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In their paper, the authors present an innovative urban flood monitoring approach. Intersecting
segmented flood masks derived from imagery recorded by low-cost trail cameras and lidar data,
they estimate flood water surface elevations for two flood events. Maximum flood depths and
extents were then compared with results from a 2D hydrodynamic model.

| have read the paper with interest and think it can be published after major revision. My detailed
comments are included below.

Major concerns

1. HEC-RAS model

While | agree in general that comparing flood extent and/or depth from the authors’ new method
with results from a 2D hydrodynamic model might be an interesting analysis, the paper in its
current for lacks important details regarding how the HEC-RAS model was implemented:

[Q1] The details of the HEC-RAS model implementation are currently included in the Zenodo data
supplement. Because the HEC-RAS model itself is secondary to the development of our analysis pipeline,
we do not want to overwhelm the readers with too many details in the main text given the current length of
the manuscript. We will migrate the relevant elements into the main text methods section and
supplementary information.

How was the model grid set up?
We have added the following to the supplement:

(Text S1) Model domain: The computational mesh was generated from a TIN-interpolated, and
gap filled, 0.5 m resolution DTM generated from 2019 USGS 3DEP aerial lidar data. The base
mesh was generated with 10 m node spacing. Breaklines were added for channel centerlines,
culvert inflows and storm drains. Mesh refinement was applied within 5 m of these breaklines,
reducing node spacing to 1 m for the area of interest.

What infiltration method was used in the rain-on-grid approach, and how was it parameterized?
What land use classifications and corresponding roughness coefficient were used?

We have added the following to the supplement:

(Text S1) Mannings roughness (n) and runoff: 30 m resolution National Land Cover Database
(NLCD) were used to define spatially variable roughness coefficients, using HEC-RAS manual
reference values for each classification. This was refined using vector polygons of road surfaces
and building footprints from the lllinois Department of Transportation. Within building footprints
n was assigned a high value of 10 which prevents the routing of runoff from those cells.



Land Cover Classification Manning’s N Value
NoData 0.035
Roads 0.01
Buildings 10
Banks 0.04
MainChannel 0.03
Open Water 0.035
Developed, Open Space 0.035
Developed, Low Intensity 0.08
Developed, Medium Intensity 0.12
Developed, High Intensity 0.15
Barren Land Rock/Sand/Clay 0.025
Deciduous Forest 0.15
Evergreen Forest 0.15
Mixed Forest 0.1
Shrub/Scrub 0.9
Grassland/Herbaceous 0.04
Pasture/Hay 0.045
Cultivated Crops 0.05
Woody Wetlands 0.07
Emergent Herbaceous Wetlands 0.07

Table §2: Reference landcover based Manning ’s roughness coefficients taken from USACE 2024.

Rainfall Runoff: The curve number (CN) method was used to calculate initial infiltration losses
and runoff generation. The same NLCD landcover, and IDOT building and road layers were
used to define spatially variable values for CN, abstraction ratio and minimum infiltration rate.
Reference values were taken from the HEC-RAS hydraulics manual, with abstraction ratios

suggested by Hawkins and Jiang 2023. No additional infiltration losses are calculated after the
initial rainfall-runoff conversion.

Initial . Minimum
Name Curve Abstracti Abstraction Infiltrati
. . straction nfiltration
(Land Cover: Soil Hydric Group) Number . Ratio
Ratio Rate
Developed, Medium Intensity : D 86 0.05 0.082 1.270
Developed, Open Space : B/D 74 0.05 0.176 3.485




Emergent Herbaceous Wetlands : A 76 0.05 0.158 7.600

Grassland/Herbaceous : D 80 0.05 0.125 1.270
Buildings : 100 0.05 0.000 0.000
Roads : C 98 0.05 0.010 0.000

Was storm drain infrastructure modeled, or only surface flow?

We have added the following to the supplement:

(Text S1) Stormwater system: The combined sewer-stormwater system was modeled as a 1D pipe network
in HEC-RAS. The location of stormwater inflows were taken from the Illinois Department of Natural
Resources (IDNR) and Heartlands Institute survey of the Prairie Du Pont Watershed. Precise information
on the topology and hydraulics of the sewer-stormwater system is unavailable, and connection between
inflows was inferred based on published IDNR and USACE reports and maps (USACE 2024, IDNR 2023).
Pipe diameter of 0.7 m, based on IDNR survey, and n of 0.015 m were used, based on USACE reported
values. The pipe network was connected to the know drainage ditch outfall.

