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Anonymous Referee #1 

1 General Comments: 

This paper presents a method called the optimized incremental random forest ensemble 

forecasting model with the localized ensemble Kalman filter (OIRF-LEnKF), which 

combines an computationally lightweight emulator of PM2.5 chemical components with 

the efficient and accurate data assimilation method LEnKF. This paper also presents a 

mechanism for online learning to update the OIRF model as new data arrives. The 

results on a real-world assimilation task of PM2.5 concentrations in a region in China 

show that the proposed algorithm is effective in remaining stable across a long 

assimilation horizon while effectively assimilating observations that lead the analyses 

to remain close to a notion of ground truth (based on reanalysis). The use of machine 

learning in various data assimilation applications is an important investigation, 

however, the authors could provide more motivation for particular choices made while 

creating the OIRF-LEnKF algorithm and perhaps further contextualize this work in 

relation to related work. 

Authors’ response: 

We sincerely thank the reviewer for the thoughtful review of our manuscript. We 

fully agree that a more robust justification for our specific methodological choices, as 

well as further contextualization of our work within the existing work, would enhance 



the quality of our research.  

In our detailed point-by-point responses below, we have addressed all scientific 

comments. Accordingly, in the revised manuscript, we have enhanced methodological 

motivation and contextualized this work in relation to related work. 

 

2 Scientific Comments: 

1) The authors propose a random forest model that is incrementally optimized as new 

information about the system is obtained, but provides minimal motivation for the 

choice of random forest over other approaches. This application area involves spatial 

datasets, which make a neural network architecture like a CNN a good fit, especially 

given that many state-of-the-art emulators of spatial systems rely in part on CNNs. The 

motivation for the choice of RF should be made more clear in the paper, and perhaps 

an ablation against a CNN-type architecture should be provided. To create an ensemble 

like a random forest, the CNN training could be bagged. 

Authors’ response: 

We thank the reviewer for this insightful and constructive comment. We agree that 

providing stronger motivation for our choice of the Random Forest (RF) model is 

crucial, and we appreciate the suggestion to consider deep neural networks (such as 

CNNs). In the revised manuscript, we have expanded our justification for selecting RF 

as the surrogate model for atmospheric chemistry transport modeling, based on the 

following key considerations. 

a. Computational Feasibility for Incremental Learning. Our proposed machine 

learning (ML) -based data assimilation (DA) framework requires the frequent retraining 

and updating of ML model members using newly assimilated analysis fields. However, 

an ensemble CNN approach is less optimal for this incremental learning mechanism. 

As presented in Table R1, under comparable hardware conditions, the training cost for 

a single CNN model is approximately an order of magnitude higher than that for an RF 

model (Xi, 2022; Debjyoti and Utpal, 2025). Consequently, serially constructing a 50-

member ensemble CNN would incur a training time cost roughly 500 times greater than 



that of an RF model. While CNN can indeed be bagged to create an ensemble, this 

approach is computationally prohibitive for the frequent ML model updates required by 

ML-DA framework. 

b. Balanced Performance and Inference Speed for Prediction of PM2.5 and its 

chemical components. Recent studies indicate that the predictive accuracy of RF for 

PM2.5 and its chemical components is comparable to that of advanced deep learning 

models (Abuouelezz et al., 2025; Chen et al., 2023; Li et al., 2025). Notably, under the 

same hardware constraints, the inference speed of an RF model can be approximately 

10 times faster than that of comparable CNN or Transformer models (Jalali et al., 2025). 

Consequently, RF models can achieve forecasting accuracy comparable to CNN models 

at a fraction of the computational cost, which is essential for maintaining the timeliness 

of the iterative forecast-assimilation cycle in our proposed system. 

 

Introduction, Line 90-97: “The Random Forest (RF) model (Gohari et al., 2025; Lin et 

al., 2022; Lv et al., 2021; Meng et al., 2018) and Deep Neural Networks (DNNs) (Li et 

al., 2025; Liu et al., 2023) have been widely used for simulating and predicting PM2.5 

chemical component concentrations, with DNNs achieving a marginally superior 

predictive accuracy. However, a single DNN is outperformed by a RF model in terms 

of the computational efficiency during both training and inference (Debjyoti and Utpal, 

2025; Jalali et al., 2025; Xi, 2022). Within an ensemble DA framework, periodically 

creating and running an ensemble of DNNs imposes a significant computational burden 

in contrast to the RF model, which inherently provides an ensemble. Consequently, the 

RF model offers an optimal trade-off between predictive performance and 

computational demand, making it a practical and efficient choice for coupling with 

ensemble DA.” 

