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Abstract. Understanding the variability and sources of atmospheric COs is essential for improving greenhouse gas monitoring
and model performance. This study investigates temporal CO variability at the Xianghe site in China, which hosts both
remote sensed (TCCON-affiliated) and in situ (PICARRO) observations. Using the Weather Research and Forecast model
coupled with Chemistry, in its greenhouse gas option (WRF-GHG), we performed a one-year simulation of surface and column-
averaged CO, mole fractions, evaluated model performance and conducted sensitivity experiments to assess the influence of
key model configuration choices. The model captured the temporal variability of column-averaged mole fraction of COq
(XCO2) reasonably well (r=0.7), although a persistent bias in background values was found. A July 2019 heatwave case
study further demonstrated the model’s ability to reproduce a synoptically driven anomaly. Near the surface, performance was
good during afternoon hours (r=0.75, MBE=—1-65-2.44 ppm), nighttime mole fractions were overestimated (MBE = 6:51-7.86
ppm), resulting in an exaggerated diurnal amplitude. Sensitivity tests revealed that land cover data, vertical emission profiles,
and adjusted VPRM-parameters (Vegetation Photosynthesis and Respiration Model) can significantly influence modeled mole
fractions, particularly at night. Tracer analysis identified industry and energy as dominant sources, while biospheric fluxes
introduced seasonal variability - acting as a moderate sink in summer for XCO, and a net source in most months near the
surface. These findings demonstrate the utility of WRF-GHG for interpreting temporal patterns and sectoral contributions to

COy, variability at Xianghe, while emphasizing the importance of careful model configuration to ensure reliable simulations.

Climate change is one of the most pressing global challenges, and carbon dioxide (CO,) is its primary driver due to its

long atmospheric lifetime and rising atmospheric abundance (Masson-Delmotte et al., 2021). Understanding how atmospheric
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CO, levels vary over time and space is essential for detecting long-term trends, distinguishing natural fluctuations from
anthropogenic signals, and deepening our insight into the carbon cycle and its interactions with the atmosphere. Observational
records are key to unraveling local and regional carbon budgets and assessing the effectiveness of mitigation strategies. To
fully interpret such observations, especially in complex environments, we rely on atmospheric transport models, which provide
spatial and temporal context and help disentangle the observed COy signal into contributions from different sources and
processes. As the world’s largest fossil CO- emitter (Friedlingstein et al., 2025), our study focuses on China—a country
whose vast and densely populated regions, strong industrial activity, and ecological diversity make it a complex but highly
relevant area for atmospheric CO5 research. In this context, a ground-based remote sensing instrument was installed in 2018
at the Xianghe site, a suburban location approximately 50 km southeast of Beijing. The Fourier Transform Infrared (FTIR)
spectrometer provides high-precision column-averaged CO2 mole fractions and is part of the global Total Carbon Column
Observing Network (TCCON). Complementing this, a PICARRO Cavity Ring-Down Spectroscopy (CRDS) analyzer measures
near-surface CO2 mole fractions at 60 meters above ground level. This unique combination of collocated column and in situ
observations— to our knowledge currently the only such setup in China—offers a valuable opportunity to study both local and
regional CO; signals and to evaluate model performance for different levels of the atmosphere.

Previous studies by Yang et al. (2020, 2021) provided initial insights into the seasonal and diurnal variability of both column-
averaged and near-surface CO5 mole fractions at Xianghe. Their work highlighted the strong influence of local and regional
emissions, as well as planetary boundary layer dynamics, on observed COs levels. However, these analyses were either purely
observational or relied on coarser-resolution model products such as CarbonTracker, which are limited in their ability to resolve
mesoscale variability. Furthermore, the two observation types were not jointly analyzed within a high-resolution modeling
framework, leaving room for a more detailed and integrated approach. To gain a deeper understanding of the processes
shaping the observed CO5 mole fractions at Xianghe, we apply the high-resolution WRF-GHG model in this work, a specific
configuration of the widely used WRF-Chem model tailored for greenhouse gas simulations (Beck et al., 2011). The current
study is part of a broader research effort investigating multiple greenhouse gases at the site. While a companion paper has
already presented the results for CHy (Callewaertet-al5-2024)(Callewaert et al., 2025), the present work focuses exclusively
on COs.

The WRF-GHG model was originally developed to address the limitations of coarse-resolution global models by providing
a more detailed representation of CO, transport, surface flux exchanges, and meteorological processes at the mesoscale.
Thanks to its coupling with the Vegetation Photosynthesis and Respiration Model (VPRM), WRF-GHG has demonstrated
strong capabilities in simulating biogenic CO» fluxes (NEE, net ecosystem exchange) and atmospheric dynamics. It has been

successfully applied across a range of environments, from rural areas influenced by sea-breeze circulations {Ahmadov-et-al;2067-2069)-(A

urban regions with complex emission patterns and boundary layer processes (Feng et al., 2016; Park et al., 2018; Zhao et al.,
2019). Further, the model has been evaluated against in situ, tower, aircraft and satellite data during large-scale campaigns
such as ACT-America in the US (Hu et al., 2020) and KORUS-AQ in South-Korea (Park et al., 2020), showing its ability to
reasonably capture spatiotemporal variability of CO5. In China, WRF-GHG has been used to study CO5 fluxes and atmospheric

mole fractions on a national scale and to explore the role of biospheric and anthropogenic sources (Dong et al., 2021; Ballav
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et al., 2020). Li et al. (2020) evaluated WRF-GHG against tower observations in northeast China, showing the model could
capture seasonal trends and episodic enhancements, despite underestimating diurnal variability and respiration fluxes.

Our study uses WRF-GHG to investigate the main drivers of observed temporal variations at Xianghe and to evaluate the
model’s ability to reproduce these patterns, identifying key sources of error where relevant. The model’s tracer framework
further allows us to disentangle the contributions of anthropogenic, biogenic, and meteorological processes to simulated CO2
levels. The structure of the paper is as follows: Section 2 describes the observations, model configuration, and the design of
additional model sensitivity experiments. Section 3 presents the results, including model performance, tracer-based analyses

and sensitivity experiments. Section 4 discusses some of the results in more detail, while Section 5 summarizes the conclusions

and provides an outlook.
2 Methods

2.1 Observations at Xianghe site

We use observational data from the atmospheric monitoring station situated in Xianghe county (39.7536° N, 116.96155° E; 30
m a.s.l.). This site is located in a suburban part of the Beijing-Tianjin-Hebei (BTH) region in northern China. The town center
of Xianghe lies approximately 2 km to the east, while the major metropolitan areas of Beijing and Tianjin are situated roughly
50 km to the northwest and 70 km to the south-southeast, respectively (Fig. 1b). The dominant vegetation in the surrounding
area consists of cropland.

Continuous atmospheric measurements have been conducted at the Xianghe observatory by the Institute of Atmospheric
Physics (IAP), Chinese Academy of Sciences (CAS), since 1974. FTIR solar absorption measurements have been performed
since June 2018, from the roof of the observatory by a Bruker IFS 125HR. This ground-based remote sensing instrument
records spectra in the infrared range and is part of the TCCON network (Wunch et al., 2011; Zhou et al., 2022), providing
data on total column-averaged dry air mole fractions for gases such as COy, CHy, and CO (noted as XCO2, XCH,4 and XCO,
respectively). The current study employs the GGG2020 data product (Laughner et al., 2024). Observations are typically taken
every 5 to 20 min, depending on weather conditions and instrument status. TCCON measurements are exclusively performed
under clear skies. The uncertainty associated with the XCO, measurements is approximately 0.5 ppm. Further details regarding
the instrument and the retrieval methodology can be found in Yang et al. (2020).

