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Dear Dr. Juan A. Añel, 

 

Thank you for your email regarding the GMD Code and Data Policy. 

 

We wish to clarify that the ChinaHighPMC dataset was not used in this study. The concern regarding its 5 

repository status is therefore not applicable to our manuscript. 

 

All input data employed in our work are explicitly documented in Section 2.2 (“Data”) and are publicly 

available from the following repositories: 

 10 

Datasets Download DOI or website Paper DOI 

CAQRA https://doi.org/10.11922/sciencedb.00053 
https://doi.org/10.5194/essd-

13-529-2021 

CAQRA-

aerosol 

https://doi.org/10.12423/capdb_PKU.2023.D

A 

https://doi.org/10.1007/s0037

6-024-4046-5 

TAP http://tapdata.org.cn 
https://doi.org/10.1021/acs.est

.2c06510 

NP2 https://doi.org/10.5281/zenodo.10886914 
https://doi.org/10.5194/gmd-

17-8495-2024 

CAMSRA 
https://ads.atmosphere.copernicus.eu/datasets/

cams-global-reanalysis-eac4?tab=overview 

https://doi.org/10.5194/acp-

19-3515-2019 

MERRA-2 
https://disc.gsfc.nasa.gov/datasets?project=M

ERRA-2 

https://doi.org/10.1175/JCLI-

D-16-0609.1 

 

Furthermore, all output data from our experiments, including the test data, assimilation system outputs, 

and the reanalysis data used for comparison, have been publicly deposited on ZENODO 

(https://doi.org/10.5281/zenodo.16735735). This has been clearly declared in the "Code and Data 

Availability" section of our manuscript. 15 

 

All data and code related to this study are thus publicly accessible and fully compliant with GMD's 

policy. 

 

For your convenience, we have attached the version of the manuscript that passed the “files validated” 20 

stage on 15 August 2025. We trust this clarifies the matter and confirms our full adherence to the 

journal's policy. 

 

Should you require any further clarification, we are available to provide it. 
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Sincerely, 

Ting Yang 

Institute of Atmospheric Physics, Chinese Academy of Sciences 
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Abstract. Assimilating observational data into numerical forecasts is crucial for accurately estimating the spatiotemporal 

distribution of PM2.5 chemical components (NH4
+, NO3

-, SO4
2-, OC, and BC), which is beneficial to quantifying the impact 

of aerosols on the environment, climate change and human health. However, chemical transport model (CTM)-based data 40 

assimilation (DA) is computationally inefficient for large ensemble sizes and offers limited improvements in forecasting, as 

it solely provides optimal initial conditions. This paper introduces a machine learning (ML)-based self-evolving data 

assimilation system (OIRF-LEnKF v1.0) that achieves high efficiency and high quality in the forecast and analysis fields of 

chemical components. Computational efficiency tests indicate that the total time consumed by OIRF-LEnKF v1.0 constitutes 

only 11.41-16.60 % of that of CTM-based DA, particularly during the forecasting process (0.13-0.20 %). Sensitivity tests 45 

demonstrate that the self-evolution mechanism in our system enhances the Pearson correlation coefficient (CORR) and 

reduces the RMSE during the forecasting process by 2.28-11.75 % and 32.94-40.98 %, respectively, compared to the 

stationary training mechanism. A 2-month DA experiment reveals that the RMSE values of chemical components after DA 

are less than 7.80 µg m-3 and 2.36 µg m-3 during the forecasting and analysis processes, respectively, indicating reductions of 

at least 26.38 % and 68.99 % compared to values without DA. Notably, the RMSE values of our system during the 50 

forecasting process exhibit a significant reduction of 33.16-90.10 % compared to those of the CTM-based DA, highlighting 

the superior forecasting capability of our system. Furthermore, the spatial overestimation and underestimation of chemical 

components have been significantly mitigated following DA. Compared to multiple reanalysis datasets of inorganic salt 

aerosols (CORR: 0.56-0.89, RMSE: 2.55-8.52 μg m-3), the dataset generated by OIRF-LEnKF v1.0 (CORR: 0.97, RMSE: 

1.12 μg m-3) demonstrates higher data quality. 55 

1 Introduction 

Sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), organic carbon (OC), and black carbon (BC) are critical chemical 

components of fine particulate matter (PM2.5) (Huang et al., 2014). The physicochemical processes of these chemical 

components within the atmospheric boundary layer, including chemical conversion, transboundary transport and deposition, 
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directly influence air quality associated with PM2.5 (Yang et al., 2024). Observational studies reveal that the contribution of 60 

transboundary transport increased from 4-8 % to 66-80 % during severe PM2.5 pollution episodes (Sun et al., 2016). 

Furthermore, these components with varying physicochemical properties exert varying impacts on human health (Li et al., 

2022) and climate change (Stier et al., 2024; Zhao et al., 2024). Therefore, characterizing the spatiotemporal distribution and 

evolution of PM2.5 chemical components provides a scientific basis for identifying the causes of air pollution, assessing 

health and climate impacts, and developing effective climate change mitigation strategies and emission pathways. 65 

 

Observation techniques, machine learning (ML) methods, and chemical transport models (CTMs) are the primary 

approaches for acquiring mass concentrations of PM2.5 chemical components. Observation techniques achieve high-precision 

measurements through field sampling and instrument analysis (Wang et al., 2016; Lei et al., 2021). However, the sparse 

distribution of observation points, limited observation pathways, inconsistencies in observation platforms, and measurement 70 

errors hinder the acquisition of continuous measurements with high spatiotemporal coverage. ML methods utilize historical 

observations to establish mapping relationships between features of non-chemical and chemical components, thereby 

reconstructing the mass concentrations of chemical components continuously without the need for traditional instrument 

measurements (Li et al., 2025; Wei et al., 2023; Liu et al., 2022). However, ML methods are limited by the lack of 

physicochemical constraints and insufficient spatiotemporal representativeness of historical observations, which results in 75 

inadequate generalization capabilities and interpretability. CTMs can characterize the spatiotemporal distribution and 

evolution of chemical components by solving equations that describe physicochemical mechanisms rather than relying on 

observations (Weagle et al., 2018). However, the uncertainties in physicochemical mechanisms, emission inventories, 

meteorological fields, as well as initial and boundary conditions result in significant simulation bias (Miao et al., 2020; Xie 

et al., 2022; Luo et al., 2023).  80 

 

Data assimilation (DA) can integrate observations from sparse sites and CTMs to estimate an optimal initial state with spatial 

continuity and high accuracy based on the model forecast field (Geer, 2021). DA technique has been widely used to generate 

reanalysis datasets of PM2.5 chemical components at global and national scales, such as the Copernicus Atmosphere 

Monitoring Service ReAnalysis (CAMSRA) (Inness et al., 2019), the Modern-Era Retrospective Analysis for Research and 85 

Applications Version 2 (MERRA) (Randles et al., 2017), and the Air Quality ReAnalysis in China dataset (CAQRA-aerosol) 

(Kong et al., 2025). However, these datasets only assimilate the aerosol optical depth and conventional atmospheric 

pollutants at the surface level, indirectly enhancing simulations of chemical components. Consequently, the correlation 

between observations and these datasets is not statistically significant (R: 0.21 to 0.7) (Kong et al., 2025).  

 90 

Our previous work developed a novel hybrid nonlinear ensemble data assimilation system (NAQPMS-PDAF v2.0, NP2) for 

directly assimilating observations of chemical components (Li et al., 2024). However, CTM-based NP2 requires a reduction 

in ensemble size to maintain computational efficiency during forecasting and assimilation processes within high-dimensional 
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state spaces, resulting in insufficient ensemble spread (Chattopadhyay et al., 2023). Consequently, the correlation (R: 0.12-

0.72) between observations and analysis fields at independent validation sites showed only minor improvement compared to 95 

the datasets mentioned above. Furthermore, the low sensitivity of forecast fields in NP2 to assimilation frequency suggests 

that improvements in initial conditions have limited effects on enhancing forecast ability on PM2.5 chemical components due 

to the uncertainties in physicochemical mechanisms and input conditions within CTMs (Cha et al., 2025). 