  



Table R1. Literature review of performance comparison between RF and CNN 

Task type 
Training cost Inference speed Error rate 

Citation 
RF CNNs RF CNNs RF CNNs 

Classification 20 minutes 3 hours \ \ 10.02% 9.67% Xi, 2022 

Recognition 
12.7s per 

fold 

186.4s 

per fold 

0.8s per 

fold 

0.2s per 

fold 
2.90% 2.09% 

Debjyoti and 

Utpal, 2025 

Classification \ \ 

0.028s 

per 

sample 

0.218s 

per 

sample 

\ \ 
Jalali et al., 

2025 

Regression \ \ \ \ 

0.73-

2.43% 

for 

training 

set 

7.85-

20.05% 

for 

training 

set 

Li et al., 2025 

Regression \ \ \ \ 17.74% 18.06% 
Chen et al., 

2023 

Regression \ \ \ \ 

0.216 

for 1-h 

PM2.5 

forecast 

0.213 

for 1-h 

PM2.5 

forecast 

Abuouelezz et 

al., 2025 

 

Reference 

Abuouelezz, W., et al.: Exploring PM2.5 and PM10 ML forecasting models: a comparative study in 

the UAE. Sci Rep, 15, 9797, https://doi.org/10.1038/s41598-025-94013-1, 2025. 

Chen, M.-H., et al.: PM2.5 Concentration Prediction Model: A CNN-RF Ensemble Framework, Int. 

J. Environ. Res. Public Health, 20, 4077. https://doi.org/10.3390/ijerph20054077, 2023. 

Debjyoti, G. and Utpal, R.: Comprehensive Benchmark Study of Machine Learning and Deep 

Learning Approaches for Human Activity Recognition using the UCI HAR Dataset, Int. J. Comput. Appl., 

187, 66-69. https://doi.org/10.5120/ijca2025925797, 2025 

Jalali, M.W., et al.: Scalable AI-driven air quality forecasting and classification for public health 

applications, Discov. Atmos., 3, 25, https://doi.org/10.1007/s44292-025-00052-8, 2025. 

Li, H., et al.: Interpreting hourly mass concentrations of PM2.5 chemical components with an optimal 

deep-learning model. J. Environ. Sci., 151, 125-139, https://doi.org/10.1016/j.jes.2024.03.037, 2025. 

Xi, E.: Image Classification and Recognition Based on Deep Learning and Random Forest 

Algorithm, Wirel. Commun. Mob. Com., 2013181, https://doi.org/10.1155/2022/2013181, 2022.  

 



2) Have there been other successful ML models of PM2.5 chemical components? If so, 

they should be cited in the related work. If these emulators do exist, why were any of 

them not used instead of the authors' proposed random forest model? 

Authors’ response: 

We thank the reviewer for raising this important point regarding related work and 

model selection.  

Q1: Have there been other successful ML models of PM2.5 chemical components? 

A1: Table R2 summarizes the successful ML models for the prediction of PM2.5 

chemical components. As replied to the Scientific Comment #1, the related work has 

been cited in the Introduction of the revised manuscript. 

Table R2. Literature review of ML models used for the prediction of PM2.5 

chemical components  

ML models Target features Performance on testing set Citation 

RF 
Sulfate, nitrate, organic carbon, 

elemental carbon 
R2: 0.71-0.86 

Meng, et al., 

2018 

RF 
Sulfate, nitrate, ammonium, 

organic carbon, elemental carbon 
R: 0.71-0.81 

Lv et al., 

2021 

RF Nitrate R2: 0.58 
Lin et al., 

2022 

CNN-LSTM 
Sulfate, nitrate, organic carbon, 

elemental carbon, crustal metals 
R2: 0.87-0.96 

Liu et al., 

2023 

4D-STDF 
Sulfate, nitrate, ammonium, 

chloride 
CV-R2: 0.66-0.75 

Wei et al., 

2023 

CNN-BiLSTM 
Sulfate, nitrate, ammonium, 

organic carbon, elemental carbon 
R2: 0.81-0.97 Li et al., 2025 

PLS-SVM 

Sulfate, nitrate, ammonium, 

organic carbon, elemental carbon, 

crustal metals 

R2: 0.82-0.98 
Khuzestani et 

al., 2025 

RF 
Calcium, elemental carbon, 

silicon, sulfate 
Spatial R2: 0.93-0.95 

Gohari et al., 

2025 

 

Q2: Why were any of them not used instead of the authors' proposed random forest 

model? 

