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Furthermore, all output data from our experiments, including the test data, assimilation system outputs,
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(https://doi.org/10.5281/zenodo.16735735). This has been clearly declared in the "Code and Data
Availability" section of our manuscript.

All data and code related to this study are thus publicly accessible and fully compliant with GMD's
policy.

For your convenience, we have attached the version of the manuscript that passed the “files validated”
stage on 15 August 2025. We trust this clarifies the matter and confirms our full adherence to the
journal's policy.

Should you require any further clarification, we are available to provide it.
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Ting Yang
Institute of Atmospheric Physics, Chinese Academy of Sciences
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Abstract. Assimilating observational data into numerical forecasts is crucial for accurately estimating the spatiotemporal
distribution of PM» s chemical components (NH4", NO5", SO4*, OC, and BC), which is beneficial to quantifying the impact
of aerosols on the environment, climate change and human health. However, chemical transport model (CTM)-based data
assimilation (DA) is computationally inefficient for large ensemble sizes and offers limited improvements in forecasting, as
it solely provides optimal initial conditions. This paper introduces a machine learning (ML)-based self-evolving data
assimilation system (OIRF-LEnKF v1.0) that achieves high efficiency and high quality in the forecast and analysis fields of
chemical components. Computational efficiency tests indicate that the total time consumed by OIRF-LEnKF v1.0 constitutes
only 11.41-16.60 % of that of CTM-based DA, particularly during the forecasting process (0.13-0.20 %). Sensitivity tests
demonstrate that the self-evolution mechanism in our system enhances the Pearson correlation coefficient (CORR) and
reduces the RMSE during the forecasting process by 2.28-11.75 % and 32.94-40.98 %, respectively, compared to the
stationary training mechanism. A 2-month DA experiment reveals that the RMSE values of chemical components after DA
are less than 7.80 pg m™ and 2.36 pg m during the forecasting and analysis processes, respectively, indicating reductions of
at least 26.38 % and 68.99 % compared to values without DA. Notably, the RMSE values of our system during the
forecasting process exhibit a significant reduction of 33.16-90.10 % compared to those of the CTM-based DA, highlighting
the superior forecasting capability of our system. Furthermore, the spatial overestimation and underestimation of chemical
components have been significantly mitigated following DA. Compared to multiple reanalysis datasets of inorganic salt
aerosols (CORR: 0.56-0.89, RMSE: 2.55-8.52 pg m), the dataset generated by OIRF-LEnKF v1.0 (CORR: 0.97, RMSE:
1.12 pug m) demonstrates higher data quality.

1 Introduction

Sulfate (SO4*), nitrate (NOs’), ammonium (NH4"), organic carbon (OC), and black carbon (BC) are critical chemical
components of fine particulate matter (PM>s) (Huang et al., 2014). The physicochemical processes of these chemical

components within the atmospheric boundary layer, including chemical conversion, transboundary transport and deposition,
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directly influence air quality associated with PM» s (Yang et al., 2024). Observational studies reveal that the contribution of
transboundary transport increased from 4-8 % to 66-80 % during severe PM,s pollution episodes (Sun et al., 2016).
Furthermore, these components with varying physicochemical properties exert varying impacts on human health (Li et al.,
2022) and climate change (Stier et al., 2024; Zhao et al., 2024). Therefore, characterizing the spatiotemporal distribution and
evolution of PM s chemical components provides a scientific basis for identifying the causes of air pollution, assessing

health and climate impacts, and developing effective climate change mitigation strategies and emission pathways.

Observation techniques, machine learning (ML) methods, and chemical transport models (CTMs) are the primary
approaches for acquiring mass concentrations of PM s chemical components. Observation techniques achieve high-precision
measurements through field sampling and instrument analysis (Wang et al., 2016; Lei et al., 2021). However, the sparse
distribution of observation points, limited observation pathways, inconsistencies in observation platforms, and measurement
errors hinder the acquisition of continuous measurements with high spatiotemporal coverage. ML methods utilize historical
observations to establish mapping relationships between features of non-chemical and chemical components, thereby
reconstructing the mass concentrations of chemical components continuously without the need for traditional instrument
measurements (Li et al., 2025; Wei et al., 2023; Liu et al., 2022). However, ML methods are limited by the lack of
physicochemical constraints and insufficient spatiotemporal representativeness of historical observations, which results in
inadequate generalization capabilities and interpretability. CTMs can characterize the spatiotemporal distribution and
evolution of chemical components by solving equations that describe physicochemical mechanisms rather than relying on
observations (Weagle et al., 2018). However, the uncertainties in physicochemical mechanisms, emission inventories,
meteorological fields, as well as initial and boundary conditions result in significant simulation bias (Miao et al., 2020; Xie

et al., 2022; Luo et al., 2023).

Data assimilation (DA) can integrate observations from sparse sites and CTMs to estimate an optimal initial state with spatial
continuity and high accuracy based on the model forecast field (Geer, 2021). DA technique has been widely used to generate
reanalysis datasets of PM,s chemical components at global and national scales, such as the Copernicus Atmosphere
Monitoring Service ReAnalysis (CAMSRA) (Inness et al., 2019), the Modern-Era Retrospective Analysis for Research and
Applications Version 2 (MERRA) (Randles et al., 2017), and the Air Quality ReAnalysis in China dataset (CAQRA-aerosol)
(Kong et al., 2025). However, these datasets only assimilate the aerosol optical depth and conventional atmospheric
pollutants at the surface level, indirectly enhancing simulations of chemical components. Consequently, the correlation

between observations and these datasets is not statistically significant (R: 0.21 to 0.7) (Kong et al., 2025).

Our previous work developed a novel hybrid nonlinear ensemble data assimilation system (NAQPMS-PDAF v2.0, NP2) for
directly assimilating observations of chemical components (Li et al., 2024). However, CTM-based NP2 requires a reduction

in ensemble size to maintain computational efficiency during forecasting and assimilation processes within high-dimensional
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state spaces, resulting in insufficient ensemble spread (Chattopadhyay et al., 2023). Consequently, the correlation (R: 0.12-
0.72) between observations and analysis fields at independent validation sites showed only minor improvement compared to
the datasets mentioned above. Furthermore, the low sensitivity of forecast fields in NP2 to assimilation frequency suggests
that improvements in initial conditions have limited effects on enhancing forecast ability on PM> s chemical components due

to the uncertainties in physicochemical mechanisms and input conditions within CTMs (Cha et al., 2025).

In recent years, the combination of ML and DA has emerged as a pivotal strategy for addressing challenges associated with
computational inefficiency and insufficient improvements in forecasting and analysis fields. The first pathway employs the
ML outputs as external constraints for DA, such as forecasting addition (Lin et al., 2019; Jin et al., 2019), bias correction
(Arcucci et al., 2021; Farchi et al., 2021; He et al., 2023), parameter estimation (Legler and Janji¢, 2022), and observation
operator improvement (Lee et al., 2022). This pathway enhances forecasting and DA processes without perturbing the
physical properties of the numerical models but fails to improve computational efficiency. The second pathway utilizes ML
as an alternative to DA for generating analysis fields directly from high-density observations (Howard et al., 2024). This
pathway mitigates the limitations of traditional DA algorithms in handling high-resolution observations while diminishing
the physical dependence of observation propagation within model state space. The third pathway substitutes traditional
numerical models with ML models to provide the forecast fields for DA (Dong et al., 2022; Dong et al., 2023; Yang and
Grooms, 2021) and utilize the analysis fields to update ML model parameters, thereby enhancing forecasting performance
(Brajard et al., 2020; Gottwald and Reich, 2021). This pathway improves computational efficiency by 78.3% while
maintaining high DA accuracy (Dong et al., 2022) and mitigates the adverse impact of low-quality data on ML forecasting
(Buizza et al., 2022). However, to the best of our knowledge, this pathway has not yet been utilized in atmospheric chemical

DA.