 

In recent years, the combination of ML and DA has emerged as a pivotal strategy for addressing challenges associated with 100 

computational inefficiency and insufficient improvements in forecasting and analysis fields. The first pathway employs the 

ML outputs as external constraints for DA, such as forecasting addition (Lin et al., 2019; Jin et al., 2019), bias correction 

(Arcucci et al., 2021; Farchi et al., 2021; He et al., 2023), parameter estimation (Legler and Janjić, 2022), and observation 

operator improvement (Lee et al., 2022). This pathway enhances forecasting and DA processes without perturbing the 

physical properties of the numerical models but fails to improve computational efficiency. The second pathway utilizes ML 105 

as an alternative to DA for generating analysis fields directly from high-density observations (Howard et al., 2024). This 

pathway mitigates the limitations of traditional DA algorithms in handling high-resolution observations while diminishing 

the physical dependence of observation propagation within model state space. The third pathway substitutes traditional 

numerical models with ML models to provide the forecast fields for DA (Dong et al., 2022; Dong et al., 2023; Yang and 

Grooms, 2021) and utilize the analysis fields to update ML model parameters, thereby enhancing forecasting performance 110 

(Brajard et al., 2020; Gottwald and Reich, 2021). This pathway improves computational efficiency by 78.3% while 

maintaining high DA accuracy (Dong et al., 2022) and mitigates the adverse impact of low-quality data on ML forecasting 

(Buizza et al., 2022). However, to the best of our knowledge, this pathway has not yet been utilized in atmospheric chemical 

DA. 

 115 

This study proposes an optimized incremental Random Forest (OIRF) forecasting model as a solution to the challenges of 

computational inefficiency and inadequate advancements in forecasting and analysis fields within traditional CTM-based 

DA. The OIRF model is capable of generating a large number of forecasting ensemble members at a reduced computational 

cost, which mitigates the underestimation of forecast error covariance. Additionally, it can dynamically update by integrating 

new training data, allowing it to adapt to the evolving dynamics of PM2.5 chemical components, thereby enhancing its 120 

generalization capability for forecasting. Then, the OIRF model is online coupled with the localized ensemble Kalman filter 

(LEnKF) algorithm to develop a novel self-evolving data assimilation system (OIRF-LEnKF v1.0), which achieves a rapid 

iteration for high-quality forecasting, assimilation, and incremental learning. Section 2 details the development of OIRF-

LEnKF v1.0, the data used in this study and experimental settings. Section 3 presents the DA results, including an evaluation 

of computational efficiency, a discussion of sensitivity tests, and a validation of DA performance. Section 4 summarizes the 125 

conclusions. 
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2 Method and Data 

2.1 OIRF-LEnKF v1.0 

2.1.1 Structure of OIRF-LEnKF v1.0 

The OIRF-LEnKF v1.0 performs a continuous loop of forecasting and assimilation for five PM2.5 chemical components 130 

(SO4
2-, NO3

-, NH4
+, OC, and BC) through online coupling an optimized incremental Random Forest (OIRF) ensemble 

forecasting model with the localized ensemble Kalman filter (LEnKF) algorithm (Fig. 1). The ML-based OIRF ensemble 

forecasting model offers an effective alternative to conventional CTMs by promptly supplying forecasting ensemble 

members of PM2.5 chemical components to the LEnKF algorithm and iteratively updating model parameters based on 

analysis fields derived from the LEnKF algorithm. The LEnKF algorithm effectively assimilates chemical observations into 135 

forecast fields, minimizing interference from spurious correlations by implementing localization schemes, thereby generating 

high-accuracy analysis fields for the OIRF model. The online coupling of the OIRF model with the LEnKF algorithm 

facilitates the iterative execution of ensemble forecasting, assimilation, and incremental learning at each time step. 

Consequently, the OIRF-LEnKF v1.0 is capable of generating high-quality forecasting and analysis fields while 

simultaneously undergoing self-evolution. 140 

 

 

Figure 1. The framework of OIRF-LEnKF v1.0. 
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As shown in Fig. 1, the fundamental workflow of OIRF-LEnKF v1.0 is as follows. 145 

Step 1. Initial training of the OIRF model. The training data at the first timestep serve as the initial conditions for 

constructing the OIRF model. The input features include meteorological parameters, including temperature, relative 

humidity, U-component wind, V-component wind, and geopotential, as well as anthropogenic atmospheric pollutants, 

including PM2.5, PM10, SO2, NO2, CO, and O3. The output features are SO4
2-, NO3

-, NH4
+, OC, and BC. 

Step 2. Scoring the forecasting performance of ensemble decision trees in the OIRF model using mean absolute error (MAE) 150 

and screening out the decision trees with poor forecasting performance based on a predefined threshold.   

Step 3. Generating a forecast ensemble of PM2.5 chemical component concentrations at the current timestep using the OIRF 

model, along with the current meteorological and anthropogenic input data. 

Step 4. Generating the analysis fields of PM2.5 chemical component concentrations at the current timestep by assimilating 

chemical observations into forecast fields using the LEnKF algorithm. 155 

Step 5. Incremental learning of the OIRF model. High-quality analysis fields at the current time step, along with current 

meteorological and anthropogenic input data, are employed to train a new ensemble of decision trees. The old decision trees, 

which exhibit poor forecasting performance, are subsequently replaced with new decision trees to enhance the forecasting 

accuracy and generalization ability of the OIRF model. Repeat steps 2-5 until the end of the loop. 

2.1.2 Optimized Incremental Random Forest (OIRF) 160 

The OIRF model utilizes the Random Forest (RF) algorithm to establish a mapping relationship between anthropogenic 

atmospheric pollutants (PM2.5, PM10, SO2, NO2, CO, and O3), meteorological conditions (temperature, relative humidity, U-

component wind, V-component wind, and geopotential), and the five PM2.5 chemical components (SO4
2-, NO3

-, NH4+, OC, 

and BC). The RF model consists of N decision trees (DTs), each using an independently and identically distributed random 

vector (𝜃𝑛) to facilitate feature random selection and sample bootstrapping. This approach enhances the diversity among DTs 165 

while maintaining the forecasting capability of each DT (Breiman, 2001). Unlike conventional ensemble forecasts that rely 

on multiple CTMs, RF can swiftly generate an ensemble of forecasting members required for DA from multiple DTs without 

requiring external ensemble perturbation. The forecast fields of the RF model represent the average of all DT outputs (Eq. 

(1)). 

𝑓𝑅𝐹(𝑥) =
1

N
∑ 𝑓𝐷𝑇(𝑥, 𝜃n)N

n=1  ,          (1) 170 

Where 𝑥  represents the input features, including anthropogenic atmospheric pollutants and meteorological conditions. 

𝑓𝑅𝐹(𝑥) denotes the forecast field of PM2.5 chemical component concentrations. N is the total number of DTs. 𝑓𝐷𝑇(𝑥, 𝜃n) 

denotes the forecasting output of the n th DT and 𝜃n  is an independently and identically distributed random vector that 

facilitates feature random selection and sample bootstrapping. 

 175 
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The OIRF model incorporates a self-evolving mechanism into the RF model, enabling it to conduct incremental learning 

from newly available training data. In the self-evolving mechanism, the OIRF model scores the forecasting performance of 

each DT based on the mean absolute error (MAE), as shown in Eq. (2). The MAE is quantified by the forecast fields and 

high-accuracy analysis fields at the same time step. 

𝑓n
𝑠𝑐𝑜𝑟𝑒 =

1

K
∑ |𝑦i − 𝑓𝐷𝑇(𝑥i, 𝜃n)|K

i=1 , n = 1, 2, … , N ,        (2) 180 

Here, 𝑓n
𝑠𝑐𝑜𝑟𝑒  is the MAE value of the nth DT. K is the total number of grids of PM2.5 chemical component concentrations. 𝑦i 

is the analysis value of concentrations at the nth grid point after DA. 𝑓𝐷𝑇(𝑥i, 𝜃n) denotes the forecasting value of the nth DT at 

the nth grid point. 

 

The self-evolving mechanism introduces a threshold (τp) to screen out the DTs with poor forecasting performance. The 185 

threshold is defined as the pth percentile value of 𝑓n
𝑠𝑐𝑜𝑟𝑒 . As shown in Eq. (3), the old DTs with scores not higher than τp are 

retained, while the old DTs with scores higher than τp will be replaced by new DTs obtained from the incremental learning 

process. 

𝑓𝑛𝑒𝑤
𝐷𝑇 = {

𝑓𝐷𝑇(𝑦𝑖𝑛𝑖𝑡|𝑥, 𝜃a), 𝑓a
𝑠𝑐𝑜𝑟𝑒 ≤ τp, a = 1, 2, … , Np 

𝑓𝐷𝑇(𝑦𝑎𝑛𝑎|𝑥, 𝜃b), 𝑓b
𝑠𝑐𝑜𝑟𝑒 > τp, b = Np + 1, Np + 2, … , N

 ,      (3) 

Here, 𝑓𝑛𝑒𝑤
𝐷𝑇  represents the final forecasting output of the updated DTs following incremental learning. 𝑓𝐷𝑇(𝑦𝑖𝑛𝑖𝑡|𝑥, 𝜃a) 190 

denotes the forecasting output of the retained old DTs while 𝑓𝐷𝑇(𝑦𝑎𝑛𝑎|𝑥, 𝜃b) refers to the forecasting output of the new DTs. 