A2: As replied to the Scientific Comment #1, the RF model was selected as an 

optimal compromise between computational efficiency and predictive accuracy for the 

ensemble framework. Although Table R2 indicates that RF’s extrapolation capability 



may limit its performance on testing set compared to other deep neural networks, we 

have designed an incremental learning mechanism to allow the RF model to continually 

adapt to new data distributions. However, the incremental learning mechanism relies 

on the availability of analysis fields assimilated observations. During periods of missing 

observations, the RF model remains susceptible to its poor extrapolation capability. We 

fully agree that ensemble CNNs could be more effective than RF in capturing nonlinear 

relationships, particularly for spatially structured data. In response to the reviewer’s 

concern, we have added a dedicated discussion on the limitations of RF (now Section 

3.4) and have renumbered the original Section 3.4 as Section 3.3.3.  

Section 3.4, Line 621-637: “3.4 Limitations 

Although the OIRF model serves as an efficient surrogate for the CTM in generating 

simulation or forecast ensembles for data assimilation, it inherits a constrained 

extrapolation capability of tree-based models. Specifically, the OIRF model may exhibit 

a tendency to saturate at learned extremes when extrapolating beyond its training data 

distribution, which directly limits its generalizability in diverse and complex 

atmospheric scenarios, such as the pollution extremes in seasons outside the training 

period. The poor performance of tree-based models on testing sets has been reported 

in our previous study (Li et al., 2025). Our incremental learning mechanism is designed 

to mitigate the extrapolation limitation by dynamically updating the RF model with new 

knowledge. However, the effectiveness of incremental learning is contingent upon the 

availability of high-quality analysis fields. A lack of observations, which prevents the 

generation of analysis fields, exposes the OIRF model to its inherent extrapolation 

limitations, leading to compromised simulation accuracy. 

 

Replacing the RF model with an ensemble of deep neural networks (DNNs) holds 

promise for superior nonlinear mapping and extrapolation. However, the considerably 

higher computational cost required for both training and inference of DNNs (Debjyoti 

and Utpal, 2025; Xi, 2022) results in an operational bottleneck that the process of 

updating and running an ensemble of DNNs can be slower than traditional CTM-based 

ensemble simulations, which could offset its accuracy advantages. Therefore, balancing 

the inherent predictive performance of a machine learning model against its 



computational cost remains a central challenge for the practical online coupling of 

machine learning with data assimilation.” 

Reference 

Gohari, K., et al.: Exploring multivariate machine learning frameworks to parallelize PM2.5 

simultaneous estimations across the continental United States. Environ. Pollut., 374, 126161, 

https://doi.org/10.1016/j.envpol.2025.126161, 2025. 

Khuzestani, R.B., et al.: Advancing Particulate Matter Chemical Composition Analysis: A Hybrid 

Machine-Learning Approach with UV-Vis Spectroscopy. Aerosol Sci. Eng., 

https://doi.org/10.1007/s41810-025-00282-8, 2025. 

Li, H., et al.: Interpreting hourly mass concentrations of PM2.5 chemical components with an optimal 

deep-learning model. J. Environ. Sci., 151, 125-139, https://doi.org/10.1016/j.jes.2024.03.037, 2025. 

Lin, G. Y., et al.: A machine learning model for predicting PM2.5 and nitrate concentrations based 

on long-term water-soluble inorganic salts datasets at a road site station, Chemosphere, 289, 

https://doi.org/10.1016/j.chemosphere.2021.133123, 2022. 

Liu, K., et al.: Time series prediction of the chemical components of PM2.5 based on a deep learning 

model, Chemosphere, 342, 140153, https://doi.org/10.1016/j.chemosphere.2023.140153, 2023 

Lv, L., et al.: Application of machine learning algorithms to improve numerical simulation 

prediction of PM2.5 and chemical components, Atmos. Pollut. Res., 12, 101211, 

https://doi.org/10.1016/j.apr.2021.101211, 2021. 

Meng, X., et al.: Space-time trends of PM2.5 constituents in the conterminous United States 

estimated by a machine learning approach, 2005-2015, Environ. Int., 121, 1137-1147, 

https://doi.org/10.1016/j.envint.2018.10.029, 2018. 

Wei, J., et al.: Separating Daily 1 km PM2.5 Inorganic Chemical Composition in China since 2000 

via Deep Learning Integrating Ground, Satellite, and Model Data, Environ. Sci. Technol., 57, 46, 18282-

18295, https://doi.org/10.1021/acs.est.3c00272, 2023. 

  



3) In line 90, a claim is made that increasing the number of ensemble members in the 

forecast “mitigates the underestimation of forecast error covariance”. It certainly helps 

mitigate, but it is not an assured cure. The authors should modify the language to 

something like “helps mitigate” to make the statement more accurate. 

