous inundation zone extending across the low-lying area between sites for most of the flood event. 

Propagation from Site A produced a peak extent of 3.2×10⁴ m², while propagation from Site B produced a peak extent of 

3.0×10⁴ m², a difference of 6.2%. Over the entire event, Site A and B propagated extents differed by a median of 13.9%. At 

peak flood extent, this corresponds with a median expansion of the flood boundary by 0.92 m, compared to 10.9 m for the May 440 

14 event. Differences in maximum flood depth were similarly small, and equivalent to the differences in WSE90, differing by 

approximately 1%. These small differences reinforce the interpretation of fully connected floodwaters spanning Sites A and B 

during the July event, with consistent water surface elevations driving coherent and symmetric flood propagation from either 

location. 

3.3 Flood model comparison 445 

 
Figure 7: Comparison between peak WSE90 based flood extents and HEC-RAS modeled extents for the moderate case study at (a) 
Site A and (b) Site B and (d, e) severe case study at Site A and Site B, respectively. (c, f) Cumulative distribution of depth differences 
in overlapping regions for the moderate case study and the severe case study, respectively. 

Benchmarking the hydrodynamic flood model against flood-fill results shows generally good agreement in both the 450 

progression and extent of flooding, particularly during the July 4 event. The model successfully captures the broad dynamics 
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of inundation, though key differences emerge in the spatial structure and timing of connectivity between flood patches. During 

the May 14 event, the model produces disconnected flood patches, even at peak flooding, qualitatively consistent with 

observations at Site A (Fig 7a). However, the model does not capture the short period of connectivity estimated by flood-fill 

propagation from both Sites A and B (Figure 7b). Of the modeled May 14 flood extent, eleven patches exceeded 100 m², 455 

accounting for 42% of the total modeled inundated area (Amodel=0.7 ×10⁴ m²), suggesting a bias toward small, isolated flood 

zones. Agreement metrics for the May 14 event reflect this fragmentation (Figure 7a, b): comparing the peak flood-fill extent 

based on the Site A WSE90, Foverlap=0.24, with modeled extent 43% lower than the flood-fill. At Site B the total agreement 

between the peak flood-fill extent was similar (Foverlap=0.21), with modeled extent 63% lower in area. Limiting the comparison 

to the flood-fill extent within the camera FOV slightly increases agreement at Site A to Foverlap=0.34 at Site A and  Foverlap=0.26 460 

at Site B.  Disagreement during the moderate event may be driven by model under-prediction. The modeled flood extent 

captures 32% of the extent estimated using the flood-fill procedure propagated from Site A (36% within the FOV). In contrast, 

49% of the Site A-derived flood-fill extent is captured by the modeled extent (87% within the FOV).  Similarly, at Site B the 

modeled extent covers 24% (36% within the FOV) of the Site B-derived flood-fill extent, while the Site B flood-fill extent 

covers 64% (87% within the FOV) of the modeled flood extent. These spatial mismatches are accompanied by consistent 465 

underestimation in water surface elevation, with median modeled values 22 cm and 25 cm below WSE90 at Sites A and B, 

respectively. Depth difference maps highlight these discrepancies, with distinct peaks aligning with the isolated modeled 

patches (Figure 7c). 

In contrast, the estimated flood extents from the rain-on-grid model and our new method demonstrate significantly 

closer agreement for the more severe, July 4 event. At the peak of camera observed flooding, the model predicts a single 470 

contiguous flood patch, accounting for 80% of the total modeled inundated area (Amodel=3.86 ×10⁴ m²) and connecting Sites A 

and B (Figure 7d, e). Flood-fill-model agreement was also significantly higher for the July 4 event with Foverlap=0.79 and 0.77 

for Sites A and B, respectively. Restricting the comparison to the within the camera FOV increases agreement to Foverlap=0.90 

and 0.96 at Sites A and B, respectively.  Focusing solely on the main flood patch further improves overlap to Foverlap=0.93 at 

Site A and Foverlap=0.96 at Site B.  Aside from minor edge effects, the model reproduces a nearly flat water surface, with median 475 

water surface elevations of 129.29 m – just 1 cm below WSE90 at Site A and 1 cm above at Site B and yielding closely matched 

depth distributions (Figure 7f). 