τp indicates the pth percentile value of 𝑓n
𝑠𝑐𝑜𝑟𝑒 , and Np signifies the number of retained old DTs that achieve a score not 

exceeding τp . The p is set at 80 to prevent excessive updating of DTs, which may introduce instability into ensemble 

forecasts of the OIRF model. 

 195 

The final forecast field (𝑓𝑂𝐼𝑅𝐹(𝑥)) of the OIRF model is derived from Eq. (4) by averaging the forecasting outputs of the 

updated DTs. 

𝑓𝑂𝐼𝑅𝐹(𝑥) =
1

N
∑ 𝑓𝑛𝑒𝑤

𝐷𝑇 (𝑥, 𝜃n)N
n=1  ,          (4) 

 

The self-evolving mechanism enhances the capacity of the OIRF model to incorporate newly available training data, thereby 200 

improving its generalization ability in forecasting PM2.5 chemical component concentrations. Concurrently, the elimination 

of old DTs with poor forecasting performance further increases the accuracy of the forecast fields. 
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The hyperparameters in the OIRF model, such as the minimum number of leaf node observations, the maximal number of 

decision splits, and the number of predictors to select at random for each split, control the model structure and randomness 205 

level (Probst et al., 2019). The OIRF model integrates the RF model with the Bayesian optimization algorithm to ensure the 

statistical optimization of the hyperparameters. The Bayesian optimization algorithm incorporates hyperparameters as 

decision variables within the objective function, thereby abstracting the optimization problem as a solution problem of the 

objective function (Wu et al., 2019). This algorithm is capable of identifying the global optimal solution using fewer 

iterations, thereby reducing the computational costs associated with evaluating the loss function and enhancing the 210 

performance of the ML model (Shahriari et al., 2016). A probabilistic surrogate model and an acquisition function are two 

essential components of the Bayesian optimization algorithm. The former is employed to approximate the complex objective 

function, thereby minimizing computational costs. The latter is used to identify potential optimal decision variables and 

update the surrogate model during iterative optimization. In this study, the surrogate model and acquisition function are 

specifically implemented using a non-parametric Gaussian process regression model (Rasmussen, 2003, February) and the 215 

Expected Improvement per Second Plus (Elps+) function (Gelbart et al., 2014). The detailed implementation of the Bayesian 

optimization algorithm in machine learning models is described in our previous work (Li et al., 2025). 

2.1.3 Localized Ensemble Kalman Filter (LEnKF) 

LEnKF is an Ensemble Kalman Filter (EnKF) algorithm with localization schemes that mitigate filter divergence induced by 

sampling errors of the estimated error covariance matrix (Nerger et al., 2012), thereby generating high-precision analysis 220 

fields of PM2.5 chemical component concentrations. The EnKF is an extension of the Kalman filter, specifically designed for 

atmospheric and oceanic DA with nonlinear and high-dimensional model state spaces (Houtekamer and Zhang, 2016). The 

EnKF utilizes the Monte Carlo method to estimate a flow-dependent background error covariance matrix from an ensemble 

of model states at each time step. This algorithm mitigates the high computational costs associated with the explicit 

operations of high-dimensional matrices (Evensen, 1994; Evensen, 2003). In this study, the OIRF model replaced the 225 

conventional CTMs to provide an ensemble of DT-based forecasting members for estimating the background error 

covariance (Eq. (5)). The ensemble size in DA is equal to the total number of DTs in the OIRF model. 

𝑷t
𝑓

=
1

N−1
∑ (𝑓t

𝐷𝑇(𝑥, 𝜃n) − 𝑓t
𝐷𝑇(𝑥, 𝜃n)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)N

𝑛=1 (𝑓t
𝐷𝑇(𝑥, 𝜃n) − 𝑓t

𝐷𝑇(𝑥, 𝜃n)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
𝑇
 ,     (5) 

Here, 𝑷t
𝑓
 is the flow-dependent background error covariance matrix of PM2.5 chemical component concentrations at t. 

 230 

The Kalman gain matrix (𝑲) can be calculated by Eq. (6)-(8). 

𝑲 = 𝑷t
𝑓

𝑯t
𝑇(𝑯t𝑷t

𝑓
𝑯t

𝑇 + 𝑹t)
−1

 ,          (6) 

𝑷t
𝑓

𝑯t
𝑇 =

1

N−1
∑ (𝑓t

𝐷𝑇(𝑥, 𝜃n) − 𝑓t
𝐷𝑇(𝑥, 𝜃n)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)N

n=1 (𝐻(𝑓t
𝐷𝑇(𝑥, 𝜃n)) − 𝐻(𝑓t

𝐷𝑇(𝑥, 𝜃n))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
𝑇

 ,    (7) 
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𝑯t𝑷t
𝑓

𝑯t
𝑇 =

1

N−1
∑ (𝐻(𝑓t

𝐷𝑇(𝑥, 𝜃n)) − 𝐻(𝑓t
𝐷𝑇(𝑥, 𝜃n))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )N

n=1 (𝐻(𝑓t
𝐷𝑇(𝑥, 𝜃n)) − 𝐻(𝑓t

𝐷𝑇(𝑥, 𝜃n))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
𝑇

 ,   (8) 

Here, 𝑲 is the Kalman gain matrix. 𝑯t is the observation operator at t. 𝑹t is the observation error covariance matrix at t, 235 

which is a diagonal matrix. 𝐻 is the linear observation operator. In this study, the observation operator solely conducts 

spatial mapping between the observations and the forecast fields due to consistency in the variable and temporal dimensions. 

The method employed for spatial mapping between observations from sparse sites and gridded forecast fields is the k-nearest 

neighbor search (Friedman et al., 1977). 

 240 

The final analysis fields (𝑥n,t
𝑎𝑛𝑎) can be obtained from the integration of forecast fields (𝑓t

𝐷𝑇(𝑥, 𝜃n)) and observations (𝑦t
𝑜): 

𝑥n,t
𝑎𝑛𝑎 = 𝑓t

𝐷𝑇(𝑥, 𝜃n) + 𝑲 (𝑦t
𝑜 + 𝑦′

n,t

𝑜
− 𝐻(𝑓t

𝐷𝑇(𝑥, 𝜃n))) , n = 1, 2, … , N ,      (9) 

Here, 𝑥n,t
𝑎𝑛𝑎 is the analysis field of the nth ensemble member at t. 𝑦t

𝑜 is the observation of PM2.5 chemical components at t and 

𝑦′
n,t

𝑜
 is the observation perturbation of the nth ensemble member at t, characterized by a normal distribution with a mean of 0 

and a standard deviation equal to the observation error. 245 

 

The LEnKF integrates domain localization and observation localization into the EnKF algorithm to diminish the interference 

of non-physical teleconnections within a high-dimensional model state space, especially for small ensemble sizes (Nerger et 

al., 2012). The domain localization segments the global state space into several disjoint local state spaces, each of which 

assimilates observations independently within a defined localization radius, thereby effectively increasing the rank of the 250 

background covariance matrix and eliminating the interference of long-distance spurious correlations (Houtekamer and 

Mitchell, 1998). The independence of the analysis process within the local state space facilitates parallel computation (Janjić 

et al., 2011). However, this may result in discontinuities at the boundaries of adjacent local state spaces. To address this 

challenge, domain localization in our system conducts assimilation within a specific localization radius for each analysis grid 

point (Fig. 2). The overlap of observations across analysis grid points smooths the boundaries of adjacent local state spaces. 255 

However, grid-by-grid assimilation at a fine spatial resolution incurs high computational costs. To mitigate this issue, OIRF-

LEnKF v1.0 incorporates a second-level parallel computational framework that facilitates the simultaneous assimilation of 

various chemical species and multiple analysis grid points (Fig. 2). Computational tasks for different chemical species are 

allocated to independent computational nodes to prevent interference of spurious correlations among chemical species. 

Subsequently, the grid points of each chemical component are assigned to multiple CPUs within these independent 260 

computational nodes. 
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Figure 2. The scheme for domain localization and parallelization. 

 265 

Observation localization is combined with domain localization to enhance the physical authenticity of observation 

propagation within state spaces (Nerger et al., 2012). This scheme conducts observation localization by applying the Schur 

product between the observation error covariance matrix (𝑹t) and a distance-based weight matrix (𝑾) as shown in Eq. (10). 

