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1 General Comments:

This paper presents a method called the optimized incremental random forest ensemble
forecasting model with the localized ensemble Kalman filter (OIRF-LEnKF), which
combines an computationally lightweight emulator of PM> s chemical components with
the efficient and accurate data assimilation method LEnKF. This paper also presents a
mechanism for online learning to update the OIRF model as new data arrives. The
results on a real-world assimilation task of PM> s concentrations in a region in China
show that the proposed algorithm is effective in remaining stable across a long
assimilation horizon while effectively assimilating observations that lead the analyses
to remain close to a notion of ground truth (based on reanalysis). The use of machine
learning in various data assimilation applications is an important investigation,
however, the authors could provide more motivation for particular choices made while
creating the OIRF-LEnKF algorithm and perhaps further contextualize this work in

relation to related work.

Authors’ response:
We sincerely thank the reviewer for the thoughtful review of our manuscript. We
fully agree that a more robust justification for our specific methodological choices, as

well as further contextualization of our work within the existing work, would enhance



the quality of our research.
In our detailed point-by-point responses below, we have addressed all scientific
comments. Accordingly, in the revised manuscript, we have enhanced methodological

motivation and contextualized this work in relation to related work.

2 Scientific Comments:

1) The authors propose a random forest model that is incrementally optimized as new
information about the system is obtained, but provides minimal motivation for the
choice of random forest over other approaches. This application area involves spatial
datasets, which make a neural network architecture like a CNN a good fit, especially
given that many state-of-the-art emulators of spatial systems rely in part on CNNs. The
motivation for the choice of RF should be made more clear in the paper, and perhaps
an ablation against a CNN-type architecture should be provided. To create an ensemble

like a random forest, the CNN training could be bagged.

Authors’ response:

We thank the reviewer for this insightful and constructive comment. We agree that
providing stronger motivation for our choice of the Random Forest (RF) model is
crucial, and we appreciate the suggestion to consider deep neural networks (such as
CNNp5s). In the revised manuscript, we have expanded our justification for selecting RF
as the surrogate model for atmospheric chemistry transport modeling, based on the
following key considerations.

a. Computational Feasibility for Incremental Learning. Our proposed machine
learning (ML) -based data assimilation (DA) framework requires the frequent retraining
and updating of ML model members using newly assimilated analysis fields. However,
an ensemble CNN approach is less optimal for this incremental learning mechanism.
As presented in Table R1, under comparable hardware conditions, the training cost for
a single CNN model is approximately an order of magnitude higher than that for an RF
model (Xi, 2022; Debjyoti and Utpal, 2025). Consequently, serially constructing a 50-

member ensemble CNN would incur a training time cost roughly 500 times greater than



that of an RF model. While CNN can indeed be bagged to create an ensemble, this
approach is computationally prohibitive for the frequent ML model updates required by
ML-DA framework.

b. Balanced Performance and Inference Speed for Prediction of PM2.s and its
chemical components. Recent studies indicate that the predictive accuracy of RF for
PM2: s and its chemical components is comparable to that of advanced deep learning
models (Abuouelezz et al., 2025; Chen et al., 2023; Li et al., 2025). Notably, under the
same hardware constraints, the inference speed of an RF model can be approximately
10 times faster than that of comparable CNN or Transformer models (Jalali et al., 2025).
Consequently, RF models can achieve forecasting accuracy comparable to CNN models
at a fraction of the computational cost, which is essential for maintaining the timeliness

of the iterative forecast-assimilation cycle in our proposed system.

Introduction, Line 90-97: “The Random Forest (RF) model (Gohari et al., 2025, Lin et
al., 2022; Lvetal., 2021; Meng et al., 2018) and Deep Neural Networks (DNNs) (Li et
al., 2025, Liu et al., 2023) have been widely used for simulating and predicting PM> s
chemical component concentrations, with DNNs achieving a marginally superior
predictive accuracy. However, a single DNN is outperformed by a RF model in terms
of the computational efficiency during both training and inference (Debjyoti and Utpal,
2025; Jalali et al., 2025; Xi, 2022). Within an ensemble DA framework, periodically
creating and running an ensemble of DNNs imposes a significant computational burden
in contrast to the RF model, which inherently provides an ensemble. Consequently, the
RFE model offers an optimal trade-off between predictive performance and

computational demand, making it a practical and efficient choice for coupling with

ensemble DA.”