Authors’ response: 

We thank the reviewer for this precise comment. We agree that the original 

wording was too absolute. We have modified the text as suggested. 

Introduction, Line 101-102: “…The OIRF model is capable of providing a large number 

of background ensemble members at a reduced computational cost, which helps 

mitigate the underestimation of background error covariance…” 

 

4) Is the idea of throwing away decision trees that do not perform as well as a 

predefined threshold on the updated dataset a novel contribution of this paper, or has 

this approach been used elsewhere? If it has been used elsewhere, the previous works 

should be cited. 

Authors’ response: 

We thank the reviewer for this insightful question regarding the novelty of our 

proposed Optimized Incremental Random Forest (OIRF). We are aware of related work 

on incremental RF, such as hi-RF (Xie et al., 2016). The hi-RF model discards decision 

trees (DTs) with high errors based on an out-of-bag (OOB) error threshold and retrains 

new DTs using a combined dataset of old and new data, which shares a conceptual 

similarity with our OIRF model. However, key methodological distinctions exist.  

a. The hi-RF model constructs new DTs from a merged bootstrap sample of old 

and new data without hyperparameter tuning, which may result in the performance of 

the new DTs being inferior to that of the discarded DTs, introducing uncertainties into 

the incremental learning. In contrast, the OIRF model updates DT members within a 

parallel Bayesian optimization framework to optimize the new RF structure, mitigating 

the uncertainties in incremental learning. 

b. The number of high-error DTs replaced in hi-RF is variable over time, since it 



depends on a dynamic OOB error threshold. Large and variable replacements of DTs 

could introduce instability or drift into the estimation of background error covariance 

within the data assimilation cycle. Our OIRF method employs a threshold depending 

on a percentile of statistical errors, which allows for controlled and stable replacement 

of DT members. This design makes OIRF more suitable for stable and long-term online 

coupling with a data assimilation framework. 

Following the reviewer's suggestion, we have cited the relevant work in the revised 

manuscript and have clarified the specific advancements of our proposed method. 

Section 2.1.2, Line 162-168: “Inspired by the idea of dynamically updating DTs with 

weak performance (Xie et al., 2016), the OIRF model incorporates a novel incremental 

learning mechanism into the RF model, enabling it to conduct effective updating from 

newly available training data within a simulation-assimilation cycle. In the incremental 

learning mechanism, the OIRF model scores the simulation performance of each DT 

based on the mean absolute error (MAE), as shown in Eq. (2). The MAE is quantified 

by the DT outputs and high-accuracy analysis fields at the same time step. A leakage-

aware evaluation indicates that using the analysis field as scoring target did not cause 

substantial information leakage, while employing the independent high-quality 

observation as scoring target is also recommended (Sect. S1 in the Supplement).” 

Section 2.1.2, Line 175-180: “The incremental learning mechanism introduces a 

threshold (𝜏௣) to screen out the DTs with poor simulation performance. The threshold 

is defined as the 𝑝th percentile value of 𝑓௡
௦௖௢௥௘. The percentile-based threshold ensures 

a stable and controllable number of DTs are updated, a critical feature for maintaining 

the smoothness and stability of the estimation of background error covariance within 

the ensemble data assimilation framework and preventing model overfitting to the new 

information. As shown in Eq. (3), the old DTs with scores not higher than 𝜏௣  are 

retained, while the old DTs with scores higher than 𝜏௣ will be replaced by new DTs 

obtained from the incremental learning process.” 

Section 2.1.2, Line 192-196: “Notably, the incremental learning mechanism generates 

new DTs within a Bayesian optimization framework, which ensures that the updated RF 

model simultaneously acquires new knowledge and preserves optimal hyperparameters 



over time. Consequently, the incremental learning mechanism enhances the capacity of 

the OIRF model to incorporate newly available training data and replace the 

underperforming DTs with deterministically superior ones, thereby dynamically 

improving its generalization ability in simulating PM2.5 chemical component 

concentrations.” 

Reference 

Xie, T., et al.: hi-RF: Incremental Learning Random Forest for Large-Scale Multi-class Data 

Classification, Proceedings of the 2016 2nd International Conference on Artificial Intelligence and 

Industrial Engineering (AIIE 2016), https://doi.org/10.2991/aiie-16.2016.72, 2016. 

 

3 Technical Corrections: 

1) It would be helpful to spell out the name of the OIRF-LEnKF in the abstract (line 

15). 

Authors’ response: 

We thank the reviewer for this helpful suggestion. In the revised manuscript, we 

have replaced “OIRF-LEnKF” with its full name. 

