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Abstract. This study produces wind and solar power generation estimates derived from the US Department of Energy’s Simple

Cloud-Resolving Energy Exascale Earth System Model (E3SM) Atmosphere Model (SCREAM) by leveraging regional mesh

refinement over California (CARRM) simulations at 3.25 km and 800 m horizontal resolutions, using the Python wrapper of

System Advisor Model (PySAM). The resulting wind and solar energy generation estimates are compared to monthly capacity

factors reported to Energy Information Administration (EIA), High-Resolution Rapid Refresh (HRRR, 3 km resolution) fore-5

cast model, and E3SM North American regionally refined model (NARRM, 25 km resolution). We systematically assess the

impacts of generation modeling assumptions, meteorological models, and horizontal resolution. Results show that resolution

plays a dominant role for wind energy: increasing from 25 km to 3.25 km brings qualitative and quantitative improvements,

most notably by resolving the phase error in the seasonal cycle found in coarser simulations. However, further refinement to

800 m offers minimal gains. SCREAM’s performance for solar generation surpasses HRRR, likely due to more accurate sur-10

face radiation. The sensitivity of PySAM to system configuration, particularly for axis-tracking modeling in photovoltaics, is

also highlighted. Overall, SCREAM-RRM shows strong potential for high-resolution energy assessments, with future progress

depending on more in situ observations and clearer quantification of generation modeling uncertainties.

1 Introduction

Su Shi wrote in his First Prose on the Red Cliff (1082)1:15

“But as for the clear breeze over the river and the bright moon between the hills – sound to the ear, colour to the

eye – free to take and never spent. They are the Creator’s inexhaustible storehouse, and delights for you and me to

share.”

This poetic reflection captures a truth that still resonates in today’s energy landscape: wind and sunlight, gifts of nature, are

invaluable, endlessly renewed, and shared by all. Yet their abundance comes with uncertainty. Unlike conventional fuels, these20

1Adapted from the translation by Graham (1965). Original Chinese text: “惟江上之清风，与山间之明月，耳得之而为声，目遇之而成色，取之无

禁，用之不竭。是造物者之无尽藏也，而吾与子之所共适”苏轼«前赤壁赋»
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resources fluctuate with weather and climate. Harnessing them effectively is not a matter of extraction, but of prediction and

adaptation. In response to this challenge, and amid long-term energy transition efforts and growing sustainability concerns over

fossil fuels, renewable technologies like wind and solar power have advanced rapidly over the past decades, making intelligent

use of these virtually inexhaustible forces for electricity generation and reflecting a design ethos that respects natural constraints

while embracing engineering ingenuity. Global renewable electricity generation – led by wind and solar power – is expected25

to nearly double from 2023 to 2030, rising from 30% to 46% of global electricity supply and exceeding 17,000 TWh in total

output (IEA, 2024, 2025).

The inherent variability of wind and solar resources – particularly their hourly fluctuations – presents significant challenges

for system reliability and calls for robust planning and forecasting. The siting of wind and solar plants is fundamentally based

on local assessments of wind and solar resources, most notably hub-height wind speed and surface solar radiation. These30

meteorological variables, together with modeling of technology-specific generation characteristics, inform the spatiotemporal

distribution of wind and solar energy potential (e.g., Ryberg et al., 2019). These resources are inherently tied to local weather

and climate conditions, featuring strong geographic heterogeneity and diurnal variability. They are also influenced by hourly

variability and by rare weather events. Therefore, high spatio-temporal resolution modeling of meteorological state is critically

needed across the energy sector – from resource assessment, to power plant development and grid planning (Rodrigo et al.,35

2017; Wang et al., 2018; Frank et al., 2020; McKenna et al., 2022; Davis et al., 2023; Chen et al., 2024; Arthur et al., 2025a).

Previously, Lee et al. (2025) evaluated wind and solar energy generation using the U.S. Department of Energy’s Energy

Exascale Earth System Model (E3SM) 25 km North American (NA) Regionally Refined Model (RRM) version 2 (hereafter

referred to as “E3SM-25kmNARRM”; Tang et al., 2023). When evaluated against U.S. Energy Information Administration

(EIA) monthly generation reports, they found that E3SM-25kmNARRM realistically simulates wind energy production across40

most of the continental U.S. However, E3SM-25kmNARRM fails to reproduce the observed seasonal cycle of wind energy

production in the western U.S., particularly in California. This is perhaps unsurprising given that 25 km horizontal resolution

is insufficient to resolve the region’s complex topography, one of the most topographically diverse regions in the contiguous

U.S.

Complex topography often results in more diverse microclimates and stronger spatial variability in meteorological con-45

ditions, which demand high spatial resolution and accurate topographic representation in numerical models. For instance,

California displays pronounced geographic transitions: from complex coastal and mountainous zones, to an expansive inland

valley, the Sierra Nevada range, and arid highland deserts. These land–sea and topographic contrasts shape California’s diverse

microclimates (e.g., Zhang et al., 2024). In summer, prevalent coastal stratocumulus clouds reflect more shortwave radiation,

limiting solar energy near the coast. Wind energy is shaped by a cascade of meteorological processes across scales – from syn-50

optic land–sea thermal gradients and mesoscale pressure gradients, to km-scale topography-induced flows and sub-kilometer

surface and vegetation heterogeneity (e.g., Davis et al., 2023; Arthur et al., 2025b). Accordingly, both wind and solar energy

assessments in California stand to benefit from high-resolution modeling.

The Simple Convective Resolving E3SM Atmosphere Model (SCREAM) is a global convection-permitting model of the

E3SM project (Caldwell et al., 2021; Donahue et al., 2024). For computational efficiency, Zhang et al. (2024) employed55
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SCREAM with a 3.25 km California (CA) RRM to conduct 20-year climate simulations, and Bogenschutz et al. (2024) eval-

uated the 3.25 km CARRM in atmospheric river case studies and extended the analysis to an 800 m CARRM for higher-

resolution comparison. At 3.25 km resolution, SCREAM-CARRM has been shown to reasonably capture atmospheric rivers,

near-surface temperature, coastal stratocumulus, and the spatial distribution of precipitation and snowpack (Zhang et al., 2024).