𝑲𝐿 = 𝑷t
𝑓

𝑯t
𝑇(𝑯t𝑷t

𝑓
𝑯t

𝑇 + 𝑾 ∙ 𝑹t)
−1

 ,         (10) 

Here, 𝑲𝐿 is the Kalman gain matrix applied observation localization, and 𝑾 is a distance-based weight matrix, which is 270 

diagonal. 

 

The distance-based weight matrix (𝑾) is obtained using a Gaussian function: 

𝑾 = 𝑑𝑖𝑎𝑔(𝑒𝑥𝑝 (
−𝑑(𝑖,𝑗)2

2L2 )) ,          (11) 

Here, 𝑑(𝑖, 𝑗) is the Euclidean distance between grid point 𝑖 and observation point 𝑗. L is the decorrelation length. 275 

2.1.4 Configurations 

Table 1 presents the fundamental configuration parameters in OIRF-LEnKF v1.0. The state variables consist of five PM2.5 

key chemical components (SO4
2-, NO3

-, NH4
+, OC and BC). The modeling domain encompasses North China, with a spatial 
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range of 32.38-44.90 °N and 108.07-127.01 °E. The spatial and temporal resolutions are established at 5 km × 5 km and 1 

hour, respectively. The data of the input feature utilized for training the OIRF forecasting model are outlined in Sec. 2.2.1, 280 

including U-component wind, V-component wind, temperature, relative humidity, geopotential, and the mass concentrations 

of PM2.5, PM10, SO2, NO2, CO, and O3. The ensemble sizes employed in the assimilation experiments are 2, 5, 10, 15, 20, 30, 

40, 50, 100, and 200. The update frequencies for incremental learning in the experiments include 0 (no update), 18-hour 

intervals, 12-hour intervals, 6-hour intervals, and 1-hour intervals. The experimental design is detailed in Sec. 2.3. 

Hyperparameters in the OIRF model, such as the minimum number of leaf node observations, the maximum number of 285 

decision splits, and the number of predictors to select at random for each split, are tuned using Bayesian optimization over 30 

iterations. The training data are re-partitioned at each optimization iteration to enhance the robustness of the OIRF model. 

Regarding the DA-related parameters, the localization radius and decorrelation length are set to 200 km and 80 km, 

respectively, based on the spatial range and resolution requirements. The assimilation frequency matches the temporal 

resolution of 1 hour. 290 

 

Table 1. Fundamental configuration parameters in OIRF-LEnKF v1.0. 

Category Parameter Setting 

Ensemble 

forecast 

State variable SO4
2-, NO3

-, NH4
+, OC and BC 

Model domain 
North China  

(32.38°N -44.90°N, 108.07°E-127.01°E) 

Spatial resolution 5 km×5 km 

Temporal resolution 1 h 

Meteorological input 

feature 

U-component wind, V-component wind, 

temperature, relative humidity and geopotential  

Anthropogenic input 

feature 
PM2.5, PM10, SO2, NO2, CO and O3 

Ensemble size 2, 5, 10, 15, 20, 30, 40, 50, 100, 200 

Update frequency 
0, 18-h interval, 12-h interval, 6-h interval, 1-h 

interval 

Hyperparameter for 

tuning 

Minimum number of leaf node observations, 

maximal number of decision splits, and number of 

predictors to select at random for each split 

Optimization iteration 30 

Data partition Re-partition at every iteration 

Data 

assimilation 

Algorithm LEnKF 

Localization radius 200 km 

Decorrelation length 80 km 

Assimilation frequency 1 h 
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2.2 Data 

2.2.1 Features 295 

The input features used in the OIRF model training include six anthropogenic air pollutants and five meteorological 

parameters (Table 1). The hourly gridded data of anthropogenic air pollutants were obtained from Chinese Air Quality 

ReAnalysis (CAQRA, https://doi.org/10.11922/sciencedb.00053, last access: 17 April 2025). CAQRA is generated by 

assimilating surface observations of hourly concentrations of conventional air pollutants into the Nested Air Quality 

Prediction Modeling System (NAQPMS), with a spatial resolution of 15 km × 15 km and a 5-fold cross-validation R2 of 300 

0.52-0.81 (Kong et al., 2021). The hourly gridded data of meteorological parameters were obtained from the 5 th Generation 

ECMWF ReAnalysis (ERA5, https://cds.climate.copernicus.eu/datasets, last access: 17 April 2025) with a horizontal 

resolution of 0.25° × 0.25°. The output features include five PM2.5 chemical components (NH4
+, NO3

-, SO4
2-, OC and BC). 

The hourly gridded data of these components were obtained from the PM2.5 chemical composition dataset (CAQRA-aerosol, 

https://doi.org/10.12423/capdb_PKU.2023.DA, last access: 17 April 2025). CAQRA-aerosol is developed based on a CTM-305 

based simulation method with an improved inorganic aerosol module and a constrained emission inventory, with a spatial 

resolution of 15 km × 15 km and a mean bias of less than 1.1 µg m−3 (Kong et al., 2025). Due to consideration of the 

distribution of available ground-based observational sites for PM2.5 chemical components, the gridded data containing 

various features in China have been transformed into a new grid with a spatial resolution of 5 km × 5 km in North China, 

utilizing a triangulation-based linear interpolation method (Amidror, 2002). 310 

2.2.2 Observations 

Observations of hourly mass concentrations of five PM2.5 chemical components (NH4
+, NO3

-, SO4
2-, OC, and BC) were 

collected over a two-month period (February to March 2022) from 33 ground-based sites in North China and its surrounding 

areas. Of these 33 sites, 24 sites (designated as DA sites) were employed for DA and internal validation, while the remaining 

9 sites (defined as VE sites) were used for independent verification to evaluate the influence of DA sites on neighboring 315 

areas. The description of site distribution and the division method of DA sites and VE sites were detailed in our previous 

work (Li et al., 2024). 

2.2.3 Reanalysis dataset for comparison 

The multi-source reanalysis datasets of PM2.5 chemical components were collected to assess the relative quality of the 

reanalysis dataset generated by OIRF-LEnKF v1.0, including the CAQRA-aerosol, the Tracking Air Pollution in China 320 

(TAP, http://tapdata.org.cn/, last access: 2 June 2025), the Copernicus Atmosphere Monitoring Service ReAnalysis 

(CAMSRA, https://ads.atmosphere.copernicus.eu/, last access: 2 June 2025), the Modern-Era Retrospective analysis for 

Research and Applications, Version 2 (MERRA-2, https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last access: 2 June 

2025) and the reanalysis dataset generated by NAQPMS-PDAF v2.0 (NP2, https://doi.org/10.5281/zenodo.10886914, last 

https://doi.org/10.11922/sciencedb.00053
https://cds.climate.copernicus.eu/datasets
https://doi.org/10.12423/capdb_PKU.2023.DA
http://tapdata.org.cn/
https://ads.atmosphere.copernicus.eu/
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
https://doi.org/10.5281/zenodo.10886914
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access: 2 June 2025). The High-resolution and High-quality Air Pollutants dataset for China (CHAP, 325 

https://doi.org/10.5281/zenodo.10011898, last access: 2 June 2025) was not considered in this study because it did not cover 

the observation period. The properties of the multi-source reanalysis datasets are presented in Table 2. 

 

Table 2. Properties of the multi-source reanalysis datasets for PM2.5 chemical components. 