Abstract, Line 15-18: “…This paper introduces an incrementally updatable machine 

learning-based data assimilation system (Optimized Incremental Random Forest 

coupled with Localized Ensemble Kalman Filter, OIRF-LEnKF v1.0) that achieves high 

efficiency and high quality in generating background and analysis fields for chemical 

components…” 

 

2) In line 55, “DA technique has been widely used [...]” should be corrected to either 

“DA has been widely used [...]” or “DA techniques have been widely used [...].” 

Authors’ response: 

We thank the reviewer for catching this expression inaccuracy. We have removed 

the work “technique” in the revised manuscript. 



Introduction, Line 57-58: “…DA has been widely used to generate reanalysis datasets 

of PM2.5 chemical components at global and national scales…” 

 

3) “Where” immediately after equation (1) should be lowercase. 

Authors’ response: 

We thank the reviewer for pointing out this oversight. We agree and have corrected 

the capitalization accordingly in the revised manuscript. 

Section 2.1.2, Line 156: “where x represents the input features…” 

 

4) What criteria is used to determine a split for each decision tree? Is it based on MAE? 

This should be made more clear in the text (roughly around line 145). 

Authors’ response: 

We thank the reviewer for this insightful question, which allows us to clarify an 

important methodological detail. The criterion for selecting the optimal split at each 

node during the training of an individual decision tree (DT) is the maximization of the 

reduction in Mean Squared Error (MSE). We have revised the manuscript to explicitly 

state that the splitting criterion for each DT. 

Section 2.1.2, Line 159-160: “The criterion for selecting the optimal split at each node 

during the training of an individual DT involves maximizing the reduction in mean 

squared error (MSE) over all splitting candidates.” 

 

5) y is used to describe an analysis in line 154 but is then used to describe observations 

in line 215. The authors should stay consistent in the text that y refers to observations. 

Authors’ response: 

We sincerely thank the reviewer for catching this inconsistency in our notation. In 

response to the Reviewer’s suggestions, we revised the manuscript to stay consistent in 

the text that “y” refers to observations. 

Section 2.1.2, Line 169-190: “ 



𝑓୬
௦௖௢௥௘ =

ଵ

୏
∑ |𝑥୧

௔௡௔ − 𝑓஽்(𝑥୧, 𝜃୬)|୏
୧ୀଵ , n = 1, 2, … , N ,      (2) 

Here, 𝑓௡
௦௖௢௥௘ is the MAE value of the 𝑛th DT. 𝐾 is the total number of grids of PM2.5 

chemical component concentrations. 𝑥௜
௔௡௔ is the analysis value of concentrations at 

the 𝑖th grid point after DA. 𝑓஽்(𝑥௜, 𝜃௡) denotes the simulation value of the 𝑛th DT at 

the 𝑖 th grid point. Notably, 𝑥௜  used in machine learning denotes the input features, 

while 𝑥௜
௔௡௔ used in data assimilation denotes the analysis states. 

 

𝑓௧
஽் = ቊ

𝑓஽்(𝑥, 𝜃୬|𝑥௧ି∆௧
௔௡௔ ), 𝑓୬

௦௖௢௥௘ ≤ τ୮, n = 1, 2, … , N୮ 

𝑓஽்(𝑥, 𝜃୬|𝑥௧
௔௡௔), 𝑓୬

௦௖௢௥௘ > τ୮, n = N୮ + 1, N୮ + 2, … , N
 ,   (3) 

Here, 𝑓௧
஽்  represents the final output of the updated DTs following incremental 

learning at time 𝑡. 𝑓஽்(𝑥, 𝜃௡|𝑥௧ି∆௧
௔௡௔ ) denotes the output of the retained old DTs while 

𝑓஽்(𝑥, 𝜃௡|𝑥௧
௔௡௔) refers to the output of the new DTs. ∆𝑡 represents the time interval 

of incremental learning. 𝜏௣  indicates the 𝑝 th percentile value of 𝑓௡
௦௖௢௥௘(𝑛 =

1, 2, … , 𝑁), and 𝑁௣ signifies the number of retained old DTs that achieve a score not 

exceeding 𝜏௣ . The 𝑝  is set at 80 to prevent excessive updating of DTs, which may 

introduce instability and artificially optimistic performance into ensemble simulation 

of the OIRF model. 

 

The final simulation (𝑓ைூோி(𝑥)) of the OIRF model at time 𝑡 is derived from Eq. (4) 

by averaging the outputs of the updated DTs. 