Table R1. Literature review of performance comparison between RF and CNN

Training cost Inference speed Error rate o
Task type Citation
RF CNNs RF CNNs RF CNNs
Classification 20 minutes 3 hours \ \ 10.02%  9.67% Xi, 2022
o 12.7s per 186.4s 0.8sper 0.2s per Debjyoti and
Recognition 2.90%  2.09%
fold per fold fold fold Utpal, 2025
0.028s  0.218s .
) ) Jalali et al.,
Classification \ \ per per \ \
2025
sample  sample
0.73- 7.85-
2.43%  20.05%
Regression \ \ \ \ for for Lietal., 2025
training  training
set set
. Chen et al.,
Regression \ \ \ \ 17.74% 18.06%
2023
0.216 0.213
) for I-h  for 1-h  Abuouelezz et
Regression \ \ \ \
PM2A5 PM2_5 al., 2025
forecast forecast
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Abuouelezz, W, et al.: Exploring PM» s and PM;o ML forecasting models: a comparative study in

the UAE. Sci Rep, 15, 9797, https://doi.org/10.1038/s41598-025-94013-1, 2025.
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J. Environ. Res. Public Health, 20, 4077. https://doi.org/10.3390/ijerph20054077, 2023.
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Jalali, M.W., et al.: Scalable Al-driven air quality forecasting and classification for public health

applications, Discov. Atmos., 3, 25, https://doi.org/10.1007/s44292-025-00052-8, 2025.

Li, H., etal.: Interpreting hourly mass concentrations of PM» s chemical components with an optimal
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Algorithm, Wirel. Commun. Mob. Com., 2013181, https://doi.org/10.1155/2022/2013181, 2022.




2) Have there been other successful ML models of PM> s chemical components? If so,
they should be cited in the related work. If these emulators do exist, why were any of

them not used instead of the authors' proposed random forest model?

Authors’ response:

We thank the reviewer for raising this important point regarding related work and
model selection.

Q1: Have there been other successful ML models of PM> 5 chemical components?

Al: Table R2 summarizes the successful ML models for the prediction of PMa s
chemical components. As replied to the Scientific Comment #1, the related work has

been cited in the Introduction of the revised manuscript.

Table R2. Literature review of ML models used for the prediction of PMazs

chemical components

ML models Target features Performance on testing set Citation
Sulfate, nitrate, organic carbon, Meng, et al.,
RF R% 0.71-0.86
elemental carbon 2018
Sulfate, nitrate, ammonium, Lvetal,
RF ) R: 0.71-0.81
organic carbon, elemental carbon 2021
) Lin et al.,
RF Nitrate R% 0.58
2022
Sulfate, nitrate, organic carbon, Liuetal.,
CNN-LSTM R%* 0.87-0.96
elemental carbon, crustal metals 2023
Sulfate, nitrate, ammonium, Wei et al.,
4D-STDF ) CV-R?*: 0.66-0.75
chloride 2023
. Sulfate, nitrate, ammonium, )
CNN-BIiLSTM R%:0.81-0.97 Li et al., 2025

organic carbon, elemental carbon
Sulfate, nitrate, ammonium,

i Khuzestani et
PLS-SVM organic carbon, elemental carbon, R?: 0.82-0.98

al., 2025
crustal metals
Calcium, elemental carbon, ) Gohari et al.,
RF . Spatial R*: 0.93-0.95
silicon, sulfate 2025

Q2: Why were any of them not used instead of the authors' proposed random forest
model?

A2: As replied to the Scientific Comment #1, the RF model was selected as an
optimal compromise between computational efficiency and predictive accuracy for the

ensemble framework. Although Table R2 indicates that RF’s extrapolation capability



may limit its performance on testing set compared to other deep neural networks, we
have designed an incremental learning mechanism to allow the RF model to continually
adapt to new data distributions. However, the incremental learning mechanism relies
on the availability of analysis fields assimilated observations. During periods of missing
observations, the RF model remains susceptible to its poor extrapolation capability. We
fully agree that ensemble CNNs could be more effective than RF in capturing nonlinear
relationships, particularly for spatially structured data. In response to the reviewer’s
concern, we have added a dedicated discussion on the limitations of RF (now Section

3.4) and have renumbered the original Section 3.4 as Section 3.3.3.