Are there storage areas within the model domain?

Because the study area is separated from nearby lakes and reservoirs by the major
drainage ditches and roads no additional storage areas were included.

Without additional detail, a review of this portion of the analysis is nearly impossible. Even if detail
is added, | still question the value of comparing the authors results with those from an uncalibrated
HEC-RAS model; | also suspect the lack precipitation data form within the study area adds
substantial uncertainty to model results (it sounds like data from only one rain gauge was used for
each event, and gauges were located at a distance of 6 and 8 km from the study area, respectively).

[Q3] We Thank the reviewer for their comments, but even without quantitative calibration we
believe there is significant value in our model comparison. A major motivation of our study is
monitoring approaches for areas without sufficient data for pluvial model calibration. This approach
is not unique to our study. There are multiple prior studies where uncalibrated, and otherwise
simplified 2D models are used to evaluate new DTM based methods (e.g. Samela et al. 2020;
Preisser et al. 2022). To that end, the comparison is intended to identify major similarities and
differences in characteristic behavior between camera-derived flood extents and a rain-on-grid
model, not as an absolute ground-truth. While factors like precipitation uncertainty will modify
maximum flood timing and extent, they are unlikely to alter the behaviors implicit to a rain-on-grid
model which distinguish it from our image-based estimates. We will revise the methods and



discussion to clarify our conceptual approach and qualify the limits of direct camera to model
validation:

Lines 372-375: “Because the model itself is only qualitatively calibrated, its output is not treated as a
direct validation for absolute water levels estimated from images. Instead, it characterizes similarity or
divergence in flood behavior predicted by each method, based. This is quantified both in terms of the
relative agreement in predicted flood extent, and spatial flood connectivity, between the two methods.

”

Lines 707-715: “Despite these challenges, our results demonstrate how empirically-derived WSEs can
complement and strengthen traditional hydraulic modeling workflows. Our method provides continuous,
high-resolution estimates of water level and extent that are directly tied to real flood behavior, capturing
sub-decimeter changes in WSE and floodwater connectivity that would otherwise be missed by point-based
flood monitoring and modeling approaches. While further validation of camera-derived extents would be
necessary for confident direct calibration, this level of precision is valuable for the initial validation of
uncalibrated models, an important tool for preliminary flood-risk analysis in settings with no gauges or
rapidly changing infrastructure performance.”

I think one of the potentially important applications of the proposed method is mentioned in
the discussion (lines 588-589): data for calibration of hydrodynamic models is limited, particularly
for pluvial flooding. Here, estimates of water surface elevations and flood extents from cameras
could fillan important data gap. If the authors could demonstrate that they can calibrate their HEC-
RAS model using camera-based observations, that would strengthen the paper considerably.

While we agree with the reviewer that there is significant future opportunity in using camera-
based observations to calibrate flood models (which we discuss in Lines 810-815), we feel that this
effort is beyond the scope of the study presented here. The focus of the current study is application
of the computer vision methods to estimate spatial flood extent, and introducing an additional
model calibration element is likely to detract from that focus. The reviewer’s suggestion would
require us to simultaneously evaluate the performance of our camera-based methods while also
applying those methods to calibrate the HEC-RAS model, introducing ambiguity into the
interpretation of both elements of the study.

We will revise the discussion to more directly call out the potential use of these methods for
future flood model calibration as follows:

Lines 847-863: “Camera-based observations provide a promising avenue to address these calibration gaps.
Depending on the data available and the precision required, camera-derived information could support
multiple levels of model calibration. At a minimum, observations of flood presence, extent, and connectivity
can serve as semi-quantitative validation of model structure and behavior. More detailed or well-distributed
camera installations could function as stream-gauge surrogates, enabling direct calibration of key model
parameters such as surface roughness, stormwater capacity, or flood wave timing. These approaches could
ultimately facilitate both post-event model evaluation and real-time model adjustment, bridging gaps in
empirical data for urban flood forecasting. When possible to implement, camera-derived WSEs offer a rare
empirical reference for validating modeled spatiotemporal patterns of inundation. For example, these high-
resolution, time-resolved observations enabled direct comparison with outputs from an uncalibrated HEC-
RAS Rain-on-Grid simulation of the July 4 flood event, revealing a close match in peak flood depth, timing,



and extent. This proof-of-concept highlights the strong potential of integrating image-derived data into
calibration workflows for 2D hydrodynamic models, particularly in high-flow scenarios where floodwaters
are hydraulically connected and drainage networks are overwhelmed. Beyond event reconstruction, such
observations can support real-time model updating, performance evaluation of stormwater infrastructure,
and planning for flood mitigation in poorly instrumented or rapidly evolving urban settings, providing a
practical, data-driven way to reduce uncertainty in urban flood simulations.”