However, these studies did not directly assess wind and solar energy generation potential.60

Capacity factors (CFs) – defined as the ratio of actual energy generation to installed capacity – are commonly used to evaluate

wind and solar power performance. A recent multi-model dataset from PLUSWIND (Millstein et al., 2023), which provides

plant-level CFs across the U.S., shows that the 3 km HRRR developed by NOAA (High-Resolution Rapid Refresh; Dowell

et al., 2022) modeled wind energy generation more closely matches EIA-reported monthly generation compared to the coarser

31 km ERA5 (European Centre for Medium-Range Weather Forecasts Reanalysis version 5; Hersbach et al., 2020) and 50 km65

MERRA2 (Modern-Era Retrospective Analysis for Research and Applications Version 2; Gelaro et al., 2017). PLUSWIND

also raised two open questions: is HRRR’s lower bias in regions such as California primarily due to its finer spatial resolution,

or due to differences in meteorological modeling? And to what extent do generation modeling assumptions (such as wake

loss representations) affect the estimated CFs? Given Lee et al. (2025)’s findings that E3SM-25kmNARRM cannot capture the

observed seasonal cycle of California wind energy, it is well worth investigating whether higher resolution SCREAM-CARRM70

(i.e., 3.25 km or 800 m) simulations reduce discrepancies with EIA wind and solar generation data. Furthermore, juxtaposing

our findings with PLUSWIND offers an opportunity to compare the relative accuracy of simulations with varied resolution,

meteorological models, and energy generation modeling assumptions.

To explore the sensitivity of modeled wind and solar generation to different factors, we conducted three new SCREAM-

CARRM experiments of the current climate: two at 3.25 km resolution over California (hereafter referred to as “SCREAM-75

3kmCARRM”) with different forcings, and one at 800 m (hereafter referred to as “SCREAM-800mCARRM”). These are

analyzed alongside E3SM-25kmNARRM simulations and 3 km HRRR forecasts. For all model datasets analyzed here, we es-

timate CFs using the Python wrapper of System Advisor Model (PySAM) (NREL). Together, these datasets form a comparative

framework through which we address the following three questions:

1. How much do generation modeling assumptions impact wind energy simulations? This is examined by comparing the80

HRRR-modeled wind CFs from PLUSWIND with those computed using PySAM from the same HRRR data. Both

sets are then benchmarked with EIA monthly CFs to quantify discrepancies. The main sources of difference are tur-

bine power curve selection, air density estimation, and wake loss assumptions. We also reproduce comparison across

ERA5, MERRA2, and HRRR within PLUSWIND to provide broader context and assess discrepancies across reanalysis

products.85

2. How much do meteorological models impact wind and solar energy? This is evaluated by comparing the modeled CFs

from HRRR 2018-2022 forcasts and SCREAM-3kmCARRM with the 2010s climatological forcings (hereafter referred

to as “2010climo”), both calculated with PySAM. These two datasets have comparable horizontal resolution and are

both forced with observed sea surface temperature (SST). HRRR assimilates high-frequency observations, so its weather
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Table 1. Overview of SCREAM-CARRRMs, E3SM-25kmNARRM, HRRR simualtions providing acronyms used in this study, horizontal

resolutions, dataset periods, descriptions, and references.

Simulation acronym Resolution Dataset Period Simulation description Referencea

SCREAM-3kmCARRM 2010climo 3.25 km 2010/01–2019/12 Observed SST and sea ice concentration representative of the 2010s

HRRR 3 km 2018/01–2022/12
Forecasts with boundary conditions provided by the Rapid Refresh

system and assimilates the NOAA Multi-Radar Multi-Sensor project
Dowell et al. (2022)

E3SM-25kmNARRM 25 km 2005/01–2014/12 Coupled atmosphere–ocean historical simulations Tang et al. (2023)b

SCREAM-3kmCARRM present-day 3.25 km 2015/10–2020/09
Observed SST and sea ice concentration with boundary conditions

provided by the present-day period of E3SMv1 SSP5-8.5 future projection
Zhang et al. (2024)c

SCREAM-800mCARRM present-day 800 m 2015/10–2020/09
Observed SST and sea ice concentration with boundary conditions

provided by the present-day period of E3SMv1 SSP5-8.5 future projection

a An empty or footnoted reference entry indicates that the simulation dataset was produced as part of this study.
b Rerun to get the additional outputs used for energy modeling.
c Rerun to use the same E3SMv1 boundary conditions as the SCREAM-800mCARRM present-day simulations.

evolution is expected to more closely match reality than the SCREAM-3kmCARRM simulation, which is driven by90

the climatology over 2005–2014. However, since our focus is on monthly climatology, the 2010climo forcing should

produce climatological states from a similar time period as HRRR. Thus, discrepancies here primarily reflect structural

differences in the meteorological models, including dynamics, physical parameterizations, and data assimilation/nudg-

ing.

3. How much does horizontal resolution affect wind and solar energy? This is examined by comparing modeled CFs from95

the 3.25 km and 800 m SCREAM-CARRM simulations driven by CMIP6 future forcings and evaluated in the present-

day period (2015–2020 water years; hereafter referred to as “present-day”), with CFs calculated using PySAM. These

simulations are forced with the same 1° E3SM SST and ice cover, use the same nudging strategy, and share the same

SCREAM version 0 codebase. Therefore, resolution is the only difference. This setup provides a clean assessment of

horizontal resolution sensitivity specific to SCREAM-CARRM. The result may not generalize to all GCMs, as reso-100

lution sensitivity often depends on the model’s physical parameterizations. In addition, we also compare against the

E3SM-25kmNARRM 2005–2014 historical simulation which differs in several aspects, including resolution, physical

parameterizations, and internal variability.

Table 1 summarizes the acronyms for all simulations and datasets, along with their resolutions, time periods, descriptions,

and references. Further details, including the development of the 3.25 km and 800 m SCREAM-CARRRMs, are provided in105

the Methods section.

The remainder of this paper is organized as follows. Section 2 describes the 3.25 km and 800 m SCREAM-CARRM con-

figurations and other model outputs used to model wind and solar generation. Section 3 presents the simulation results and

comparisons with observations. Section 4 discusses the implications and broader applicability of our findings.
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2 Methods110

This section describes the development and experimental design of the SCREAM-CARRMs used in this study, along with the

other simulation datasets. Modeled CFs are computed by coupling meteorological outputs from SCREAM-CARRMs, E3SM-

25kmNARRM, and HRRR with PySAM, and evaluated against monthly plant-level CFs from EIA. Finally, to better diagnose

CF discrepancies, we calculate CFs over all California grid points and analyze the spatial distribution of key input variables as

well as the large-scale circulation that modulate them.115

2.1 Modeling strategy

2.2 Introduction to SCREAM

The 3.25 km and 800 m SCREAM-CARRMs are built upon SCREAM version 0 (SCREAMv0; Caldwell et al., 2021), devel-

oped under the E3SM project (Leung et al., 2020). SCREAM operates at a global horizontal resolution of 3.25 km, reaching

convection-permitting scales without parameterizing deep convection. It uses 128 vertical layers on a hybrid coordinate, with120

vertical grid spacing increasing from 30 m near the surface to approximately 200 m at the boundary layer top, and a model top

at roughly 40 km. The nonhydrostatic dynamical core is based on the HOMME (High-Order Methods Modeling Environment)

framework (Taylor et al., 2020).