In addition to the FTIR measurements, in situ measurements of CO, and CH4 mole fractions have been conducted since June
2018 using a PICARRO cavity ring-down spectroscopy G2301 analyzer. This instrument draws air from an inlet situated on a
60 m tower. A more comprehensive description of this measurement setup is available in Yang et al. (2021). The measurement
uncertainty for CO» with this instrument is about 0.06 ppm. The data used in this study were converted to align with the WMO
CO3 X2019 scale (Hall et al., 2021).
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Figure 1. (a) Location of the WRF-GHG domains, with horizontal resolutions of 27 km (d0O1), 9 km (d02) and 3 km (d03). All domains
have 60 (hybrid) vertical levels extending from the surface up to 50 hPa. (b) Terrain map including the largest cities in the region of

Xianghe, roughly corresponding to d03. The location of the Xianghe site is indicated by the red triangle in both maps. Figure taken from
Callewaert-et-al+2024)Callewaert et al. (2025).

2.2 WRF-GHG model simulations

85 We make use of the WRF-GHG model simulations elaborated in Part 1 of this work (Calewaert-et-al52024)(Callewaert et al., 2025),
and provide a brief summary here for completeness. The simulations were performed using the Weather Research and Forecasting
model with Chemistry (WRF-Chem v4.1.5; Grell et al. (2005); Skamarock et al. (2019); Fast et al. (2006)) in its greenhouse gas
configuration, called WRF-GHG (Beck et al., 2011). This Eulerian transport model simulates three-dimensional greenhouse gas
mole fractions simultaneously with meteorological fields, without accounting for chemical reactions. The model setup includes

90 three nested domains with horizontal resolutions of 27 km, 9 km, and 3 km (Figure 1a), and 60 vertical levels extending from
the surface up to 50 hPacFigure-+a-), There are 11 Jayers in the lowest 2 km, with a layer thickness ranging from about 50 m
near the surface, to 400 m above 2 km.

Anthropogenic CO5 emissions were obtained from CAMS-GLOB-ANT v5.3 (Granier et al., 2019; Soulie et al., 2023) and
temporally disaggregated using CAMS-TEMPO profiles (Guevara et al., 2021). The original 11 source sectors were aggregated

95 into four broader categories and included in separate tracers: energy, industry, transportation, and residential & waste. Biomass
burning emissions were taken from the FINN v2.5 inventory (Wiedinmyer et al., 2011), and ocean-atmosphere CO- fluxes
were prescribed based on the climatology from Landschiitzer et al. (2017). Finally, net biogenic CO, fluxes were calculated
online using VPRM (Mahadevan et al., 2008; Ahmadov et al., 2007), driven by WRF-GHG meteorology and MODIS surface
reflectance data, with ecosystem-specific VPRM parameters from Li et al. (2020) and land cover information from SYNMAP

100 (Jung et al., 2006).
Meteorological fields (e.g., wind, temperature, humidity) were driven by hourly data from the European Centre for Medium-

Range Weather Forecasts (ECMWF) ERAS hourly data (0.25° x 0.25°; Hersbach et al. (2023a, b)). Daily restarts were
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performed at 00:00 UTC, with model initialization at 18:00 UTC the day before to allow for a 6-hour spin-up, stabilizing
the simulation. For tracer fields, mole fractions at 00:00 UTC were copied from the previous day’s simulation to maintain
consistency. The initial and lateral boundary conditions for CO, were prescribed using the 3-hourly Copernicus Atmosphere
Monitoring Service (CAMS) global reanalysis (EGG4, Agusti-Panareda et al. (2023)).

The final simulated CO, field is composed of the sum of several tracers that track contributions from individual sources. These
include a background tracer (reflecting the evolution of initial and lateral boundary conditions from CAMS), as well as tracers
for energy, industry, residential, transportation, ocean, biomass burning, and biogenic fluxes.

WRF-GHG was run from 15 August 2018 to 1 September 2019. However, the first two weeks were regarded as a spin-up phase,
so the analysis in Sect. 3.1 is made on one full year of data: from 1 September 2018 until 1 September 2019. The complete
data set can be accessed on https://doi.org/10.18758/P34WJEW?2 (Callewaert, 2023).

To enable comparison with the observations, model data from the grid cell containing the measurement site are extracted. For
near-surface observations, the model profile is interpolated to the altitude of the instrument, while for column measurements

the model output is smoothed with the FTIR retrieval’s a priori profile and averaging kernel—, after being extended above the

model top with the FTIR a priori profile. The hourly model output represents instantaneous values, as do the observational
measurements. To align the datasets temporally, the observations are averaged around each model output time step—using a
+£15-minute window. Further details are provided in Part 1 {Callewaert-et-al-2624)(Callewaert et al., 2025).

2.3 Sensitivity experiment design

A series of sensitivity experiments was conducted to assess the impact of key model assumptions on surface CO- fluxes, such as
the treatment of emission heights, land cover classification, and biogenic flux parameterizations. Four two-week periods were
selected for these sensitivity simulations, spanning from the 15th to the 29th of March, May, July, and December. These months
were identified as being most critical for simulating the diurnal CO4 cycle while representing different seasons. Although the
specific dates within each month (15-29) were chosen somewhat arbitrarily, they were applied consistently across all four
months to ensure comparability. Fhree-Four different simulation experiments (BASE, PROF, LC, PARAM) were performed

over these four periods to isolate the impact of three model assumptions (see Table 1):

— Emission height. To assess the impact on simulated in situ CO2 mole fractions at Xianghe of the height at which
anthropogenic emissions are released in the atmosphere (all at the lowest model level near the surface, or according
to sector-specific vertical profiles), we applied the vertical profiles for point sources from Brunner et al. (2019) to
the CAMS-GLOB-ANT sector-specific CO2 emissions. For the fluxes in the ’industrial processes’ sector, we used the
average of the profiles of SNAP 3 (Combustion in manufacturing industry) and SNAP 4 (Production processes). Note
that we don’t make a distinction between area and point sources as in Brunner et al. (2019), as this information is not

available for our study region. Beth-SEC(surface)-and-PROF(profite)-Profile emissions were included in all expertments
nabh i i - i iS5t i i tanghe:but the

BASE experiment: PROF, LC and PARAM.
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— Land cover classification. The net biogenic CO; fluxes are calculated online in WRF-GHG as the weighted average of
the Net Ecosystem Exchange (NEE) for eight vegetation classes (evergreen trees, deciduous trees, mixed trees, shrubland,
savanna, cropland, grassland and non-vegetated land)(Mahadevan et al., 2008). As a default, the SYNMAP land cover
map is used to calculate the vegetation fraction for every model grid cell. To assess the impact of this classification, we
prepare the VPRM model input files for the LC and PARAM experiments with the global 100-m Copernicus Dynamic
Land Cover Collection 3 (epoch 2019) (Buchhorn et al., 2020), using the py VPRM python package (Glauch et al., 2025),

allowing for an updated and higher-resolution representation of vegetation types in the domain.

— VPRM parameterization. The VPRM-calculated NEE can be tuned for different regions around the globe by specifying
four empirical parameters («, 3, A and PARy) per vegetation class. These parameter tables are a mandatory input to the
WRF-GHG model and can be calibrated using a network of eddy flux tower sites, representing the different vegetation
classes in the region, or taken from literature. Due to the lack of a dedicated calibration study in China, we applied the
table from Li et al. (2020) in the one-year simulations, and the BASE and LC experiments. Seo et al. (2024) reported
the lowest RMSE in East Asia using these parameter values, relative to the default US settings and those of Dayalu
et al. (2018). To evaluate the impact of these parameters at Xianghe, we conducted an experiment (PARAM) with an
alternative parameter table, optimized over Europe by Glauch et al. (2025). The exact parameter values used in each

experiment are provided in Table Al.

Table 1. Overview of the model configuration for the sensitivity experiments. Note that the Glauch parameter table does not include values

for the Savanna’ class, consistent with its absence in the Copernicus land cover map.