2. Extension of flood extends beyond the camera field of view

The authors apply a flood fill procedure to estimate flood extents outside the camera field of view. |
question this approach, which can’t account for overland flow dynamics, infiltration, etc. | think the
authors might be better off using the flood fill approach only within the field of view.

[Q5] We thank the reviewer for their comment. However, there is an important conceptual
distinction between flood-fill models and process-based flood models. By prescribing a surface
water level the flood-fill extents are agnostic to the factors such as infiltration that produced the
water level. Further, flood fill models do not contain an explicit time-dependence, each flood
extentis independently generated from a single image observation. Within the context of pluvial
flooding within an urban area, where the fraction of impervious surfaces is quite high and the study
area contains many small, internally draining depression, a flood-fill model is a suitable
approximation for extrapolation over short (~100m) distances.

Specific to this contribution, extrapolation serves an important role in cross-site comparison. In a
low-relief environment we can expect discrete in flood connectivity, and categorical disagreements
between sites reveal missing dynamics, namely storm-water infrastructure. The main pointis that
using flood fill models to propagate flood extents from multiple cameras improves our ability to
identify these dynamics.

Given the widespread use of static water-level models for rapid flood assessment, itis valuable to
discuss their behavior and limitations in the context of emerging flood data sources such as
cameras (Gallien et al., 2014; Hong et al., 2024; Li et al., 2022; Preisser et al., 2022). We have
expanded the discussion to highlight the limitations of the flood-fill approach and suggest avenues
for integrating data from multiple cameras in future work.

Lines 787-808. “Flood fill methods are well-suited for short duration pluvial events in low relief, urban
areas. Because the study sites within a self-contained depression, it is unlikely that there are substantial
gradients in water surface elevation. This is supported by the 2D model results which, exclusive of edge
effects, predicts a difference in water elevation between Sites A and B of only 0.5 cm after initial merging of
the flood patches. Static elevation-based methods are widely used for rapid flood mapping, including in
emergency management contexts (Gallien et al., 2024; Wang et al. 2024, Zheng et al., 2018). The cross-
camera comparison used in this study is an effective tool for identifying potential failure modes within these
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models.



3. Validation of the new method

The study would also be strengthened if estimated water surface elevations could be validated using
other data sources. | understand that depth measurements may not be available, but could the
authors estimate depth at strategic locations based on visible markers and compare those to
estimates from their approach for the corresponding location? Also, some expanded discussion of
uncertainty as a function of distance from the camera location would be beneficial.

Independent depth measurements are not available for the study site, and indeed the lack
of such data is the primary motivation behind this project. However, there are identifiable markers
of discrete jumps in water level, such as road overflow points (Vandele et al. 2019). Based on the
lidar DTMs, and aerial imagery we compared projected flood extents, with road elevation profiles
above and below spillover. Thisisincluded in a revised supplementary Figure:
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To qualitatively validate the water level extraction method we examined observation immediately
above and below overtopping of the road boundary. These were compared against cross-road elevation
profiles extracted from both USGS and terrestrial DTMs. Prior to spillover, the projected flood extent ends
at the road boundary, with water level slightly below the curb elevation found in the terrestrial DTM
profile. After spillover, the project extent expands to fill the small paved area above the road surface,
before stopping at the lawn boundary. This is consistent with the image observation, and topographic
profile of a second spillover onto the lawn itself. Further from camera, toward the NW, decreased pixel
resolution leads to the projected extent bleeding beyond the road, potentially upwardly biasing estimated
water levels. The extracted water level is approximately 3 cm higher than the elevation contour best
aligned with the projected flood boundary below spillover, and approximately 1cm higher after spillover.
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The magnitude of both these biases decreases with larger flood extents due to more gradual elevation
gradients, and the lack of curb shadows."

