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Anonymous Referee #2 

1 General Comments: 

This manuscript presents “OIRF-LEnKF v1.0,” a hybrid data assimilation (DA) system 

that couples an optimized incremental Random Forest (OIRF) model with a Localized 

Ensemble Kalman Filter (LEnKF). The primary goal is to address the computational 

inefficiency and limited forecasting improvement associated with traditional Chemical 

Transport Model (CTM)-based DA systems. By replacing the CTM ensemble with a 

machine learning (ML) ensemble that updates itself via incremental learning, the 

authors claim to achieve significant efficiency gains and improved accuracy in 

estimating PM2.5 chemical components. The topic is highly relevant to the scope of 

Geoscientific Model Development, as it addresses the critical bottleneck of 

computational cost in atmospheric chemistry DA. The integration of incremental 

learning (updating decision trees based on analysis increments) is a novel and 

interesting approach to handling non-stationary error distributions. The validation 

against independent sites and other reanalysis datasets suggests the system performs 

well. 

However, there are several major concerns regarding the terminology used (specifically 

“forecasting”), the dependence on reanalysis inputs, and the circularity of the self-

evolving mechanism that must be addressed before publication. The critical distinction 



between a “reanalysis generator” and a “forecast system” seems blurred in the current 

experimental design. The experimental period is very insufficient to support the claims. 

Authors’ response: 

We sincerely thank the reviewer for the thorough and insightful review, as well as 

for the positive assessment of the novelty and relevance of our work. We appreciate the 

constructive criticisms, which have helped us identify crucial areas for clarification and 

improvement. We will address the major concerns regarding the terminology used 

(specifically “forecasting”), the dependence on reanalysis inputs, the circularity of the 

self-evolving mechanism, and the insufficient experimental period point-by-point 

below. 

 

2 Major Comments: 

1) Clarification of “Forecasting” vs. “Hindcasting/Reanalysis” 

The title and abstract repeatedly emphasize the system’s “forecasting” capability. 

However, Section 2.2.1 states that the input features for the OIRF model include 

meteorological parameters from ERA5 and atmospheric pollutants from CAQRA (a 

reanalysis dataset). In that setting, the model is effectively learning an instantaneous 

relationship (features at time t → components at time t). In a true operational forecast 

setting, ERA5 and CAQRA data are not available in real-time; they are retrospective 

datasets. If the OIRF model relies on con-current reanalysis data as inputs to predict 

chemical components, this is technically a “diagnostic” application, not a “prognostic 

forecast.” The authors must clarify this distinction. If the system is intended for 

operational forecasting, they should discuss how it would perform using forecast 

meteorology (e.g., IFS or GFS) and forecast pollutants (e.g., CTM forecasts) as inputs, 

rather than high-quality reanalysis data. This is not a minor wording issue: if inputs 

are reanalysis fields at the verification time, then improvements in RMSE/CORR do not 

necessarily translate to operational forecast skill. If the primary purpose is generating 

reanalysis datasets (as implied by the comparison in Section 3.4), the manuscript 

should be reframed to reflect that this is a “reanalysis system” or “hindcast system,” 



as calling it a “forecast” is misleading given the input data latency. 

Authors’ response: 

We sincerely thank the reviewer for this crucial and insightful comment, which 

correctly identifies the most important interpretive limitation of our current model input 

design. We fully agree that the distinction between a diagnostic application and a real-

time prognostic forecast is fundamental.  

a. Terminology correction 

The reviewer is correct. The OIRF model learns an instantaneous mapping 

relationship based on retrospective reanalysis datasets and technically performs a 

“reanalysis-based simulation” rather than a “prognostic forecast”. Therefore, referring 

to simulation or instantaneous mapping as an operational “forecast” is misleading. We 

apologize for this imprecision. In the revised manuscript, we have thoroughly 

replaced the inappropriate terms such as “forecast”, “forecast field”, and “FOR” 

with more accurate terms such as “simulation”, “background field”, and “SIM” 

in the title, abstract, main text, figures (including Fig. 1, Fig. 3, Fig. 4, Fig. 5, Fig. 

6, Fig. 7) and tables. For brevity, only the revised title and abstract are shown below, 

and all modified figures are displayed at the end of this reply. 