Dataset Chemical species Period 
Temporal 

resolution 

Vertical 

resolution 

Spatial 

coverage 

Spatial 

resolution 

CAQRA-

aerosol 

SO4
2-, NH4

+, NO3
-

, OC, BC 

2013-

2022 
1-hourly Surface level China 15 km×15 km 

TAP 
SO4

2-, NH4
+, NO3

-

, OM, BC 

2000-

present 
Daily Surface level China 10 km×10 km 

NP2 
SO4

2-, NH4
+, NO3

-

, OC, BC 
Feb. 2022 1-hourly Surface level North China 5 km×5 km 

CAMSRA NO3
-, NH4

+ 
2003-

2024 
3-hourly Pressure level Global 0.75°×0.75° 

MERRA-2 SO4
2-, OM, BC 

1980-

present 
1-hourly Surface level Global 0.5°×0.625° 

2.3 Experimental setting 330 

We designed four experiments to evaluate the performance of OIRF-LEnKF v1.0 on forecast and analysis fields of the 

concentrations of SO4
2-, NO3

-, NH4
+, OC, and BC. In the first experiment, we conducted model training, forecasting, and 

assimilation at the first time step using 10 distinct ensemble sizes (2, 5, 10, 15, 20, 30, 40, 50, 100, and 200) to assess the 

dependence of computational efficiency on ensemble size. In the second experiment, we performed 24-timestep forecasting 

and assimilation across 30 different scenarios, which comprised all possible combinations of 6 ensemble sizes (20, 30, 40, 50, 335 

100, and 200) and 5 varied update frequencies for incremental learning (no update, 18-h interval, 12-h interval, 6-h interval, 

and 1-h interval). This design aimed to evaluate the sensitivity of forecasting and assimilation performance to ensemble size 

and update frequency. In the third experiment, we conducted a 2-month forecasting assimilation using ground-level 

observations at 24 DA sites to comprehensively assess the capabilities of OIRF-LEnKF v1.0 in interpreting the 

spatiotemporal distribution of PM2.5 chemical component concentrations. In the fourth experiment, we simultaneously 340 

assimilated all ground-level observations at 33 sites to generate a 1-month reanalysis dataset of PM2.5 chemical component 

concentrations in North China and compared it with multiple reanalysis datasets. The observation errors in the four 

experiments were set at 0.5 µg m-3 (NH4
+), 0.5 µg m-3 (NO3

-), 1.0 µg m-3 (SO4
2-), 3.0 µg m-3 (OC), and 0.5 µg m-3 (BC), with 

the assumption that the observation errors were spatially isotropic in state space to reduce computational complexity. 

https://doi.org/10.5281/zenodo.10011898
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3 Results and discussion 345 

3.1 Computational efficiency 

As shown in Fig. 3, we evaluate the computational efficiencies of hyperparameter tuning, forecasting and assimilation. 

Previous studies have indicated that the Bayesian optimization algorithm is both efficient and stable for hyperparameter 

tuning in various ML models (Lai, 2024). In this section, we validate its stability within the OIRF model and computational 

costs. Figure 3a demonstrates that both the estimated and observed minimum objective values initially decrease rapidly and 350 

subsequently converge within 10 iterations across all ensemble sizes, indicating the convergence stability and high efficiency 

of the OIRF model. In addition, the consistency in both the magnitude and variation between the estimated and observed 

minimum objective values suggests that the surrogate model employed in Bayesian optimization exhibits a high fitting 

accuracy for the objective function. Although the time consumed during each iteration increases positively with ensemble 

size, the number of optimal hyperparameter searches remains relatively insensitive to ensemble size. As illustrated in Figure 355 

3b, the minimum value of the total observed objectives decreases significantly as the ensemble size increases, ranging from 2 

to 20, indicating that a larger ensemble size enhances the optimization accuracy of the OIRF model. Notably, when the 

ensemble size exceeds 20, the rate of improvement in optimization accuracy diminishes. The total time consumed by the 

optimization process increases gradually with ensemble sizes ranging from 2 to 50 but rises sharply beyond an ensemble size 

of 50. Therefore, an ensemble size of 50 is determined to be optimal for the OIRF model, effectively balancing the 360 

optimization accuracy and efficiency. 
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Figure 3. Computational efficiency of OIRF-LEnKF v1.0. (a) Variation in the minimum objective value throughout the Bayesian 

optimization process and time consumed by each iteration, (b) minimum value of total observed minimum objectives and total 365 
time consumed during Bayesian optimization process for different ensemble sizes, (c) time consumed by model forecasting and 

data assimilation at each timestep for OIRF-LEnKF and NAQPMS-PDAF v2.0 (NP2), and the ratio of total time consumed 

between OIRF-LEnKF and NP2, (d) the ratio of time consumed by model forecasting and data assimilation between OIRF-

LEnKF and NP2. FOR represents the forecast phase, and DA represents the data assimilation phase. The elapsed time of the 

OIRF-LEnKF forecast process in Figure 3c has been magnified by a factor of 10 for better clarity. 370 
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The computational costs of OIRF-LEnKF v1.0 in forecasting and assimilation processes were compared with those of a 

CTM-based DA system (NP2). To ensure comparability of computational expenses between OIRF-LEnKF v1.0 and NP2, 

the number of CPUs allocated for each grid calculation was intentionally set closer, at 35 and 50, respectively. As illustrated 

in Fig. 3c, the total time consumed by forecasting and assimilation for OIRF-LEnKF v1.0 amounts to only 11.41% to 16.60% 375 

of that for NP2, especially during the forecasting process, which accounts for merely 0.13% to 0.20% (Fig. 3d). The marked 

improvement in forecasting efficiency by OIRF-LEnKF v1.0 is comparable to the deep neural network-based forecasting 

model (Adie et al., 2024). This enhancement is primarily attributed to the fact that ML-based forecasting does not necessitate 

a profound understanding of the complex physicochemical mechanisms of the atmosphere (Fang et al., 2022), whereas 

CTM-based forecasting involves intricate computations of a large number of chemical species and reaction processes (Zaveri 380 

and Peters, 1999; Stockwell et al., 1990). The computational efficiency of OIRF-LEnKF v1.0 during the DA stage is slightly 

lower than that of NP2, as its time consumed is 1.76 to 3.02 times greater than that of NP2 (Fig. 3d), primarily due to minor 

differences in the DA algorithm and the number of CPUs allocated. 

 

As the ensemble size increases from 2 to 50, the total time consumed for OIRF-LEnKF v1.0 and NP2 increases by 17.91 s 385 

and 39.53 s, respectively. Specifically, the time consumed by forecasting increases by 0.22 s and 39.53 s, respectively, while 

the time consumed by assimilation increases by 17.69 s and 0 s, respectively. Although the time consumed by assimilation 

for OIRF-LEnKF v1.0 is sensitive to ensemble size, the total time consumed remains relatively low (less than 50 s) at an 

ensemble size of 50. Given that the ensemble spread typically correlates positively with ensemble size (Lei and Whitaker, 

2017), configuring an ensemble size of 50 in OIRF-LEnKF v1.0 offers an optimal balance among optimization accuracy, 390 

optimization efficiency, time consumed by forecasting and assimilation, and ensemble spread. 

3.2 Sensitivity to parameterization scheme 

The ensemble size and update frequency for incremental learning are critical parameters that influence the forecasting and 

analysis capabilities of OIRF-LEnKF v1.0. Specifically, the ensemble size affects the estimation of the background error 

covariance matrix (Valler et al., 2019), which determines the observation propagation at the analysis step and the uncertainty 395 

range of the ensemble forecast at the forecast step. The update frequency for incremental learning drives the adaptability of 

the ML-based forecasting model to non-stationary data distributions (Shaheen et al., 2022), thereby influencing the 

generalization ability at the forecast step and indirectly affecting the background error information at the analysis step. 

 

During the ML forecast process, the statistical indicators that compare the forecast fields and observations for OIRF-LEnKF 400 

v1.0 exhibit a pronounced sensitivity to update frequency but are less sensitive to ensemble size. With a fixed ensemble size, 

the correlation coefficient (CORR) increases as the update frequency rises (Fig. 4a). At the same time, the root mean square 

error (RMSE) decreases significantly with a higher update frequency (Fig. 4b). Specifically, the CORR rises by 2.28 % to 

11.75 %, and the RMSE decreases by 32.94 % to 40.98 % when comparing a 1-hour update frequency to the scenario 
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without incremental learning, which indicates that high-frequency incremental learning effectively enhances the adaptability 405 

of the statically trained ML model to the non-stationary data distributions, enabling it to demonstrate improved 

generalization capabilities and higher forecast accuracy in rapidly changing chemical component forecasts. Notably, an 

increase in ensemble size can amplify the effect of incremental learning on forecast errors. Specifically, the reduction in 

RMSE at an ensemble size of 100 is approximately 8% greater than at an ensemble size of 20 when comparing a 1-hour 

update frequency to a scenario without incremental learning, which is attributed to the fact that as the ensemble size 410 

increases, the probability density distribution becomes more accurate, leading to improved ensemble forecast skill (Chen, 

2024). 

 

 

Figure 4. (a) Pearson correlation coefficient (CORR) for sensitivity test with six ensemble sizes (20, 30, 40, 50, 100, 200) and five 415 
update frequencies (no update, 18-hour interval, 12-hour interval, 6-hour interval and 1-hour interval) at the forecast step. (b) 

Same as (a) but for root mean square error (RMSE) at the forecast step. (c) Same as (a) but for CORR at the analysis step. (d) 

Same as (a) but for RMSE at the analysis step. 
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During the DA analysis phase, the statistical indicators that compare the analysis fields and observations for OIRF-LEnKF 420 

v1.0 are found to be significantly dependent on the ensemble size rather than the update frequency. With a fixed update 

frequency, excluding the 1-hour update frequency, the CORR increases considerably with a larger ensemble size (Fig. 4c). 