We have added discussion of distance dependent pixel resolution and its influence on
camera pose, and water level estimation:

Line 332-355: “Because pixel resolution decreases with distance from the camera, multiple 3D
points may project onto a single image pixel; therefore, all inundated points are retained and a one-to-one
pixel-point correspondence is not enforced. Together, these inundated points represent the portion of the
ground surface that is underwater at the time the image was captured. This set of inundated points is
interpolated into a 0.05-meter resolution raster representing the visible flood extent in the image. This
interpolation step reduces bias associated with distance-dependent differences in point density and avoids
over-representation of regions where many 3D points project to a single pixel. Water surface elevation
(WSE) is estimated from the rasterized flood boundary rather than from individual pixels or raw point
projections. Canny edge detection is applied to the rasterized inundation extent to identify the flood
boundary, and the 90th and 95th percentiles of the resulting edge elevation distribution (WSEs and WSEjs)
to account for potential topographic noise or obstruction of the water edge in the time lapse images.
Assuming a flat water surface, elevations along the flood boundary should exhibit a sharp peak at the
upper end of the elevation distribution. The consistency and sharpness of this peak are another parameter
useful to evaluate the camera pose estimation, as errors in estimated camera orientation or translation
produce unrealistically large elevation differences between near- and far-field water edges."

Other comments
Figure 1b —this image is difficult to interpret, perhaps change the color scheme?

[Q7] We will adjust this figure to accentuate the small-scale variation of the floodplain,
while preserving the context of the upland bluffs.

Section 2.3 -l recommend revising this section. It is difficult to follow the detailed accounts of start
and end times. It might be better to display this as a figure or omit some of the detail hot necessary
for understanding the larger picture.

[Q8] We will add additional annotation of key elements of flood timing and duration to
figures 3 & 4 and will remove unnecessary details from the text. However, we feel that some
narrative description of the events as observed by the cameras is hecessary to build reader
intuition and understanding and better prime them for presentation of the flood extent
estimates.
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Figure 3: (a) SOFI time series for 14 May moderate severity case study event. Representative
flooded images from (b) Site A and (c) Site B. Segmented flood masks are shown in blue.
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Figure 4: (a) SOFI time series for 04 July severe case study event. Representative flooded images
from (b) Site A and (c) Site B. Segmented flood masks are shown in blue.

Line 322: What do the authors mean by “rainfall was uniformly applied to the domain"? Precipitation
data from one gauge was applied to the entire model domain? Uniform intensity? Please clarify.

[Q9] A single rain gauge record was used for each flood event, and that hyetograph was

applied to the entire model domain grid, with no spatial variability in precipitation. While a
simplification, the dominance of local pluvial runoff in the study area, and the short duration of the



case-study flood events, likely limits the influence of watershed scale precipitation gradients, and
would not alter the basic behaviors of the rain-on-grid model relevant for comparison to the
camera-derived estimates. We have clarified this in the methods:

Lines 350-353: “This model is implemented using the Hydrologic Engineering Center’s River
Analysis System (HEC-RAS), configured with a “rain-on-grid” unsteady boundary condition to
simulate overland water flow across an 89.6 km? model domain covering the study site (USACE,
2022). The base terrain is the 0.5 m USGS DTM. Rainfall records defined the unsteady inputs the
model domain, assuming spatially uniform precipitation.”

Line 365: Please explain how SOFI values should be interpreted.

[Q10] SOFl is the fraction of the total fraction of an image classified as flooded. It is
included as a semi-quantitative metric of flood magnitude to contextualize the estimated water
level, and flood extent trends. However, the absolute values of SOFI are a function of both the
physical flood extent, and the perspective of the camera. For example, a camera installed directly
Infront of a flood source will see SOFI initially rise very quickly, before leveling off as flooding fills
the FOV (see Sl Figure 2). We have added additional text explaining this interpretation:

Line 255-259"This ratio is referred to as the Static Observer Flooding Index (SOFI), following
the approach of Vitry et al. (2019), providing a simple proxy for flood intensity as seen from a
fixed observation point. SOFI has been shown to correlate strongly with changes in water level
for a given location (Moy de Vitry et al. 2019). The shape and magnitude of SOFI response
depend strongly on the geometry of a camera relative flooding, and as such values cannot be
directly compared between study sites.”
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