4 Discussion and conclusions 

 Urban pluvial flooding is inherently shaped by subtle variations in topography, the distribution of impervious 

surfaces, and the configuration and performance of drainage infrastructure that regulates the spatial connectivity of 480 

floodwaters.  These highly variable inundation dynamics can arise over very short distances and timescales, making them 

difficult to observe with traditional monitoring approaches.  Our study demonstrated the unique strength of ground-based, 

time-lapse images co-registered to high-resolution topography to accurately capture these dynamics.  Unlike point-based 
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sensors or remote sensing approaches, our method directly records the spatial and temporal evolution of floodwaters, enabling 

high-resolution observation of disconnected, topographically-driven inundation patterns common in urban landscapes. By 485 

pairing prompted image segmentation with direct topography-to-image projection, we achieved centimeter-scale estimates of 

water surface elevation and time-resolved flood extents without requiring site-specific model training or in-field water-level 

sensors. This allowed us to quantify spatial disconnectedness during moderate and severe storm events, track changes in flood 

connectivity across topographic thresholds, and validate model predictions with an empirical, spatially explicit reference. 

 A major advantage of our workflow lies in the modularity of our processing pipeline and the relative ease of camera 490 

deployment. Our use of SegmentAnything, a foundation segmentation model, allowed us to bypass the time-consuming step 

of domain-specific model training, thereby accelerating flood mapping across multiple sites and events.  Consistent with prior 

work (Moghimi et al., 2024, Wang et al., 2024), we found that SegmentAnything performed robustly for floodwater 

segmentation, producing masks with mean IoU>90% in most cases. While prompt-based segmentation has limitations for 

generalization across radically different scenes (Zamboni et al., 2025), our new analysis workflow is agnostic to the specific 495 

segmentation model used. Future applications could easily incorporate improved segmentation techniques, either domain-

specific or fine-tuned foundation models (e.g., Wagner et al., 2023), without changing the overall processing pipeline.  

 We found that the Static-Observer Flood Index (SOFI) provides a valuable proxy for site-specific flood dynamics 

inferred from an image time series, particularly during large flood events. SOFI values tracked both the qualitative progression 

of flooding and the image-derived WSE curves. In particular, during the July 4 severe event, SOFI rose and fell in tandem 500 

with camera-derived hydrographs at both sites, accurately capturing the timing and magnitude of inundation. However, SOFI 

has important limitations that constrain its broader interpretability. Because SOFI is calculated as the fraction of visible 

inundated area within the camera field of view, its utility is highly dependent on camera pose, viewing angle, and scene 

geometry. For example, SOFI at Site A reached a maximum value once floodwaters reached the edges of the frame, making 

the metric insensitive to further increases in water surface elevation (de Vitry et al., 2019). At Site B, SOFI also plateaued 505 

during ongoing inundation, as floodwaters extended away from the camera, decreasing pixel resolution and reducing the ability 

to resolve further changes in water level. This behavior limits the comparability of SOFI values across locations or events. 

Accordingly, SOFI should be interpreted primarily as a scene-specific indicator of relative change in water levels over time, 

rather than a measure of absolute flood magnitude or spatial extent. 

 We show that direct topography-to-image projection provides a robust basis to enable comparison of absolute 510 

floodwater levels between monitoring sites. By leveraging pre-existing features visible in the camera scenes, such as curbs, 

streetlight poles, and driveway edges, we were able to estimate camera pose for each event without the need for permanent 

ground control points or additional field surveys, even in cases where the camera had shifted slightly between floods. For our 

semi-permanent camera mounts, changes in pose of up to 1° introduced approximately 5 cm of error in absolute WSE, though 

relative changes within each event remained internally consistent. In contexts requiring higher precision, the use of 515 

continuously visible, permanent ground control points (Erfani et al., 2023), fixed-mount cameras (Wang et al., 2024), or 

onboard inertial measurement units (IMUs) could reduce these uncertainties. Additionally, future implementations could 
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integrate automated drift correction or recent advances in machine-learning-based image-to-point cloud registration (Bai et al., 

2024; Jeon and Seo, 2022).  

A key feature of our method is that the flood boundary identified in each image corresponds to a range of elevations, 520 

rather than a single value, likely due to slight variations in topography and minor image segmentation noise. This requires the 

user to select a representative elevation percentile to define the water surface elevation (WSE) for each image. In this study, 

we used both the 90th and 95th percentiles (WSE90 and WSE95) to characterize floodwater levels. Across both sites and flood 

events, the typical difference between WSE90 and WSE95 was under 5 cm, indicating consistent precision of our method within 

individual flood stages. Larger differences of up to 13 to 19 cm occurred at the very beginning and end of each flood when 525 

shallow water and fine-scale topographic noise (e.g., from curb shadows or irregular pavement surfaces) introduced greater 

uncertainty. These uncertainties diminished as rising floodwaters filled local topography, producing smoother and more stable 

elevation distributions at the floodwater edges. Despite these sources of uncertainty, our results show that extracted WSE 

values closely match observed inundation timing. In particular, the consistent rise and fall of WSE during the July event, most 

notably during the rising limb, further confirms the method's ability to resolve spatial flood dynamics at scales and frequencies 530 

that conventional sensors cannot achieve. 