Section 3.4, Line 621-637: “3.4 Limitations

Although the OIRF model serves as an efficient surrogate for the CTM in generating
simulation or forecast ensembles for data assimilation, it inherits a constrained
extrapolation capability of tree-based models. Specifically, the OIRF model may exhibit
a tendency to saturate at learned extremes when extrapolating beyond its training data
distribution, which directly limits its generalizability in diverse and complex
atmospheric scenarios, such as the pollution extremes in seasons outside the training
period. The poor performance of tree-based models on testing sets has been reported
in our previous study (Li et al., 2025). Our incremental learning mechanism is designed
to mitigate the extrapolation limitation by dynamically updating the RF model with new
knowledge. However, the effectiveness of incremental learning is contingent upon the
availability of high-quality analysis fields. A lack of observations, which prevents the
generation of analysis fields, exposes the OIRF model to its inherent extrapolation

limitations, leading to compromised simulation accuracy.

Replacing the RF model with an ensemble of deep neural networks (DNNs) holds
promise for superior nonlinear mapping and extrapolation. However, the considerably
higher computational cost required for both training and inference of DNNs (Debjyoti
and Utpal, 2025; Xi, 2022) results in an operational bottleneck that the process of
updating and running an ensemble of DNNs can be slower than traditional CTM-based
ensemble simulations, which could offset its accuracy advantages. Therefore, balancing

the inherent predictive performance of a machine learning model against its



computational cost remains a central challenge for the practical online coupling of
machine learning with data assimilation.”
Reference

Gohari, K., et al.: Exploring multivariate machine learning frameworks to parallelize PM,
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3) In line 90, a claim is made that increasing the number of ensemble members in the

forecast ‘mitigates the underestimation of forecast error covariance’. It certainly helps

mitigate, but it is not an assured cure. The authors should modify the language to

something like ‘helps mitigate” to make the statement more accurate.

Authors’ response:

We thank the reviewer for this precise comment. We agree that the original
wording was too absolute. We have modified the text as suggested.
Introduction, Line 101-102: ... The OIRF model is capable of providing a large number
of background ensemble members at a reduced computational cost, which helps

mitigate the underestimation of background error covariance...”

4) Is the idea of throwing away decision trees that do not perform as well as a
predefined threshold on the updated dataset a novel contribution of this paper, or has
this approach been used elsewhere? If it has been used elsewhere, the previous works

should be cited.

Authors’ response:

We thank the reviewer for this insightful question regarding the novelty of our
proposed Optimized Incremental Random Forest (OIRF). We are aware of related work
on incremental RF, such as hi-RF (Xie et al., 2016). The hi-RF model discards decision
trees (DTs) with high errors based on an out-of-bag (OOB) error threshold and retrains
new DTs using a combined dataset of old and new data, which shares a conceptual
similarity with our OIRF model. However, key methodological distinctions exist.

a. The hi-RF model constructs new DTs from a merged bootstrap sample of old
and new data without hyperparameter tuning, which may result in the performance of
the new DTs being inferior to that of the discarded DTs, introducing uncertainties into
the incremental learning. In contrast, the OIRF model updates DT members within a
parallel Bayesian optimization framework to optimize the new RF structure, mitigating
the uncertainties in incremental learning.

b. The number of high-error DTs replaced in hi-RF is variable over time, since it



depends on a dynamic OOB error threshold. Large and variable replacements of DTs
could introduce instability or drift into the estimation of background error covariance
within the data assimilation cycle. Our OIRF method employs a threshold depending
on a percentile of statistical errors, which allows for controlled and stable replacement
of DT members. This design makes OIRF more suitable for stable and long-term online
coupling with a data assimilation framework.

