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1 General Comments:

This manuscript presents “OIRF-LEnKF v1.0,” a hybrid data assimilation (DA) system
that couples an optimized incremental Random Forest (OIRF) model with a Localized
Ensemble Kalman Filter (LEnKF). The primary goal is to address the computational
inefficiency and limited forecasting improvement associated with traditional Chemical
Transport Model (CTM)-based DA systems. By replacing the CTM ensemble with a
machine learning (ML) ensemble that updates itself via incremental learning, the
authors claim to achieve significant efficiency gains and improved accuracy in
estimating PM> s chemical components. The topic is highly relevant to the scope of
Geoscientific Model Development, as it addresses the critical bottleneck of
computational cost in atmospheric chemistry DA. The integration of incremental
learning (updating decision trees based on analysis increments) is a novel and
interesting approach to handling non-stationary error distributions. The validation
against independent sites and other reanalysis datasets suggests the system performs
well.

However, there are several major concerns regarding the terminology used (specifically
“forecasting”), the dependence on reanalysis inputs, and the circularity of the self-

evolving mechanism that must be addressed before publication. The critical distinction



between a “reanalysis generator’ and a ‘“‘forecast system” seems blurred in the current

experimental design. The experimental period is very insufficient to support the claims.

Authors’ response:

We sincerely thank the reviewer for the thorough and insightful review, as well as
for the positive assessment of the novelty and relevance of our work. We appreciate the
constructive criticisms, which have helped us identify crucial areas for clarification and
improvement. We will address the major concerns regarding the terminology used
(specifically “forecasting”), the dependence on reanalysis inputs, the circularity of the
self-evolving mechanism, and the insufficient experimental period point-by-point

below.

2 Major Comments:

1) Clarification of “Forecasting” vs. “Hindcasting/Reanalysis”

The title and abstract repeatedly emphasize the systems ‘‘forecasting” capability.
However, Section 2.2.1 states that the input features for the OIRF model include
meteorological parameters from ERAS5 and atmospheric pollutants from CAQRA (a
reanalysis dataset). In that setting, the model is effectively learning an instantaneous
relationship (features at time t — components at time t). In a true operational forecast
setting, ERAS5 and CAQRA data are not available in real-time; they are retrospective
datasets. If the OIRF model relies on con-current reanalysis data as inputs to predict
chemical components, this is technically a “diagnostic” application, not a “prognostic
forecast.” The authors must clarify this distinction. If the system is intended for
operational forecasting, they should discuss how it would perform using forecast
meteorology (e.g., IFS or GF'S) and forecast pollutants (e.g., CTM forecasts) as inputs,
rather than high-quality reanalysis data. This is not a minor wording issue: if inputs
are reanalysis fields at the verification time, then improvements in RMSE/CORR do not
necessarily translate to operational forecast skill. If the primary purpose is generating
reanalysis datasets (as implied by the comparison in Section 3.4), the manuscript

’

should be reframed to reflect that this is a “reanalysis system” or “hindcast system,’



as calling it a “forecast” is misleading given the input data latency.

Authors’ response:

We sincerely thank the reviewer for this crucial and insightful comment, which
correctly identifies the most important interpretive limitation of our current model input
design. We fully agree that the distinction between a diagnostic application and a real-
time prognostic forecast is fundamental.

a. Terminology correction

The reviewer is correct. The OIRF model learns an instantaneous mapping
relationship based on retrospective reanalysis datasets and technically performs a
“reanalysis-based simulation” rather than a “prognostic forecast”. Therefore, referring
to simulation or instantaneous mapping as an operational “forecast” is misleading. We
apologize for this imprecision. In the revised manuscript, we have thoroughly
replaced the inappropriate terms such as “forecast”, “forecast field”, and “FOR”
with more accurate terms such as “simulation”, “background field”, and “SIM”
in the title, abstract, main text, figures (including Fig. 1, Fig. 3, Fig. 4, Fig. 5, Fig.
6, Fig. 7) and tables. For brevity, only the revised title and abstract are shown below,
and all modified figures are displayed at the end of this reply.