At the same time, the RMSE decreased markedly as the ensemble size increases (Fig. 4d). Specifically, the CORR increased 

by 8.94 % to 19.04 %, and the RMSE decreased by 20.15 % to 30.48 % when comparing an ensemble size of 200 to that of 

20. This improvement is attributed to the enhanced accuracy of estimating the background error covariance matrix, resulting 425 

from a larger ensemble size, which enables the effective propagation of observations within the model state space. (Valler et 

al., 2019). However, the 1-hour update frequency diminishes the dependence of the analysis fields on the ensemble size. This 

interference may result from high-frequency incremental learning, which causes the new DTs in the OIRF model to diverge 

from the existing DTs, leading to a deviation in the background error covariance structure from the true state. Consequently, 

although the 1-hour update frequency can significantly enhance the forecasting performance, we configured an ensemble 430 

size of 50 with a 6-hour update frequency in OIRF-LEnKF v1.0 to balance computational efficiency, ML forecasting 

accuracy, and DA analysis performance. 

3.3 Evaluation of DA results 

This section assesses the performance of the background control field without DA and incremental learning (BAC), the 

forecast field with incremental learning (FOR) and the analysis field with DA (ANA) in interpreting the spatiotemporal 435 

distribution of PM2.5 chemical components. 

3.3.1 Assessment of temporal variation in chemical components 

Figure 5 presents the time series of errors (observations minus OIRF-LEnKF v1.0 outputs) and statistical indicators 

comparing observations with BAC, FOR, and ANA across 33 ground-level sites. As illustrated in Fig. 5a1-a3, the errors of 

BAC for NH4
+, NO3

-, and SO4
2- ranged from -2.30 ± 1.97 µg m-3 to 8.84 ± 5.04 µg m-3, -7.60 ± 5.29 µg m-3 to 14.64 ± 17.20 440 

µg m-3, and -4.31 ± 3.81 µg m-3 to 9.61 ± 6.00 µg m-3, respectively. The overall errors of BAC for NH4
+, NO3

-, and SO4
2- are 

positive and relatively dispersed, suggesting a general underestimation of inorganic salt concentrations. Conversely, the 

errors of FOR concentrated to a range of -2.66 ± 4.18 µg m-3 to 5.18 ± 4.87 µg m-3 (NH4
+), -7.17 ± 10.75 µg m-3 to 10.07 ± 

7.48 µg m-3 (NO3
-), and -1.37 ± 1.98 µg m-3 to 6.50 ± 4.81 µg m-3 (SO4

2-), indicating that incremental learning enhances the 

ability to capture the temporal features of inorganic salt concentrations. Compared to BAC and FOR, the errors of ANA 445 

predominantly concentrated around zero over time, signifying that DA significantly enhances the capacity to interpret the 

temporal variation of inorganic salt concentrations. Unlike inorganic salt aerosols, the errors of BAC for OC and BC ranged 

from -12.18 ± 4.09 µg m-3 to -1.11 ± 2.78 µg m-3 and -5.41 ± 1.39 µg m-3 to -0.87 ± 0.57 µg m-3, respectively, with a general 

overestimation of carbonaceous aerosol concentrations (Fig. 5a4, a5). The errors of FOR and ANA are relatively similar, 

both concentrating around zero over time due to the effects of incremental learning and DA. 450 
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Figure 5. Smoothed variation in the error between observation and model output for (a1) NH4
+, (a2) NO3

-, (a3) SO4
2-, (a4) OC and 

(a5) BC at total sites during February and March of 2022. The lines and shading areas represent the mean and standard deviation 

of the errors, respectively. (b) Correlation coefficient (CORR) between observation and model output for five PM2.5 chemical 455 
components at DA sites. (c) Same as (b) but for root mean square errors (RMSE). (d) Same as (b) but for VE sites. (e) Same as (b) 

but for RMSE at VE sites. 

 

Fig. 5b-e presents the CORR and RMSE for the time series of five PM2.5 chemical components across 24 DA sites and 9 VE 

sites. For the DA sites, the CORR values of BAC for NH4
+, NO3

-, SO4
2-, OC, and BC ranged from 0.24 to 0.76, 0.25 to 0.76, 460 

0.11 to 0.64, 0.33 to 0.77, and 0.12 to 0.62, respectively (Fig. 5b). The RMSE values varied from 2.64 to 9.15 µg m-3, 4.73 to 
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16.24 µg m-3, 2.31 to 10.24 µg m-3, 4.57 to 10.41 µg m-3, and 1.36 to 3.42 µg m-3, respectively (Fig. 5c). Following 

incremental learning, the CORR and RMSE values of FOR demonstrated a more concentrated data distribution than those of 

BAC, with average CORR (0.42 to 0.83) and RMSE (0.99 to 7.80 µg m-3) values increasing by 5.61 % to 114.28 % and 

decreasing by 26.38 % to 61.75 %, respectively. Additionally, compared to the FOR of a CTM-based DA system, the FOR 465 

of OIRF-LEnKF v1.0 exhibited advancements of 19.14 % to 73.19 % and 33.16% to 90.10 % in CORR and RMSE, 

respectively (Table 3). This finding indicates that the self-evolving mechanism, characterized by incremental learning, is 

more effective than the optimal estimation of initial conditions in enhancing PM2.5 chemical component forecasts, which is 

attributed to the fact that the enhancement in ML-based forecasting by incremental learning is global, while the CTM-based 

forecasting is still constrained by the uncertainties in emission inventories and physiochemical mechanisms in addition to 470 

initial conditions (Mallet and Sportisse, 2006; Luo et al., 2023). After DA, the CORR and RMSE values of ANA for NH4
+, 

NO3
-, SO4

2-, OC, and BC exhibited a more concentrated data distribution than those of BAC and FOR. The average CORR 

(0.58 to 1.00) and RMSE (0.80 to 2.36 µg m-3) values demonstrated advancements of 35.27 % to 187.15 % and 68.99 % to 

91.31 %, respectively, compared to BAC, and advancements of 18.85 % to 38.73 % and 19.71 % to 88.20 %, respectively, 

compared to FOR. 475 

 

Table 3. The correlation coefficient (CORR) and root mean square error (RMSE, µg m−3) of OIRF-LEnKF v1.0 (this study) and 

NAQPMS-PDAF v2.0 (NP2) at DA sites and VE sites for NH4+, NO3-, SO42-, OC and BC, as well as the improvement (%) of this 

study relative to NP2. 

 
NH4

+ NO3
- SO4

2- OC BC 

DA VE DA VE DA VE DA VE DA VE 

 CORR 

This study 0.85 0.82 0.86 0.85 0.66 0.63 0.54 0.53 0.31 0.37 

NP2 0.60 0.53 0.50 0.40 0.53 0.52 0.44 0.38 0.26 0.23 

Improve (%) 41.59 53.69 73.19  110.49 23.59 21.92 23.91 41.60 19.14 64.16 

 RMSE (µg m−3) 

This study 3.35 3.07 6.70 5.94 3.80 3.71 3.47 3.19 1.17 1.12 

NP2 5.01 4.88 11.13 10.73 6.86 7.23 18.71 20.69 11.78 13.30 

Improve (%) 33.16 37.10 39.77 44.62 44.59 48.73 81.48 84.58 90.10 91.55 

 480 

For the VE sites without DA, the CORR values of BAC for NH4
+, NO3

-, SO4
2-, OC, and BC ranged from 0.20 to 0.66, 0.25 

to 0.71, -0.20 to 0.50, 0.13 to 0.66, and 0.15 to 0.47, respectively (Fig. 5d). The RMSE values varied from 3.39 to 8.25 µg m-

3, 8.04 to 14.18 µg m-3, 3.94 to 7.04 µg m-3, 6.23 to 10.05 µg m-3, and 2.33 to 3.30 µg m-3, respectively (Fig. 5e). After 

incremental learning, the CORR and RMSE values of FOR exhibited a more concentrated data distribution than those of 

BAC, with average CORR (0.39 to 0.81) and RMSE (0.93 to 7.76 µg m-3) values increasing by 12.00 % to 124.69 % and 485 

decreasing by 28.37 % to 68.00 %, respectively. Furthermore, compared to the FOR of a CTM-based DA system, the FOR 

of OIRF-LEnKF v1.0 demonstrated advancements of 21.92 % to 110.49 % and 37.10 % to 91.55 % in CORR and RMSE, 
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respectively (Table 3), with greater advancements at VE sites than those at DA sites, further demonstrating the advantages of 

the self-evolving mechanism characterized by incremental learning for improving ML-based forecasts in a global scale. 