Following the reviewer's suggestion, we have cited the relevant work in the revised
manuscript and have clarified the specific advancements of our proposed method.
Section 2.1.2, Line 162-168: “Inspired by the idea of dynamically updating DTs with
weak performance (Xie et al., 2016), the OIRF model incorporates a novel incremental
learning mechanism into the RF model, enabling it to conduct effective updating from
newly available training data within a simulation-assimilation cycle. In the incremental
learning mechanism, the OIRF model scores the simulation performance of each DT
based on the mean absolute error (MAE), as shown in Eq. (2). The MAE is quantified
by the DT outputs and high-accuracy analysis fields at the same time step. A leakage-
aware evaluation indicates that using the analysis field as scoring target did not cause
substantial information leakage, while employing the independent high-quality
observation as scoring target is also recommended (Sect. SI in the Supplement).”
Section 2.1.2, Line 175-180: “The incremental learning mechanism introduces a
threshold (t,) to screen out the DTs with poor simulation performance. The threshold
is defined as the p™ percentile value of f,5°°"®. The percentile-based threshold ensures
a stable and controllable number of DT are updated, a critical feature for maintaining
the smoothness and stability of the estimation of background error covariance within
the ensemble data assimilation framework and preventing model overfitting to the new
information. As shown in Eq. (3), the old DT with scores not higher than T, are
retained, while the old DTs with scores higher than T, will be replaced by new DTs
obtained from the incremental learning process.”

Section 2.1.2, Line 192-196: “Notably, the incremental learning mechanism generates
new DTs within a Bayesian optimization framework, which ensures that the updated RF

model simultaneously acquires new knowledge and preserves optimal hyperparameters



over time. Consequently, the incremental learning mechanism enhances the capacity of
the OIRF model to incorporate newly available training data and replace the
underperforming DTs with deterministically superior ones, thereby dynamically
improving its generalization ability in simulating PM>s5 chemical component
concentrations.”
Reference

Xie, T., et al.: hi-RF: Incremental Learning Random Forest for Large-Scale Multi-class Data
Classification, Proceedings of the 2016 2nd International Conference on Artificial Intelligence and

Industrial Engineering (AIIE 2016), https://doi.org/10.2991/aiie-16.2016.72, 2016.

3 Technical Corrections:

1) It would be helpful to spell out the name of the OIRF-LEnKF in the abstract (line
15).
Authors’ response:

We thank the reviewer for this helpful suggestion. In the revised manuscript, we
have replaced “OIRF-LEnKF” with its full name.
Abstract, Line 15-18: “...This paper introduces an incrementally updatable machine
learning-based data assimilation system (Optimized Incremental Random Forest
coupled with Localized Ensemble Kalman Filter, OIRF-LEnKF v1.0) that achieves high
efficiency and high quality in generating background and analysis fields for chemical

components...”

2) In line 55, "DA technique has been widely used [...] " should be corrected to either

‘DA has been widely used [...] " or DA techniques have been widely used [...]."

Authors’ response:

We thank the reviewer for catching this expression inaccuracy. We have removed

the work “technique” in the revised manuscript.



Introduction, Line 57-58: ““...DA has been widely used to generate reanalysis datasets

of PM>.5s chemical components at global and national scales...”

3) ‘Where” immediately after equation (1) should be lowercase.

Authors’ response:
We thank the reviewer for pointing out this oversight. We agree and have corrected
the capitalization accordingly in the revised manuscript.

Section 2.1.2, Line 156: “where x represents the input features...”

4) What criteria is used to determine a split for each decision tree? Is it based on MAE?

This should be made more clear in the text (roughly around line 145).

Authors’ response:

We thank the reviewer for this insightful question, which allows us to clarify an
important methodological detail. The criterion for selecting the optimal split at each
node during the training of an individual decision tree (DT) is the maximization of the
reduction in Mean Squared Error (MSE). We have revised the manuscript to explicitly
state that the splitting criterion for each DT.

Section 2.1.2, Line 159-160: “The criterion for selecting the optimal split at each node
during the training of an individual DT involves maximizing the reduction in mean

squared error (MSE) over all splitting candidates.”

5) y is used to describe an analysis in line 154 but is then used to describe observations

in line 215. The authors should stay consistent in the text that y refers to observations.

Authors’ response:

We sincerely thank the reviewer for catching this inconsistency in our notation. In
response to the Reviewer’s suggestions, we revised the manuscript to stay consistent in

the text that “y” refers to observations.