Name-Experiment name ~ Emission height Land cover map ~ VPRM parameters

BASE SFC +- SYNMAP Li table

PROF PROF SYNMAP Li table

LC SEC-PROF Copernicus LC Li table
PARAM SEE-PROF Copernicus LC Glauch table

By comparing the results from the three-four sensitivity experiments, the influence of individual model components can be
isolated. The role of vertical emission distribution can be assessed by comparing the BASE and PROF experiments, Similarly,
the impact of land cover classification is assessed by comparing the BASE-PROF and LC simulations, which differ only
in the land cover dataset used. SimitartyFinally, the effect of VPRM parameterization can be evaluated by comparing LC
and PARAM, which share the same land cover input but differ in the VPRM parameter table. Finally;—therole—of-vertical

three-experiments—This-modular-This approach enables a systematic investigation of potential model deficiencies affecting the
representation of CO4 at Xianghe. Note that the BASE experiment with-SEC-emissions-corresponds exactly with the settings

of the one-year simulation described above.
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Table 2. Statistics of the model-data comparison of the ground-based CO- observations at the Xianghe site from 1 September 2018 until 1
September 2019. We present the mean bias error (MBE), root mean square error (RMSE) and Pearson correlation coefficient (CORR). The

MBE and RMSE are given in ppm. For in situ observations, the data is split in afternoon (12-15 LT), night (22-4 LT) and morning transition

8-12 LT) hours. The bias corrected model values are given between brackets.

insitu CO2 XCO2

MBE | -3.12(244)  7.18(7.86) -0.73(-0.04)  -1.43 (-0.86)_
RMSE | 1535 (15.27)  23.77.(24.04 22,04 (22.15 2.45 (1.80

CORR | 0.75(0.76) 0.60 (0.60 0.69 (0.69 0.70 (0.70
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Figure 2. Time series of the observed (black) and simulated (red) (a) XCOz and (b) insitu CO2 mole fractions at the Xianghe site. Panels
(c) and (d) show the differences between (smoothed) WRF-GHG simulations and observations for XCOz and in situ COz2, respectively. Data
points are hourly, if available. The red data points in (b) and (d) represent the monthly mean differences. A bias correction was applied to the

3 Results
3.1 Evaluation of one-year simulation

3.1.1 Timeseries and statistical comparison

Figure 2-provides-an-overview-of the-Table 2 summarizes the comparison between simulated and observed time-series-of-COq
mole fractions at Xianghe;-along-with-theirrespeetive-differenees. Overall, WRF-GHG demonstrates a reasonable accuracy

in replicating these measurements: the XCO, observations are slightly underestimated, with a mean bias error of -1.43 ppm
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(as—detailed-in—Table2)-and-a~(£ 1.99) ppm and a Pearson correlation coefficient of 0.70. Note that the XCO; time series
was de-seasonalized before calculating the correlation coefficient in order to remove the effect of the seasonal variation. After
applying a bias correction to the modeled values, the XCO» MBE decreases to -0.86 (£ 1.57) ppm (corrected values shown in
parentheses in Table 2), and the RMSE improves from 2.45 ppm to 1.80 ppm, while the correlation remains unchanged. Details

of the bias correction are provided in Sect. 3.1.2, and the resulting time series are shown in Fig.
The data near the surface has been divided into afternoon (+312:00 - +815:00 LT)aﬁdmghfﬁm&GO% nighttime (22 00 - 04:00

LT) and morning (08:00 - 12:00 LT) periods to eva
resuttsassess model performance under different boundary layer conditions. Indeed, WRF-GHG shows a smaller bias (-2:34

-2.44 ppm) during the afternoon, when the lower atmosphere is well-mixed, compared to nighttime (5-82-7.86 ppm). Additionally,
the MBE differs in sign between the two periods: near-surface CO5 levels tend to be underestimated by the model in the
afternoon but overestimated at night. Except for the moderate correlation observed for in situ CO2 during nighttime (6-580.60),

WRF-GHG achieves relatively high correlation coefficients (> 0.7) for other CO, data, indicating satisfactory model performance.

B8P hours: mst&tQ@TéafEefﬂeeiﬂiﬂsﬁwGGTﬁﬁghﬂ%GQTO%rall the bias correction has only a minor influence on the
comparison with near-surface mole fractions, where the effect on RMSE and correlation coefficients are negligible (< 1.2%
and < 0.01, respectively).

Hewaspeets—sfmd—e&%%%eekmg%fh&%nﬁe—seﬂe&eﬁﬁnall the XCO» time series in F1g 2a se—Firstly,a—clear

in-Fig—2a—A-more detailed reveals a notable spike between 20-29 July (highlighted in gray), interrupting the general decline
associated with northern hemispheric_photosynthetic uptake during the growing season, from May onwards. A dedicated
analysis of this summer—spike-witt-be-July XCO, event is provided in Sect. 4.2;—while-the-biasbetweenSeptember 2648
and-May 2619 is discussed-below (Seetion3:+:2), Note that there is a gap in the in situ CO, time series during this period due
to instrument malfunctions (Yang et al., 2021).

3.1.2 Correction of background bias

Our WRF-GHG underestimates-simulations underestimate XCO, by approximately 2 ppm until May 2019, after which the
negative bias diminishes —(see Fig. Ala,c). This bias likely originates from a similar error in the background data, inaccuracies
in representing the actual sources and sinks in the region, or a combination of both.

The CAMS validation report (Ramonet et al., 2021) presents “a very good agreement for all (TCCON) sites”, suggesting
that the CAMS reanalysis that is driving the WRF-GHG simulations is of good quality without known biases. However, their
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Figure 3. Monthly mean difference (in ppm) between CAMS reanalysis model and TCCON XCO- between 30 - 50° N over the simulation
period of this study.

criteria for what constitutes “very good" appears to be relatively mild (within £2 ppm). Moreover, the Xianghe site wasn’t
included in this report and the accompanying figure does not provide very detailed information. Therefore, we reproduced
their analysis for several TCCON sites at similar latitudes for the period of our interest (September 2018 - September 2019):
Karlsruhe (49.1° N), Orleans (48.0° N), Garmisch (47.5° N), Park Falls (45.9° N), Rikubetsu (43.5° N), Lamont (36.6° N),
Tsukuba (36.0° N), Edwards (35.0° N), Pasadena (34.1° N), Saga (33.2° N), and Hefei (31.9° N). The results of this analysis
are presented in Fig. 3.

We find an underestimation of the CAMS reanalysis XCOs at all TCCON sites between 30 - 50° N (except Pasadena) from
October 2018 until May 2019. More specifically for Xianghe, monthly mean errors range from -2.20 (£ 1.3) ppm in January
2019 to 3.38 (&£ 1.28) ppm in July 2019, which is of a similar magnitude as the bias found with WRF-GHG (where the monthly
mean differences with respect to the TCCON site of Xianghe range from -2.53 (4 1.7) ppm in December 2018 to 1.28 (£ 1.57)
ppm in July 2019).

Therefore, we assume that the error pattern detected in the XCO, time series is primarily the result of the same pattern in the
background information. Moreover, this bias pattern is not found in the in situ CO4 time series(Fig—3d), likely because the
relative contribution from the background to the in situ mole fractions is smaller than it is to the column data. To account for
the systematic bias introduced by the background values, we apply-applied a bias correction to the WRF-GHG simulations.
Specifically, we subtract the monthly mean difference between CAMS and TCCON XCOs, averaged across all TCCON sites

located between 30 - 50° N (excluding Pasadena due to outlier behavior), from the model’s background tracer. The resulting

improvements in model performance are summarized in Table 2?-and-the-updated-time-series-is-shown-inFigure22—After

4 00\ vpm-teo—0
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3.2 Sector contributions to observed mole fractions

WRF-GHG tracks all fluxes in separate tracers, enabling the decomposition of the total simulated CO5 mole fractions at
Xianghe into contributions from different source sectors. Figure 4 shows the monthly mean values, while additionally the
230 median and interquartile ranges are presented in Table 3. Note that all simulated hours were used for this analysis, not just

the ones coinciding with observations. The main sectors contributing to the modeled CO4 variability at Xianghe are energy,

(a) XCO, (b) in situ CO,
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Figure 4. Monthly mean tracer contributions above the background for (a) XCO2 and (b) in situ CO2 simulated mole fractions at Xianghe.

industry, and the biosphere. For XCO,, we find median values of 0.85 ppm and 0.63 ppm for the energy and industry sectors,

respectively. Furthermore, the biosphere significantly influences the column-averaged CO- values, where it acts as a sink from

April to September with a median value of -0.77 ppm during this period. During the rest of the year, the biogenic tracer acts as
235 asmall source (median value of 0.22 ppm).