This study proposes an optimized incremental Random Forest (OIRF) forecasting model as a solution to the challenges of
computational inefficiency and inadequate advancements in forecasting and analysis fields within traditional CTM-based
DA. The OIRF model is capable of generating a large number of forecasting ensemble members at a reduced computational
cost, which mitigates the underestimation of forecast error covariance. Additionally, it can dynamically update by integrating
new training data, allowing it to adapt to the evolving dynamics of PM;s chemical components, thereby enhancing its
generalization capability for forecasting. Then, the OIRF model is online coupled with the localized ensemble Kalman filter
(LEnKF) algorithm to develop a novel self-evolving data assimilation system (OIRF-LEnKF v1.0), which achieves a rapid
iteration for high-quality forecasting, assimilation, and incremental learning. Section 2 details the development of OIRF-
LEnKF v1.0, the data used in this study and experimental settings. Section 3 presents the DA results, including an evaluation
of computational efficiency, a discussion of sensitivity tests, and a validation of DA performance. Section 4 summarizes the

conclusions.
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2 Method and Data

2.1 OIRF-LEnKF v1.0

2.1.1 Structure of OIRF-LEnKF v1.0

The OIRF-LEnKF v1.0 performs a continuous loop of forecasting and assimilation for five PM, s chemical components
(SO4*, NO5", NH4", OC, and BC) through online coupling an optimized incremental Random Forest (OIRF) ensemble
forecasting model with the localized ensemble Kalman filter (LEnKF) algorithm (Fig. 1). The ML-based OIRF ensemble
forecasting model offers an effective alternative to conventional CTMs by promptly supplying forecasting ensemble
members of PM,s chemical components to the LEnKF algorithm and iteratively updating model parameters based on
analysis fields derived from the LEnKF algorithm. The LEnKF algorithm effectively assimilates chemical observations into
forecast fields, minimizing interference from spurious correlations by implementing localization schemes, thereby generating
high-accuracy analysis fields for the OIRF model. The online coupling of the OIRF model with the LEnKF algorithm
facilitates the iterative execution of ensemble forecasting, assimilation, and incremental learning at each time step.

Consequently, the OIRF-LEnKF v1.0 is capable of generating high-quality forecasting and analysis fields while

simultaneously undergoing self-evolution.

Initial conditions for model training at t'st

Input conditions for time loops
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Figure 1. The framework of OIRF-LEnKF v1.0.
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As shown in Fig. 1, the fundamental workflow of OIRF-LEnKF v1.0 is as follows.

Step 1. Initial training of the OIRF model. The training data at the first timestep serve as the initial conditions for
constructing the OIRF model. The input features include meteorological parameters, including temperature, relative
humidity, U-component wind, V-component wind, and geopotential, as well as anthropogenic atmospheric pollutants,
including PM, s, PMjo, SOz, NO,, CO, and Os. The output features are SO4>", NOs, NH4*, OC, and BC.

Step 2. Scoring the forecasting performance of ensemble decision trees in the OIRF model using mean absolute error (MAE)
and screening out the decision trees with poor forecasting performance based on a predefined threshold.

Step 3. Generating a forecast ensemble of PM, s chemical component concentrations at the current timestep using the OIRF
model, along with the current meteorological and anthropogenic input data.

Step 4. Generating the analysis fields of PM» s chemical component concentrations at the current timestep by assimilating
chemical observations into forecast fields using the LEnKF algorithm.

Step 5. Incremental learning of the OIRF model. High-quality analysis fields at the current time step, along with current
meteorological and anthropogenic input data, are employed to train a new ensemble of decision trees. The old decision trees,
which exhibit poor forecasting performance, are subsequently replaced with new decision trees to enhance the forecasting

accuracy and generalization ability of the OIRF model. Repeat steps 2-5 until the end of the loop.

2.1.2 Optimized Incremental Random Forest (OIRF)

The OIRF model utilizes the Random Forest (RF) algorithm to establish a mapping relationship between anthropogenic
atmospheric pollutants (PMas, PMjo, SOz, NO», CO, and O3), meteorological conditions (temperature, relative humidity, U-
component wind, V-component wind, and geopotential), and the five PM, s chemical components (SO4*, NOs-, NH4", OC,
and BC). The RF model consists of N decision trees (DTs), each using an independently and identically distributed random
vector (6,) to facilitate feature random selection and sample bootstrapping. This approach enhances the diversity among DTs
while maintaining the forecasting capability of each DT (Breiman, 2001). Unlike conventional ensemble forecasts that rely
on multiple CTMs, RF can swiftly generate an ensemble of forecasting members required for DA from multiple DTs without

requiring external ensemble perturbation. The forecast fields of the RF model represent the average of all DT outputs (Eq.

().
R0 = SN 2T (3, 6,) (1)

Where x represents the input features, including anthropogenic atmospheric pollutants and meteorological conditions.
fRF(x) denotes the forecast field of PM,s chemical component concentrations. N is the total number of DTs. 27 (x, 6,)
denotes the forecasting output of the n® DT and 8, is an independently and identically distributed random vector that

facilitates feature random selection and sample bootstrapping.
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The OIRF model incorporates a self-evolving mechanism into the RF model, enabling it to conduct incremental learning
from newly available training data. In the self-evolving mechanism, the OIRF model scores the forecasting performance of
each DT based on the mean absolute error (MAE), as shown in Eq. (2). The MAE is quantified by the forecast fields and

high-accuracy analysis fields at the same time step.

1
Jore = L3y = P 0a B n = 1.2, N @

Here, f;5¢°"¢ is the MAE value of the n" DT. K is the total number of grids of PM» s chemical component concentrations. y;

is the analysis value of concentrations at the n™ grid point after DA. fPT (x;, 6,) denotes the forecasting value of the n" DT at

the n'" grid point.

The self-evolving mechanism introduces a threshold (t,,) to screen out the DTs with poor forecasting performance. The
threshold is defined as the p™ percentile value of f7°°"®. As shown in Eq. (3), the old DTs with scores not higher than t,, are
retained, while the old DTs with scores higher than 1, will be replaced by new DTs obtained from the incremental learning
process.

DT fDT(yiTlitlx’ ea); féSCOTe S Tp, a = 1, 2, ey I\Ip

= s 3
new {fDT(yanalx, ), f5T¢ > 15, b =N, + N, +2,..,N 3)

Here, £PT represents the final forecasting output of the updated DTs following incremental learning. f°7 (Vinic|x, 62)

denotes the forecasting output of the retained old DTs while 2T (y,,q|x, 8) refers to the forecasting output of the new DTs.
T, indicates the p™ percentile value of f7°°", and N, signifies the number of retained old DTs that achieve a score not
exceeding T,. The p is set at 80 to prevent excessive updating of DTs, which may introduce instability into ensemble

forecasts of the OIRF model.
The final forecast field (f°'RF (x)) of the OIRF model is derived from Eq. (4) by averaging the forecasting outputs of the
updated DTs.

fOIRF (a0) = =Ny £27, (x, 6n) (4)

The self-evolving mechanism enhances the capacity of the OIRF model to incorporate newly available training data, thereby
improving its generalization ability in forecasting PM» s chemical component concentrations. Concurrently, the elimination

of old DTs with poor forecasting performance further increases the accuracy of the forecast fields.