After DA, the CORR and RMSE values of ANA for NH4
+, NO3

-, SO4
2-, OC, and BC ranged from 0.38 to 0.80 and 0.90 to 490 

7.76 µg m-3, respectively, showing a more concentrated data distribution than those of BAC and FOR. The average CORR 

and RMSE values increased by 14.14% to 116.65% and decreased by 23.46% to 68.75%, respectively, compared to BAC, 

indicating that the EnKF algorithm with localization schemes effectively propagates observations within the model state 

space. 

3.3.2 Assessment of spatial distribution in chemical components 495 

Figure 6 presents the spatial distributions of observations from sparse sites (OBS), BAC, FOR and ANA for the average 

concentrations of NH4
+, NO3

-, SO4
2-, OC, and BC over a two-month period from February to March 2022. The OBS of NH4

+ 

reveals that the concentrations at southern sites in North China are significantly higher than those at northern sites, 

particularly in northern Henan Province, with a maximum concentration of 12.20 µg m-3 (Fig. 6a1). However, BAC fails to 

accurately capture the spatial patterns of NH4
+ concentration (Fig. 6a2), exhibiting underestimations at 100 % of DA sites 500 

and 89 % of VE sites, with average underestimations of 2.71 µg m-3 and 3.07 µg m-3, respectively (Fig. 7a1). This finding is 

attributed to the underestimation of the original training samples (Kong et al., 2025). Compared to BAC, the FOR mitigates 

the underestimation (Fig. 6a3), with 96 % of DA sites underestimating by 1.56 µg m-3 and 78 % of VE sites underestimating 

by 1.88 µg/m³ (Fig. 7a2). After DA, ANA accurately depicts the spatial distribution of NH4
+ concentrations (Fig. 6a4), with 

92 % of DA sites underestimating by 0.74 µg m-3 and 44% of VE sites underestimating by 2.34 µg m-3, respectively (Fig. 505 

7a3). The increment field (INC) between ANA and FOR exhibits substantial positive increments in southern North China 

(Fig. 7a4), indicating that the observations from 24 DA sites were effectively propagated within the model state space, 

thereby addressing the underestimation of NH4
+ concentrations in the whole domain. 
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 510 

Figure 6. Spatial distribution of observation (OBS), background control field (BAC), forecast field (FOR) and analysis field (ANA) 

for NH4
+ (a1-a4), NO3

- (b1-b4), SO4
2- (c1-c4), OC (d1-d4) and BC (e1-e4). 
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Figure 7. Spatial distribution of observation minus background control field (OmB), observation minus forecast field (OmF), 515 
observation minus analysis field (OmA) and analysis field minus forecast field (INC) for NH4

+ (a1-a4), NO3
- (b1-b4), SO4

2- (c1-c4), 

OC (d1-d4) and BC (e1-e4). The circle indicates the DA sites with data assimilation, and the upward-pointing triangle indicates the 

VE sites without data assimilation. 

 

The observed spatial distributions of NO3
- and SO4

2- are consistent with those of NH4
+, revealing significantly higher 520 

concentrations at southern sites in the North China region than at northern sites, particularly in the Hebei-Henan-Shandong 

junction areas (Fig. 6b1, c1). Although BAC can capture the spatial patterns of NO3
- and SO4

2-, it significantly 

underestimates their concentrations (Fig. 6b2, c2). Specifically, 63-79 % of DA sites and 89% of VE sites underestimate by 

1.87-3.76 µg m-3 and 1.57-3.44 µg m-3, respectively (Fig. 7b1, c1). Compared to BAC, FOR mitigates the underestimations 

in the Hebei-Henan-Shandong junction areas and overestimations in the Beijing-Tianjin-Hebei eastern areas (Fig. 6b3, c3), 525 

with improvements at most DA and VE sites (Fig. 7b2, c2). After DA, ANA accurately characterizes the spatial distribution 
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of NO3
- and SO4

2- concentrations (Fig. 6b4, c4), with 88-100 % of DA sites and 56-67 % of VE sites merely underestimating 

by 0.77-1.31 µg m-3 and 1.85-2.73 µg m-3, respectively (Fig. 7b3, c3). Furthermore, similar to the INC of NH4
+, INCs of 

NO3
- and SO4

2- exhibit widespread positive increments across the North China region (Fig. 7b4, c4). 

 530 

In contrast to the spatial distributions of NH4
+, NO3

- and SO4
2-, the observed spatial distributions of OC and BC reveal that 

concentrations in the North China region demonstrate spatial homogeneity (Fig. 6d1, e1). However, BAC significantly 

overestimated the concentrations of OC and BC in the North China region (Fig. 6d2, e2, and Fig. 7d1, e1), with an average 

overestimation of 6.12 µg m-3 for OC and 1.99 µg m-3 for BC at all DA sites, and 6.88 µg m-3 for OC and 2.29 µg m-3 for BC 

at all VE sites. Following incremental learning, FOR significantly reduced the overestimations (Fig. 6d3, e3, and Fig. 7d2, 535 

e2), resulting in an average overestimation of 1.46 µg m-3 for OC and 0.53 µg m-3 for BC at 71-79 % of DA sites, and 1.56 

µg m-3 for OC and 0.65 µg m-3 for BC at 89 % of VE sites. The number of sites exhibiting overestimation and the degree of 

overestimation are markedly lower than those of BAC. After DA, ANA further mitigates the overestimation in FOR, 

accurately interpreting the spatial distributions of OC and BC concentrations (Fig. 6d4, e4), with the gaps between the 

observations and analysis fields for both DA and VE sites approaching 0 (Fig. 7d3, e3). Assimilating the observations from 540 

24 DA sites effectively mitigates the overestimation in the southern North China region (Fig. 7d4, e4). 

3.4 Comparison with multiple reanalysis datasets 

In this section, we utilized OIRF-LEnKF v1.0 to generate an hourly reanalysis dataset of PM2.5 key chemical components 

(SO4
2-, NO3

-, NH4
+, OC and BC) for the North China region in February 2022. We compared it with multiple related 

reanalysis datasets, including CAQRA-aerosol, TAP, Global-RA (CAMS and MERRA-2), and the dataset generated by NP2. 545 

The temporal and spatial resolutions of CAQRA-aerosol, TAP, and Global-RA on both global and national scales are lower 

than those of OIRF-LEnKF v1.0 and NP2 on the regional scale (Table 2). It is important to note that the spatial range and 

resolution of OIRF-LEnKF v1.0 are contingent upon those of the available training data. Consequently, OIRF-LEnKF v1.0 

has significant potential for elucidating the spatiotemporal distribution of PM2.5 chemical components on a global and 

national scale. 550 

 

Figure 8 illustrates the average values of observation minus analysis (OmA) over 1 month. For NH4
+ (Fig. 8a1-a5), the mean 

absolute OmA of OIRF-LEnKF v1.0 at a total of 33 sites (0.25 μg m-3) is significantly lower than that of NP2 (0.81 μg m-3), 

CAQRA (1.18 μg m-3), TAP (0.92 μg m-3), and Global-RA (2.92 μg m-3). Furthermore, the OmA of OIRF-LEnKF v1.0 is 

within ±1 μg m-3 at 97 % of the sites, whereas NP2, CAQRA, TAP, and Global-RA had only 9-70 % of the sites within this 555 

range. Most of the sites exhibit slight underestimations in NP2 and TAP, overestimations in CAQRA, and significant 

underestimations in Global-RA, while the disparity between OIRF-LEnKF v1.0 and the observations is minimal. The 

findings for NO3
- are comparable to those for NH4

+ (Fig. 8b1-b5), the mean absolute OmA of OIRF-LEnKF v1.0 at a total of 

33 sites (0.19 μg m-3) is significantly lower than that of NP2 (0.93 μg m-3), CAQRA (8.42 μg m-3), TAP (2.24 μg m-3), and 
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Global-RA (2.27 μg m-3). Furthermore, the OmA of OIRF-LEnKF v1.0 is within ±2 μg m-3 at all sites, whereas NP2, 560 

CAQRA, TAP, and Global-RA had only 3-94 % of the sites within this range. The similar spatial patterns of OmA for NH4
+ 

and NO3
- are related to thermodynamic equilibrium (Nenes et al., 1998) and consistency between NH4

+ and NO3
- has also 

been observed in previous works (Sun, 2018; Shi et al., 2021; Wu et al., 2022). 