Title, Line 1-4: “OIRF-LEnKF v1.0: A Novel Data Assimilation System by Integrating
Incremental Machine Learning with a Localized EnKF for Enhanced PM> s Chemical
Component Simulation and Reanalysis”

Abstract, Line 12-29: “Assimilating observational data into numerical simulation is
crucial for accurately estimating the spatiotemporal distribution of PM>s chemical
components (NHs*, NOs, SO, OC, and BC), which is beneficial to quantifying the
impact of aerosols on the environment, climate change and human health. However,
chemical transport model (CTM)-based data assimilation (DA) is computationally
inefficient for large ensemble sizes and offers limited improvements in simulation skill,
as it solely provides optimal initial conditions. This paper introduces an incrementally
updatable machine learning-based data assimilation system (Optimized Incremental

Random Forest coupled with Localized Ensemble Kalman Filter, OIRF-LEnKF v1.0)



that achieves high efficiency and high quality in generating background and analysis
fields for chemical components. Computational efficiency tests indicate that the total
time consumed by OIRF-LEnKF v1.0 constitutes only 11.41-16.60 % of that of CTM-
based DA, particularly during the simulation process (0.13-0.20 %). Sensitivity tests
demonstrate that the self-evolution mechanism in our system enhances the Pearson
correlation coefficient (CORR) and reduces the RMSE during the simulation process
by 2.28-11.75 % and 32.94-40.98 %, respectively, compared to the stationary training
mechanism. A 2-month DA experiment reveals that the RMSE values of chemical
components after DA are less than 7.80 ug m> and 2.36 ug m> during the simulation
and analysis processes, respectively, indicating reductions of at least 26.38 % and
68.99 % compared to values without DA. Notably, the RMSE values of our system
during the simulation process exhibit a significant reduction of 33.16-90.10 %
compared to those of the CTM-based DA, highlighting the superior simulation
capability of our system. Furthermore, the spatial overestimation and underestimation
of chemical components have been significantly mitigated following DA. Compared to
multiple reanalysis datasets of inorganic salt aerosols (CORR: 0.56-0.89, RMSE: 2.55-
8.52 ug m>), the dataset generated by OIRF-LEnKF v1.0 (CORR: 0.97, RMSE: 1.12
ug m?) demonstrates higher data quality.”

b. Clarification of our study’s primary goal

The primary objective of this work is to propose and validate a novel framework
that online couples an incrementally updatable Al-based surrogate model and an
ensemble data assimilation algorithm, which enables the Al-based surrogate model and
the data assimilation component to benefit from the dynamic information provided by
the other at each iteration. During the concept proof stage, using optimal reanalysis
inputs is deliberate to establish a valid representation of forecast/simulation uncertainty.
Specifically, the OIRF-LEnKF utilizes the decision tree members in the OIRF model to
estimate the background error covariance without input perturbations, which implicitly
assumes that the forecast/simulation uncertainty mainly originates from the OIRF
model’s inherent incompleteness in learning the mapping relationship between input

and target features. Therefore, using reanalysis data as input excludes the additional



uncertainty that would arise from imperfect forecast inputs.

c. Discussion of operational forecasting

The application of the OIRF-LEnKF system in operational forecasting is feasible,
but its comprehensive validation would require a broader set of experiments, such as
sensitivity tests on forecast ensemble generation. The in-depth investigation on the
operational forecasting extends beyond the primary scope of this paper. We sincerely
thank the reviewer’s constructive suggestions, which provide significant inspiration.
Our immediate future work will indeed prioritize these forecasting experiments, such
as employing forecast data as input and assessing performance under different ensemble
generation strategies (e.g. using perturbed meteorological forecast data alone, jointly
perturbing meteorological and pollutant forecasts, or developing hybrid methods that
integrate input perturbations with the intrinsic ensemble statistics from the decision tree

members).

2) Circularity / information leakage risk in the incremental learning loop

A key design choice is that each decision tree is scored using MAE against the analysis
field at the same time step, and trees are replaced by new trees trained on “analysis”
targets. I have two concerns on this design. The first one is that the system is self-
training on its own analysis. The system progressively trains on DA outputs (which
incorporate the observations), not solely on an external reference dataset. This can lead
to overly optimistic performance if not carefully controlled. The second one is that the
scoring target is non-independent. The analysis field is itself a function of the forecast
ensemble (through the forecast covariance used by EnKF). Even with localization,
using the analysis as “‘ground truth” for selecting trees can create a feedback loop
where the ensemble is optimized to match its own internally constructed target. At
minimum, the paper should include a leakage-aware evaluation, for example, scoring
the incremental learning using withheld stations (VE sites) not assimilated, or withheld
time blocks, rather than analysis fields produced by assimilating the same network.
Providing an ablation where incremental learning is driven by an external target versus

DA-derived analysis, to quantify how much of the gain comes from DA self-training can



also be very valuable.