Title, Line 1-4: “OIRF-LEnKF v1.0: A Novel Data Assimilation System by Integrating 

Incremental Machine Learning with a Localized EnKF for Enhanced PM2.5 Chemical 

Component Simulation and Reanalysis” 

Abstract, Line 12-29: “Assimilating observational data into numerical simulation is 

crucial for accurately estimating the spatiotemporal distribution of PM2.5 chemical 

components (NH4
+, NO3

-, SO4
2-, OC, and BC), which is beneficial to quantifying the 

impact of aerosols on the environment, climate change and human health. However, 

chemical transport model (CTM)-based data assimilation (DA) is computationally 

inefficient for large ensemble sizes and offers limited improvements in simulation skill, 

as it solely provides optimal initial conditions. This paper introduces an incrementally 

updatable machine learning-based data assimilation system (Optimized Incremental 

Random Forest coupled with Localized Ensemble Kalman Filter, OIRF-LEnKF v1.0) 



that achieves high efficiency and high quality in generating background and analysis 

fields for chemical components. Computational efficiency tests indicate that the total 

time consumed by OIRF-LEnKF v1.0 constitutes only 11.41-16.60 % of that of CTM-

based DA, particularly during the simulation process (0.13-0.20 %). Sensitivity tests 

demonstrate that the self-evolution mechanism in our system enhances the Pearson 

correlation coefficient (CORR) and reduces the RMSE during the simulation process 

by 2.28-11.75 % and 32.94-40.98 %, respectively, compared to the stationary training 

mechanism. A 2-month DA experiment reveals that the RMSE values of chemical 

components after DA are less than 7.80 µgࣟm-3 and 2.36 µgࣟm-3 during the simulation 

and analysis processes, respectively, indicating reductions of at least 26.38 % and 

68.99 % compared to values without DA. Notably, the RMSE values of our system 

during the simulation process exhibit a significant reduction of 33.16-90.10 % 

compared to those of the CTM-based DA, highlighting the superior simulation 

capability of our system. Furthermore, the spatial overestimation and underestimation 

of chemical components have been significantly mitigated following DA. Compared to 

multiple reanalysis datasets of inorganic salt aerosols (CORR: 0.56-0.89, RMSE: 2.55-

8.52 μg m-3), the dataset generated by OIRF-LEnKF v1.0 (CORR: 0.97, RMSE: 1.12 

μg m-3) demonstrates higher data quality.” 

b. Clarification of our study’s primary goal 

The primary objective of this work is to propose and validate a novel framework 

that online couples an incrementally updatable AI-based surrogate model and an 

ensemble data assimilation algorithm, which enables the AI-based surrogate model and 

the data assimilation component to benefit from the dynamic information provided by 

the other at each iteration. During the concept proof stage, using optimal reanalysis 

inputs is deliberate to establish a valid representation of forecast/simulation uncertainty. 

Specifically, the OIRF-LEnKF utilizes the decision tree members in the OIRF model to 

estimate the background error covariance without input perturbations, which implicitly 

assumes that the forecast/simulation uncertainty mainly originates from the OIRF 

model’s inherent incompleteness in learning the mapping relationship between input 

and target features. Therefore, using reanalysis data as input excludes the additional 



uncertainty that would arise from imperfect forecast inputs. 

c. Discussion of operational forecasting  

The application of the OIRF-LEnKF system in operational forecasting is feasible, 

but its comprehensive validation would require a broader set of experiments, such as 

sensitivity tests on forecast ensemble generation. The in-depth investigation on the 

operational forecasting extends beyond the primary scope of this paper. We sincerely 

thank the reviewer’s constructive suggestions, which provide significant inspiration. 

Our immediate future work will indeed prioritize these forecasting experiments, such 

as employing forecast data as input and assessing performance under different ensemble 

generation strategies (e.g. using perturbed meteorological forecast data alone, jointly 

perturbing meteorological and pollutant forecasts, or developing hybrid methods that 

integrate input perturbations with the intrinsic ensemble statistics from the decision tree 

members). 