𝑓௧
ைூோி(𝑥) =

ଵ

୒
∑ 𝑓௧

஽்(𝑥, 𝜃୬)୒
୬ୀଵ  ,           (4)” 

 

6) In lines 154-155, should “nth grid point after DA” be changed to the “ith grid point”? 

And similarly should “nth DT at the nth grid point” be changed to “nth DT at the ith 

grid point”? 

Authors’ response: 

We thank the reviewer for this precise and correct observation. The revised version 



can be found in the reply to Technical Correction #5. 

 

7) Immediately after equation (5), it should be made clear that f_t^DT(x,theta_n) with 

a bar over the expression refers to the ensemble mean across decision trees in the 

random forest. 

Authors’ response: 

We thank the reviewer for the suggestion. The revised version is as follows. 

Section 2.1.3, Line 228-229: “Here, 𝑷௧
௙  is the flow-dependent background error 

covariance matrix of PM2.5 chemical component concentrations at time 𝑡, 𝑓௧
஽்(𝑥, 𝜃௡)തതതതതതതതതതതതത 

refers to the ensemble mean across decision trees in the random forest at time 𝑡.” 

 

8) I think that the paper would benefit from a mathematical formulation of the difference 

between domain localization and observation localization (in the section in lines 219-

243). 

Authors’ response: 

We thank the reviewer for this insightful suggestion. The fundamental update form 

of the EnKF with domain localization is analogous to the global EnKF (as presented in 

original Eq. (9) of the original manuscript) but uses forecast fields and observations 

within a specific localization radius. In response to the Reviewer’s suggestion, we have 

added the mathematical formulation of domain localization. 

Section 2.1.3, Line 253-262: “To address this challenge, domain localization in our 

system conducts assimilation for each analysis grid point using only background fields 

and observations within a specific localization radius (Fig. 2), with the same update 

form as global EnKF (Eq. (10)). The fundamental update form is presented in Eq. (11). 

𝑥௡,௜
௔௡௔ = 𝑓௜

஽்(𝑥, 𝜃௡) + 𝑲𝜹 ൬𝑦ఋ
௢ + 𝑦ᇱ

௡,ఋ

௢
− 𝐻ఋ ቀ𝑓௜

஽்(𝑥, 𝜃௡)ቁ൰ , 𝑛 = 1, 2, … , 𝑁, (11) 

Here, 𝑥௡,௜
௔௡௔  is the analysis value at 𝑖 th grid point of the 𝑛 th ensemble member. 

𝑓௜
஽்(𝑥, 𝜃௡) is the background value at 𝑖th grid point of the 𝑛th ensemble member. 𝑲ఋ 



is the local Kalman gain matrix computed from the ensemble covariance within the 

localization domain 𝛿. 𝑦ఋ
௢ is the observation of PM2.5 chemical components within 

the localization domain 𝛿  and 𝑦ᇱ
௡,ఋ

௢   is the observation perturbation of the 𝑛 th 

ensemble member within the localization domain 𝛿 . 𝐻ఋ  is the linear observation 

operator within the localization domain 𝛿.” 

 

9) The construction of W in equation (11) is not immediately clear. What values do i 

and j range from? Why is this matrix forced to be diagonal? What is the dimensionality 

of W? The answers to these questions should be made more clear in the text. 

Authors’ response: 

a. i ranges from one to the total number of analysis grids within the whole domain, 

j ranges from one to the total number of observation sites within a localization domain.  

b. The observation error covariance matrix R is assumed to be diagonal in practice, 

implying that observation errors are spatially uncorrelated and the observations can be 

processed serially (Nerger, 2015; Valler et al., 2019). The distance-based weight matrix 

W is consequently constructed as a diagonal matrix, applying a distance-dependent 

weighting directly to the diagonal elements of observation error covariance matrix R to 

attenuate the influence of observations that are farther from the target analysis point. 

c. W is an n × n matrix, where n denotes the number of effective observations 

within the localization domain. 

In response to the Reviewer’s suggestion, we have revised the text. 

Section 2.1.3, Line 282-287: “The distance-based weight matrix (𝑾𝒊 ) for the 𝑖 th 

localization domain is obtained using a Gaussian function: 

𝑾𝒊 = 𝑑𝑖𝑎𝑔 ቀ𝑒𝑥𝑝 ቀ
ିௗ(௜,௝)మ

ଶ௅మ
ቁቁ , 𝑗 = 1, 2, … , 𝑁௢௕௦ ,        (13) 

Here, 𝑑(𝑖, 𝑗) is the Euclidean distance between center grid point of the 𝑖th localization 

domain and observation point 𝑗 .  𝐿  is the decorrelation length. 𝑁௢௕௦  is the total 

number of effective observations within the 𝑖th localization domain. 𝑾 is constructed 

as a diagonal matrix (𝑁௢௕௦ × 𝑁௢௕௦), applying a distance-dependent weighting directly 



to the diagonal elements of observation error covariance matrix 𝑹௧.” 