The contrast in water surface elevation (WSE) dynamics between the May 14 and July 4 flood events illustrates how 

our method captures spatial flood connectivity in urban landscapes. During the moderate May 14 event, WSE90 time series at 

Sites A and B revealed distinct, asynchronous flood pulses, with peak elevations differing by up to 16.2 cm. Site A exhibited 

two short-lived pulses separated by dry conditions (SOFI=0), while Site B experienced a more continuous rise and fall in water 535 

level. These discrepancies support the interpretation that floodwaters occupied disconnected topographic depressions, each 

filling and draining independently in response to localized rainfall, infiltration, and drainage behavior. Our results and 

interpretation are consistent with similar methods that have been successfully applied to studying connectivity and surface-

water flow between natural wetland depressions (McLaughlin et al. 2019). In contrast, during the more severe July 4 event, 

WSE time series at both sites rose and fell in tandem, with peak elevations differing by just 1.7 cm – well within the range of 540 

measurement uncertainty. This tight correspondence in timing and magnitude of water level changes strongly indicates 

persistent hydraulic connectivity throughout the event. The high agreement between cameras across the full hydrograph 

demonstrates the value of our dual-camera system in confirming both the onset and spatial extent of flooding and in identifying 

when and where discrete flood patches transition into a single, continuous water surface. 

 545 
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Figure 8: (a) Flood-fill-estimated inundated area as a function of WSE90 for Sites A (green) and B (orange) with threshold elevation 
denoted with a dashed line, (b) Site A-derived flood-fill extent for WSE90 =125.99 m and (c) WSE90 = 126.01 m, and (d) Site B-derived 
flood-fill extent for WSE90=125.99 m and (e) WSE90=126.01 m 

Our flood-fill propagation method, guided by WSEs estimated using our topography-to-image projection pipeline, provide a 550 

useful basis for assessing the spatial extent of floodwaters beyond the image frame. Flood-fill approaches offer a relatively 

simple, computationally efficient method for exploring surface water connectivity across complex urban topography. In both 

natural and engineered landscapes, surface water connectivity is governed by the size, depth, and arrangement of topographic 

depressions and their associated spill point thresholds, which control the extent of flooding (Leibowitz et al., 2016; Samela et 

al., 2020; Maksimovic et al., 2009; Lee et al., 2023). Like other “bathtub models”, this approach assumes zero flow resistance 555 

and instantaneous water propagation, leading to highly non-linear relationships between water surface elevation and inundated 

flood area (Sanders et al., 2024). In our study area, flood-fill simulations propagated from Sites A and B reveal distinct 

connectivity patterns, with abrupt jumps in flooded extent when water surface elevations (WSE) reach key topographic spill 

points (Figure 6a). The most prominent of these occurs at ~126.01 m, where just a 2 cm increase in WSE, from 125.99 m 

(Figure 8b,d) to 126.01 m (Figure 8c, e), results in a 390% increase in flood area at Site A and 270% at Site B. Above this 560 
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threshold, water surface elevation increases at both sites is identical, indicating that the two sites are fully hydraulically 

connected. 

However, our results from the moderate May 14 flood event reveal key limitations of the flood-fill approach for 

representing urban flood dynamics. Water surface elevations derived from our topography-to-image projection show a 

consistent ~10 cm difference between Sites A and B. This magnitude of difference, over only a few hundred meters, provides 565 

direct, empirical evidence that the flood patches remained poorly connected, or fully disconnected, throughout the event. 

Despite this, flood-fill extents predicted full connectivity, as water levels at both sites exceeded the flood-fill model’s 126.01 

m threshold, including during the observed gap in flooding at Site A. This mismatch illustrates how purely elevation-based 

models can overestimate floodwater connectivity by neglecting important factors such as microtopographic barriers that cannot 

be resolved by the 0.5 meter-resolution DEM, infiltration losses, and stormwater infrastructure that can disrupt surface flow 570 

even when spill thresholds are surpassed (Lee et al., 2023; Shrestha et al., 2022). The sensitivity of flood-fill results to DEM 

characteristics further limits their reliability for predictive applications. In our case, switching from a TIN to an IDW-

interpolated DEM increased the flood-fill-predicted elevation threshold by 4 cm, illustrating how changes in DEM processing 

method and resolution alone can shift the timing and extent of predicted connectivity (de Almeida et al., 2016). In contrast, 

our camera-derived WSE estimates directly capture the spatial and temporal behavior of floodwaters, revealing asynchronous 575 

dynamics and persistent disconnection that would otherwise be invisible to single-point or flood-fill only approaches. This 

May 14, moderate flood event highlights that while flood-fill approaches remain useful for rapid flood assessment (Preisser et 

al., 2022), high-resolution, empirical observations are required to better constrain, validate, and improve models of flood 

connectivity in urban landscapes. 