SCREAM’s physics suite includes SHOC (Simplified Higher-Order Closure; Bogenschutz and Krueger, 2013) for uni-

fied cloud macrophysics, turbulence, and shallow convection; P3 (Predicted Particle Properties) microphysics (Morrison and125

Milbrandt, 2015); the RTE+RRTMGP (Radiative Transfer for Energetics and Rapid Radiative Transfer Method for General

circulation model applications – Parallel) radiative transfer package (Pincus et al., 2019); and the SPA (Simple Prescribed

Aerosol) module for aerosol properties (Mahfouz et al., 2025). Surface conditions are based on the E3SM land model (Golaz

et al., 2019) and the Los Alamos prescribed CICE4 and data ocean models (Hunke et al., 2008). Land surface fluxes are based

on Monin-Obukhov similarity theory, while surface fluxes over ocean are computed using a bulk formulation.130

SCREAM Version 1 (SCREAMv1), implemented in C++/Kokkos, has been publicly released and documented (Donahue

et al., 2024). RRM capability was not yet available in SCREAMv1 at the time of our simulations, so this study used SCREAMv0.

Although GPU resources were unavailable during this study, separate work using similar SCREAM-RRM configurations

(Zhang et al., 2025) has demonstrated significant GPU-enabled performance gains.

2.2.1 CARRM configuration135

The 3.25 km and 800 m CARRMs generally follow the configurations in Zhang et al. (2024) and Bogenschutz et al. (2024). The

3kmCARRM mesh spans mainland California, adjacent offshore areas, and part of western Nevada. Outside this domain, a 1°

global resolution is applied, transitioning into the refined region via eighth-order refinement (Fig. 1a). The 800mCARRM mesh

covers the same spatial extent but undergoes refinement to 800 m (Fig. 1b). Maximum Dinv-based element distortions are 3.02

for 3.25 km and 3.05 for 800 m meshes, indicating high-quality grids (Dinv is acceptable if below 4; it quantifies element shape140
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distortion as the ratio of the maximum to minimum singular values obtained from an SVD of the element mapping. See https://

acme-climate.atlassian.net/wiki/spaces/DOC/pages/872579110/Running+E3SM+on+New+Atmosphere+Grids, last accessed:

June 25, 2025). The land model operates on the same grid as the atmosphere, while the data ocean component uses the MPAS

18-to-6 km mesh (oRRS18to6v3).

The RRM workflow includes grid generation using SQuadGen v1.2.2 (Ullrich and Roesler, 2024), mapping/domain files,145

topography generation, land surface and land use data, and dry deposition files. Except for regenerating topography for

800mCARRM using higher-resolution digital elevation model (DEM) data, the workflow follows Zhang et al. (2024) and

Bogenschutz et al. (2024). Specifically, the 800mCARRM uses the USGS GMTED2010 15-arc-second (500 m) DEM in-

stead of the default GTOPO30 30-arc-second (1 km) DEM (Lauritzen et al., 2015). The 500 m GMTED2010 data were

interpolated onto a global 800 m cubed-sphere grid to generate the 800mCARRM topography. The 3kmCARRM topog-150

raphy underwent 12 smoothing iterations, while 800mCARRM used six, following the E3SM Version 3 workflow (https:

//acme-climate.atlassian.net/wiki/spaces/DOC/pages/2712338924/V3+Topography+GLL+PG2+grids, last accessed: June 25,

2025). Final topographies are shown in Figs. 1c and 1d.
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Fig. 1
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Figure 1. The grid of the (a) 3.25 km and (b) 800 m California regionally refined models. The topography of the (a) 3.25 km and (b) 800 m

California regionally refined models, with the small rectangular box over part of the San Francisco Bay Area zoomed in.

Atmosphere initial conditions were generated with the HICCUP package (https://github.com/E3SM-Project/HICCUP, last

accessed: June 25, 2025), which automates downloading and interpolating ERA5 pressure-level data. Vertical interpolation is155

performed by netCDF Operator (NCO) (Zender, 2008), while horizontal interpolation invokes various tools and algorithms

through NCO. We employed NCO for linear-in-log(pressure) vertical interpolation and TempestRemap (Ullrich and Taylor,

2015; Ullrich et al., 2016) for high-order horizontal interpolation onto the RRM dynamical core grid. HICCUP also applies

surface adjustments following Trenberth et al. (1993) to mitigate spurious gravity wave shocks associated with initial imbal-
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ances. Land initial conditions were taken from a well spun-up (1850–2015) 1° E3SMv1 historical simulation at 00:00 UTC on160

1 January 2015 (Golaz et al., 2019). Notably, this historical simulation serves as the precursor to the future simulation used to

generate nudging data, ensuring internal consistency.

2.2.2 Souce of boundary conditions: 1° E3SMv1 simulations

Since SCREAM lacks a scale-aware deep convection scheme, SCREAM-RRM global simulations require nudging outside

the high-resolution domain to constrain large-scale flow. Prescribed SST and sea ice concentration boundary conditions are165

also necessary due to SCREAM’s atmosphere-land-only coupling. To ensure consistency across these boundary conditions,

nudging variables and SST/sea ice concentration fields were obtained from a coarse-resolution E3SM simulation.

We conducted simulations with two different configurations to provide boundary conditions for the RRM simulations. The

first is a rerun of a 1° fully coupled E3SMv1 simulation (Golaz et al., 2019), following the setup of Zhang et al. (2024), to

produce 3-hourly fields of U, V, T, and Q (winds, temperature, and humidity) as well as monthly SST and sea ice concentration.170

Although this simulation nominally follows the SSP5-8.5 pathway (Zheng et al., 2022), our analysis focuses only on the

2015–2020 water years (October–September accounting year used in hydrology) period, where radiative forcings and global

climate statistics closely resemble those of the present day (e.g., Kriegler et al., 2017). We refer to this configuration as the

“present-day” simulation. In parallel, we conducted a 10-year E3SMv1 simulation with prescribed SST, sea ice concentration,

and radiative forcing levels representative of the 2010s, derived from the monthly climatology over 2005–2014. This type of175

experiment simulations the atmosphere–land components interactively with prescribed ocean conditions. It is widely used for

evaluating model performance against observational data. We refer to this configuration as the “2010climo” simulation.