Reference 

Nerger, L.: On Serial Observation Processing in Localized Ensemble Kalman Filters. Mon. Wea. 

Rev., 143, 1554-1567, https://doi.org/10.1175/MWR-D-14-00182.1, 2015. 

Valler, V., Franke, J., and Brönnimann, S.: Impact of different estimations of the background-error 

covariance matrix on climate reconstructions based on data assimilation, Clim. Past, 15, 1427-1441, 

https://doi.org/10.5194/cp-15-1427-2019, 2019. 

 

10) In Table 1, could the authors please also list the dimensions of the analysis (# 

latitudes, # longitudes, # features)? 

Authors’ response: 

We thank the reviewer for the suggestion. The revised Table 1 is as follows. 

Table 1. Fundamental configuration parameters in OIRF-LEnKF v1.0. 

Category Parameter Setting 

Ensemble 

simulation 

State variable SO4
2-, NO3

-, NH4
+, OC and BC 

Model domain 
North China  

(32.38°N -44.90°N, 108.07°E-127.01°E) 

Spatial resolution 5 km×5 km 

Temporal resolution 1 h 

Meteorological input 

feature 

U-component wind, V-component wind, 

temperature, relative humidity and geopotential  

Anthropogenic input 

feature 
PM2.5, PM10, SO2, NO2, CO and O3 

Ensemble size 2, 5, 10, 15, 20, 30, 40, 50, 100, 200 

Update frequency 
0, 18-h interval, 12-h interval, 6-h interval, 1-h 

interval 

Hyperparameter for tuning 

Minimum number of leaf node observations, 

maximal number of decision splits, and number of 

predictors to select at random for each split 

Optimization iteration 30 

Data partition Re-partition at every iteration 

Data 

assimilation 

State dimension 5, including SO4
2-, NO3

-, NH4
+, OC and BC  

Latitudinal dimension 249 grids 

Longitudinal dimension 300 grids 

Algorithm LEnKF 

Localization radius 200 km 

Decorrelation length 80 km 



Assimilation frequency 1 h 

  

11) In Figure 3a, is the objective referenced from the Bayesian optimization? It may be 

more clear to reference an equation number in the caption. In Figure 3c, why is there a 

sudden decrease at an ensemble size of 30 in the OIRF-LEnKF/NP2 (%)? 

Authors’ response: 

We thank the reviewer for the suggestion. The objective value in Fig. 3a is derived 

from the Bayesian optimization. We have supplemented the objective function in 

Bayesian optimization and referenced an equation number in the caption. 

Section 2.1.2, Line 213-216: “𝐽(𝜃) = 𝑙𝑛(1 +
ଵ

୒
∑ ቀy୧

୮୰ୣୢ
(𝜃) − y୧

୭ቁ
ଶ

୒
୧ୀଵ ) ,  (5) 

Here, 𝐽(𝜃) represents the objective value, 𝜃 represents the set of hyperparameters 

under optimization, 𝑁 is the total number of samples in the training dataset. 𝑦௜
௣௥௘ௗ

(𝜃) 

is the predicted value for the 𝑖th sample, 𝑦௜
௢ is the observation value for the 𝑖th sample.” 

Figure 3a, Caption: “…(a) Variation in the minimum objective value throughout the 

Bayesian optimization process and time consumed by each iteration, determined by Eq. 

(5)…” 

We attribute the sudden decrease in the OIRF-LEnKF/NP2 ratio at an ensemble 

size of 30 to a significant increase in the computational time required by the NP2 

forecast. This fluctuation is likely related to inherent uncertainties in the two-level 

parallel structure of NP2. In NP2, ensemble members are distributed across multiple 

computing nodes in a cluster, while the grid points for a single member are further 

parallelized across multiple CPUs within a node (Li et al., 2024). This structure can 

occasionally lead to communication congestion or latency between different MPI 

communicators (the communicators used in NP2 are presented in Fig. R1 in Wang et 

al. (2022)’s study), resulting in an augmentation of additional computational cost. In 

contrast, the OIRF-LEnKF is designed to avoid such uncertainties. The state variables, 

namely five PM2.5 chemical components, are processed independently on five separate 

computational nodes (Fig. 2 in our manuscript), eliminating the need for inter-node 

communication. We have highlighted the advantages of the OIRF-LEnKF parallel 



architecture as follows. 