Near the surface, median enhancements of in situ CO5 mole fractions are 6.85 ppm and 5.69 ppm for the energy and industry

sectors, respectively. The biosphere generally acts as a source throughout the year, with a median contribution of 2.69 ppm,

except in August, when it becomes a significant sink of -6.76 ppm.

10
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Table 3. Statistics of the total simulated CO2 mole fractions and the different tracer contributions over the complete simulation period. Q1

and Q3 represent the first and third quartile, respectively, between which 50 % of the data fall.

XCO2 (ppm) in situ CO2 (ppm)
Q1 median  mean Q3 Q1 median  mean Q3

Total 408.32  412.11  411.37 414.11 | 419.44 43093 437.86 450.14
Background 407.2  410.21  409.54 412.12 | 397.63 41242 411.08 414.69
Biomass burning  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Energy 0.36 0.85 1.07 1.53 2.74 6.85 10.51 14.06
Residential 0.03 0.06 0.17 0.17 0.30 0.65 1.88 1.95
Industry 0.24 0.63 0.79 1.14 2.70 5.69 8.53 10.51
Transportation 0.08 0.16 0.18 0.25 0.81 1.73 243 3.19
Biosphere -0.77 0.04 -0.38 0.31 -0.01 2.36 3.44 7.39
Ocean -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.01 -0.00
Total tracers 0.33 1.23 1.82 2.80 7.36 18.99 26.78 38.30

serve-as-a-strong-sink-{(seeFig—5)Next to the three dominant sectors (biosphere, industry, and energy), transportation and also
residential sources have a smaller but still relevant influence on the Xianghe data. During winter, the contribution of residential
sources increases, where the highest values for the column simulations are found in February (median of 0.45 ppm) while
near the surface this occurs in January (4.28 ppm). This peak aligns with heightened residential emissions in winter, driven by
increased heating demands correlated with air temperature (Guevara et al., 2021). Finally, no relevant impact was found from
biomass burning and the ocean. Overall, the total tracer enhancement for the in situ mole fractions is about ten times greater

than that of the column-averaged values.
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Figure 5. Map of the mean CO> flux (mol km ™2 h™!) in WRF-GHG domain d03 during the entire simulation period from September 2018
until September 2019, for the most important sectors. Remark that the panels have different color scales. The location of the Xianghe site is

indicated by a blue cross.
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3.3 Diurnal cycle analysis of in situ data

(a) PBL height (b) in situ CO,
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Figure 6. Hourly median and interquartile range of the (a) simulated planetary boundary layer height, and observed and simulated surface

(b) CO2 mole fraction at Xianghe.

The planetary boundary layer (PBL) plays a crucial role in regulating near-surface COs mole fractions. Figure 6 displays
the diurnal variation of the PBL height as simulated by WRF-GHG, along with the corresponding CO2 mole fractions near the
surface (both simulated and observed).

During the day, solar radiation promotes turbulent mixing, leading to a deepening of the PBL and the dilution of near-surface
COs. The PBL reaches its maximum height around 15:00 local time (LT), coinciding with the lowest simulated—surface

CO> mole fractions;—wi

comparably-tow-from14:00-te-17:00-, Conversely, during the night, radiative cooling leads to the formation of a stable, shallow

13
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PBL, trapplng COxs near the surface and causing mole fractions to rise. W@Q%ﬂﬁk‘ffd&&ﬁﬂﬂ%@%l@’dfﬁéﬂ&hﬂd

between445-21-and-446:26-ppm)—As the sun rises and the PBL height begins to increase again, the CO5 mole fractions drop,

giving rise to a characteristic diurnal cycle.

ar-Indeed, the lowest values
g@vglggevrygg between 14:00 and 16:00 LT, with the-minimum—at1+6:00-a_ minimum of 421.32 (hourly median value, with
an interquartile range of 415.80 — 431.76) ppm —Duringnighttime;—the-model-tends—to-overestimate—the-at_16:00. In the
early morning, the observed CO, build-up;—with-observed-molefractions—shewing-mole fractions show a distinct peak at
7:00, reaching 443.42 (428.00-459.32) ppm. WRF-GHG successfully captures the general shape of this diurnal cycle, but
discrepancies remain in the amplitude and timing. The model slightly underestimates daytime mole fractions, with a minimum
value that is 1.22 ppm lower and occurs one hour earlier than the observations (at 15:00 LT). The peak CO, mole fractions
observations, where the model remains relatively stable between 3:00 and 8:00 LT. This results in an overestimation of the

diurnal amplitude by approximately 4.58 ppm. Such a nighttime overestimation was not observed for CH, at the same site

{Callewaertetal;2024)(Callewaert et al., 2025), suggesting that the bias is more likely related to the surface fluxes of COq
than to PBL dynamics.

3.4 Sensitivity experiments

Several sources of uncertainty may affect the accuracy of the simulated anthropogenic and-biogenie-CO2 fluxes and NEE in
WRF-GHG. First of all, the parameters used in VPRM in this study are based on Ei-et-al+2020)Li et al. (2020), who optimized

them for ecosystems in the United States. Applying these values to China likely introduces regional mismatches, as differences

in dominant species, climate conditions, and land use history can significantly alter ecosystem carbon dynamics even within

the same vegetation class (Mahadevan et al., 2008; Seo et al., 2024). Moreover, the linear formulation of the respiration term
in VPRM has been identified as a source of potential bias (Dong et al., 2021; Hu et al., 2021). A third concern is the land cover

classification. VPRM uses the SYNMAP product (Jung et al., 2006), which is a 1-km global land cover map that classifies
the area around Xianghe as 100% cropland. While broadly consistent with the regional land use, this dataset does not account
for increasing urbanization during the last decades. In WRF-GHG, built-up areas are assigned zero biogenie-fluxINEE, so their
omission could contribute to the observed nighttime overestimation of respiration and daytime photosynthetic uptake.

Further, the representation of anthropogenic emission heights may also affect the modeled surface mole fractions. In this study,

14



Table 4. Mean and standard deviation (in ppm) of the total anthropogenic CO- tracer contribution (sum of industry, energy, transportation
and residential tracer) to near-surface mole fractions at Xianghe for BASE sensitivity experiment, split by surface (SFEBASE) and profile
(PROF) emissions, and simulation period. *All’ indicates that all simulated hours (0 - 23 LT) were used to calculate the metrics, in contrast

to *Afternoon’ (43-12 - 4815 LT)and-, 'Night' (3-22 - 4 LT) and "Morning’ (8 - 12 LT).