Our results highlight the significant potential of image-based flood monitoring to improve calibration and evaluation of urban 580 

flood models, particularly physics-based hydraulic modeling approaches (de Vitry and Leitão, 2020). While depression-based 

models with volume accounting and simplified inclusion of drainage systems (e.g., Maksimovic et al., 2009; Samela et al., 

2020) offer a more realistic alternative to simple flood-fill, fully 2D hydrodynamic models remain the benchmark for predictive 

urban flood forecasting (Guo et al., 2021; Rosenzweig et al., 2021).  Recent advances in urban flood modeling have expanded 

the capabilities of 2D hydrodynamic models through features such as Rain-on-Grid water input and coupling with 1D sewer-585 

stormwater systems in commonly used software packages like HEC-RAS (Sañudo et al., 2020; Guo et al., 2021). These 

developments have enabled more realistic simulation of complex, infrastructure-mediated flood behavior in urban settings, 

accounting for both overland flow and subsurface drainage. However, the utility of these models remains limited by the 

availability of empirical calibration data, especially for localized pluvial events where traditional stream gauges are absent. 

Engineered drainage can dramatically alter flood response, with Anni et al. (2020) finding up to a 20-fold increase in modeled 590 

flood volume when stormwater losses are not included. This sensitivity is further amplified in urban areas with aging or 

neglected infrastructure, where drainage performance may vary over time (Shrestha et al., 2022). 

In such settings, camera-derived WSEs offer a rare empirical reference for validating modeled water levels and 

spatiotemporal patterns of inundation. These high-resolution, time-resolved observations enabled direct comparison with 
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outputs from an uncalibrated HEC-RAS Rain-on-Grid simulation of the July 4 flood event. The close match between observed 595 

and modeled peak flood depth, timing, and extent demonstrates the strong potential of integrating image-derived data into 

calibration workflows for 2D hydrodynamic models. This proof-of-concept highlights the value of our method in high-flow 

scenarios where floodwaters are hydraulically connected and drainage networks are overwhelmed, offering a practical, data-

driven way to constrain uncertainty in urban flood simulations. Beyond event reconstruction, these observations can support 

applications such as real-time model updating, performance evaluation of stormwater infrastructure, and planning for flood 600 

mitigation in poorly instrumented or rapidly evolving urban settings. 

In contrast, for the more moderate May 14 event, the model underpredicted total flood extent. These discrepancies 

may reflect known challenges in simulating shallow, spatially variable flooding, where results are highly sensitive to initial 

conditions, roughness parameters, and the representation of drainage behavior (de Almeida et al., 2018). In our case, they also 

stem from limitations in the flood-fill-based propagation used for comparison, which overestimated surface connectivity due 605 

to DEM resolution constraints and lack of drainage detail. The mismatch between predicted and observed connectivity for this 

smaller event illustrates how subtle differences in topography, infiltration, or active drainage (e.g., pumping) can lead to large 

differences in modeled flood behavior. For example, human interventions such as pumping by the utility truck at Site B during 

our moderate flood event are immediately apparent in camera images and may give context to the rate of flood recession that 

would be absent from rain-on-grid model output, or pressure-based water level loggers.  610 

Despite these challenges, our results demonstrate how empirically-derived WSEs can complement and strengthen 

traditional hydraulic modeling workflows. Our method provides continuous, high-resolution estimates of water level and extent 

that are directly tied to real flood behavior, capturing sub-decimeter changes in WSE and floodwater connectivity that would 

otherwise be missed by more traditional flood monitoring and modeling approaches. These observations are especially valuable 

for model calibration in settings with no gauges or rapidly changing infrastructure performance. As stormwater systems 615 

become increasingly strained by climate extremes, integrating data-driven camera networks with physically-based modeling 

frameworks offers a promising pathway for improving urban flood forecasting, response, and planning. 