Nudging data were interpolated using NCO’s linear-in-log(pressure) vertical interpolation and TempestRemap’s high-order

horizontal interpolation onto the RRM physics grid. U, V, T, and Q Nudging with a relaxation timescale of 2d was applied

using the E3SM regional configuration with a Heaviside window to constrain the horizontal domain (Tang et al., 2019). The180

nudging strength was nearly uniform across vertical levels, with reduced strength in the lowest and highest model levels.

This allows free-running conditions over California while nudging the coarser-resolution domain with a two-day relaxation

timescale (Zhang et al., 2024).

SSTs and sea ice concentrations were processed using the e3sm_to_cmip tool (https://github.com/E3SM-Project/e3sm_to_

cmip, last accessed: June 25, 2025), converting MPAS outputs to 1° lat-lon time series. Missing land values were filled via185

Poisson equation relaxation before formatting into Data Ocean stream files (https://esmci.github.io/cime/versions/ufs_release_

v1.1/html/data_models/data-ocean.html, last accessed: June 25, 2025).

2.2.3 Timestep and computational cost

The 3kmCARRM grid (67,872 physics columns; Zhang et al., 2024) comprises only 0.27% of the global 3.25 km SCREAM

physics columns (25,165,824 physics columns; Caldwell et al., 2021), while the 800mCARRM grid (587,904 columns; Bo-190

genschutz et al., 2024) represents 2.3%, significantly reducing storage and computational costs compared to a global km-scale

model.
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Table 2. Column numbers, timesteps, and throughputs of SCREAMv0 global 3.25 km simulation, 3kmCARRM, and 800mCARRM.

Model Column no. Time step (s) Throughput

Dynamics Physics Dynamics Physics Machine Cores (Nodes) Simulated Day Per Day

SCREAMv0 56,623,106 25,165,824 9.375 75 cori-knl 104448 (1536) 4-5

SCREAMv0-3kmCARRM 152,712 67,872 9.375 75 dane 1120 (10) 144

SCREAMv0-800mCARRM 146,976 587,904 2.34375 75
quartz 6480 (180) 12.5

dane 6720 (60) 19.3

All SCREAM-CARRM simulations were conducted on the Livermore Computing (LC) clusters Ruby, Dane, and Quartz.

Ruby nodes feature 56 Intel(R) Xeon(R) Platinum 8276 CPUs @ 2.20 GHz; Dane nodes feature 112 Intel(R) Xeon(R) Platinum

8480+ CPUs @ 2.0 GHz; and Quartz nodes are equipped with 36 Intel(R) Xeon(R) E5-2695 v4 CPUs @ 2.10 GHz. For195

SCREAM-3kmCARRM 2010climo and present-day simulations, 10 Dane nodes were used. The SCREAM-800mCARRM

present-day simulation, which incurred significantly higher computational costs, was executed in two phases due to machine

and project transitions: 180 Quartz nodes were used from 1 October 2015 to 4 January 2017, and 60 Dane nodes from 4 January

2017 to 1 October 2020. All simulations used MPI-only processes, with no OpenMP threads.

The 3kmCARRM simulations advanced at a pace of approximately 144 simulated days per wall-clock day (including I/O200

overhead), running one simulation month per job submission. The 800mCARRM simulation was conducted in 10-day chunks,

achieving throughputs of about 12.5 simulated days per day on 180 Quartz nodes, and about 19.3 simulated days per day

on 60 Dane nodes. During the 5-yr SCREAM-3kmCARRM present-day simulation, four “EOS (equation of state) bad state”

failures occurred; five such failures occurred during the 10-year 2010climo simulation. These errors arise when the model’s

thermodynamic variables violate EOS, which governs the physical relationship among pressure, temperature, and density. No205

EOS failures were seen in the 800mCARRM simulation. Each EOS error was resolved by temporarily halving the dynamical

core timestep for one job cycle before reverting to the default timestep. All simulation outputs have been archived.

Table 2 compares the column counts, timesteps, and throughputs between the 3.25 km and 800 m SCREAMv0-CARRMs

and the global SCREAMv0 3.25 km simulation in Caldwell et al. (2021).

2.3 Evaluation strategy210

This section introduces the evaluation strategy for modeled CFs. The plant-level EIA monthly data were first processed by

reading raw tables, applying quality control, filtering valid plants, and aggregating them to model grids. Wind and solar CFs

were then computed by coupling model outputs with EIA plant locations within our PySAM preprocessing pipeline. Additional

simulation datasets and PLUSWIND-provided CFs beyond the SCREAM and E3SM simulations are also introduced. Finally,

to better diagnose CF discrepancies and provide a broader perspective, we calculate CFs over all California grid points and215

analyze the spatial distribution of key input variables as well as the large-scale circulation that modulate them.
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2.3.1 EIA monthly CF data

EIA provides plant-level electricity generation data through monthly generation records from EIA–923 (https://www.eia.gov/

electricity/data/eia923/, last accessed: June 25, 2025) and generator-specific metadata for plants with nameplate capacities over

1 megawatt from EIA–860 (https://www.eia.gov/electricity/data/eia860/, last accessed: June 25, 2025).220

The eia–processor package extracts and preprocesses EIA data to produce monthly wind and solar CFs for 2013–2023 (Lee

et al., 2025). It reads generation values from the “Netgen” column in EIA–923 and retrieves plant attributes (“Plant Code”,

“Plant Name”, “State”, “County”, “Latitude”, “Longitude”, “Nameplate Capacity”, “Technology”, and “Axis Tracking”) from

EIA–860. Initial quality control and duplicate removal were incorporated during EIA preprocessing.

The EIA data first underwent the following steps of plant-level quality control:225

1. Retained only plants with a nameplate capacity of no less than 2.5 MW.

2. Retained only plants located in the state of California.

3. For solar generation, retained only power plants with the technology type “Solar Photovoltaic” (which account for 97.3%

of all solar facilities), excluding those classified as “Solar Thermal without Energy Storage”. In this study, when we refer

to solar, we specifically mean photovoltaic (PV) power.230

4. For solar PV, retained only plants with an axis-tracking entry in the EIA data (three types are reported: fixed, single-axis,

and dual-axis).

5. Retained only plants with CF exceeding 5% for at least three months and with fewer than 12 months of missing data.

These quality control steps resulted in 72 valid wind plants and 322 PV plants.