December 2018 March 2019 May 2019 July 2019
SEE-BASE 34.32 + 33.64 18.94 + 18.74 15.59 + 14.35 2425 + 14.78
Al PROF 20.37 £ 20.47 9.51 +7.76 8.5+ 6.16 13.98 £ 5.32
Afternoon SECBASE  24:23-17.13 26541723 8:59.12 £ 8:59.07 6:9-8.94 +5:89-7.44 +4:09-15.53 £+ 9:729.99
PROF +5:94-11.82 &+ 49:76-11.10 6:67-6.54 + 5:82-5.73 5:92-7.09 & 4:75.24 +-8-12.06 + 5:34.85
Night PROF 20:28-24.51 £ 477622.15  +86-10.80 + 8:93-7.02 H-16-8.89 + 7:455.60 +5:92-15.07 + 472:5.62
Moming  BASE 3107 3145 2275 427,99 1936 & 1453 2743 £ 1445

all anthropogenic CO, emissions are released in the lowest model layer, which simplifies reality. Especially for sectors such as
energy and industry, this is a crude approximation, since facilities like power plants typically emit at elevated stacks. Previous
work by Brunner et al. (2019) has shown that ignoring the vertical distribution of emissions can lead to overestimation of
near-surface mole fractions.

330 Finally, while it is well known that uncertainties in simulating planetary boundary layer (PBL) dynamics can substantially
affect near-surface CO, mole fractions, the influence of different PBL parameterization schemes is not explored in the current
sensitivity experiments. WRF-GHG offers several PBL schemes, some of which were tested and discussed in Part 1 of this work

{Callewaert-et-al52024)(Callewaert et al., 2025). Here, the focus is instead on evaluating how model configuration choices

related to CO4 fluxes impact the simulated mole fractions.
335 3.4.1 Emission height sensitivity

To evaluate the impact of emission injection height on simulated CO5 mole fractions at Xianghe, we compare the SEC-and
PROF-configurations-of-the BASE-sensitivity-experiment- BASE and PROF sensitivity experiments (see Sect. 2.3). Figure 7
presents the median diurnal cycle of the anthropogenic COs tracer across the four 14-day simulation periods (top), together
with the total simulated and observed CO5 mole fractions (bottom). Similarly, Table 4 provides a summary of the impact on the
340 anthropogenic tracer. ¥
further-here-

Simulations using elevated emission profiles (PROF) consistently yield lower near-surface CO2 mole fractions than those

with surface-only emissions (SEFEBASE), with the most pronounced differences occurring during nighttime and the morning

transition. The largest reduction is observed in JulyDecember, where mean nighttime mole fractions in the PROF simulation

345 are 21-75-16.92 ppm lower than in the



Median diurnal cycle at Xianghe, impact of emission height
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Figure 7. Median diurnal cycle of in situ CO2 mole fractions (ppm) at Xianghe. The solid red line presents the simulated values of the

BASE-PROF sensitivity experiment (using vertical profiles for the anthropogenic emissionstPROF), while the dashed blue line represents

the simulated CO» values using only surface emissions (SFC). Observations are plotted in black.

—BASE. An overview of the key
statistical performance metrics with respect to the observations at Xianghe is given in Table 2?-Applying-vertically-distributed

miccronetothae WRE [] miatianae anche chi ho MRE A

350

this bias is substantially reduced in PROF. By contrast, in May and July the absolute MBE increases and changes sign from
ositive to negative. The use of elevated emissions leads to a reduction in the RMSE compared to the surface-only configuration

355 in all periods, while the correlation coefficient remains largely unaffected. The use of elevated emission profiles also has a
pronounced effect on the simulated diurnal amplitude of near-surface CO5. Compared to the surface-only configuration, which
strongly overestimates the amplitude, the more realistic vertical distribution results in a better agreement with observations—particularly

in March and July. In March, for example, the amplitude overestimation is reduced from 22.73 ppm to just 1.74 ppm, and in

July from 14.16 ppm to -5.96 ppm.

360
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Table 5. Overview of statistical metrics (MBE, RMSE and CORR) for BASE-the different sensitivity experimentexperiments BASE, splitby

surface(SHC-and-profile (PROF)-emisstons, LC and PARAM with respect to the observations, per simulation period. Values for MBE and
RMSE are given in ppm.

MBE RMSE
Dec Mar May Jul Dec Mar May Jul
SECBASE 10.04 +6:810.80 0.69 1.99 34+931.90 22.41 17.22 19.22
All PROF -3.91 1.38 -6:4-6.40 -8.27 2351 11.47 16.08 16.82
PARAM 182 461 034, 082 260 1309 1379, 1364
BASE -3.96_ -0.51 -2.67 -6.70 2159 1049 1222 18.76
Afternoon PROF -+65-9.28  -2:43-3.09 -4:86-4.53 5811017 | 22:69-24.42 9:81-8.88 +632-11.92  +3:73-17.1]
SECLC ~ 1344-929  2+45-3.80 +02-4.54 H35-877 | 3092443 2975885 22641190  25:64-15.9]
PARAM_ 853 023 232 084 2384 975 1100 1370
BASE 17.00_ 17.75 6.38 7.64 3242 2381 19.21 20.71
Night PROF -6-540.08 323-5.37 —+2:55-3.15 464486 | 193518.57 461114  23:6+11.69  20:7716.12
LC 0.06 3.17 -6.56 -8.77 1858 9.51 14.06 17.26
PARAM 300 8.90 256 264, 1938 1378 1115 1447
BASE -0.79_ 11.49 -1.44 -3.51 3279 31.13 19.83 19.34
Morning PROF -17.57 -1.00 -9.98 -16.17 3043 14.28 20.44 21.50
LC. -17.58 -2.60 -10.59 -15.97 3045 1385 20.72 21.10
PARAM_ 1566 221 0.66. 381, 2927 1sa8 1709 1444

-The implementation of elevated anthropogenic

emissions has a minimal effect on the column-averaged XCO5 mole fractions at Xianghe, see statistical metrics in Table 22-

A2
3.4.2 Biogenic flux and land cover sensitivity

To evaluate the impact of land cover representation on the VPRM-calculated CO, fluxes, we compare the BASEPROF and LC

sensitivity experiments. AH-figures-and-valuesbelowuse-the-vertically-distributed-anth g : In
the PROF simulation, the WRF-GHG grid cell containing the Xianghe site is classified as 100% cropland using the SYNMAP
dataset. In contrast, the Copernicus Dynamic Land Cover data, used in the LC and-PARAM-simulationsexperiment, classifies
the same cell as 68.88% cropland, 23.5% no vegetation (representing urban surfaces, water, ice, rocks, etc. ), 3.45% mixed
forest, 2.03% wetland, 1.5% shrubland, and 0.64% grassland. A comparison of the two land cover datasets over the innermost
WRF-GHG domain (d03) is shown in Figure A4. Due to its higher spatial resolution and more up-to-date information, the
Copernicus dataset introduces more heterogeneous vegetation fractions and especially reduces the cropland fraction while

increasing the urban land category compared to SYNMAP.
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Figure 8. Median diurnal cycle of biegenie-€O-—fix-NEE (top), biogenic CO2 tracer contribution (middle) to the near surface CO2
mole fractions (bottom) at Xianghe for the different simulation periods (columns). Different curves (colors) represent different sensitivity

experiments BASEPROF, LC and PARAM. Observations are plotted in black in the bottom row.

The top panels of Figure 8 present the median diurnal cycles of the-biogenie-CO-—flux—expressed-as—NEE, at Xianghe
across the four 14-day simulation periods. As-expected;—differences-Differences between the experiments are negligible in

winter months (December and March)due-to-minimat-biospheric-activitytn-contrast, whereas during May and July, the LC
simulation exhibits both reduced daytime CO4 uptake and lower nighttime respiration compared to BASE-This-weakening-of

accpe VN PRN_J AR

fluxes-This-change-in-biegeniehuxPROF. This change in NEE is reflected in the simulated biogenic CO- tracer at Xianghe
(Fig.8e—h, Table 6). However, we notice that the magnitude of the difference between LC and BASE-PROF is more pronounced
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Table 6. Mean and standard deviation of the biogenic CO tracer at Xianghe for the different sensitivity experiments BASE, LC and PARAM,

per simulation period. *All’ indicates all simulated hours (0 - 23 LT) were used to calculate the metrics, in contrast to ’Afternoon’ (+3-12 -

+8-15 LT)and-, *Night’ (322 - 4 LT), and "Morning’ (8 - 12 LT).