205

210

215

220

225

230

The hyperparameters in the OIRF model, such as the minimum number of leaf node observations, the maximal number of
decision splits, and the number of predictors to select at random for each split, control the model structure and randomness
level (Probst et al., 2019). The OIRF model integrates the RF model with the Bayesian optimization algorithm to ensure the
statistical optimization of the hyperparameters. The Bayesian optimization algorithm incorporates hyperparameters as
decision variables within the objective function, thereby abstracting the optimization problem as a solution problem of the
objective function (Wu et al.,, 2019). This algorithm is capable of identifying the global optimal solution using fewer
iterations, thereby reducing the computational costs associated with evaluating the loss function and enhancing the
performance of the ML model (Shahriari et al., 2016). A probabilistic surrogate model and an acquisition function are two
essential components of the Bayesian optimization algorithm. The former is employed to approximate the complex objective
function, thereby minimizing computational costs. The latter is used to identify potential optimal decision variables and
update the surrogate model during iterative optimization. In this study, the surrogate model and acquisition function are
specifically implemented using a non-parametric Gaussian process regression model (Rasmussen, 2003, February) and the
Expected Improvement per Second Plus (Elps+) function (Gelbart et al., 2014). The detailed implementation of the Bayesian

optimization algorithm in machine learning models is described in our previous work (Li et al., 2025).

2.1.3 Localized Ensemble Kalman Filter (LEnKF)

LEnKF is an Ensemble Kalman Filter (EnKF) algorithm with localization schemes that mitigate filter divergence induced by
sampling errors of the estimated error covariance matrix (Nerger et al., 2012), thereby generating high-precision analysis
fields of PM,s chemical component concentrations. The EnKF is an extension of the Kalman filter, specifically designed for
atmospheric and oceanic DA with nonlinear and high-dimensional model state spaces (Houtekamer and Zhang, 2016). The
EnKF utilizes the Monte Carlo method to estimate a flow-dependent background error covariance matrix from an ensemble
of model states at each time step. This algorithm mitigates the high computational costs associated with the explicit
operations of high-dimensional matrices (Evensen, 1994; Evensen, 2003). In this study, the OIRF model replaced the
conventional CTMs to provide an ensemble of DT-based forecasting members for estimating the background error

covariance (Eq. (5)). The ensemble size in DA is equal to the total number of DTs in the OIRF model.
1 — S
P{ = EZ§=1(ftDT(x' Hn) - ftDT(x' Hn)) (ftDT(x' en) - f;:DT(xv en)) 5 (5)

Here, Ptf is the flow-dependent background error covariance matrix of PM» s chemical component concentrations at t.

The Kalman gain matrix (K) can be calculated by Eq. (6)-(8).

-1
K=P/H'(HP/H  +R,) , 6)

PIH = 3N (f27(x,00) = FP7Ce 0n)) (H(FET (x, 60)) — H(FPT (x, en)))T : @)

8
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HP/HT = 25 (H(fP7(x,0,)) - HRP (. 6,)) ) (H(F27 (x,6,)) — H(FT (6,6,))) - (8)

Here, K is the Kalman gain matrix. H, is the observation operator at t. R, is the observation error covariance matrix att,
which is a diagonal matrix. H is the linear observation operator. In this study, the observation operator solely conducts
spatial mapping between the observations and the forecast fields due to consistency in the variable and temporal dimensions.
The method employed for spatial mapping between observations from sparse sites and gridded forecast fields is the k-nearest

neighbor search (Friedman et al., 1977).

The final analysis fields (x{t®) can be obtained from the integration of forecast fields (f;”” (x, 8,)) and observations (y¢):

X = FPT(x, 0,) + K (y¢ +y'0, — H(fPT (,6,))),n = 1,2,..,N, ©)

Here, % is the analysis field of the n™ ensemble member at t. y¢ is the observation of PMys chemical components at t and

y’g . is the observation perturbation of the n'" ensemble member at t, characterized by a normal distribution with a mean of 0

and a standard deviation equal to the observation error.

The LEnKF integrates domain localization and observation localization into the EnKF algorithm to diminish the interference
of non-physical teleconnections within a high-dimensional model state space, especially for small ensemble sizes (Nerger et
al., 2012). The domain localization segments the global state space into several disjoint local state spaces, each of which
assimilates observations independently within a defined localization radius, thereby effectively increasing the rank of the
background covariance matrix and eliminating the interference of long-distance spurious correlations (Houtekamer and
Mitchell, 1998). The independence of the analysis process within the local state space facilitates parallel computation (Janji¢
et al., 2011). However, this may result in discontinuities at the boundaries of adjacent local state spaces. To address this
challenge, domain localization in our system conducts assimilation within a specific localization radius for each analysis grid
point (Fig. 2). The overlap of observations across analysis grid points smooths the boundaries of adjacent local state spaces.
However, grid-by-grid assimilation at a fine spatial resolution incurs high computational costs. To mitigate this issue, OIRF-
LEnKF v1.0 incorporates a second-level parallel computational framework that facilitates the simultaneous assimilation of
various chemical species and multiple analysis grid points (Fig. 2). Computational tasks for different chemical species are
allocated to independent computational nodes to prevent interference of spurious correlations among chemical species.
Subsequently, the grid points of each chemical component are assigned to multiple CPUs within these independent

computational nodes.
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Figure 2. The scheme for domain localization and parallelization.

Observation localization is combined with domain localization to enhance the physical authenticity of observation
propagation within state spaces (Nerger et al., 2012). This scheme conducts observation localization by applying the Schur

product between the observation error covariance matrix (R;) and a distance-based weight matrix (W) as shown in Eq. (10).
-1
K'=P/H"(HP/H+W R,) , (10)

Here, K" is the Kalman gain matrix applied observation localization, and W is a distance-based weight matrix, which is

diagonal.

The distance-based weight matrix (W) is obtained using a Gaussian function:

; —d(i,f)?
W= dlag(exp( 2£2] )) , (11)

Here, d(i, ) is the Euclidean distance between grid point i and observation point j. L is the decorrelation length.

2.1.4 Configurations

Table 1 presents the fundamental configuration parameters in OIRF-LEnKF v1.0. The state variables consist of five PM» s
key chemical components (SOs*, NOs, NH4*, OC and BC). The modeling domain encompasses North China, with a spatial

10
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range of 32.38-44.90 °N and 108.07-127.01 °E. The spatial and temporal resolutions are established at 5 km % 5 km and 1
hour, respectively. The data of the input feature utilized for training the OIRF forecasting model are outlined in Sec. 2.2.1,
including U-component wind, V-component wind, temperature, relative humidity, geopotential, and the mass concentrations
of PMa s, PMjo, SO», NO,, CO, and Os. The ensemble sizes employed in the assimilation experiments are 2, 5, 10, 15, 20, 30,
40, 50, 100, and 200. The update frequencies for incremental learning in the experiments include 0 (no update), 18-hour
intervals, 12-hour intervals, 6-hour intervals, and 1-hour intervals. The experimental design is detailed in Sec. 2.3.
Hyperparameters in the OIRF model, such as the minimum number of leaf node observations, the maximum number of
decision splits, and the number of predictors to select at random for each split, are tuned using Bayesian optimization over 30
iterations. The training data are re-partitioned at each optimization iteration to enhance the robustness of the OIRF model.
Regarding the DA-related parameters, the localization radius and decorrelation length are set to 200 km and 80 km,
respectively, based on the spatial range and resolution requirements. The assimilation frequency matches the temporal

resolution of 1 hour.