To align with the model resolution, the geographical locations (latitude and longitude) of individual plants reported in the235

EIA data were aggregated to the target model grid. For the 3kmCARRM grid, this process aggregated all valid wind plants

and PV plants into 32 and 222 model grid points, respectively. In the subsequent analysis, wind plants are clustered based on

geographical location, while PV plants are clustered by axis-tracking type.

For wind plants, because all quality control is applied at the plant level, and the clustering logic does not depend on plant-

specific attributes, aggregating to different model grids does not affect the total nameplate capacity of each cluster. However,240

for PV plants, the axis-tracking type of each model grid point is calculated as the mean of fixed (0.0), single-axis (1.0), and

dual-axis (2.0) values of all plants within that grid point. During clustering, a model grid point is assigned to a specific axis-

tracking type if the absolute difference between its averaged axis-tracking value and fixed (0.0), single-axis (1.0), and dual-axis

(2.0) is less than 0.1. Because the proportion of axis-tracking types within a grid point vary slightly with grid size, the total

nameplate capacity within each PV cluster also vary slightly with model resolution.245

Finally, we applied an “independent-plant ratio > 15%” threshold to all valid EIA plants. This was motivated by the fact

that the EIA data contains many plants that only report annual values without providing monthly records, for which seasonal

variability is scaled from other plants. The background of this issue is a notable story (please refer to Appendix A for details).
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Applying this threshold removes years heavily affected by scaled plants, correcting the artificial reversal of the seasonal phase

– compared to all models – at the Shasta wind plant and adjusting seasonal peaks in northern California, while having minimal250

impact elsewhere.

2.3.2 PLUSWIND-derived CFs

PLUSWIND (Millstein et al., 2023) provides hourly, plant-level generation estimates across the U.S. from 2018 to 2021, using

meteorological inputs from three models: ERA5, MERRA2, and HRRR.

To improve plant geolocation, PLUSWIND computed wind plant centroids from the U.S. Wind Turbine Database (USWTDB;255

Rand et al., 2020) rather than relying on the self-reported EIA–860 coordinates. Each plant was matched to a representative

wind turbine power curve based on key assumptions: 1) a cut-in speed of 3 m/s, 2) a cut-out speed of 25 m/s, and 3) a rated

speed between 9-13 m/s, derived from the plant’s average specific power, which was calculated from turbine diameter and

capacity. Hub-height wind speeds were estimated differently across models: for ERA5, by vertical interpolation from model

levels; for MERRA2, by applying a log wind profile using 2 m, 10 m, and 50 m wind speeds; and for HRRR, directly without260

additional correction. For repowered plants, data from the repowering year were excluded, and turbine characteristics were

updated to the most recent configuration for all years. Air density correction for all models was based on MERRA2 air density,

interpolated to hourly resolution at hub height. Wake losses were estimated using a simple method: a constant 7% loss was

applied when wind speeds fall below rated speed minus 0.5 m/s, tapering linearly to zero at rated speed plus 2 m/s.

2.3.3 Coupling with PySAM to estimate wind and solar CFs265

All SCREAM-CARRM simulations output hourly meteorological variables, including surface pressure, 2 m temperature, 2 m

relative humidity (used with temperature to derive the dew point), downward shortwave radiation (total and diffuse compo-

nents), hub-height winds at 90 m, 10 m winds, and snow water equivalent. Together with static surface geopotential height,

these variables serve as inputs for CF calculations through PySAM. HRRR provides the same set of hourly variables, except

that hub-height wind is reported at 80 m instead of 90 m.270

Developed by the National Renewable Energy Laboratory (NREL), the System Advisor Model (SAM) (https://sam.nrel.

gov/, last accessed: June 25, 2025) provides a comprehensive set of algorithms and assumptions for calculating electricity

generation and approximating CFs (i.e., actual generation divided by nameplate capacity). PySAM is the Python wrapper

of SAM (https://github.com/NREL/pysam, last accessed: June 25, 2025). In this study, we used our preprocessing prepro-

cessing pipeline developed for PySAM (NREL) to calculate hourly generation outputs: wind power was estimated using275

PySAM.Windpower.default("WindPowerNone") and solar PV power using PySAM.Pvsamv1.default("FlatPlatePVNone").

These calculations were based on several key assumptions: 1) the use of a generic turbine power curve without plant-

or manufacturer-specific corrections, neglecting variations in turbine physical characteristics such as rotor diameter and rated

capacity, 2) the use of default wake effect model, 3) the use of fixed 90 m hub-height wind inputs without turbine-specific height

correction, 4) the use of a detailed PV model that includes separate models for the module, inverter, and cell temperature.280

Required inputs to PySAM include:
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1. Locations (latitude, longitude) of power plants within California reported by EIA;

2. Hourly simulation outputs reformatted into a full-year (365-day calendar) 8,760-hour time series, with each variable

stored in a separate file. Model grid points corresponding to plant locations were identified using the BallTree class from

the sklearn.neighbors module (https://scikit-learn.org/1.6/, last accessed: June 25, 2025);285

3. For solar PV, axis tracking types (fixed, single-axis, dual-axis) reported by EIA were assigned by setting SystemDe-

sign.subarray1_track_mode to 0, 1, or 2, respectively, across all sub-arrays.

Note that the EIA data are reported after curtailment, whereas our generation modeling do not include this effect. As a

reference, Lee et al. (2025) applied a curtailment correction of 2% for wind and 3% for solar CFs over California.

Executing our PySAM preprocessing pipeline generated hourly CFs for each power plant across all SCREAM-CARRM290

simulations, HRRR, and E3SM-25kmNARRM.

2.3.4 HRRR

Inspired by the PLUSWIND dataset, we evaluate the HRRR (Dowell et al., 2022) as an additional source of meteorological

data to drive PySAM, given that its horizontal and boundary-layer vertical resolutions are comparable to SCREAM-CARRMs.

HRRR assimilated conventional observations and radar reflectivity at each forecast cycle and remains the highest-resolution295

historical forecast dataset over North America.

We used HRRR +1 hour forecasts from 2018 to 2022, substituting +2 or +3 hour analysis when +1 hour data are unavailable.

Despite model biases and PySAM assumption errors, HRRR is expected to perform well due to its frequent data assimilation. In

fact, HRRR is widely used in the wind energy industry (Shaw et al., 2019). Thus, HRRR provides another reference for assess-

ing SCREAM-RRM performance in electricity generation. Among the three SCREAM-CARRM simulations, the 3kmCARRM300

2010climo experiment design aligns most closely with HRRR, offering comparable resolution and similar climatology. Key

differences arise from model structure, data assimilation, and internal variability (i.e., 2010climo being a 10-year simulation

with the 2010s SST, versus HRRR as a 5-year simulation driven by evolving SST from 2018 to 2022).

