
Distortion correction projection  

 Wide field-of-view (FOV) cameras with a short focal length, such as many trail and 
security cameras, can be particularly susceptible to distortion, making it important to account for 
during both camera pose estimation, and 3D to 2D point projection. A set of five coefficients 
describing radial distortion (k1, k2, k3) and tangential distortion (p1, p2) are estimated during 
camera calibration and summarized by the distortion vector, d.    

𝑑 = [𝑘! 𝑘" 𝑝! 𝑝" 𝑘#].     (1) 

Distortion coefficients are applied after transformation with the extrinsic matrix, P, and before 
projection with the intrinsic matrix K.  

For additional details on implementation see the OpenCV documentation at:  

https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html 

 

 

Figure S1: Example of a calibration image (a) before and (b) after correction with estimated 
distortion coefficients. 

 

 

https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html


 

Figure S2:  Elevation differences between the 0.5 m-resolution, georeferenced terrestrial lidar 
DTM (2023), and 0.5 m-resolution aerial USGS lidar DTM (2020) at (a) Site A and (a) Site B.   
Larger elevation differences are found around the edge of the survey extent, and where vehicles 
were present during the aerial scan (visible as red patches).  However, differences are generally 
below 5 cm within 5 m of the road surface (c-f). 

 

  



 

Figure S3:  Fitted power law relationships between image derived Water Surface Elevation 
(WSE90) and Static Observer Flooding Index (SOFI). Water extension towards the camera 
(decreasing ground pixel size) produces a exponent > 1, such as the July event at Site A (green 
circles), while water extension away from the camera (increasing ground pixel size), produces an 
exponent < 1, such as at Site B (orange circles and squares). Images at Site A where flood extent 
passed the bottom of the image, and images of isolated puddles at Site B were excluded from 
fitting and are indicated by “X” symbols. 

 

 

 



Camera pose estimation error evaluation 

Table S1: Camera position (ΔC) and rotation errors (R) from the camera-lidar calibration test 

 Ground control point estimated Static feature estimated IMU 
 ΔC RIMU Rinitial ΔC RIMU Rinital RGCP Rinital 

Pose 1 0.06 m 2.11° 0.00° 0.07 m 2.14° 0.0° 0.17° 0.00° 
Pose 2 0.06 m 1.63° 5.30° 0.10 m 1.65° 5.48° 0.11° 5.18° 
Pose 3 0.04 m 1.52° 14.93° 

 
0.17 m 1.62° 15.09° 0.27° 14.78° 

 

For the case study events, camera pose was calculated based on available pre-existing 
static features rather than explicitly surveyed Ground Control Points (GCPs). A calibration test 
was performed to evaluate pose accuracy when using static features, compared to GCPs. The 
same model of trail-camera used in the study was mounted to a stable tripod, placed in an 
outdoor courtyard, and affixed with a 9-axis Inertial Measurement Unit (IMU) to record camera 
rotation, with a resolution of 0.01 degrees. With the tripod base stationary, images were taken 
from three different camera orientations. Within practical limits, camera roll and yaw were kept 
constant, only adjusting camera pitch over a range of 15 degrees. Three lidar scans were 
collected simultaneously with photo collection. 21 reflective targets were deployed throughout 
the image field-of-view as ground control points. 22 static features including window corners, 
fence posts, and utility poles were also identified. Three lidar scans were collected of the scene.  
Following camera calibration, both GCPs and static features were labeled in the images and 
point cloud. Three rotation-translation matrices (P) were calculated for each camera pose.  Our 
ground truth pose was calculated from IMU measured X, Y, Z rotation, and point cloud labeled 
camera location. The second was estimated from our labeled GCPs using RANSAC optimized 
EPnP (Lepetit et al., 2009). The third was estimated from our labeled static features in the same 
manner.   

Position error is characterized by the absolute distance between labeled and recovered X, 
Y, Z camera locations (ΔC ). Absolute camera rotation error (RIMU) was characterized by the 
magnitude of rotation between separating the IMU measurements and the estimated rotation 
matrix. Similarly, relative rotation error (Rinitial) was characterized by the magnitude of rotation 
from the initial camera position, Pose 1, as calculated by each method. Error in camera location 
was overall slightly higher when only using static features, but in all cases remained less than 20 
cm. Absolute rotation errors were similar between approaches, and all below 2.5°. Rotations 
relative to the initial camera pose are more consistent, with an average difference of 0.14° and 
0.31° from the IMU for GCP and static feature estimates respectively, suggesting a potential 
offset between the IMUs calibration and the point cloud. This gives us some expectation for the 
camera pose accuracy achievable with our camera and lidar equipment, in outdoor conditions 
similar to those of our flood monitoring stations. 