 

2) Circularity / information leakage risk in the incremental learning loop 

A key design choice is that each decision tree is scored using MAE against the analysis 

field at the same time step, and trees are replaced by new trees trained on “analysis” 

targets. I have two concerns on this design. The first one is that the system is self-

training on its own analysis. The system progressively trains on DA outputs (which 

incorporate the observations), not solely on an external reference dataset. This can lead 

to overly optimistic performance if not carefully controlled. The second one is that the 

scoring target is non-independent. The analysis field is itself a function of the forecast 

ensemble (through the forecast covariance used by EnKF). Even with localization, 

using the analysis as “ground truth” for selecting trees can create a feedback loop 

where the ensemble is optimized to match its own internally constructed target. At 

minimum, the paper should include a leakage-aware evaluation, for example, scoring 

the incremental learning using withheld stations (VE sites) not assimilated, or withheld 

time blocks, rather than analysis fields produced by assimilating the same network. 

Providing an ablation where incremental learning is driven by an external target versus 

DA-derived analysis, to quantify how much of the gain comes from DA self-training can 



also be very valuable. 

Authors’ response: 

We thank the Reviewer for this exceptionally insightful comment.  

Regarding the first concern, we fully agree that the system progressively trains 

the OIRF model using DA outputs can lead to overly optimistic performance if not 

carefully controlled. We would like to clarify several key points as follows. 

a) DA outputs serve as a high-quality target set for training, aiming to accurately 

establish the mapping relationship between the input features and five PM2.5 chemical 

components. Importantly, the re-training utilizes the DA outputs from the previous time 

step. The updated RF model is then applied to provide background fields for the current 

and all subsequent time steps until the next update. This design ensures that the model 

does not gain prior knowledge of future states, thereby preventing artificially optimistic 

performance. 

b) An external and independent target set of high-quality observations typically 

provides insufficient sample size (only 9 VE sites in our case) for training at a single 

time step. Meanwhile, as validated in Section 3.4, external reanalysis datasets exhibit 

lower accuracy than DA outputs, making them a suboptimal choice for the “ground 

truth” target in the re-training process. 

c) Most crucially, our system incorporates specific controls (update frequency 

and update intensity) to mitigate the risk of overly optimistic performance. The 

update frequency parameter, which determines how often the OIRF model integrates 

DA outputs, is optimized by sensitivity experiments, as detailed in Section 3.2. The 

update intensity parameter is implemented by a controllable threshold (τ୮ ), which 

governs the proportion of decision trees (DTs) replaced. A higher threshold ensures that 

only a small and stable fraction of the DTs is replaced during each update cycle, which 

prevents model overfitting to the new DA outputs. 

We acknowledge that some rationales and controls were not explicitly detailed in 

the original manuscript, which may have caused confusion. We have revised the text 

accordingly to provide the necessary clarification as follows. 

Section 2.1.1, Line 128-143: “As shown in Fig. 1, the fundamental workflow of OIRF-

LEnKF v1.0 is as follows. 

Step 1. Initial training of the OIRF model. The training data at the first timestep serve 



as the initial conditions for constructing the OIRF model. The input features include 

meteorological parameters, including temperature, relative humidity, U-component 

wind, V-component wind, and geopotential, as well as anthropogenic atmospheric 

pollutants, including PM2.5, PM10, SO2, NO2, CO, and O3. The output features are SO4
2-, 

NO3
-, NH4

+, OC, and BC. 

Step 2. Incremental learning of the OIRF model at time steps > 1. High-quality analysis 

fields at the last time step, along with the corresponding meteorological and 

anthropogenic input data, are employed to train a new ensemble of decision trees. The 

old decision trees, which exhibit poor simulation performance, are subsequently 

replaced with new decision trees to enhance the simulation accuracy and generalization 

ability of the OIRF model. 

Step 3. Generating a background ensemble of PM2.5 chemical component 

concentrations at the current timestep using the OIRF model, along with the current 

meteorological and anthropogenic input data. 

Step 4. Generating the analysis fields of PM2.5 chemical component concentrations at 

the current timestep by assimilating chemical observations into background fields using 

the LEnKF algorithm. 

Step 5. Scoring the simulation performance of ensemble decision trees in the OIRF 

model using mean absolute error (MAE) and screening out the decision trees with poor 

simulation performance based on a predefined threshold. Repeat steps 2-5 until the end 

of the loop.” 

 



 

Figure 1. The framework of OIRF-LEnKF v1.0. 