We also compare HRRR-modeled wind CFs from PLUSWIND with our PySAM-derived results to isolate sensitivities to

wind power modeling assumptions. These sensitivities are further compared with sensitivities to model structure (HRRR vs.305

SCREAM-3kmCARRM 2010climo), and to resolution (HRRR vs. ERA5/MERRA2 in PLUSWIND; SCREAM-3kmCARRM

vs. SCREAM-800mCARRM vs. E3SM-25kmNARRM).

2.3.5 Statewide CFs, meteorological drivers, and large-scale circulation

To better understand the differences in CFs derived from different simulations, we extend our analysis beyond EIA plant

locations and estimate CFs at all grid points across California using PySAM. This provides a comprehensive spatial view of310

wind and solar resource availability within the state and enables direct comparison with local topography and meteorological

drivers. We present the spatial distributions of variables directly used in PySAM calculations over California including: 2
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m temperature and dew point, 90 m hub-height winds, and total downwelling solar flux at surface, alongside global-scale

atmospheric circulation patterns. ERA5 is used as a reference to evaluate biases in both the regional meteorological fields and

the large-scale circulation. However, some ERA5 variables (such as hub-height wind speeds) are less reliable for evaluating315

km-scale models as they are strongly affected by topography features.

3 Results

This section begins by discussing some of the data limitations and clarifies our interpretation of the comparison results given

these obstacles. We also outline the structure and rationale of our evaluation groups. We then present the results sequentially,

organized under two main categories: wind and solar.320

3.1 Uncertainty in EIA monthly data and interpretation of discrepancies

A fundamental issue with the monthly EIA data is that the procedures used for collecting and processing are not publicly

known, particularly how missing data, outages, curtailments, and obvious anomalies are handled during temporal averaging

(see similar discussion in Ryberg et al. (2019)). Another limitation is the issue of non-independent samples related to scaled

plants, as discussed in “Methods – EIA monthly CF data” section and Appendix A. Therefore, we cannot assert that generation325

estimates from model outputs are inherently erroneous, nor can we determine the true degree of error. The difference between

model-simulated and EIA-reported CFs should be viewed not as a conventional bias, but rather as a discrepancy.

The most accurate model evaluation data would ideally come from on-site meteorological towers or remote sensing systems,

such as lidar or meteorological masts deployed by wind plant developers, which provide high-quality wind speed observations.

However, such data are expensive, technically challenging to obtain, and not publicly available (Jourdier et al., 2023; Pronk330

et al., 2022). A more practical proxy observation is high-frequency (e.g., hourly) generation data. A few utilities release these as

part of their market-facing datasets (Davidson and Millstein, 2022). While still affected by conversion assumptions from wind

to power, hourly data contain diurnal and weather-scale variability and can better capture generation losses due to disruptive

meteorological or hydrological events. Unfortunately, we lack access to such hourly, plant-level data for California. Therefore,

we caution readers against interpreting discrepancies between modeled generation and monthly EIA values as purely resulting335

from model inaccuracies – whether in the meteorological simulation or generation process.

3.2 Evaluation group design and key questions

To answer the three guiding questions introduced in the Introduction, our analysis is organized around three comparisons

designed to isolate key sources of uncertainty:

1. Generation modeling assumptions: HRRR with PLUSWIND vs. HRRR with PySAM. Outside of this section, all HRRR-340

based CF calculations will utilize our results from PySAM.
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2. Meteorological model structure: SCREAM-3kmCARRM 2010climo vs. HRRR. Both have similar horizontal resolution

and are forced with observed SSTs, but differ in physics, data assimilation, and internal variability.

3. Horizontal resolution: E3SM-25kmNARRM vs. SCREAM-3kmCARRM present-day vs. SCREAM-800mCARRM present-

day. The two SCREAM-CARRM simulations share identical physics, forcing, and nudging; resolution is the only dif-345

ference.

Each following subsection presents results by energy type (wind or solar), with each category further broken down by the

evaluation questions. For each group, we show multi-year monthly CFs, aggregated by plant cluster (geographic for wind; axis-

tracking for solar PV). After the grouped comparisons, we present additional illustrative figures, including spatial distributions

of statewide CFs, key meteorological input variables used in PySAM (e.g., hub-height wind speeds, 2 m temperature and350

dew point, total downward shortwave radiation), large-scale patterns, and diurnal cycles. Each main category (wind or solar)

concludes with a summary figure showing the mean absolute error to synthesize key findings.

3.3 Wind

3.3.1 How much do generation modeling assumptions impact the wind energy?

Figure 2 shows our selected groupings for wind plants. We clustered geographically due to strong dependence of wind simula-355

tion on topographic features and surface type. Wind resources at each location are driven by multiscale atmospheric dynamics.

Large-scale circulation, synoptic patterns, and geopotential gradients drive synoptic flows that are influenced by coastal prox-

imity. At smaller sclaes, topography and land-surface heterogeneity govern mesoscale to microscale effects, such as moutain-

valley circulations and buoyancy-driven flows. Additionally, winds are influenced by heterogeneous surface roughness that

includes different vegetation types (e.g., grassland, forest canopy), urban areas, and water surfaces.360
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EIA: 2013 - 2022

San Diego x 2

Riverside x 6

Kern x 14

Contra Costa x 2
Alameda x 4

Solano x 3

locations_iloc_arr[valid_EIAsite_mask]: [['San Diego, CA'] ['San Diego, CA'] ['Riverside, CA'] ['Riverside, CA'] ['Riverside, 
CA'] ['Riverside, CA'] ['Riverside, CA'] ['Riverside, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] 
['Kern, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] ['Kern, CA'] 
['Alameda, CA'] ['Alameda, CA'] ['Contra Costa, CA'] ['Contra Costa, CA'] ['Alameda, CA'] ['Solano, CA'] ['Alameda, CA'] 
['Solano, CA'] ['Solano, CA'] ['Shasta, CA']]

Fig. 2
Shasta x 1

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (cannot do this for PLUSWIND as 
it will filter all)

Figure 2. Clusters of wind plants across California, grouped by geographic proximity. Each cluster is marked with a green ellipse and

annotated with the county name and number of plants. EIA plants are aggregated to the 3kmCARRM model grid; each filled dot represents

the mean wind CF (%) from valid monthly EIA records between 2013 and 2023.