Section 2.1.2, Line 169-190: *



1
weore = STl — fPT(x;, 6)l,n = 1,2, N, )

Here, f5°°7¢ is the MAE value of the n™ DT, K is the total number of grids of PM:s
chemical component concentrations. x{"* is the analysis value of concentrations at
the i" grid point after DA. fPT(x;,0,) denotes the simulation value of the n" DT at
the i™ grid point. Notably, x; used in machine learning denotes the input features,

while x{"* used in data assimilation denotes the analysis states.

)

fDT . fDT(x: 9n|xf_n§t), fnscore < Tp, N = 1,2, ""Np
t fPT (x, On|xE"%), fireore > Tp,n =N, +1,N,+2,..,N ’

Here, fPT represents the final output of the updated DTs following incremental
learning at time t. fPT(x,0,|x") denotes the output of the retained old DTs while
fPT(x, 0,|x3™) refers to the output of the new DTs. At represents the time interval
of incremental learning. T, indicates the p h percentile value of f°T¢(n =
1,2,..,N), and N, signifies the number of retained old DT5 that achieve a score not
exceeding T,. The p is set at 80 to prevent excessive updating of DT5, which may

introduce instability and artificially optimistic performance into ensemble simulation

of the OIRF model.

The final simulation (f°'R¥ (x)) of the OIRF model at time t is derived from Eq. (4)

by averaging the outputs of the updated DT5.

fOR () = SN fPT(x,6,) @)

6) In lines 154-155, should ‘nth grid point after DA” be changed to the ‘ith grid point™?
And similarly should ‘nth DT at the nth grid point” be changed to ‘nth DT at the ith

grid point”?

Authors’ response:

We thank the reviewer for this precise and correct observation. The revised version



can be found in the reply to Technical Correction #5.

7) Immediately after equation (5), it should be made clear that f t"DT(x,theta_n) with
a bar over the expression refers to the ensemble mean across decision trees in the

random forest.

Authors’ response:

We thank the reviewer for the suggestion. The revised version is as follows.

Section 2.1.3, Line 228-229: “Here, P[ is the flow-dependent background error

covariance matrix of PM> s chemical component concentrations at time t, f;’T(x,6,)

refers to the ensemble mean across decision trees in the random forest at time t.”

8) I think that the paper would benefit from a mathematical formulation of the difference

between domain localization and observation localization (in the section in lines 219-

243).

Authors’ response:

We thank the reviewer for this insightful suggestion. The fundamental update form
of the EnKF with domain localization is analogous to the global EnKF (as presented in
original Eq. (9) of the original manuscript) but uses forecast fields and observations
within a specific localization radius. In response to the Reviewer’s suggestion, we have
added the mathematical formulation of domain localization.

Section 2.1.3, Line 253-262: “To address this challenge, domain localization in our
system conducts assimilation for each analysis grid point using only background fields
and observations within a specific localization radius (Fig. 2), with the same update

form as global EnKF (Eq. (10)). The fundamental update form is presented in Eq. (11).

xoi® = fPT(x,0,) + Ks (yg - y’fw — Hg (fl-DT(x, Hn))>,n =12,..,N, (1)

ana

ni IS the analysis value at i™ grid point of the n™ ensemble member:

Here, x

fPT(x,6,) is the background value at i" grid point of the n™ ensemble member. K



is the local Kalman gain matrix computed from the ensemble covariance within the

localization domain 6. yg is the observation of PM>s5 chemical components within

the localization domain & and y'Tol s 1s the observation perturbation of the n'

ensemble member within the localization domain 6. Hg is the linear observation

operator within the localization domain 8.”

9) The construction of W in equation (11) is not immediately clear. What values do i
and j range from? Why is this matrix forced to be diagonal? What is the dimensionality

of W? The answers to these questions should be made more clear in the text.

Authors’ response:

a. 1ranges from one to the total number of analysis grids within the whole domain,
j ranges from one to the total number of observation sites within a localization domain.

b. The observation error covariance matrix R is assumed to be diagonal in practice,
implying that observation errors are spatially uncorrelated and the observations can be
processed serially (Nerger, 2015; Valler et al., 2019). The distance-based weight matrix
W is consequently constructed as a diagonal matrix, applying a distance-dependent
weighting directly to the diagonal elements of observation error covariance matrix R to
attenuate the influence of observations that are farther from the target analysis point.