Section 2.1.2, Line 175-180: “The incremental learning mechanism introduces a 

threshold (𝜏௣) to screen out the DTs with poor simulation performance. The threshold 

is defined as the 𝑝th percentile value of 𝑓௡
௦௖௢௥௘. The percentile-based threshold ensures 

a stable and controllable number of DTs are updated, a critical feature for maintaining 

the smoothness and stability of the estimation of background error covariance within 

the ensemble data assimilation framework and preventing model overfitting to the new 

information. As shown in Eq. (3), the old DTs with scores not higher than 𝜏௣  are 

retained, while the old DTs with scores higher than 𝜏௣ will be replaced by new DTs 

obtained from the incremental learning process.” 

Section 2.1.2, Line 185-186: “…The 𝑝 is set at 80 to prevent excessive updating of 

DTs, which may introduce instability and artificially optimistic performance into 

ensemble simulation of the OIRF model.” 

 

Regarding the second concern, we fully agree that our work should include a 

leakage-aware evaluation. Following the Reviewer’s suggestion, we have conducted an 

experiment in which we score the incremental learning using the observations from VE 

sites that have not been assimilated. 

Section 2.1.2, Line 162-168: “Inspired by the idea of dynamically updating DTs with 

weak performance (Xie et al., 2016), the OIRF model incorporates a novel incremental 

learning mechanism into the RF model, enabling it to conduct effective updating from 



newly available training data within a simulation-assimilation cycle. In the incremental 

learning mechanism, the OIRF model scores the simulation performance of each DT 

based on the mean absolute error (MAE), as shown in Eq. (2). The MAE is quantified 

by the DT outputs and high-accuracy analysis fields at the same time step. A leakage-

aware evaluation indicates that using the analysis field as scoring target did not cause 

substantial information leakage, while employing the independent high-quality 

observation as scoring target is also recommended (Sect. S1 in the Supplement).” 

Supplement: “Sect. S1: Leakage-aware evaluation of incremental learning 

In the incremental learning mechanism, each decision tree (DT) member is scored by 

comparing its simulation to the analysis field using mean absolute error (MAE). 

However, using the analysis field as the scoring target for selecting trees could arise a 

feedback loop risk as the DT ensemble may become optimized toward its own internally 

constructed target. Therefore, we conducted a leakage-aware evaluation for February 

2022 by comparing simulation performance of the OIRF model when the scoring target 

is set as the analysis field against when it is set as the independent observation at 

withheld sites (VE sites) not assimilated. Fig. S1 shows that both scoring targets 

achieved comparable performance across all five PM2.5 chemical components, with 

correlation coefficient (CORR) values of 0.39-0.85 (analysis-field target) versus 0.39-

0.86 (independent-observation target), and RMSE values of 1.02-5.85 μg m-3 (analysis-

field target) versus 0.95-5.68 μg m-3 (independent-observation target). This finding 

suggests that the theoretical risk of a feedback loop from using the analysis field as the 

scoring target was limited during the study period. Adopting an independent-

observation target is recommended in practice, since it yields slightly superior skill and 

fully eliminates the theoretical concern of an information leakage risk. 

 
Figure S1: Scatterplots with probability density of simulated versus observed mass 



concentrations at independent VE sites correspond to the two scoring targets used in 

the incremental learning process, including analysis fields (ANA) (a1-a5) and 

independent observations (OBS) (b1-b5). The gray dotted lines represent the 2:1, 1:1, 

and 1:2 lines, and the red solid line represents the fitting regression line.” 

 

3) Insufficient experimental period limiting model extrapolation and generalizability 

The experimental validation is strictly limited to a two-month period (February–March 

2022). This short duration fundamentally undermines the manuscript’s claims 

regarding the system’s robustness and its “self-evolving” capability, primarily due to 

the inherent limitations of the chosen machine learning architecture.  

From the ML perspective, The OIRF model relies on the Random Forest (RF) algorithm. 

A well-known limitation of tree-based methods is their inability to extrapolate beyond 

the range of values encountered in the training data. By restricting the training and 

validation to a single two-month window, the model is only exposed to a specific subset 

of atmospheric conditions. If the system encounters pollution episodes more severe or 

chemically distinct than those in the February-March training set, the RF model will 

likely “clip” the forecast to the maximum value previously learned, failing to capture 

new extremes. The current experimental design does not demonstrate that the 

“incremental learning” mechanism can overcome this fundamental extrapolation 

barrier when faced with out-of-distribution data. 