Section 2.1.3, Line 267-269: “…Computational tasks for different chemical species are 

allocated to independent computational nodes to prevent interference of spurious 

correlations among chemical species and eliminate the need for inter-node 

communication…” 

 

 

Fig. R1 in Wang et al. (2022)’s study 

Reference 

Li, H., Yang, T., Nerger, L., Zhang, D., Zhang, D., Tang, G., Wang, H., Sun, Y., Fu, P., Su, H., and 

Wang, Z.: NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved 

simulation of PM2.5 chemical components, Geosci. Model Dev., 17, 8495-8519, 

https://doi.org/10.5194/gmd-17-8495-2024, 2024. 

Wang, H., Yang, T., Wang, Z., Li, J., Chai, W., Tang, G., Kong, L., and Chen, X.: An aerosol vertical 

data assimilation system (NAQPMS-PDAF v1.0): development and application, Geosci. Model Dev., 15, 

3555-3585, https://doi.org/10.5194/gmd-15-3555-2022, 2022. 

  



12) The colorbar in all subfigures in Figure 4 should start at 0 so that perceived color 

variations more closely correspond to significant differences in the values in the table. 

Figure 4c, for example, has two different colors assigned to 0.77 in the bottom right 

corner, likely due to small differences past the third decimal place. If these heatmaps 

no longer look interesting after making this change, then another plotting technique 

highlighting any interesting aspects should replace Figure 4. 

Authors’ response: 

We thank the reviewer for the suggestion. However, as the reviewer anticipated 

and we verified, setting the colorbar to start at 0 would compress the entire color 

spectrum into a very narrow range, since our performance metrics (CORR and RMSE) 

are all concentrated at a narrow scale (e.g., R from 0.70 to 0.84 at analysis step). This 

would make it impossible to discern the meaningful variations across the parameter 

space. To address this fundamental issue and fully adhere to the reviewer's suggestion 

of ensuring visual accuracy, we have chosen to display the percentage change of each 

metric relative to a defined performance baseline (e.g., minimum CORR and maximum 

RMSE) and we have utilized a more suitable colorbar. 

Section 3.2, Line 412-425: “During the ML simulation process, the statistical indicators 

that compare the background fields and observations for OIRF-LEnKF v1.0 exhibit a 

pronounced sensitivity to update frequency but are less sensitive to ensemble size. With 

a fixed ensemble size, the correlation coefficient (CORR) increases as the update 

frequency rises (Fig. 4a). At the same time, the root mean square error (RMSE) 

decreases significantly with a higher update frequency (Fig. 4b). Specifically, the 

percentage change of CORR relative to minimum CORR (ΔCORR) rises by 2.42 % to 

11.75 %, and the percentage change of RMSE relative to maximum RMSE (ΔRMSE) 

decreases by 32.55 % to 40.36 % when comparing a 1-hour update frequency to the 

scenario without incremental learning, which indicates that high-frequency 

incremental learning effectively enhances the adaptability of the statically trained ML 

model to the non-stationary data distributions, enabling it to demonstrate improved 

generalization capabilities and higher simulation accuracy in rapidly changing 



chemical component simulations. Notably, an increase in ensemble size can amplify the 

effect of incremental learning on simulation errors. Specifically, the reduction in 

ΔRMSE at an ensemble size of 100 is approximately 8% greater than at an ensemble 

size of 20 when comparing a 1-hour update frequency to a scenario without incremental 

learning (Fig. 4b), which is attributed to the fact that as the ensemble size increases, 

the probability density distribution becomes more accurate, leading to improved 

ensemble simulation skill (Chen, 2024).” 

Section 3.2, Line 438-440: “…Specifically, the ΔCORR increased by 9.75 % to 19.04 %, 

and the ΔRMSE decreased by 16.70 % to 30.48 % when comparing an ensemble size of 

200 to that of 20…” 

 
Figure 4. (a) Percentage change of Pearson correlation coefficient (CORR) relative to 
the minimum CORR (0.5) (ΔCORR, %) for sensitivity test with six ensemble sizes (20, 
30, 40, 50, 100, 200) and five update frequencies (no update, 18-hour interval, 12-hour 



interval, 6-hour interval and 1-hour interval) at the simulation step. (b) Same as (a) but 
for percentage change of root mean square error (RMSE) relative to the maximum 
RMSE (3.46 µg m-3) (ΔRMSE, %) at the simulation step. (c) Same as (a) but for 
percentage change of CORR relative to the minimum CORR (0.7) at the analysis step. 
(d) Same as (a) but for percentage change of RMSE relative to the maximum RMSE 
(1.65 µg m-3) at the analysis step. 
 