December 2018 March 2019 May 2019 July 2019
BASE-PROF 2.29 +2.67 6.25 £ 5:65.60 3.79 £9.35 8.07 +12.89
All LC 2.28 +2.66 4.67 +4.19 2.15+791 6.62 + 10.04
PARAM 4.38 £4091 9.49 £ 75+7.54 10.53 + 10.09 17.24 + 13.85
BASE-PROF  +5+1.24 £+ +62-1.72 2:99-3.34 4 3.964.64 -343-2.62 £ 3:463.02 -3:4-3.19 £ 46444
Afternoon LC +5-1.23 £ +6-1.70 2:352.63 +3:06-3.60 -3:62-2.62 £ 4:484.08 -2:62-1.78 & 3:283.51
PARAM 24-1.99 £2:58291 5:77-6.20 & 6:26-7.13 3:084.23 +2:63-3.11 5356.23 £533-5.32
BASE-PROF  2:46-3.03 & 2:96-3.30 8:87-8.25 + 6:27-5.01 H219.91 + 16:859.26 22:16-16.68 + +:91+-9.92
Night LC 2:44-3.02 £+ 2:95-3.28 6:54-0.05 + 4:73-3.55 F74-6.50 + 9:28-8.38 +739-12.77 £ 9:67-8.11
PARAM 544-5.96 £ 5:66-5.84  127511.78 £ 8:656.57  18:56-15.62 = 42:5+10.11  32:224.25 +13:25-11.18
Morning LC. 1,87 4250 489 £521 0194539 480£7.92

at night. For instance, in July, the mean (& standard deviation) difference in the biogenic tracer is —<4-78-3.91 (£ 2:732.13) ppm
during nighttime, while the daytime difference is only —3&-1.41 (£ +-191.26) ppm.
To assess the impact of the VPRM parameterization on CO simulations at Xianghe, we compare the LC and PARAM

experiments. Both simulations use the 100-m Copernicus Dynamic Land Cover dataset but differ in their VPRM parameter

385 tables (see Table 1). The comparison reveals that PARAM systematically produces more positive biogenie-€Oxfhuxes-NEE

than LC, both during daytime and nighttime. This-difference-can-be buted-to-highervatues-of-the-parameters—a—and-5-in

—indicating-—tha § primardy-drivenby ased-respiration—rath

than-photosynthetic-uptake-The change in biogenie-flux-NEE is reflected in the biogenic CO» tracer mole fractions at Xianghe.
390 In July, for example, tracer values in PARAM are on average 10.61 (£ 5.03) ppm higher than in LC. This difference is again

more pronounced at night (+4-82-11.48 £ 5:274.27 ppm) than during the afternoon (7-37-8.01 & 3-48-3.09 ppm).

Overview—o6 o al-ne A he-d aron an e Ar1men R A » rd-PARAM-wath-reepe o-the

395

19



400 summary of the model performance of the different experiments using-vertically-distributed-anthropogenic-emissions{PROE)
is shown in Table ??5. Generally, when-anthropogenic-emissions-are-verticalty-distributed;-the PARAM experiment yields the

best agreement with observations. Across all months, PARAM shows the highest correlation coefficients and the lowest MBE
and RMSE, with the exception of March. In that month, the LC experiment slightly-outperforms PARAM, with a smaller MBE
(0.2 ppm vs. 4.61 ppm) and RMSE (10.73 ppm vs. 13.09 ppm).

405 The various VPRM inputs have only a minor influence on the column-averaged XCO, mole fractions at Xianghe, as indicated

by the statistical metrics in Table 22A2.

3.4.3 Diseussion

4 Discussion

410 4.1 Sector contributions: differences between in situ CO, and XCO

In Section 3.2 we compared relative tracer contributions in the WRF-GHG simulations for near-surface CO5 and column-averaged
XCOs, and found a notable difference in the biogenic contribution between the two. To analyze this difference, Fig. 9 presents
mean vertical profiles of the simulated CO5 ¢i i i i st i i 5

415

guide-future-improvements-forsimulating-COtracers at Xianghe.
The profiles show that the dominant tracer signals in WRF-GHG are limited to the lowest 4 km of the column. Panel (a) reveals
a large monthly variability in the vertical distribution of the biogenic tracer. From May through September the biogenic signal
at Xianghe is generally negative through much of the column but positive in the lowest levels. Near-surface values (below
420 200 m) are, on average, positive in all months except August. This pattern is consistent with Fig. 4, which shows a negative
biosphere contribution in August for in situ CO, at-this-site-and-elsewhere-_while XCO, indicates a biospheric sink across
May—September. These vertical profiles indicate that the difference can be linked to two factors: the different sensitivities
of the measurement techniques and Xianghe’s location relative to strong land sinks. In situ observations are typically more
sensitive to local fluxes (i.e. from urban areas and cropland). which are a net source for most months (except August) as

425 calculated by VPRM (see Fig. 5). In contrast, column measurements (XCO-) integrate the entire atmosphere and are sensitive

to fluxes on a larger scale: in this case the forested mountains roughly 50 km north and 90 km east of Xianghe (see Fig. 5)

roducing a sink over Summer.

&ysfema&e&ﬂﬁedueeﬁghmme%QPanel (b) of Fig. 9 shows mean profiles of all tracers averaged over the full simulation
430 period. Unlike the biogenic tracer, the industry, residential, and energy tracers are positive at all heights and exhibit a stron
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Mean WRF-GHG tracer profiles at Xianghe
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Figure 9. Vertical distribution of simulated CO» tracers in WRF-GHG at Xianghe up to 12 km altitude (a) at monthly scale for the biogenic

tracer and (b) annual scale for all tracers.

near-surface maximum that decays exponentially with altitude. Because these anthropogenic tracers do not change sign

with height, their relative contributions are similar for both in situ CO, mele-fractions-atXiangheleadingto—animproved

Pat hao aynarioaaon carbvdermon ath arn e\ PRMN-n meter-y o

4.2 July XCO> anomaly case stud

A notable spike in XCO, levels is observed between 20-29 July (see Fig. 2a), diverging from the typical decreasing trend of
XCO5 from May to September, We will focus on the model simulations between 7 July 2019 and 30 August 2019 to explain
the causes of this XCOs summer spike, as WRF-GHG correlates well with the observations during this period (correlation

coefficient of 0.84).

As shown in Fig. 10a, the total simulated XCO> increases from 406.30 = 1.97 ppm before the summer spike (7—19 Jul

to 408.23 4+ 1.67 ppm during the spike (20-29 July), then decreases to 405.01 &£ 1.63 ppm afterward (30 July—30 August).
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(a) Simulated XCO; and daily mean 800 hPa wind at Xianghe
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dots). Error bars represent the standard deviation of the daily mean. Daily mean 800 hPa wind direction is indicated by wind barbs at the

bottom, (b) Time series of different tracer contributions at Xianghe .with hourly values shown as thin lines and points for TCCON observation

times. (¢) Color coded vertical profiles of the biogenic CO, contributions (left y-axis) shown in red and blue, and surface temperature (right
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These values represent the mean and standard deviation of all hourly WRF-GHG simulated XCO- values during each period.