 

 565 

Figure 8. Difference between observations at a total of 33 sites and five reanalysis datasets for NH4
+ (a1-a5), NO3

- (b1-b5), SO4
2- 

(c1-c5), OC (d1-d5) and BC (e1-e5). Global-RA is the combination of CAMSRA and MERRA-2. 

 



26 

 

For SO4
2- (Fig. 8c1-c5), the average absolute OmA of OIRF-LEnKF v1.0 (0.54 μg m-3) is slightly lower than that of NP2 

(0.86 μg m-3) but significantly lower than that of CAQRA (1.26 μg m-3), TAP (1.72 μg m-3), and Global-RA (7.19 μg m-3). In 570 

contrast to NO3
-, most of the sites exhibit underestimation in CAQRA, overestimation in TAP, and significant overestimation 

in Global-RA for SO4
2-. This discrepancy between NO3

- and SO4
2- arises from the competition for the capture of NH3. Thus, 

the underestimation of SO4
2- is considered a factor in the overestimation of NO3

- (Xie et al., 2022). Unlike the four CTM-

based reanalysis datasets, OIRF-LEnKF v1.0 implements independent forecasting and DA processes for various chemical 

components, thereby reducing the constraints imposed by correlations among variables. 575 

 

The OmA of OC (Fig. 8d1–d5) and BC (Fig. 8e1–e5) exhibit similar spatial patterns. Specifically, the average absolute OmA 

of OIRF-LEnKF v1.0 (0.66 μg m-3 for OC and 0.40 μg m-3 for BC) is slightly higher than that of NP2 (0.23 μg m-3 for OC 

and 0.03 μg m-3 for BC) but significantly lower than those of CAQRA (2.90 μg m-3 for OC and 1.32 μg m-3 for BC), TAP 

(1.04 μg m-3 for OC and 0.65 μg m-3 for BC), and Global-RA (1.62 μg m-3 for OC and 5.85 μg m-3 for BC). The significant 580 

overestimation of carbonaceous aerosols observed in CTM-based CAQRA and Global-RA is likely attributed to the 

hygroscopic growth schemes of carbonaceous aerosols, the poorly constrained semi-volatile species that escape from 

primary organic aerosols, and aging mechanisms (Soni et al., 2021; Huang et al., 2013). Overall, the reanalysis dataset 

generated by OIRF-LEnKF v1.0 demonstrates lower errors in the concentrations of the five PM2.5 chemical components in 

the North China region compared to four CTM-based datasets. 585 

 

We further compared the differences in RMSE and CORR among five reanalysis datasets. As illustrated in Fig. 9a-c, the 

CORR values of OIRF-LEnKF v1.0 for NH4
+, NO3

-, and SO4
2- (mean CORR: 0.97, Fig. 9f) are significantly higher than 

those of other datasets (mean CORR: 0.56 to 0.89, Fig. 9f), while the RMSE values (mean RMSE: 1.12 μg m-3, Fig. 9g) are 

significantly lower than those of other datasets (mean RMSE: 2.55-8.52 μg m-3, Fig. 9g). Furthermore, the RMSE values of 590 

OIRF-LEnKF v1.0 are relatively concentrated across all sites, indicating a marked improvement in simulation of NH4
+, NO3

-, 

and SO4
2- across a broad spatial range. From Fig. 9d-e, the CORR and RMSE values of OIRF-LEnKF v1.0 for carbonaceous 

aerosols (OC and BC) (mean CORR: 0.68, Fig. 9f; mean RMSE: 1.49 μg m-3, Fig. 9g) are slightly worse than those of NP2 

(mean CORR: 0.97, Fig. 9f; mean RMSE: 1.66 μg m-3, Fig. 9g) and are comparable to those of TAP (mean CORR: 0.66, Fig. 

9f; mean RMSE: 1.49 μg m-3, Fig. 9g), while demonstrating superiority over the other datasets (mean CORR: 0.28-0.44, Fig. 595 

9f; mean RMSE: 4.49-11.70 μg m-3, Fig. 9g). Overall, OIRF-LEnKF v1.0 exhibits a notable advantage in accurately 

interpreting the concentrations of PM2.5 chemical components on a regional scale. Further improvements in the performance 

of OIRF-LEnKF v1.0 in interpreting carbonaceous aerosols are expected by modifying the structure of the OIRF forecasting 

model and the frequency of incremental learning, as well as by adopting hybrid nonlinear DA algorithms. 

 600 
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Figure 9. Pearson correlation coefficient (CORR) and root mean square error (RMSE, μg m-3) quantified by the five reanalysis 

datasets and observations at a total of 33 sites for NH4
+ (a), NO3

- (b), SO4
2- (c), OC (d) and BC (e). The averages of CORR (f) and 

RMSE (g) across all observational sites for the five reanalysis datasets for the five PM2.5 chemical components. Global-RA is the 

combination of CAMSRA and MERRA-2. 605 
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4 Conclusions 

In this paper, we online coupled the OIRF model with the LEnKF algorithm to develop a self-evolving DA system (OIRF-

LEnKF v1.0) that mitigates the limitations of high computational costs and inadequate advancements in forecasting and 

analysis fields of PM2.5 chemical components (NH4
+, SO4

2-, NO3
-, OC and BC) in conventional CTM-based DA. The OIRF 

model introduces a self-evolving mechanism that enhances the generalization ability of ML by iteratively absorbing newly 610 

available training data to dynamically update the model structure. The domain localization and observation localization 

schemes are incorporated into the EnKF algorithm within a second-level parallel computation framework, which effectively 

reduces the interference of spatial and variable spurious correlations and improves computational efficiency. The findings 

are outlined as follows. 

 615 

OIRF-LEnKF v1.0 exhibits stable convergence capability and high convergence efficiency, achieving convergence within 10 

iterations across ensemble sizes ranging from 2 to 200. Computational tests reveal that the total time consumed by OIRF-

LEnKF v1.0 constitutes only 11.41-16.60 % of that of CTM-based DA, particularly during the forecasting process (0.13-

0.20 %), demonstrating its superior computational efficiency.  

 620 

Sensitivity tests reveal that the forecast fields in OIRF-LEnKF v1.0 are more sensitive to updating frequency within the self-

evolving mechanism. In contrast, the analysis fields exhibit a marked sensitivity to ensemble size. Specifically, the CORR 

rises by 2.28-11.75 %, and the RMSE decreases by 32.94-40.98 % when comparing a 1-hour update frequency to the 

scenario without incremental learning during the forecasting phase. Additionally, the CORR increases by 8.94-19.04 %, and 

the RMSE decreases by 20.15-30.48 % when comparing an ensemble size of 200 to that of 20 during the DA analysis phase. 625 

However, the 1-hour update frequency diminishes the dependence of the analysis fields on ensemble size. Thus, an ensemble 

size of 50 with a 6-hour update frequency is configured to balance computational efficiency, ML forecasting accuracy, and 

DA analysis performance. 

 

A 2-month DA experiment demonstrates that the RMSE values for PM2.5 chemical components at DA sites range from 0.99 630 

to 7.80 µg m-3 after incremental learning and 0.80 to 2.36 µg m-3 after DA analysis, exhibiting reductions of 26.38-61.75 % 

and 68.99-91.31 %, respectively, compared to values obtained without incremental learning and DA analysis. For VE sites, 

the RMSE values range from 0.93 to 7.76 µg m-3 after incremental learning and 0.90 to 7.76 µg m-3 after DA analysis, 

exhibiting reductions of 28.37-68.00 % and 23.46-68.75%, respectively, relative to values obtained without incremental 

learning and DA analysis. Notably, the RMSE values of our system during the forecasting process show a significant 635 

reduction of 33.16-90.10 % at DA sites and 37.10-91.55 % at VE sites compared to those of CTM-based DA, highlighting 

the superior forecasting capability of ML-based DA. Additionally, the spatial patterns of the forecast and analysis fields for 

chemical components more accurately reflect those of the observations when employing incremental learning and DA. 
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In comparison to the datasets provided by NP2, CAQRA, TAP, CAMSRA, and MERRA-2, the dataset generated by OIRF-640 

LEnKF v1.0 exhibits superior data quality. Notably, for NH4
+, NO3

- and SO4
2-, the CORR values of OIRF-LEnKF v1.0 (0.97) 

are significantly higher than those of the aforementioned datasets (0.56-0.89). Additionally, the RMSE values of OIRF-

LEnKF v1.0 (1.12 μg m-3) are markedly lower than those of the four reanalysis datasets (2.55-8.52 μg m-3). Future work 

should focus on generating reanalysis datasets that utilize configurations with larger domains and higher spatial resolutions, 

as well as improving data quality through the application of deep learning techniques and hybrid nonlinear DA algorithms. 645 
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