Table 1. Fundamental configuration parameters in OIRF-LEnKF v1.0.

Category Parameter Setting
State variable SO4%, NO;, NH4*, OC and BC
. North China
Model domain (32.38°N -44.90°N, 108.07°E-127.01°E)
Spatial resolution 5 kmx5 km
Temporal resolution l1h
Meteorological input U-component wind, V-component wind,
feature temperature, relative humidity and geopotential

Anthropogenic input

Ensemble PM, 5, PMjo, SO2, NO2, CO and O3
forecast feature
Ensemble size 2,5, 10, 15, 20, 30, 40, 50, 100, 200
0, 18-h interval, 12-h interval, 6-h interval, 1-h
Update frequency )
interval
Hvperparameter for Minimum number of leaf node observations,
yperp . maximal number of decision splits, and number of
tuning . .
predictors to select at random for each split
Optimization iteration 30
Data partition Re-partition at every iteration
Algorithm LEnKF
Data Localization radius 200 km
assimilation Decorrelation length 80 km
Assimilation frequency lh

11
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2.2 Data
2.2.1 Features

The input features used in the OIRF model training include six anthropogenic air pollutants and five meteorological
parameters (Table 1). The hourly gridded data of anthropogenic air pollutants were obtained from Chinese Air Quality

ReAnalysis (CAQRA, https://doi.org/10.11922/sciencedb.00053, last access: 17 April 2025). CAQRA is generated by

assimilating surface observations of hourly concentrations of conventional air pollutants into the Nested Air Quality
Prediction Modeling System (NAQPMS), with a spatial resolution of 15 km x 15km and a 5-fold cross-validation R? of
0.52-0.81 (Kong et al., 2021). The hourly gridded data of meteorological parameters were obtained from the 5™ Generation
ECMWF ReAnalysis (ERAS, https://cds.climate.copernicus.eu/datasets, last access: 17 April 2025) with a horizontal
resolution of 0.25° x 0.25°. The output features include five PM, s chemical components (NH4*, NO5", SO4%, OC and BC).

The hourly gridded data of these components were obtained from the PM, s chemical composition dataset (CAQRA-aerosol,

https://doi.org/10.12423/capdb_PKU.2023.DA, last access: 17 April 2025). CAQRA-aerosol is developed based on a CTM-

based simulation method with an improved inorganic aerosol module and a constrained emission inventory, with a spatial
resolution of 15 km x 15km and a mean bias of less than 1.1 ug m> (Kong et al., 2025). Due to consideration of the
distribution of available ground-based observational sites for PM,s chemical components, the gridded data containing
various features in China have been transformed into a new grid with a spatial resolution of 5 km x 5km in North China,

utilizing a triangulation-based linear interpolation method (Amidror, 2002).

2.2.2 Observations

Observations of hourly mass concentrations of five PM,s chemical components (NH4*, NOs", SO4*, OC, and BC) were
collected over a two-month period (February to March 2022) from 33 ground-based sites in North China and its surrounding
areas. Of these 33 sites, 24 sites (designated as DA sites) were employed for DA and internal validation, while the remaining
9 sites (defined as VE sites) were used for independent verification to evaluate the influence of DA sites on neighboring
areas. The description of site distribution and the division method of DA sites and VE sites were detailed in our previous

work (Li et al., 2024).

2.2.3 Reanalysis dataset for comparison

The multi-source reanalysis datasets of PM,s chemical components were collected to assess the relative quality of the

reanalysis dataset generated by OIRF-LEnKF v1.0, including the CAQRA-aerosol, the Tracking Air Pollution in China

(TAP, http://tapdata.org.cn/, last access: 2 June 2025), the Copernicus Atmosphere Monitoring Service ReAnalysis

(CAMSRA, https://ads.atmosphere.copernicus.eu/, last access: 2 June 2025), the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2, https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last access: 2 June
2025) and the reanalysis dataset generated by NAQPMS-PDAF v2.0 (NP2, https://doi.org/10.5281/zenodo.10886914, last
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access: 2 June 2025). The High-resolution and High-quality Air Pollutants dataset for China (CHAP,
https://doi.org/10.5281/zenodo.10011898, last access: 2 June 2025) was not considered in this study because it did not cover

the observation period. The properties of the multi-source reanalysis datasets are presented in Table 2.

Table 2. Properties of the multi-source reanalysis datasets for PM: s chemical components.

. . . T 1 Vertical Spatial Spatial
Dataset Chemical species Period emp O.ra ° 1c.a patia pa 12.1
resolution resolution coverage resolution
CAQRA- SO4%, NH4", NO5- 2013- .
’ ’ 1-hourl face level h 15 kmx15 km
aerosol .0C, BC 2022 ourly Surface leve China 5 kmx15
SO42', NH4+, NO3' 2000- . .
TAP Dail face level h 10 kmx10 k
. OM. BC present aily Surface leve China 0 kmx10 km
2- + -
NP2 5045, (;\] CH;bNO3 Feb. 2022 1-hourly Surface level ~ North China 5 kmx5 km
i 2003-
CAMSRA NOs", NH4* 2004 3-hourly Pressure level Global 0.75°x0.75°
. 1980- o o
MERRA-2 SO+, OM, BC present 1-hourly Surface level Global 0.5°x0.625

2.3 Experimental setting

We designed four experiments to evaluate the performance of OIRF-LEnKF v1.0 on forecast and analysis fields of the
concentrations of SO4*, NOy", NH4*, OC, and BC. In the first experiment, we conducted model training, forecasting, and
assimilation at the first time step using 10 distinct ensemble sizes (2, 5, 10, 15, 20, 30, 40, 50, 100, and 200) to assess the
dependence of computational efficiency on ensemble size. In the second experiment, we performed 24-timestep forecasting
and assimilation across 30 different scenarios, which comprised all possible combinations of 6 ensemble sizes (20, 30, 40, 50,
100, and 200) and 5 varied update frequencies for incremental learning (no update, 18-h interval, 12-h interval, 6-h interval,
and 1-h interval). This design aimed to evaluate the sensitivity of forecasting and assimilation performance to ensemble size
and update frequency. In the third experiment, we conducted a 2-month forecasting assimilation using ground-level
observations at 24 DA sites to comprehensively assess the capabilities of OIRF-LEnKF v1.0 in interpreting the
spatiotemporal distribution of PMjs chemical component concentrations. In the fourth experiment, we simultaneously
assimilated all ground-level observations at 33 sites to generate a 1-month reanalysis dataset of PM, s chemical component
concentrations in North China and compared it with multiple reanalysis datasets. The observation errors in the four
experiments were set at 0.5 pg m> (NH4"), 0.5 ug m (NOs"), 1.0 pg m (SO4%), 3.0 ug m= (OC), and 0.5 ug m= (BC), with

the assumption that the observation errors were spatially isotropic in state space to reduce computational complexity.
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3 Results and discussion
3.1 Computational efficiency