Figure 10 shows the simulated background and tracer contributions during this period. Figure 10a shows that the background
XCO5 remains relatively constant in July (406.65 + 0.93 ppm), and decreases to 405.63 £+ 1.19 ppm in August. It further

clearly indicates a negative contribution of the tracers before and after the summer spike to a positive enhancement durin
the spike period. Looking at the different tracers in Fig. 10b, we see that it is mainly the biogenic tracer that has a different
behavior in the spike period compared to the periods before and after. Thus, the seope-of-our-experimentsistimited-Only-four

-increase in XCO, between 20-29 July.
is mainly linked to a weaker biogenic sink (-0.86 + 1.04 ppm) compared to the periods before (-3.56 + 1.44 ppm) and after
Further analysis reveals that during the spike, a heatwave with surface temperatures up to 39°C occurred, together with 800
hPa winds predominantly from the west (see Fig. 10a and c). The biogenic tracer also shows increased values across a large
vertical extent in the troposphere (Fig. 10c . A2 and Fig. A3
show that at the onset of the event, on 20 July 2019, a warm air mass arrived from the northwest. This air mass, originating
from the Gobi Desert and grasslands in Inner Mongolia, both areas that are characterized by sparse vegetation and elevated
temperatures, carried a lack of biogenic signal and coincides with the jump in the biogenic XCO, tracer.

Additionally, the mean NEE around Xianghe, as calculated by VPRM, is slightly higher between 20 and 29 July (average of
-5.941 mol km 2 h™! over domain d03) compared to the periods before and after (respectively -9 153 and -12 785 mol km~?
h1). In VPRM, the respiration component is linearly dependent on surface temperature, and the gross ecosystem exchange
also has a temperature dependency representing the temperature sensitivity of photosynthesis, with CO» uptake decreasing at
temperatures higher than optimal (Mahadevan et al., 2008). Indeed, it has been shown that extreme temperatures impact CO;_
fluxes (Xu et al., 2020; Ramonet et al., 2020; Gupta et al., 2021).

Therefore, we conclude that the spike was caused by an atmospheric circulation anomaly resulting in the advection of a warm
air mass with high biogenic CO, levels, followed by locally reduced photosynthesis and increased respiration due to_the
resulting hot temperatures,

indicating advection from other regions. Synoptic maps (Fi

4.3 Sensitivity of near-surface CO, simulations to model configuration choices

43.1 Emission height

In Sect. 3.4.1, we showed that applying vertical profiles to anthropogenic emissions improved the near-surface CO, simulations
at Xianghe, substantially reducing the observed nighttime overestimation in the surf: issi i i i

near-surface COo mole fractions, particularly under weak mixing conditions. The strong impact on nighttime simulations at
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Xianghe is likely driven by the proximity of strong point sources (Fig. 5a,b), where the effective release height determines
whether emissions remain trapped below or mix above the shallow nocturnal boundary layer.

480 Nevertheless, some discrepancies with observations remain. In May, for instance, BASE agrees better with observations than
PROF, despite May being selected due to poor agreement with-near-surface-melefractions-in the one-year BASE simulation.

This apparent contradiction reflects ~both

the short (two-week) duration of the sensitivity runs and the temporal variability of model performance: the main mismatch
in BASE occurred in early May, which was not included in the shortersimulations—Moreover—the-experiments. A full-year

485 sensitivity study would better capture meteorological variability and provide a more robust evaluation, but was not feasible here.
The poorer performance of PROF in the second half of May ins-tnexplain i Hting atning-ine acies

—.and the larger
MBE in July, remain unexplained, and suggest that further assessment is needed to determine whether the vertical profiles from
Brunner et al. (2019) are appropriate for China and consistent with the sectoral and spatial patterns of the emission inventory

490  used in this study.

4.3.2 Land cover representation

Replacing the land-cover dataset with the Copernicus product systematically reduced simulated NEE and nighttime CO, mole
fractions at Xianghe. This weakening of the biospheric signal is consistent with the larger fraction of non-vegetated land in the
Copernicus compared to SYNMAP, leading to smaller VPRM-driven fluxes. The differences are negligible in December and

495  March, when biospheric activity is minimal. While implementing the Copernicus map does not uniformly improve agreement
with observations and slightly worsens performance in some periods, it provides a more realistic land-cover representation and
is therefore recommended for future regional experiments.

4.3.3 VPRM parameterization

Applying the VPRM parameters from Glauch et al. (2025) produces higher NEE, primarily due to larger o and 3 values

500  that enhance respiration rates (Table Al). Gross ecosystem exchange (GEE) remains similar between the two configurations,
indicating that the net effect is primarily driven by increased respiration rather than changes in photosynthetic uptake. Across all
experiments and periods, the PARAM configuration shows the closest agreement with observations, though residual discrepancies
suggest that additional model errors remain.

505 key limitation is the absence of a standardized VPRM parameter set optimized for China. The only known &&empH&faﬁef

weﬂeby%e&e&al—@@%%&m&mdﬂe%fh&&re ional calibration, by Dayalu et al. (2018), introduces seasonal crop subt
but requires detailed, time-varying land-cover input that is not readily available. Moreover, Seo et al. (2024) reported that the

510 parameter values us

-adopted here



Li et al., 2020) outperform those of Dayalu et al. (2018) over East Asia, Weﬁidfmdepkfhe—la&e%pafafﬂetefﬁaﬂemfhe
is-supporting our

choice.

Recent studies also show that including soil moisture effects in VPRM can improve simulated NEE (Gourdji et al., 2022; Segura-Barrero et
515 However, implementing such modifications would require additional parameters—that-are-not-currently-availablefor-China
and—weunld-region-specific parameters and could introduce further uncertainty. Pespite—thesetimitations;—our—experiments

520

lauch et al. (2025) parameter set reduces
model—observation errors, future work should focus on dedicated VPRM calibration using multi-site eddy-covariance data to
develop parameter sets representative of Chinese ecosystems.

4.3.4 Remaining sources of uncertaint

Several factors that were not explicitly tested in this study may still contribute to the remaining biases in simulated near-surface
525 COy. One potential source of uncertainty in many regional modeling studies is the coupling between planetary boundary
layer (PBL) dynamics and biogenic CO, fluxes, a relationship often referred to as the atmospheric COq rectifier effect
(Larson and Volkmer, 2008). Since both processes are driven by solar radiation, they interact nonlinearly throughout the diurnal
cycle: daytime CO, minima result from enhanced turbulent mixing and photosynthetic uptake, whereas nighttime maxima arise
from stable stratification and ecosystem respiration. Consequently, accurate simulations require both realistic net ecosystem
530 exchange (NEE) and reliable PBL dynamics. However, in our case, the companion study on CHy did not reveal any systematic
biases in the mean diurnal cycle, suggesting that PBL processes are reasonably well represented here and unlikely to be the
dominant cause of the remaining CO, discrepancies. Nevertheless, it is well known that the choice of PBL schemes can have a
substantial influence on simulated tracer concentrations (Yu et al., 2022; Kretschmer et al., 2014; Feng et al., 2019; Diaz-Isaac et al., 2018)
and uncertainties are generally amplified under under weak mixing conditions, such as during the night (Maier et al., 2022).

535 Minor deviations in modeled turbulence or nocturnal stability could therefore still contribute to the EC-experiment-performed
better-than-PARAM-observed nighttime biases.

540

Another contributing factor is the vertical
representation of the atmosphere near the surface. Since the observations are collected at 60 m above ground, the simulated
CO, fields were interpolated to this height. However, in our configuration, the difference in simulated nighttime CO5 between
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the two lowest model layers (about 50 and 64 m thick) can reach 20 ppm. This implies that combining an interpolation with
too_coarse a resolution may introduce errors of several ppm. Increasing vertical resolution within the PBL would help to
reduce these artifacts. Overall, the accuracy of near-surface CO, fluxes-and-improved-atmospherie-COsimulations depends on
the interplay between several model components, including emission height profiles, land cover representation, biogenic flux
parameterization, and PBL scheme choice. Improving each of these aspects not only reduces biases but most of all enhances
the physical realism of the modeled processes, ultimately leading to more reliable simulations of surface-atmosphere CO,
modeling-at Xianghe-and-acrossEast-Astaexchanges.

This study is the second part of a broader investigation into greenhouse gas variability and model performance at the Xianghe
site, following earlier work focused on CH,. Here, we shift the focus to COs, aiming to better understand the observed
variability through source attribution and model simulations. Using the WRF-GHG model, we performed a one-year simulation
of both surface and column-averaged CO,, evaluated model performance against FTIR and in situ observations, and carried
out sensitivity experiments to assess the impact of key model settings.