The need for actionable urban flood data is greatest in underserved communities where existing monitoring is limited, and 

deficiencies in large-scale flood-risk assessments often go unnoticed (Schubert et al. 2024). Closing these gaps in flood risk 

assessment requires empirical flood observations at scales ranging from individual streets to specific properties. Our project, 620 

conducted in coordination with Cahokia Heights residents, offers a practical solution towards the development, deployment 

and operation of a low cost, camera-based flood monitoring system. The design of any community-based monitoring project 

must balance both technical requirements and measures to protect the privacy of and minimize intrusiveness to residents (de 

Vitry et al., 2019; Aziz et al. 2023).  On this front, low-cost non-contact sensors can be an ideal solution for scalable flood 

observation in an urban environment (Mydlarz et al., 2023). The camera stations used in this project can be constructed for 625 

approximately $100 USD and installed in approximately 15 minutes, allowing for the relatively rapid deployment of large 

networks.  A major advantage of semi-permanent cameras compared to other sources of flood images, such as public webcams, 

security cameras, or crowdsourced photos, is the flexibility to adapt the network while otherwise maintaining stability in 
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observations (Helmrich et al., 2021). Based on both our own observations and resident feedback, camera position and image 

settings can be readily adjusted to iteratively improve the quality of flood observations. Beyond scientific data collection, 630 

community-focused monitoring also has an important role to play in the communication of flood risk and impacts (Mydlarz et 

al. 2023). Specifically, visual images of street-level flooding provide a tangible and easily interpretable data product for non-

specialists compared to traditional products such as flood-frequency maps (Siegel and Kulp, 2021).  To this end, camera-based 

flood observations can both fill critical data gaps related to urban nuisance flooding and provide communities with direct, 

actionable insights into the frequency and severity of pluvial flooding. 635 

In this contribution, we present a novel, camera-based approach to urban flood monitoring that integrates time-lapse 

imagery with high-resolution topography to estimate water surface elevation and flood extent with centimeter-scale precision. 

Our method offers a flexible, low-cost solution for capturing urban flood dynamics, capturing highly localized events that are 

difficult to monitor with conventional tools.  By combining foundation segmentation models with direct topography-to-image 

projection, we bypass the need for in-field water-level sensors and site-specific model training, enabling rapid deployment and 640 

scalability across sites. Our observations not only captured asynchronous flood dynamics and topographically driven 

differences in flood connectivity during moderate and severe flood events but also provided a rare empirical dataset for flood 

model validation. Comparisons with flood-fill and 2D hydrodynamic models showed varied success in reproducing observed 

flood behavior, highlighting the potential of our method to improve pluvial urban flood representation in risk assessments. 

Moving forward, this approach can enhance urban flood resilience by enabling real-time monitoring and more accurate 645 

forecasting to support emergency response and infrastructure planning. Additionally, integration of camera-based monitoring 

with hydrodynamic flood models can close critical data gaps in urban hydrology, improving understanding and management 

of complex flood processes in urban landscapes. 

Data Availability:  

The aerial lidar data for St. Clair county used in the study is available through the Illinois Geospatial Data Clearing House 650 

(https://clearinghouse.isgs.illinois.edu/data/elevation/illinois-height-modernization-ilhmp) or OpenTopography 

(https://portal.opentopography.org/usgsDataset?dsid=IL_HicksDome_FluorsparDistrict_B1_2019). The precipitation data 

used in the model is available through MesoWest (https://mesowest.utah.edu/).  To protect the privacy of community residents, 

georeferenced flood extent data and raw imagery are not publicly available. 

Code Availability:  655 

The code used for image processing, flood extent propagation, and model comparison, is available via Zenodo at 

https://doi.org/10.5281/zenodo.16414887 

A Note to Editors and Reviewers:  All data are publicly availably on Zenodo as a draft, however, the data are not yet formally 

published with a DOI. The formally published data will be cited here and linked with a DOI following review. This delay is to 
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enable edits if substantive methodological changes are suggested during the review process resulting in material changes to 660 

the assets in the current Zenodo draft repository. A link with access to the draft repository is given below. 

https://zenodo.org/records/16414887?preview=1&token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjAzM2MxZjBhLTJjNWEtNDI1

MS04ZWE1LTRlODJlZTkzMjEyNCIsImRhdGEiOnt9LCJyYW5kb20iOiJhNmVlNDQ0Y2Y0Njc3MTFiZDQ0MzAzMGI5ZDF

mYmNkOSJ9.fNd50BKqMzWA7NBgVwrWqpGVKyLTJFSjcn_yawfLlnX3YDGyoL1NwX4-qnnuGKgT6coHGLrntXJGKay-

RhatKw 665 
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