¢. Wis an n X n matrix, where n denotes the number of effective observations
within the localization domain.

In response to the Reviewer’s suggestion, we have revised the text.
Section 2.1.3, Line 282-287: “The distance-based weight matrix (W;) for the i

localization domain is obtained using a Gaussian function:

W; = diag (exp (%z’zj)z)),j =1,2,..,Nyps » (13)

Here, d(i,j) is the Euclidean distance between center grid point of the i" localization
domain and observation point j. L is the decorrelation length. N,ps is the total
number of effective observations within the i" localization domain. W is constructed

as a diagonal matrix (N,ps X Nops), applying a distance-dependent weighting directly



to the diagonal elements of observation error covariance matrix R;.”
Reference
Nerger, L.: On Serial Observation Processing in Localized Ensemble Kalman Filters. Mon. Wea.

Rev., 143, 1554-1567, https://doi.org/10.1175/MWR-D-14-00182.1, 2015.

Valler, V., Franke, J., and Bronnimann, S.: Impact of different estimations of the background-error
covariance matrix on climate reconstructions based on data assimilation, Clim. Past, 15, 1427-1441,

https://doi.org/10.5194/cp-15-1427-2019, 2019.

10) In Table 1, could the authors please also list the dimensions of the analysis (#

latitudes, # longitudes, # features)?

Authors’ response:

We thank the reviewer for the suggestion. The revised Table 1 is as follows.

Table 1. Fundamental configuration parameters in OIRF-LEnKF v1.0.

Category Parameter Setting
State variable SO4*, NOs, NH4", OC and BC
) North China
Model domain
(32.38°N -44.90°N, 108.07°E-127.01°E)
Spatial resolution 5 kmx5 km
Temporal resolution l1h
Meteorological input U-component wind, V-component wind,
feature temperature, relative humidity and geopotential
Anthropogenic input
Ensemble PM; 5, PMjo, SO,, NO,, CO and O3
) ) feature
simulation )
Ensemble size 2,5,10, 15,20, 30, 40, 50, 100, 200
0, 18-h interval, 12-h interval, 6-h interval, 1-h
Update frequency )
interval
Minimum number of leaf node observations,
Hyperparameter for tuning ~ maximal number of decision splits, and number of
predictors to select at random for each split
Optimization iteration 30
Data partition Re-partition at every iteration
State dimension 5, including SO+, NO5", NH4", OC and BC
Latitudinal dimension 249 grids
Data Longitudinal dimension 300 grids
assimilation Algorithm LEnKF
Localization radius 200 km

Decorrelation length 80 km



Assimilation frequency 1h

11) In Figure 3a, is the objective referenced from the Bayesian optimization? It may be
more clear to reference an equation number in the caption. In Figure 3c, why is there a

sudden decrease at an ensemble size of 30 in the OIRF-LEnKF/NP2 (%)?

Authors’ response:

We thank the reviewer for the suggestion. The objective value in Fig. 3a is derived
from the Bayesian optimization. We have supplemented the objective function in

Bayesian optimization and referenced an equation number in the caption.

. . T . 1 N pred o 2
Section 2.1.2, Line 213-216: /(6) = In(1 + < XN, (yP™'@) - y¢) ) . ()
Here, J(0) represents the objective value, 0 represents the set of hyperparameters

under optimization, N is the total number of samples in the training dataset. yl.pred (6)

is the predicted value for the i" sample, y? is the observation value for the i" sample.”

3

Figure 3a, Caption: “...(a) Variation in the minimum objective value throughout the

Bayesian optimization process and time consumed by each iteration, determined by Eq.
(5)..”