From the physics perspective, a system trained and validated exclusively on 

winter/early spring data cannot validly be claimed as a “Self-evolving Data 

Assimilation System” because it has not been tested against any possible regime shifts 

of a full annual cycle. There is no evidence presented that the model can “evolve” to 

handle the volatility of semi-volatile species in warmer months without catastrophic 

forgetting or significant error. 

I strongly encourage the authors to extend their experiment to cover a longer period to 

genuinely establish the robustness of the incremental learning mechanism. Otherwise 

the authors need to rescale their claims. For example, the term “self-evolving” should 

be removed as the system’s evolutionary capability remains unproven beyond Feb-Mar 



2022. The authors must also explicitly discuss the theoretical risks of deploying this 

approach in operational setting outside the training season. 

Authors’ response: 

We sincerely thank the reviewer for the crucial and insightful comment. We fully 

agree with the reviewer’s concerns from both machine learning and physics perspective. 

Conducting a year-long experiment is crucial for verifying the robustness of the 

incremental learning mechanism of machine learning models, especially for tree-based 

models with poor extrapolation capabilities. 

a. Re-scaling the claims on “self-evolving” 

We fully agree that a two-month experimental period is insufficient to robustly 

demonstrate “self-evolution” against the full scenarios of atmospheric variability and 

unprecedented extremes. However, acquiring a year-long hourly observation dataset of 

five key PM2.5 chemical components across a wide spatial range is currently very 

challenging. To our knowledge, none of the popular reanalysis datasets are generated 

directly from long-term hourly observations of chemical components. As summarized 

in Table R1, the CAQRA-aerosol dataset was generated indirectly by assimilating 

ground-level hourly observations of traditional air pollutants. The TAP dataset was 

generated by fusing daily, monthly, and annual observations of chemical components. 

The CHAP dataset was generated by fusing daily measurements of four water-soluble 

inorganic ions. The chemical component fields in both CAMSA and MERRA-2 were 

generated indirectly by assimilating observations of aerosol optical depth.  

Consequently, within the current constraints, we deployed our maximum feasible 

effort to conduct a two-month hourly measurement campaign at 33 sites. This campaign 

was designed for a representative period (February-March 2022) and region (Beijing-

Tianjin-Hebei region) known for frequent pollution episodes, which directly supports 

the primary goal of proposing and validating a novel framework online coupling 

incremental machine learning and ensemble data assimilation. In response, we have 

re-scaled the claims on “self-evolving” and replace the term “self-evolving” with 

more precise descriptions such as “incrementally updatable” in the revised 



manuscript. In the future work, we will extend our measurement campaigns covering 

a longer period to establish the robustness of the incremental learning mechanism. 

b. Discussion on extrapolation risks  

In response, we have added a section 3.4 Limitations to the revised manuscript to 

discuss the theoretical risks of deploying this approach in operational settings outside 

the training season. The original section 3.4 Comparison with multiple reanalysis 

datasets has been changed to a section 3.3.3. Comparison with multiple reanalysis 

datasets. 

3.4 Limitations, Line 621-637: “Although the OIRF model serves as an efficient 

surrogate for the CTM in generating simulation or forecast ensembles for data 

assimilation, it inherits a constrained extrapolation capability of tree-based models. 

Specifically, the OIRF model may exhibit a tendency to saturate at learned extremes 

when extrapolating beyond its training data distribution, which directly limits its 

generalizability in diverse and complex atmospheric scenarios, such as the pollution 

extremes in seasons outside the training period. The poor performance of tree-based 

models on testing sets has been reported in our previous study (Li et al., 2025). Our 

incremental learning mechanism is designed to mitigate the extrapolation limitation by 

dynamically updating the RF model with new knowledge. However, the effectiveness of 

incremental learning is contingent upon the availability of high-quality analysis fields. 

A lack of observations, which prevents the generation of analysis fields, exposes the 

OIRF model to its inherent extrapolation limitations, leading to compromised 

simulation accuracy. 

 

Replacing the RF model with an ensemble of deep neural networks (DNNs) holds 

promise for superior nonlinear mapping and extrapolation. However, the considerably 

higher computational cost required for both training and inference of DNNs (Debjyoti 

and Utpal, 2025; Xi, 2022) results in an operational bottleneck that the process of 

updating and running an ensemble of DNNs can be slower than traditional CTM-based 

ensemble simulations, which could offset its accuracy advantages. Therefore, balancing 

the inherent predictive performance of a machine learning model against its 



computational cost remains a central challenge for the practical online coupling of 

machine learning with data assimilation.” 