As shown in Fig. 3, we evaluate the computational efficiencies of hyperparameter tuning, forecasting and assimilation.
Previous studies have indicated that the Bayesian optimization algorithm is both efficient and stable for hyperparameter
tuning in various ML models (Lai, 2024). In this section, we validate its stability within the OIRF model and computational
costs. Figure 3a demonstrates that both the estimated and observed minimum objective values initially decrease rapidly and
subsequently converge within 10 iterations across all ensemble sizes, indicating the convergence stability and high efficiency
of the OIRF model. In addition, the consistency in both the magnitude and variation between the estimated and observed
minimum objective values suggests that the surrogate model employed in Bayesian optimization exhibits a high fitting
accuracy for the objective function. Although the time consumed during each iteration increases positively with ensemble
size, the number of optimal hyperparameter searches remains relatively insensitive to ensemble size. As illustrated in Figure
3b, the minimum value of the total observed objectives decreases significantly as the ensemble size increases, ranging from 2
to 20, indicating that a larger ensemble size enhances the optimization accuracy of the OIRF model. Notably, when the
ensemble size exceeds 20, the rate of improvement in optimization accuracy diminishes. The total time consumed by the
optimization process increases gradually with ensemble sizes ranging from 2 to 50 but rises sharply beyond an ensemble size
of 50. Therefore, an ensemble size of 50 is determined to be optimal for the OIRF model, effectively balancing the

optimization accuracy and efficiency.
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Figure 3. Computational efficiency of OIRF-LEnKF v1.0. (a) Variation in the minimum objective value throughout the Bayesian
optimization process and time consumed by each iteration, (b) minimum value of total observed minimum objectives and total
time consumed during Bayesian optimization process for different ensemble sizes, (c) time consumed by model forecasting and
data assimilation at each timestep for OIRF-LEnKF and NAQPMS-PDAF v2.0 (NP2), and the ratio of total time consumed
between OIRF-LEnKF and NP2, (d) the ratio of time consumed by model forecasting and data assimilation between OIRF-
LEnKF and NP2. FOR represents the forecast phase, and DA represents the data assimilation phase. The elapsed time of the
OIRF-LEnKF forecast process in Figure 3c has been magnified by a factor of 10 for better clarity.
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The computational costs of OIRF-LEnKF v1.0 in forecasting and assimilation processes were compared with those of a
CTM-based DA system (NP2). To ensure comparability of computational expenses between OIRF-LEnKF v1.0 and NP2,
the number of CPUs allocated for each grid calculation was intentionally set closer, at 35 and 50, respectively. As illustrated

375 in Fig. 3c, the total time consumed by forecasting and assimilation for OIRF-LEnKF v1.0 amounts to only 11.41% to 16.60%
of that for NP2, especially during the forecasting process, which accounts for merely 0.13% to 0.20% (Fig. 3d). The marked
improvement in forecasting efficiency by OIRF-LEnKF v1.0 is comparable to the deep neural network-based forecasting
model (Adie et al., 2024). This enhancement is primarily attributed to the fact that ML-based forecasting does not necessitate
a profound understanding of the complex physicochemical mechanisms of the atmosphere (Fang et al., 2022), whereas

380 CTM-based forecasting involves intricate computations of a large number of chemical species and reaction processes (Zaveri
and Peters, 1999; Stockwell et al., 1990). The computational efficiency of OIRF-LEnKF v1.0 during the DA stage is slightly
lower than that of NP2, as its time consumed is 1.76 to 3.02 times greater than that of NP2 (Fig. 3d), primarily due to minor
differences in the DA algorithm and the number of CPUs allocated.

385 As the ensemble size increases from 2 to 50, the total time consumed for OIRF-LEnKF v1.0 and NP2 increases by 17.91 s
and 39.53 s, respectively. Specifically, the time consumed by forecasting increases by 0.22 s and 39.53 s, respectively, while
the time consumed by assimilation increases by 17.69 s and 0 s, respectively. Although the time consumed by assimilation
for OIRF-LEnKF v1.0 is sensitive to ensemble size, the total time consumed remains relatively low (less than 50 s) at an
ensemble size of 50. Given that the ensemble spread typically correlates positively with ensemble size (Lei and Whitaker,

390 2017), configuring an ensemble size of 50 in OIRF-LEnKF v1.0 offers an optimal balance among optimization accuracy,

optimization efficiency, time consumed by forecasting and assimilation, and ensemble spread.

3.2 Sensitivity to parameterization scheme

The ensemble size and update frequency for incremental learning are critical parameters that influence the forecasting and
analysis capabilities of OIRF-LEnKF v1.0. Specifically, the ensemble size affects the estimation of the background error
395 covariance matrix (Valler et al., 2019), which determines the observation propagation at the analysis step and the uncertainty
range of the ensemble forecast at the forecast step. The update frequency for incremental learning drives the adaptability of
the ML-based forecasting model to non-stationary data distributions (Shaheen et al., 2022), thereby influencing the

generalization ability at the forecast step and indirectly affecting the background error information at the analysis step.

400 During the ML forecast process, the statistical indicators that compare the forecast fields and observations for OIRF-LEnKF
v1.0 exhibit a pronounced sensitivity to update frequency but are less sensitive to ensemble size. With a fixed ensemble size,
the correlation coefficient (CORR) increases as the update frequency rises (Fig. 4a). At the same time, the root mean square
error (RMSE) decreases significantly with a higher update frequency (Fig. 4b). Specifically, the CORR rises by 2.28 % to
11.75 %, and the RMSE decreases by 32.94 % to 40.98 % when comparing a 1-hour update frequency to the scenario
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405 without incremental learning, which indicates that high-frequency incremental learning effectively enhances the adaptability
of the statically trained ML model to the non-stationary data distributions, enabling it to demonstrate improved
generalization capabilities and higher forecast accuracy in rapidly changing chemical component forecasts. Notably, an
increase in ensemble size can amplify the effect of incremental learning on forecast errors. Specifically, the reduction in
RMSE at an ensemble size of 100 is approximately 8% greater than at an ensemble size of 20 when comparing a 1-hour

410 update frequency to a scenario without incremental learning, which is attributed to the fact that as the ensemble size
increases, the probability density distribution becomes more accurate, leading to improved ensemble forecast skill (Chen,
2024).
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415 Figure 4. (a) Pearson correlation coefficient (CORR) for sensitivity test with six ensemble sizes (20, 30, 40, 50, 100, 200) and five
update frequencies (no update, 18-hour interval, 12-hour interval, 6-hour interval and 1-hour interval) at the forecast step. (b)
Same as (a) but for root mean square error (RMSE) at the forecast step. (¢) Same as (a) but for CORR at the analysis step. (d)
Same as (a) but for RMSE at the analysis step.
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During the DA analysis phase, the statistical indicators that compare the analysis fields and observations for OIRF-LEnKF
v1.0 are found to be significantly dependent on the ensemble size rather than the update frequency. With a fixed update
frequency, excluding the 1-hour update frequency, the CORR increases considerably with a larger ensemble size (Fig. 4c).
At the same time, the RMSE decreased markedly as the ensemble size increases (Fig. 4d). Specifically, the CORR increased
by 8.94 % to 19.04 %, and the RMSE decreased by 20.15 % to 30.48 % when comparing an ensemble size of 200 to that of
20. This improvement is attributed to the enhanced accuracy of estimating the background error covariance matrix, resulting
from a larger ensemble size, which enables the effective propagation of observations within the model state space. (Valler et
al., 2019). However, the 1-hour update frequency diminishes the dependence of the analysis fields on the ensemble size. This
interference may result from high-frequency incremental learning, which causes the new DTs in the OIRF model to diverge
from the existing DTs, leading to a deviation in the background error covariance structure from the true state. Consequently,
although the 1-hour update frequency can significantly enhance the forecasting performance, we configured an ensemble
size of 50 with a 6-hour update frequency in OIRF-LEnKF v1.0 to balance computational efficiency, ML forecasting

accuracy, and DA analysis performance.