We attribute the sudden decrease in the OIRF-LEnKF/NP2 ratio at an ensemble
size of 30 to a significant increase in the computational time required by the NP2
forecast. This fluctuation is likely related to inherent uncertainties in the two-level
parallel structure of NP2. In NP2, ensemble members are distributed across multiple
computing nodes in a cluster, while the grid points for a single member are further
parallelized across multiple CPUs within a node (Li et al., 2024). This structure can
occasionally lead to communication congestion or latency between different MPI
communicators (the communicators used in NP2 are presented in Fig. R1 in Wang et
al. (2022)’s study), resulting in an augmentation of additional computational cost. In
contrast, the OIRF-LEnKF is designed to avoid such uncertainties. The state variables,
namely five PM> s chemical components, are processed independently on five separate
computational nodes (Fig. 2 in our manuscript), eliminating the need for inter-node

communication. We have highlighted the advantages of the OIRF-LEnKF parallel



architecture as follows.

Section 2.1.3, Line 267-269: “...Computational tasks for different chemical species are
allocated to independent computational nodes to prevent interference of spurious
correlations among chemical species and eliminate the need for inter-node

communication...”
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12) The colorbar in all subfigures in Figure 4 should start at 0 so that perceived color
variations more closely correspond to significant differences in the values in the table.
Figure 4c, for example, has two different colors assigned to 0.77 in the bottom right
corner, likely due to small differences past the third decimal place. If these heatmaps
no longer look interesting after making this change, then another plotting technique

highlighting any interesting aspects should replace Figure 4.

Authors’ response:

We thank the reviewer for the suggestion. However, as the reviewer anticipated
and we verified, setting the colorbar to start at 0 would compress the entire color
spectrum into a very narrow range, since our performance metrics (CORR and RMSE)
are all concentrated at a narrow scale (e.g., R from 0.70 to 0.84 at analysis step). This
would make it impossible to discern the meaningful variations across the parameter
space. To address this fundamental issue and fully adhere to the reviewer's suggestion
of ensuring visual accuracy, we have chosen to display the percentage change of each
metric relative to a defined performance baseline (e.g., minimum CORR and maximum
RMSE) and we have utilized a more suitable colorbar.

Section 3.2, Line 412-425: “During the ML simulation process, the statistical indicators
that compare the background fields and observations for OIRF-LEnKF v1.0 exhibit a
pronounced sensitivity to update frequency but are less sensitive to ensemble size. With
a fixed ensemble size, the correlation coefficient (CORR) increases as the update
frequency rises (Fig. 4a). At the same time, the root mean square error (RMSE)
decreases significantly with a higher update frequency (Fig. 4b). Specifically, the
percentage change of CORR relative to minimum CORR (ACORR) rises by 2.42 % to
11.75 %, and the percentage change of RMSE relative to maximum RMSE (ARMSE)
decreases by 32.55 % to 40.36 % when comparing a I-hour update frequency to the
scenario without incremental learning, which indicates that high-frequency
incremental learning effectively enhances the adaptability of the statically trained ML
model to the non-stationary data distributions, enabling it to demonstrate improved

generalization capabilities and higher simulation accuracy in rapidly changing



chemical component simulations. Notably, an increase in ensemble size can amplify the
effect of incremental learning on simulation errors. Specifically, the reduction in

ARMSE at an ensemble size of 100 is approximately 8% greater than at an ensemble
size of 20 when comparing a 1-hour update frequency to a scenario without incremental
learning (Fig. 4b), which is attributed to the fact that as the ensemble size increases,

the probability density distribution becomes more accurate, leading to improved
ensemble simulation skill (Chen, 2024).”

Section 3.2, Line 438-440: “...Specifically, the ACORR increased by 9.75 % to 19.04 %,

and the ARMSE decreased by 16.70 % to 30.48 % when comparing an ensemble size of
200 to that of 20...”
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Figure 4. (a) Percentage change of Pearson correlation coefficient (CORR) relative to
the minimum CORR (0.5) (ACORR, %) for sensitivity test with six ensemble sizes (20,
30, 40, 50, 100, 200) and five update frequencies (no update, 18-hour interval, 12-hour



interval, 6-hour interval and 1-hour interval) at the simulation step. (b) Same as (a) but
for percentage change of root mean square error (RMSE) relative to the maximum
RMSE (3.46 ug m3) (ARMSE, %) at the simulation step. (c) Same as (a) but for
percentage change of CORR relative to the minimum CORR (0.7) at the analysis step.

(d) Same as (a) but for percentage change of RMSE relative to the maximum RMSE
(1.65 ug m3) at the analysis step.