 
Table R1. The brief description of the observations used in the reanalysis datasets. 

Dataset 
Reanalysis 

species 
Observed species 

Temporal 

resolution of 

observation 

Citation 

CAQRA-

aerosol 

SO4
2-, NH4

+, 

NO3
-, OC, BC 

PM2.5, PM10, NO2, 

SO2, CO, O3 
Hourly 

Kong et al., 

2025 

TAP 
SO4

2-, NH4
+, 

NO3
-, OM, BC 

SO4
2-, NH4

+, NO3
-, 

OC, BC 

Daily, monthly, 

and annual 

Liu et al., 

2022 

CHAP 
SO4

2-, NH4
+, 

NO3
-, Cl- 

SO4
2-, NH4

+, NO3
-, 

Cl- 
Daily 

Wei et al., 

2023 

CAMSRA NO3
-, NH4

+ Satellite-based AOD 12-hourly 
Inness et al., 

2019 

MERRA-2 SO4
2-, OM, BC 

Satellite & ground-

based AOD 
Hourly 

Randles et 

al., 2017 
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The revised figures 

 

Figure 1. The framework of OIRF-LEnKF v1.0. 



 

Figure 3. Computational efficiency of OIRF-LEnKF v1.0. (a) Variation in the minimum 

objective value throughout the Bayesian optimization process and time consumed by 

each iteration, determined by Eq. (5). (b) minimum value of total observed minimum 

objectives and total time consumed during Bayesian optimization process for different 

ensemble sizes, (c) time consumed by model simulation and data assimilation at each 

timestep for OIRF-LEnKF and NAQPMS-PDAF v2.0 (NP2), and the ratio of total time 

consumed between OIRF-LEnKF and NP2, (d) the ratio of time consumed by model 

simulation and data assimilation between OIRF-LEnKF and NP2. SIM represents the 

simulation phase, and DA represents the data assimilation phase. The elapsed time of 

the OIRF-LEnKF simulation process in Figure 3c has been magnified by a factor of 10 

for better clarity. 



 
Figure 4. (a) Percentage change of Pearson correlation coefficient (CORR) relative to 

the minimum CORR (0.5) (ΔCORR, %) for sensitivity test with six ensemble sizes (20, 

30, 40, 50, 100, 200) and five update frequencies (no update, 18-hour interval, 12-hour 

interval, 6-hour interval and 1-hour interval) at the simulation step. (b) Same as (a) but 

for percentage change of root mean square error (RMSE) relative to the maximum 

RMSE (3.46 µg m-3) (ΔRMSE, %) at the simulation step. (c) Same as (a) but for 

percentage change of CORR relative to the minimum CORR (0.7) at the analysis step. 

(d) Same as (a) but for percentage change of RMSE relative to the maximum RMSE 

(1.65 µg m-3) at the analysis step. 



 
Figure 5. Smoothed variation in the error between observation and model output 

(including the free-run field (FR), the ML-simulated background field (SIM) and the 

analysis field (ANA)) for (a1) NH4
+, (a2) NO3

-, (a3) SO4
2-, (a4) OC and (a5) BC at total 

sites during February and March of 2022. The lines and shading areas represent the 

mean and standard deviation of the errors, respectively. (b) Correlation coefficient 

(CORR) between observation and model output for five PM2.5 chemical components at 

DA sites. (c) Same as (b) but for root mean square errors (RMSE). (d) Same as (b) but 

for VE sites. (e) Same as (b) but for RMSE at VE sites. 



 
Figure 6. Spatial distribution of observation (OBS), free-run field (FRFR), ML-

simulated background field (SIM) and analysis field (ANA) for NH4
+ (a1-a4), NO3

- 

(b1-b4), SO4
2- (c1-c4), OC (d1-d4) and BC (e1-e4). 



 
Figure 7. Spatial distribution of observation minus free-run field (OmF), observation 

minus ML-simulated background field (OmS), observation minus analysis field (OmA) 

and analysis field minus background field (INC) for NH4
+ (a1-a4), NO3

- (b1-b4), SO4
2- 

(c1-c4), OC (d1-d4) and BC (e1-e4). The circle indicates the DA sites with data 

assimilation, and the upward-pointing triangle indicates the VE sites without data 

assimilation. 