Authors’ response:

We thank the Reviewer for this exceptionally insightful comment.

Regarding the first concern, we fully agree that the system progressively trains
the OIRF model using DA outputs can lead to overly optimistic performance if not
carefully controlled. We would like to clarify several key points as follows.

a) DA outputs serve as a high-quality target set for training, aiming to accurately
establish the mapping relationship between the input features and five PM» s chemical
components. Importantly, the re-training utilizes the DA outputs from the previous time
step. The updated RF model is then applied to provide background fields for the current
and all subsequent time steps until the next update. This design ensures that the model
does not gain prior knowledge of future states, thereby preventing artificially optimistic
performance.

b) An external and independent target set of high-quality observations typically
provides insufficient sample size (only 9 VE sites in our case) for training at a single
time step. Meanwhile, as validated in Section 3.4, external reanalysis datasets exhibit
lower accuracy than DA outputs, making them a suboptimal choice for the “ground
truth” target in the re-training process.

c) Most crucially, our system incorporates specific controls (update frequency
and update intensity) to mitigate the risk of overly optimistic performance. The
update frequency parameter, which determines how often the OIRF model integrates
DA outputs, is optimized by sensitivity experiments, as detailed in Section 3.2. The
update intensity parameter is implemented by a controllable threshold (t,), which
governs the proportion of decision trees (DTs) replaced. A higher threshold ensures that
only a small and stable fraction of the DTs is replaced during each update cycle, which
prevents model overfitting to the new DA outputs.

We acknowledge that some rationales and controls were not explicitly detailed in
the original manuscript, which may have caused confusion. We have revised the text

accordingly to provide the necessary clarification as follows.
Section 2.1.1, Line 128-143: “As shown in Fig. 1, the fundamental workflow of OIRF-
LEnKF v1.0 is as follows.

Step 1. Initial training of the OIRF model. The training data at the first timestep serve



as the initial conditions for constructing the OIRF model. The input features include
meteorological parameters, including temperature, relative humidity, U-component
wind, V-component wind, and geopotential, as well as anthropogenic atmospheric
pollutants, including PM> s, PM 9, SO>, NO, CO, and O3. The output features are SO4”,
NOs, NH4", OC, and BC.

Step 2. Incremental learning of the OIRF model at time steps > 1. High-quality analysis
fields at the last time step, along with the corresponding meteorological and
anthropogenic input data, are employed to train a new ensemble of decision trees. The
old decision trees, which exhibit poor simulation performance, are subsequently
replaced with new decision trees to enhance the simulation accuracy and generalization
ability of the OIRF model.

Step 3. Generating a background ensemble of PM>s chemical component
concentrations at the current timestep using the OIRF model, along with the current
meteorological and anthropogenic input data.

Step 4. Generating the analysis fields of PM> s chemical component concentrations at
the current timestep by assimilating chemical observations into background fields using
the LEnKF algorithm.

Step 5. Scoring the simulation performance of ensemble decision trees in the OIRF
model using mean absolute error (MAE) and screening out the decision trees with poor
simulation performance based on a predefined threshold. Repeat steps 2-5 until the end

of the loop.”
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Figure 1. The framework of OIRF-LEnKF v1.0.
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Section 2.1.2, Line 175-180: “The incremental learning mechanism introduces a
threshold (t,) to screen out the DTs with poor simulation performance. The threshold
is defined as the p™ percentile value of f,5°°"®. The percentile-based threshold ensures
a stable and controllable number of DT are updated, a critical feature for maintaining
the smoothness and stability of the estimation of background error covariance within
the ensemble data assimilation framework and preventing model overfitting to the new
information. As shown in Eq. (3), the old DT with scores not higher than T, are
retained, while the old DTs with scores higher than T, will be replaced by new DTs
obtained from the incremental learning process.”

Section 2.1.2, Line 185-186: “...The p is set at 80 to prevent excessive updating of
DTs, which may introduce instability and artificially optimistic performance into

ensemble simulation of the OIRF model.”

Regarding the second concern, we fully agree that our work should include a
leakage-aware evaluation. Following the Reviewer’s suggestion, we have conducted an
experiment in which we score the incremental learning using the observations from VE
sites that have not been assimilated.