Model evaluation against FTIR observations at Xianghe shows that WRF-GHG is capable of capturing the temporal variability
in column-averaged CO4 (XCO-), with a correlation coefficient of 0.7. However, a systematic bias was identified in the model’s
background CO; values from CAMS, with a negative offset exceeding 2 ppm between September and May. After applying
a bias correction based on monthly mean CAMS-TCCON differences, the mean bias error was reduced to -0.86 ppm. These
findings underscore the importance of accurate boundary conditions when simulating XCO,, particularly due to the long
atmospheric lifetime of CO and the relatively small contribution of regional emissions to the total column. In our simulations,
emissions within the model domain contributed only ~ 1.82 ppm to XCO,, making the column signal highly sensitive to
background mole fractions. Furthermore, the model successfully captured a strong positive anomaly observed in July 2019,
attributed to the advection of a warm, COs-rich air mass. This case study illustrates the value of combining transport and mole
fraction diagnostics for interpreting episodic events in column data and highlights the dominant role of synoptic meteorology
in driving short-term variability in XCOs.

For near-surface CO, mole fractions, WRF-GHG shows good agreement with afternoon observations at Xianghe, achieving a
correlation coefficient of 0.75 and a mean bias error of —-65-2.44 ppm after bias correction. In contrast to XCO, near-surface
CO, was more strongly influenced by local sources, with a mean tracer enhancement of 26.78 ppm, thereby—reducing-the
resulting in a smaller relative importance of boundary condition errors. Nighttime mole fractions are consistently overestimated,
with a mean bias of 6:51-7.86 ppm and a lower correlation of 6:570.60. These discrepancies are reflected in the diurnal cycle:
while the model captures the overall structure driven by planetary boundary layer dynamics, it overestimates the daily amplitude
of 22.1 ppm by 4.58 ppm. Likely causes include inaccuracies in biegenie-COo—fhuxes-NEE and the vertical distribution of
anthropogenic emissions.

Additional sensitivity experiments show that applying vertical emission profiles and a more recent land cover map can reduce
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nighttime CO2 mole fractions and improve agreement with observations. Adjustments to the VPRM vegetation parameters
substantially affected near-surface mole fractions, with differences up to 10 ppm, underscoring the critical role of appropriate
parameter selection—especially in the absence of a standardized VPRM configuration for China.

Tracer analysis confirms that the industry and energy sectors are the dominant contributors to CO; levels at Xianghe, while
the biosphere plays a secondary, seasonal role. For XCOs, the biosphere acts as a sink from April to September (-0.77 ppm
on average) and a weak source in the remaining months (+0.22 ppm). At the surface, biospheric uptake is only seen in August
(-6.76 ppm), while emissions-dominate respiration dominates the rest of the year (+2.69 ppm on average). These differences
illustrate the greater local sensitivity of in situ measurements compared to column observations and the varying spatial influence
of different source types.

Overall, this study demonstrates the value of using a modeling framework like WRF-GHG to interpret both temporal and
sectoral variations in surface and column CO; observations. It also highlights that model accuracy is strongly dependent on
appropriate configuration choices, including the representation of boundary conditions, vertical emission profiles, and biogenic
flux parameterizations. Addressing these factors is essential for improving simulations and supporting more accurate source

attribution of observed COs variability.

. The ERAS and CAMS reanalysis data set (Hersbach et al., 2023a, b), used as input for the WRF-GHG simulations, was downloaded
from the Copernicus Climate Change Service (C3S) Climate Data Store (2022). The CAMS-GLOB-ANT v5.3 emissions (Granier et al.,
2019; Soulie et al., 2023) and temporal profiles CAMS-GLOB-TEMPO v3.1 (Guevara et al., 2021) are archived and distributed through the
Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) platform. The WRF-Chem model code is distributed
by NCAR (https://doi.org/10.5065/D6MK6B4K, NCAR, 2020). The WRF-GHG simulation output created in the context of this study can
be accessed on https://doi.org/10.18758/P34WJEW?2 (Callewaert, 2023). The TCCON data were obtained from the TCCON Data Archive
hosted by CaltechDATA at https://tccondata.org (Zhou et al., 2022), while the surface observations at Xianghe were received through private

communication with the co-authors.

Appendix A: Additional tables and figures

. SC made the model simulations and performed the formal analysis, investigation and visualization. The research was conceptualized by

SC, MDM and EM and supervised by MDM and EM. MZ, TW and PW have provided the observational in situ data at Xianghe. BL supported

with computing tools to correctly compare the model with TCCON data. SC prepared the initial draft of this manuscript while it was reviewed

and edited by MZ, BL, TW, MDM, EM and PW.

. The contact authors have declared that neither they nor their co-authors have any competing interests.
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Figure A1. Same as Fig. 2 but showing the original (not bias corrected) model values.

Table A1l. VPRM parameter values for different vegetation classes.

Evergreen forest  Deciduous forest Mixed forest ~ Shrubland Savanna Cropland Grassland Wetland

Li table PAR 745.306 514.13 419.5 590.7 600 1074.9 717.1 392.666
A 0.13 0.1 0.1 0.18 0.18 0.085 0.115 0.1377
e 0.1247 0.092 0.2 0.0634 0.2 0.13 0.0515 0.0779
B8 0.2496 0.8430 0.27248 0.2684 0.3376 0.542 -0.0986 0.0902
Glauch table  PAR( 521.9 500.8 451.1 444.1 960.8 443.4 399.7
A 0.13 0.13 0.14 0.1 0.09 0.22 0.12
o 0.21 0.23 0.19 0.08 0.17 0.27 0.3
B8 1.15 1.26 0.93 0.56 1.14 1.63 -0.39

Table A2. Same as Table 22-5 but for XCOa.
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Figure A2. Maps of eastern China at 800 hPa for 19-23 July 2019, 07:00 UTC (15:00 LT). Panels in the first column {(&)—{))-show potential
temperature (K, in color) with wind barbs and geopotential height contour lines at 800 hPa (contour interval every 20 m); panels in the second

column {b)—G))-show biogenic XCO2 enhancements (ppm, in color) with the same wind vectors and contours; the third column shows the

NEE. The Xianghe site is marked by a black star.
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Figure A3. Same as Fig. A2 but over the period 24-28 July 2019.

30



610

115°E 116°E 117°E 118°E 119°E 115°E 116°E 117°E 118°E 119°

[ Cropland W Grassland Hl No vegetation Shrubland
B Deciduous Forest B Mixed Forest Savanna [ Wetland

Il Evergreen Forest

Figure A4. Dominant VPRM vegetation category in WRF-GHG domain d03 (3 km) for (a) 1-km SYNMAP and (b) 100-m Copernicus
Dynamic Land Cover Collection 3 (epoch 2019). The black cross indicates the location of the Xianghe site.

. The results contain modified Copernicus Climate Change Service information 2022. Neither the European Commission nor ECMWF is

responsible for any use that may be made of the Copernicus information or data it contains.

. We would like to thank all staff at the Xianghe site for operating the FTIR and PICARRO measurements. This work is supported by the
National Key Research and Development Program of China (No. 2023YFB3907500, 2023YFB3907505). Emmanuel Mahieu is a senior
research—assoetateresearch director with the FR.S.-FNRS. The authors acknowledge all providers of observational data and emission
inventories. We thank the IT team at BIRA-IASB for their support on data storage and HPC maintenance. Christophe Gerbig, Roberto
Kretschmer, and Thomas Koch (MPI BGC) are thanked for distributing the VPRM preprocessor code. Finally, we are grateful for fruitful
discussions with Jean-Frangois Miiller (BIRA-IASB) and Bernard Heinesch (ULiege).
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