We define three plant groups in California: 1) “NorCal”, including 3 grid points (counted based on the 3kmCARRM model

grid) in Solano County, 3 in Alameda County, and 2 in Contra Costa County, with a total installed capacity of 928.1 MW, 2)

“Kern” grid points as a standalone category, given its large sample size (12 grid points) and a total installed capacity of 3,322.5

MW, and 3) “SoCal”, including 4 grid points in Riverside County and 2 in San Diego County, with a total installed capacity

of 696.8 MW. Each cluster is weighted by the nameplate capacity summed across all plants assigned to each model grid point,365

ensuring integral conservation.

The northernmost part of California contains only one power plant – Shasta. The Shasta plant is part of the Hatchet Ridge

Wind Project, which consists of 44 turbines with a total nameplate capacity of 101.2 MW. In our analysis, we found that Shasta

exhibited a distinct wind CF seasonal pattern: it peaks in summer, in phase with the rest of California in the EIA monthly

records, but opposite to all modeled patterns. The analysis of Shasta confirmed the scaled-plants issue in the EIA data (see370

“Methods – EIA monthly CF data” section and Appendix A for details). By excluding years with too few independent samples,

the artificial seasonal cycle at Shasta was corrected (Fig. A3a). However, given the small sample size (N = 1) relative to other

regions, we exclude this site from further analysis .

Figure 3 presents a comparison of modeled CFs for different generation modeling, including PLUSWIND and PySAM.

In PLUSWIND, ERA5 (yellow) yields the lowest CFs, followed by MERRA2 (orange), with both staying below EIA val-375

ues throughout the year and across all geographic clusters (see more discussions in Dowell et al., 2022). HRRR (red) in
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PLUSWIND gives the highest CFs, typically exceeding EIA, especially in Kern and SoCal (by 10–25%). PLUSWIND com-

putes three different generation outputs for each model: raw estimates (dotted), density-adjusted (dashed), and density + loss

adjusted (solid). The impact of these assumptions are secondary to the choice of meteorological model, highlighting that the

generation modeling assumptions in PLUSWIND are a minor source of uncertainty.380

#1 PLUSWIND’s CF_HRRR_adjdenloss has larger bias 
than HRRR+pySAM
• EIAlatlon vs. PLUSWINDlatlon has trival impact (not shown)

Fig. 3

move the filter to EIA plant level

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (cannot do this for PLUSWIND as 
it will filter all)

Þ 08/06 change 25th/75th -> 1st

Figure 3. Seasonal variation in wind CFs (%) estimated using different generation modeling options, including PLUSWIND and PySAM.

Each subplot corresponds to a cluster in Fig. 2. Different meteorological datasets in PLUSWIND are color-coded: ERA5 (yellow), MERRA2

(orange), and HRRR (red). For each dataset, different generation modeling assumptions by PLUSWIND are shown using line styles: default

(dotted), air-density adjusted (dashed), and both air-density and loss adjusted (solid). PySAM-estimated generation from HRRR is shown in

solid blue, and EIA data is shown in gray. The bold line shows the multi-year climatology, with shading indicating ± 1 standard deviation.

PySAM-modeled HRRR estimates (solid blue) show similar seasonal patterns to those from PLUSWIND (solid red) but

are overall lower by 2-8%, and generally closer to EIA. This suggests that the effect of modeling assumptions (turbine power

curves, density estimation, wake losses) between PLUSWIND and PySAM is larger than the effect of internal corrections

within PLUSWIND, but smaller than the effect of varying meteorological model inputs.

Note that we first tested two plant coordinates when inputting HRRR data into PySAM: one based on EIA-reported plant385

locations (default), and the other based on PLUSWIND-provided coordinates derived from USWTDB centroids. The resulting

CF differences were minimal (not shown). This is likely due to plant aggregation on the model grid. For HRRR and CARRMs,

this grid is km-scale, which remains considerably coarser than the footprint of an individual plant. Therefore, spatial uncertainty

from plant location has negligible impact on modeled generation.
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PLUSWIND uses more realistic turbine power curves compared to the uniform default curve in PySAM’s default("WindPowerNone")390

configuration. While PySAM supports more detailed, plant-specific wind simulations (e.g., customized turbine parameters and

variable hub heights), we used the default configuration to ensure consistency and simplicity across datasets. In addition,

PLUSWIND applies MERRA2 air density correction and simple empirical losses of about 7% to all model datasets. In con-

trast, PySAM uses near-surface temperature and humidity from each model to derive air density directly, and applies different

loss assumptions. This might help explain why PLUSWIND estimates are different from PySAM.395

In summary, generation modeling assumptions, especially air density and wake loss estimation, do influence CF outcomes.

The differences between PLUSWIND and PySAM are more substantial than the variations introduced by internal assumptions

within PLUSWIND itself. In general, PySAM’s estimates for California wind generation align more closely with EIA data.

Nevertheless, the impact of generation assumptions is minor relative to the much larger discrepancy driven by meteorological

inputs from different models.400

3.3.2 How much do meteorological models impact the wind energy?

Figure 4 presents the second evaluation group comparing wind power generation estimates from SCREAM-3kmCARRM

2010climo and HRRR, both processed using PySAM. HRRR, assimilating high-frequency observations, effectively functions

as a km-scale reanalysis product, with internal variability closely aligned with historical conditions (2018–2022). The 10-year

SCREAM-3kmCARRM simulation is forced by a repeating 2010s climatology for SST and sea ice concentration, resulting in405

weaker interannual variability.
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2. realistic SST 
forcing:
3kmCARRM vs. 
HRRR (both in 
blue)

#2 3kmCARRM F2010 vs. HRRR 
• most close setup (obs SST climo forcing vs. realistic 

timeseries SST), 4.5 pg2 vs. 3 km 
• vs pySAM’s HRRR_CF: HRRR is better in Kern; worse in 

summer and fall in Southern CA
• sample sizes of 1) full EIA plant (N=41) vs. PLUSWIND’s EIA plant 

(N=36), 2) interannual variability (11 yr EIA vs. 4 yr PLUSWIND) have 
small impacts, especially in Southern CA (not shown)

Fig. 4

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (cannot do this for PLUSWIND as 
it will filter all)

Þ 08/10 SoCal and NoCal lists were wrong!!!

do_filter_corrcoefdist=True

Figure 4. Seasonal variation in wind CFs (%) estimated using PySAM from SCREAM-3kmCARRM 2010climo (top) and HRRR (bottom).

Each subplot corresponds to a cluster in Fig. 2. Simulations are shown in blue, and EIA records in gray. Light lines represent individual

years; bold lines represent the multi-year climatology.