Section 2.1.2, Line 162-168: “Inspired by the idea of dynamically updating DTs with
weak performance (Xie et al., 2016), the OIRF model incorporates a novel incremental

learning mechanism into the RF model, enabling it to conduct effective updating from



newly available training data within a simulation-assimilation cycle. In the incremental
learning mechanism, the OIRF model scores the simulation performance of each DT
based on the mean absolute error (MAE), as shown in Eq. (2). The MAE is quantified
by the DT outputs and high-accuracy analysis fields at the same time step. A leakage-
aware evaluation indicates that using the analysis field as scoring target did not cause
substantial information leakage, while employing the independent high-quality
observation as scoring target is also recommended (Sect. SI in the Supplement).”
Supplement: “Sect. S1: Leakage-aware evaluation of incremental learning

In the incremental learning mechanism, each decision tree (DT) member is scored by
comparing its simulation to the analysis field using mean absolute error (MAE).
However, using the analysis field as the scoring target for selecting trees could arise a
feedback loop risk as the DT ensemble may become optimized toward its own internally
constructed target. Therefore, we conducted a leakage-aware evaluation for February
2022 by comparing simulation performance of the OIRF model when the scoring target
is set as the analysis field against when it is set as the independent observation at
withheld sites (VE sites) not assimilated. Fig. S1 shows that both scoring targets
achieved comparable performance across all five PM> s chemical components, with
correlation coefficient (CORR) values of 0.39-0.85 (analysis-field target) versus 0.39-
0.86 (independent-observation target), and RMSE values of 1.02-5.85 ug m™ (analysis-
field target) versus 0.95-5.68 ug m> (independent-observation target). This finding
suggests that the theoretical risk of a feedback loop from using the analysis field as the
scoring target was limited during the study period. Adopting an independent-
observation target is recommended in practice, since it yields slightly superior skill and

fully eliminates the theoretical concern of an information leakage risk.
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Figure S1: Scatterplots with probability density of simulated versus observed mass



concentrations at independent VE sites correspond to the two scoring targets used in
the incremental learning process, including analysis fields (ANA) (al-a5) and
independent observations (OBS) (bI1-b5). The gray dotted lines represent the 2:1, 1:1,

and 1:2 lines, and the red solid line represents the fitting regression line.”

3) Insufficient experimental period limiting model extrapolation and generalizability
The experimental validation is strictly limited to a two-month period (February—March
2022). This short duration fundamentally undermines the manuscript’s claims
regarding the system s robustness and its “self-evolving” capability, primarily due to
the inherent limitations of the chosen machine learning architecture.
From the ML perspective, The OIRF model relies on the Random Forest (RF) algorithm.
A well-known limitation of tree-based methods is their inability to extrapolate beyond
the range of values encountered in the training data. By restricting the training and
validation to a single two-month window, the model is only exposed to a specific subset
of atmospheric conditions. If the system encounters pollution episodes more severe or
chemically distinct than those in the February-March training set, the RF model will
likely “clip” the forecast to the maximum value previously learned, failing to capture
new extremes. The current experimental design does not demonstrate that the
“incremental learning” mechanism can overcome this fundamental extrapolation
barrier when faced with out-of-distribution data.
From the physics perspective, a system trained and validated exclusively on
winter/early spring data cannot validly be claimed as a “Self-evolving Data
Assimilation System” because it has not been tested against any possible regime shifts
of a full annual cycle. There is no evidence presented that the model can “evolve” to
handle the volatility of semi-volatile species in warmer months without catastrophic
forgetting or significant error.
1 strongly encourage the authors to extend their experiment to cover a longer period to
genuinely establish the robustness of the incremental learning mechanism. Otherwise
the authors need to rescale their claims. For example, the term “self-evolving” should

be removed as the system s evolutionary capability remains unproven beyond Feb-Mar



2022. The authors must also explicitly discuss the theoretical risks of deploying this

approach in operational setting outside the training season.