3.3 Evaluation of DA results

This section assesses the performance of the background control field without DA and incremental learning (BAC), the
forecast field with incremental learning (FOR) and the analysis field with DA (ANA) in interpreting the spatiotemporal

distribution of PM> s chemical components.

3.3.1 Assessment of temporal variation in chemical components

Figure 5 presents the time series of errors (observations minus OIRF-LEnKF v1.0 outputs) and statistical indicators
comparing observations with BAC, FOR, and ANA across 33 ground-level sites. As illustrated in Fig. 5al-a3, the errors of
BAC for NH4", NO5", and SO4% ranged from -2.30 £ 1.97 pg m™ to 8.84 £ 5.04 ug m=, -7.60 £ 5.29 pg m to 14.64 = 17.20
pg m3, and -4.31 + 3.81 pg m3 to 9.61 + 6.00 pg m~, respectively. The overall errors of BAC for NH4*, NOs, and SO4* are
positive and relatively dispersed, suggesting a general underestimation of inorganic salt concentrations. Conversely, the
errors of FOR concentrated to a range of -2.66 + 4.18 pg m™ to 5.18 £ 4.87 pg m> (NHs"), -7.17 £ 10.75 pg m™ to 10.07 +
7.48 ug m> (NOj3’), and -1.37 = 1.98 pg m? to 6.50 + 4.81 pg m3 (SO4>), indicating that incremental learning enhances the
ability to capture the temporal features of inorganic salt concentrations. Compared to BAC and FOR, the errors of ANA
predominantly concentrated around zero over time, signifying that DA significantly enhances the capacity to interpret the
temporal variation of inorganic salt concentrations. Unlike inorganic salt aerosols, the errors of BAC for OC and BC ranged
from -12.18 £ 4.09 pg m= to -1.11 £ 2.78 ug m> and -5.41 = 1.39 ug m to -0.87 + 0.57 pg m?3, respectively, with a general
overestimation of carbonaceous aerosol concentrations (Fig. 5a4, a5). The errors of FOR and ANA are relatively similar,

both concentrating around zero over time due to the effects of incremental learning and DA.
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Fig. 5b-e presents the CORR and RMSE for the time series of five PM» s chemical components across 24 DA sites and 9 VE
sites. For the DA sites, the CORR values of BAC for NH4*, NO5, SO4*, OC, and BC ranged from 0.24 to 0.76, 0.25 to 0.76,
0.11 to 0.64, 0.33 to 0.77, and 0.12 to 0.62, respectively (Fig. 5b). The RMSE values varied from 2.64 to 9.15 ug m, 4.73 to
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16.24 pg m>, 2.31 to 10.24 pg m3, 4.57 to 10.41 pg m3, and 1.36 to 3.42 ug m>, respectively (Fig. 5c). Following
incremental learning, the CORR and RMSE values of FOR demonstrated a more concentrated data distribution than those of
BAC, with average CORR (0.42 to 0.83) and RMSE (0.99 to 7.80 ug m™) values increasing by 5.61 % to 114.28 % and
decreasing by 26.38 % to 61.75 %, respectively. Additionally, compared to the FOR of a CTM-based DA system, the FOR
of OIRF-LEnKF v1.0 exhibited advancements of 19.14 % to 73.19 % and 33.16% to 90.10 % in CORR and RMSE,
respectively (Table 3). This finding indicates that the self-evolving mechanism, characterized by incremental learning, is
more effective than the optimal estimation of initial conditions in enhancing PM, s chemical component forecasts, which is
attributed to the fact that the enhancement in ML-based forecasting by incremental learning is global, while the CTM-based
forecasting is still constrained by the uncertainties in emission inventories and physiochemical mechanisms in addition to
initial conditions (Mallet and Sportisse, 2006; Luo et al., 2023). After DA, the CORR and RMSE values of ANA for NH4",
NOs7, SO4%, OC, and BC exhibited a more concentrated data distribution than those of BAC and FOR. The average CORR
(0.58 to 1.00) and RMSE (0.80 to 2.36 ug m™) values demonstrated advancements of 35.27 % to 187.15 % and 68.99 % to
91.31 %, respectively, compared to BAC, and advancements of 18.85 % to 38.73 % and 19.71 % to 88.20 %, respectively,
compared to FOR.

Table 3. The correlation coefficient (CORR) and root mean square error (RMSE, pg m™3) of OIRF-LEnKF v1.0 (this study) and
NAQPMS-PDAF v2.0 (NP2) at DA sites and VE sites for NH4+, NO3-, SO42-, OC and BC, as well as the improvement (%) of this
study relative to NP2.

NH4* NOs SO42' OoC BC
DA VE DA VE DA VE DA VE DA VE
CORR
Thisstudy 085 0.82 0.86 0.85 0.66 0.63 054 053 031 037
NP2 0.60 0.53 050 0.40 053 052 044 038 026 023
Improve (%) 41.59 53.69 73.19 11049 23.59 2192 2391 41.60 19.14 64.16
RMSE (ugm™)

Thisstudy 335 3.07 6.70 5.94 380 371 347 319 117 1.12
NP2 5.01 488 11.13 10.73 6.86 7.23 18.71 20.69 11.78 13.30

Improve (%) 33.16 37.10 39.77 44.62 4459 48.73 81.48 84.58 90.10 91.55

For the VE sites without DA, the CORR values of BAC for NH4*, NO5", SO4*, OC, and BC ranged from 0.20 to 0.66, 0.25
to 0.71, -0.20 to 0.50, 0.13 to 0.66, and 0.15 to 0.47, respectively (Fig. 5d). The RMSE values varied from 3.39 to 8.25 pg m
3,8.04 to 14.18 ug m3, 3.94 to 7.04 ug m3, 6.23 to 10.05 pg m>, and 2.33 to 3.30 ug m>, respectively (Fig. 5e). After
incremental learning, the CORR and RMSE values of FOR exhibited a more concentrated data distribution than those of
BAC, with average CORR (0.39 to 0.81) and RMSE (0.93 to 7.76 ug m™) values increasing by 12.00 % to 124.69 % and
decreasing by 28.37 % to 68.00 %, respectively. Furthermore, compared to the FOR of a CTM-based DA system, the FOR
of OIRF-LEnKF v1.0 demonstrated advancements of 21.92 % to 110.49 % and 37.10 % to 91.55 % in CORR and RMSE,
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respectively (Table 3), with greater advancements at VE sites than those at DA sites, further demonstrating the advantages of
the self-evolving mechanism characterized by incremental learning for improving ML-based forecasts in a global scale.
After DA, the CORR and RMSE values of ANA for NH4", NO3", SO4*, OC, and BC ranged from 0.38 to 0.80 and 0.90 to
7.76 ug m?, respectively, showing a more concentrated data distribution than those of BAC and FOR. The average CORR
and RMSE values increased by 14.14% to 116.65% and decreased by 23.46% to 68.75%, respectively, compared to BAC,
indicating that the EnKF algorithm with localization schemes effectively propagates observations within the model state

space.