Authors’ response:

We sincerely thank the reviewer for the crucial and insightful comment. We fully
agree with the reviewer’s concerns from both machine learning and physics perspective.
Conducting a year-long experiment is crucial for verifying the robustness of the
incremental learning mechanism of machine learning models, especially for tree-based
models with poor extrapolation capabilities.

a. Re-scaling the claims on “self-evolving”

We fully agree that a two-month experimental period is insufficient to robustly
demonstrate “self-evolution” against the full scenarios of atmospheric variability and
unprecedented extremes. However, acquiring a year-long hourly observation dataset of
five key PM2s chemical components across a wide spatial range is currently very
challenging. To our knowledge, none of the popular reanalysis datasets are generated
directly from long-term hourly observations of chemical components. As summarized
in Table R1, the CAQRA-aerosol dataset was generated indirectly by assimilating
ground-level hourly observations of traditional air pollutants. The TAP dataset was
generated by fusing daily, monthly, and annual observations of chemical components.
The CHAP dataset was generated by fusing daily measurements of four water-soluble
inorganic ions. The chemical component fields in both CAMSA and MERRA-2 were
generated indirectly by assimilating observations of aerosol optical depth.

Consequently, within the current constraints, we deployed our maximum feasible
effort to conduct a two-month hourly measurement campaign at 33 sites. This campaign
was designed for a representative period (February-March 2022) and region (Beijing-
Tianjin-Hebei region) known for frequent pollution episodes, which directly supports
the primary goal of proposing and validating a novel framework online coupling
incremental machine learning and ensemble data assimilation. In response, we have
re-scaled the claims on “self-evolving” and replace the term “self-evolving” with

more precise descriptions such as “incrementally updatable” in the revised



manuscript. In the future work, we will extend our measurement campaigns covering
a longer period to establish the robustness of the incremental learning mechanism.

b. Discussion on extrapolation risks

In response, we have added a section 3.4 Limitations to the revised manuscript to
discuss the theoretical risks of deploying this approach in operational settings outside
the training season. The original section 3.4 Comparison with multiple reanalysis
datasets has been changed to a section 3.3.3. Comparison with multiple reanalysis
datasets.
3.4 Limitations, Line 621-637: “Although the OIRF model serves as an efficient
surrogate for the CTM in generating simulation or forecast ensembles for data
assimilation, it inherits a constrained extrapolation capability of tree-based models.
Specifically, the OIRF model may exhibit a tendency to saturate at learned extremes
when extrapolating beyond its training data distribution, which directly limits its
generalizability in diverse and complex atmospheric scenarios, such as the pollution
extremes in seasons outside the training period. The poor performance of tree-based
models on testing sets has been reported in our previous study (Li et al., 2025). Our
incremental learning mechanism is designed to mitigate the extrapolation limitation by
dynamically updating the RF model with new knowledge. However, the effectiveness of
incremental learning is contingent upon the availability of high-quality analysis fields.
A lack of observations, which prevents the generation of analysis fields, exposes the
OIRF model to its inherent extrapolation limitations, leading to compromised

simulation accuracy.

Replacing the RF model with an ensemble of deep neural networks (DNNs) holds
promise for superior nonlinear mapping and extrapolation. However, the considerably
higher computational cost required for both training and inference of DNNs (Debjyoti
and Utpal, 2025; Xi, 2022) results in an operational bottleneck that the process of
updating and running an ensemble of DNNs can be slower than traditional CTM-based
ensemble simulations, which could offset its accuracy advantages. Therefore, balancing

the inherent predictive performance of a machine learning model against its



computational cost remains a central challenge for the practical online coupling of

machine learning with data assimilation.”

Table R1. The brief description of the observations used in the reanalysis datasets.

Temporal
Reanalysis
Dataset Observed species resolution of Citation
species
observation
CAQRA- SO4%, NH4*, PM,s5, PMo, NO, Kong et al.,
Hourly
aerosol NOs, OC, BC SO,, CO, O3 2025
SO4*, NH4", SO, NH4*, NOy, Daily, monthly, Liu et al.,
TAP
NOs°, OM, BC OC, BC and annual 2022
SO42', NH,", SO42', NH;", NOs, Wei et al.,
CHAP Daily
NOs, CI Cr 2023
Inness et al.,
CAMSRA NOs5", NH4* Satellite-based AOD 12-hourly 5019
Satellite & ground- Randles et
MERRA-2 S04, OM, BC Hourly
based AOD al., 2017
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Figure 1. The framework of OIRF-LEnKF v1.0.
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Figure 3. Computational efficiency of OIRF-LEnKF v1.0. (a) Variation in the minimum

objective value throughout the Bayesian optimization process and time consumed by

each iteration, determined by Eq. (5). (b) minimum value of total observed minimum

objectives and total time consumed during Bayesian optimization process for different

ensemble sizes, (c) time consumed by model simulation and data assimilation at each

timestep for OIRF-LEnKF and NAQPMS-PDAF v2.0 (NP2), and the ratio of total time

consumed between OIRF-LEnKF and NP2, (d) the ratio of time consumed by model

simulation and data assimilation between OIRF-LEnKF and NP2. SIM represents the

simulation phase, and DA represents the data assimilation phase. The elapsed time of

the OIRF-LEnKF simulation process in Figure 3¢ has been magnified by a factor of 10

for better clarity.



(a)
200

100
al

40

Ensemble size

30

20

200

100

al

40

Ensemble size

30

20

Simulation step

B35
)
010
63
0.00

288

a.67

1.34

1.26

764 08 78

ACORR relative to 0.5 (%)

18h

12h  Bh

-1.99
-1:al
-0
-1.80
0.00

-a%]
-043
-0418
-4462
-8

-3402

-Ba72 -lszu.l
T4 7. 34. -0
4412 -mm.

-20
-6B82 -IB7 .
-B66 -12:53 . 0

566 -104 -33.74 l 40

ARMSE relative to 3.48 g m™ (%)

I

18h

12h  Bh 1h

Update frequency

Analysis step

o U < |°

00 18.07 .. . 547
50 380 352 423 1674 GER

40 164 384 00 (048 2

30 78R {145 1285 1240 997

20 MR 000 688 906 (N8
0 18h 12h Bh 1h

e 0 |

100 2324...-22 05

50 -2258 245 -23.au. 27

40 -2388-7388 24732640

30 -13.86 -21.48 -22.76-23.28 -23.27

20 -6=3 0.00 -385 -17.16 -24.67

0 18h 12h Bh 1h
Update frequency

19

10

ACORR relative to 0.7 (%)

=
ARMSE relative to .85 ug m™ (%)

Figure 4. (a) Percentage change of Pearson correlation coefficient (CORR) relative to

the minimum CORR (0.5) (ACORR, %) for sensitivity test with six ensemble sizes (20,

30, 40, 50, 100, 200) and five update frequencies (no update, 18-hour interval, 12-hour

interval, 6-hour interval and 1-hour interval) at the simulation step. (b) Same as (a) but

for percentage change of root mean square error (RMSE) relative to the maximum

RMSE (3.46 pg m™) (ARMSE, %) at the simulation step. (c) Same as (a) but for

percentage change of CORR relative to the minimum CORR (0.7) at the analysis step.

(d) Same as (a) but for percentage change of RMSE relative to the maximum RMSE

(1.65 ug m?) at the analysis step.



)

(ﬂl)m 2

o o=

Error (ugm

—_
o
N3

~

- N 3
= ——— ]

Error (g m?)

—_
o
CAJ

)v

=

=

Error (g m

_—
o
HE

Error (ugm™)

—_
o
(=1}]
~

Error (ug m?)

Feb-01 00:00 Mar-01 D0:00 Mar-29 00:00 NH4+ NI]S- Sul'z- [": BE

Time (LST)
I R I SIM I ANA

Figure 5. Smoothed variation in the error between observation and model output
(including the free-run field (FR), the ML-simulated background field (SIM) and the
analysis field (ANA)) for (al) NH4", (a2) NOs", (a3) SO4>, (a4) OC and (a5) BC at total
sites during February and March of 2022. The lines and shading areas represent the
mean and standard deviation of the errors, respectively. (b) Correlation coefficient
(CORR) between observation and model output for five PM» s chemical components at
DA sites. (c) Same as (b) but for root mean square errors (RMSE). (d) Same as (b) but

for VE sites. (¢) Same as (b) but for RMSE at VE sites.
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Figure 6. Spatial distribution of observation (OBS), free-run field (FRFR), ML-
simulated background field (SIM) and analysis field (ANA) for NHs" (al-a4), NO3
(b1-b4), SO4* (c1-c4), OC (d1-d4) and BC (el-e4).
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Figure 7. Spatial distribution of observation minus free-run field (OmF), observation
minus ML-simulated background field (OmS), observation minus analysis field (OmA)
and analysis field minus background field (INC) for NH4" (al-a4), NOs™ (b1-b4), SO4*
(cl-c4), OC (d1-d4) and BC (el-e4). The circle indicates the DA sites with data
assimilation, and the upward-pointing triangle indicates the VE sites without data

assimilation.