3.3.2 Assessment of spatial distribution in chemical components

Figure 6 presents the spatial distributions of observations from sparse sites (OBS), BAC, FOR and ANA for the average
concentrations of NH4*, NO3", SO4>, OC, and BC over a two-month period from February to March 2022. The OBS of NH,*
reveals that the concentrations at southern sites in North China are significantly higher than those at northern sites,
particularly in northern Henan Province, with a maximum concentration of 12.20 pg m> (Fig. 6al). However, BAC fails to
accurately capture the spatial patterns of NH4" concentration (Fig. 6a2), exhibiting underestimations at 100 % of DA sites
and 89 % of VE sites, with average underestimations of 2.71 pg m™ and 3.07 pg m™, respectively (Fig. 7al). This finding is
attributed to the underestimation of the original training samples (Kong et al., 2025). Compared to BAC, the FOR mitigates
the underestimation (Fig. 6a3), with 96 % of DA sites underestimating by 1.56 pg m and 78 % of VE sites underestimating
by 1.88 ug/m? (Fig. 7a2). After DA, ANA accurately depicts the spatial distribution of NH4" concentrations (Fig. 6a4), with
92 % of DA sites underestimating by 0.74 ug m™ and 44% of VE sites underestimating by 2.34 pg m?, respectively (Fig.
7a3). The increment field (INC) between ANA and FOR exhibits substantial positive increments in southern North China
(Fig. 7a4), indicating that the observations from 24 DA sites were effectively propagated within the model state space,

thereby addressing the underestimation of NH4" concentrations in the whole domain.
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515 Figure 7. Spatial distribution of observation minus background control field (OmB), observation minus forecast field (OmF),
observation minus analysis field (OmA) and analysis field minus forecast field (INC) for NH4* (al-a4), NOs3™ (b1-b4), SO4* (c1-c4),
OC (d1-d4) and BC (el-e4). The circle indicates the DA sites with data assimilation, and the upward-pointing triangle indicates the
VE sites without data assimilation.

520 The observed spatial distributions of NO;s  and SO4* are consistent with those of NH4", revealing significantly higher
concentrations at southern sites in the North China region than at northern sites, particularly in the Hebei-Henan-Shandong
junction areas (Fig. 6bl, cl). Although BAC can capture the spatial patterns of NOs; and SO.*, it significantly
underestimates their concentrations (Fig. 6b2, c2). Specifically, 63-79 % of DA sites and 89% of VE sites underestimate by
1.87-3.76 pg m™ and 1.57-3.44 pg m, respectively (Fig. 7bl, c1). Compared to BAC, FOR mitigates the underestimations

525 in the Hebei-Henan-Shandong junction areas and overestimations in the Beijing-Tianjin-Hebei eastern areas (Fig. 6b3, c3),

with improvements at most DA and VE sites (Fig. 7b2, c2). After DA, ANA accurately characterizes the spatial distribution
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of NO5~ and SO4* concentrations (Fig. 6b4, c4), with 88-100 % of DA sites and 56-67 % of VE sites merely underestimating
by 0.77-1.31 pg m> and 1.85-2.73 pug m, respectively (Fig. 7b3, c3). Furthermore, similar to the INC of NH4*, INCs of

NO5™ and SO+ exhibit widespread positive increments across the North China region (Fig. 7b4, c4).

In contrast to the spatial distributions of NH4", NOs™ and SO4*, the observed spatial distributions of OC and BC reveal that
concentrations in the North China region demonstrate spatial homogeneity (Fig. 6d1, el). However, BAC significantly
overestimated the concentrations of OC and BC in the North China region (Fig. 6d2, €2, and Fig. 7d1, el), with an average
overestimation of 6.12 pg m™ for OC and 1.99 pg m™ for BC at all DA sites, and 6.88 ug m™ for OC and 2.29 ug m? for BC
at all VE sites. Following incremental learning, FOR significantly reduced the overestimations (Fig. 6d3, e3, and Fig. 7d2,
€2), resulting in an average overestimation of 1.46 ug m= for OC and 0.53 pg m= for BC at 71-79 % of DA sites, and 1.56
pg m~ for OC and 0.65 pug m™ for BC at 89 % of VE sites. The number of sites exhibiting overestimation and the degree of
overestimation are markedly lower than those of BAC. After DA, ANA further mitigates the overestimation in FOR,
accurately interpreting the spatial distributions of OC and BC concentrations (Fig. 6d4, e4), with the gaps between the
observations and analysis fields for both DA and VE sites approaching 0 (Fig. 7d3, e3). Assimilating the observations from
24 DA sites effectively mitigates the overestimation in the southern North China region (Fig. 7d4, e4).

3.4 Comparison with multiple reanalysis datasets

In this section, we utilized OIRF-LEnKF v1.0 to generate an hourly reanalysis dataset of PM,s key chemical components
(SO4*, NO5", NH4*, OC and BC) for the North China region in February 2022. We compared it with multiple related
reanalysis datasets, including CAQRA-aerosol, TAP, Global-RA (CAMS and MERRA-2), and the dataset generated by NP2.
The temporal and spatial resolutions of CAQRA-aerosol, TAP, and Global-RA on both global and national scales are lower
than those of OIRF-LEnKF v1.0 and NP2 on the regional scale (Table 2). It is important to note that the spatial range and
resolution of OIRF-LEnKF v1.0 are contingent upon those of the available training data. Consequently, OIRF-LEnKF v1.0
has significant potential for elucidating the spatiotemporal distribution of PM»s chemical components on a global and

national scale.

Figure 8 illustrates the average values of observation minus analysis (OmA) over 1 month. For NH4* (Fig. 8al-a5), the mean
absolute OmA of OIRF-LEnKF v1.0 at a total of 33 sites (0.25 ug m™) is significantly lower than that of NP2 (0.81 pug m),
CAQRA (1.18 pg m3), TAP (0.92 ug m™), and Global-RA (2.92 ug m™). Furthermore, the OmA of OIRF-LEnKF v1.0 is
within £1 pg m3at 97 % of the sites, whereas NP2, CAQRA, TAP, and Global-RA had only 9-70 % of the sites within this
range. Most of the sites exhibit slight underestimations in NP2 and TAP, overestimations in CAQRA, and significant
underestimations in Global-RA, while the disparity between OIRF-LEnKF v1.0 and the observations is minimal. The
findings for NOj3™ are comparable to those for NH4" (Fig. 8b1-b5), the mean absolute OmA of OIRF-LEnKF v1.0 at a total of
33 sites (0.19 pg m™) is significantly lower than that of NP2 (0.93 ug m), CAQRA (8.42 pg m™), TAP (2.24 ug m~), and
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560 Global-RA (2.27 pg m™). Furthermore, the OmA of OIRF-LEnKF v1.0 is within +2 pg m at all sites, whereas NP2,
CAQRA, TAP, and Global-RA had only 3-94 % of the sites within this range. The similar spatial patterns of OmA for NH4"
and NOjs™ are related to thermodynamic equilibrium (Nenes et al., 1998) and consistency between NH4" and NO; has also

been observed in previous works (Sun, 2018; Shi et al., 2021; Wu et al., 2022).
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Figure 8. Difference between observations at a total of 33 sites and five reanalysis datasets for NH4* (al-a5), NOs~ (b1-b5), SO4*
(c1-¢5), OC (d1-dS) and BC (el-e5). Global-RA is the combination of CAMSRA and MERRA-2.
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For SO4> (Fig. 8cl-c5), the average absolute OmA of OIRF-LEnKF v1.0 (0.54 pug m™) is slightly lower than that of NP2
(0.86 ug m) but significantly lower than that of CAQRA (1.26 pg m), TAP (1.72 pg m), and Global-RA (7.19 ug m). In
contrast to NOs", most of the sites exhibit underestimation in CAQRA, overestimation in TAP, and significant overestimation
in Global-RA for SO4>. This discrepancy between NOs and SO4* arises from the competition for the capture of NHs. Thus,
the underestimation of SO4> is considered a factor in the overestimation of NOs™ (Xie et al., 2022). Unlike the four CTM-
based reanalysis datasets, OIRF-LEnKF v1.0 implements independent forecasting and DA processes for various chemical

components, thereby reducing the constraints imposed by correlations among variables.

The OmA of OC (Fig. 8d1-d5) and BC (Fig. 8e1—e5) exhibit similar spatial patterns. Specifically, the average absolute OmA
of OIRF-LEnKF v1.0 (0.66 ug m™ for OC and 0.40 pg m? for BC) is slightly higher than that of NP2 (0.23 ug m= for OC
and 0.03 pg m for BC) but significantly lower than those of CAQRA (2.90 ug m for OC and 1.32 ug m> for BC), TAP
(1.04 pug m= for OC and 0.65 pug m™ for BC), and Global-RA (1.62 ug m™ for OC and 5.85 ug m= for BC). The significant
overestimation of carbonaceous aerosols observed in CTM-based CAQRA and Global-RA is likely attributed to the
hygroscopic growth schemes of carbonaceous aerosols, the poorly constrained semi-volatile species that escape from
primary organic aerosols, and aging mechanisms (Soni et al., 2021; Huang et al., 2013). Overall, the reanalysis dataset
generated by OIRF-LEnKF v1.0 demonstrates lower errors in the concentrations of the five PM» s chemical components in

the North China region compared to four CTM-based datasets.

We further compared the differences in RMSE and CORR among five reanalysis datasets. As illustrated in Fig. 9a-c, the
CORR values of OIRF-LEnKF v1.0 for NH4", NOj3, and SO4* (mean CORR: 0.97, Fig. 9f) are significantly higher than
those of other datasets (mean CORR: 0.56 to 0.89, Fig. 9f), while the RMSE values (mean RMSE: 1.12 pg m?, Fig. 9g) are
significantly lower than those of other datasets (mean RMSE: 2.55-8.52 ug m, Fig. 9g). Furthermore, the RMSE values of
OIRF-LEnKF v1.0 are relatively concentrated across all sites, indicating a marked improvement in simulation of NH4*, NOs",
and SO4* across a broad spatial range. From Fig. 9d-¢, the CORR and RMSE values of OIRF-LEnKF v1.0 for carbonaceous
aerosols (OC and BC) (mean CORR: 0.68, Fig. 9f; mean RMSE: 1.49 ug m, Fig. 9¢) are slightly worse than those of NP2
(mean CORR: 0.97, Fig. 9f; mean RMSE: 1.66 ug m=, Fig. 9g) and are comparable to those of TAP (mean CORR: 0.66, Fig.
9f; mean RMSE: 1.49 ug m?, Fig. 9g), while demonstrating superiority over the other datasets (mean CORR: 0.28-0.44, Fig.
9f; mean RMSE: 4.49-11.70 pg m>, Fig. 9g). Overall, OIRF-LEnKF v1.0 exhibits a notable advantage in accurately
interpreting the concentrations of PM, s chemical components on a regional scale. Further improvements in the performance
of OIRF-LEnKF v1.0 in interpreting carbonaceous aerosols are expected by modifying the structure of the OIRF forecasting

model and the frequency of incremental learning, as well as by adopting hybrid nonlinear DA algorithms.
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RMSE (g) across all observational sites for the five reanalysis datasets for the five PM2.5 chemical components. Global-RA is the
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4 Conclusions

In this paper, we online coupled the OIRF model with the LEnKF algorithm to develop a self-evolving DA system (OIRF-
LEnKF v1.0) that mitigates the limitations of high computational costs and inadequate advancements in forecasting and
analysis fields of PMx s chemical components (NHs*, SO4>, NOs, OC and BC) in conventional CTM-based DA. The OIRF
model introduces a self-evolving mechanism that enhances the generalization ability of ML by iteratively absorbing newly
available training data to dynamically update the model structure. The domain localization and observation localization
schemes are incorporated into the EnKF algorithm within a second-level parallel computation framework, which effectively
reduces the interference of spatial and variable spurious correlations and improves computational efficiency. The findings

are outlined as follows.

OIRF-LEnKF v1.0 exhibits stable convergence capability and high convergence efficiency, achieving convergence within 10
iterations across ensemble sizes ranging from 2 to 200. Computational tests reveal that the total time consumed by OIRF-
LEnKF v1.0 constitutes only 11.41-16.60 % of that of CTM-based DA, particularly during the forecasting process (0.13-

0.20 %), demonstrating its superior computational efficiency.

Sensitivity tests reveal that the forecast fields in OIRF-LEnKF v1.0 are more sensitive to updating frequency within the self-
evolving mechanism. In contrast, the analysis fields exhibit a marked sensitivity to ensemble size. Specifically, the CORR
rises by 2.28-11.75 %, and the RMSE decreases by 32.94-40.98 % when comparing a 1-hour update frequency to the
scenario without incremental learning during the forecasting phase. Additionally, the CORR increases by 8.94-19.04 %, and
the RMSE decreases by 20.15-30.48 % when comparing an ensemble size of 200 to that of 20 during the DA analysis phase.
However, the 1-hour update frequency diminishes the dependence of the analysis fields on ensemble size. Thus, an ensemble
size of 50 with a 6-hour update frequency is configured to balance computational efficiency, ML forecasting accuracy, and

DA analysis performance.

A 2-month DA experiment demonstrates that the RMSE values for PM» s chemical components at DA sites range from 0.99
to 7.80 pg m after incremental learning and 0.80 to 2.36 pg m™ after DA analysis, exhibiting reductions of 26.38-61.75 %
and 68.99-91.31 %, respectively, compared to values obtained without incremental learning and DA analysis. For VE sites,
the RMSE values range from 0.93 to 7.76 pug m™ after incremental learning and 0.90 to 7.76 ug m™ after DA analysis,
exhibiting reductions of 28.37-68.00 % and 23.46-68.75%, respectively, relative to values obtained without incremental
learning and DA analysis. Notably, the RMSE values of our system during the forecasting process show a significant
reduction of 33.16-90.10 % at DA sites and 37.10-91.55 % at VE sites compared to those of CTM-based DA, highlighting
the superior forecasting capability of ML-based DA. Additionally, the spatial patterns of the forecast and analysis fields for

chemical components more accurately reflect those of the observations when employing incremental learning and DA.
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In comparison to the datasets provided by NP2, CAQRA, TAP, CAMSRA, and MERRA-2, the dataset generated by OIRF-
LEnKF v1.0 exhibits superior data quality. Notably, for NH4", NOs™ and SO4*, the CORR values of OIRF-LEnKF v1.0 (0.97)
are significantly higher than those of the aforementioned datasets (0.56-0.89). Additionally, the RMSE values of OIRF-
LEnKF v1.0 (1.12 pg m™) are markedly lower than those of the four reanalysis datasets (2.55-8.52 pg m™). Future work
should focus on generating reanalysis datasets that utilize configurations with larger domains and higher spatial resolutions,

as well as improving data quality through the application of deep learning techniques and hybrid nonlinear DA algorithms.
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