Overall, HRRR and SCREAM-3kmCARRM yield similar results, with differences substantially smaller than those between

HRRR and MERRA2/ERA5 in PLUSWIND (Fig. 3). Considering the structural differences between HRRR and SCREAM –

including dynamics, physics parameterizations, and data assimilation/nudging – this suggests that horizontal resolution, rather

than model structural details, exerts a first-order control on wind energy simulations. Note that the nominal resolution of 3.25410

km refers to SCREAM’s dynamical core, while its physical grid has a resolution of ~4.5 km, slightly coarser than HRRR. While

this could lead to marginal degradation in results, wind simulations at km-scale are likely dominated by resolved processes, with

limited sensitivity to turbulence scheme differences. This is consistent with findings from Altamont Pass, where two planetary

boundary layer schemes in Weather Research and Forecasting model produced comparable performance in simulating wind

conditions and CFs at similar resolution (Arthur et al., 2025b).415

In terms of discrepancies between modeled CFs and EIA records across plant clusters, the largest occurs in Kern County.

Note that we did not add a curtailment correction to the PySAM outputs; given the 2% curtailment applied by Lee et al. (2025)

to California wind energy, this is unlikely to explain the majority of the discrepancies. On multi-year average, HRRR aligns
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more closely with EIA in this region, with an annual discrepancy of 13%. In contrast, SCREAM-3kmCARRM’s discrepancy in

Kern increases from 15% in summer to 25% in winter. A similar seasonal pattern is observed in NorCal, where 3kmCARRM’s420

discrepancy grows from 10% to 15% between summer and winter. In the same region, HRRR’s overestimation declines from

10% in summer and fall to only 3% in winter. For SoCal, both models captured the July peak well. During winter, 3kmCARRM

tends to overestimate by 8%, while HRRR underestimates by 4%. SoCal shows the smallest discrepancy (<5%) among all

clusters, especially during spring and fall.

In summary, the two fundamentally different meteorological models – SCREAM-3kmCARRM and HRRR – produce overall425

similar wind generation estimates when using comparable horizontal resolution, with HRRR results closer to EIA values. Given

HRRR’s nature as a reanalysis-like product, its lower discrepancy might be expected. The contrast between this section and the

previous suggests suggests that horizontal resolution is a first-order control on wind power simulation, despite large differences

in model structure and internal variability. Additionally, we find that 3kmCARRM consistently overestimates winter wind

generation relative to summer, whereas HRRR does not exhibit this pattern. This may indicate a systematic wintertime wind430

bias in SCREAM-CARRMs.

3.3.3 How much does horizontal resolution affect the wind energy?

Figure 5 presents California wind power estimates from E3SM-25kmNARRM, as well as the 3.25 km and 800 m SCREAM-

CARRM present-day simulations, all processed using PySAM. The only difference between the two SCREAM-CARRM sim-

ulations is horizontal resolution. SCREAM-CARRMs and E3SM-25kmNARRM differ in several aspects, including resolution,435

physical parameterizations, and internal variability.
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3. same 
E3SMv1 
SSP585 forcing: 
3km vs. 800m

Fig. 5Þ 08/01 move all filters (2.5 MW + min_low_months=3 
& max_nonnan_months = 12 & CFval_low_months =5 
to EIA plant level

Þ 08/06 updated to filter years with too many scaled 
plants!!! (cannot do this for PLUSWIND as it will filter 
all)

Þ 08/10 SoCal and NoCal lists were wrong!!!

do_filter_corrcoefdist=True

Figure 5. As in Fig. 4, but comparing the E3SM-25kmNARRM 2005–2014 simulation with the 3.25 km and 800 m SCREAM-CARRM

present-day simulations.

Strikingly, the E3SM-25kmNARRM simulation shows either a near-reversal or a strong damping of seasonal variability in

wind generation across California. This pattern was first identified by Lee et al. (2025). In contrast, the SCREAM-3kmCARRM

simulation captures the EIA seasonal phase much more accurately, with clear improvements particularly in seasonal timing.

Since all EIA processing, PySAM configuration, and data filtering were held constant in our analysis, the differences seen here440
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can be attributed solely to the meteorological models. Resolution plays a far more dominant role than large-scale circulation,

as shown in the next section, where similar large-scale patterns still lead to substantial differences due to resolution.

For the 3.25 km vs. 800 m SCREAM-CARRM simulations, the modeled wind CFs differ only slightly. In Kern and SoCal,

wintertime generation from SCREAM-800mCARRM is closer to EIA, with discrepancies reduced by 5% compared to the

15–20% overestimation from SCREAM-3kmCARRM. However, during summer (particularly in July) overestimation increases445

with resolution across NorCal, Kern, and SoCal. This suggests that a 4× increase in resolution yields only modest sensitivity

in SCREAM wind generation estimates, with no consistent improvement in the match to EIA, as quantified in the subsequent

mean absolute error plot (Fig. 9). Note that both simulations are based on present-day forcing, not observed SST and sea ice

concentration, so their discrepancies relative to EIA are larger than those in Fig. 4. Therefore, the discrepancy magnitude in

this group reflects not only resolution-related biases. It also captures mismatches between the 1° E3SM present-day simulation450

(2015–2020 water years) and either the observed 2010s climatology or the actual interannual variability from the empirical

years within 2013–2023.

In summary, moving from 25 km to 3.25 km results in a qualitative leap, especially for the seasonal cycle, while the resolution

sensitivity from 3.25 km to 800 m appears minor overall in SCREAM.

3.3.4 Statewide wind CFs, meteorological factors, and large-Scale circulation455

Figure 6 shows the spatial distribution of wind energy resources throughout California. Overall, the best wind resources are

found near mountainous regions – such as the coastal ranges near the Bay Area, the southern Sierra Nevada, and the eastern

highlands of California – where wind CFs generally reach around 50%. Spatial variability is most pronounced in summer,

with the lowest values in areas such as the Central Valley, which maintains the lowest CF year-round, while the highest-value

regions reach their seasonal peak. This figure highlights an intuitive but crucial point: wind CF is strongly dependent on local460

topographic features, and existing wind plants are largely situated in the most resource-rich regions.

Figure 6 also shows the month of peak CF in California. First, all km-scale models predict broadly consistent seasonal peaks

in wind generation across the state: generally higher in winter and lower in summer in mountainous regions, and the opposite

pattern in the coast, Central Valley and the desert highlands on the leeward side of Sierra Nevada. Most existing wind farms

exhibit summer peaks, whereas northern California (including the Shasta plant) generally peaks in winter, consistent with the465

EIA plant-level assessment (Figs. 3–5, A3a). Although present-day simulations predict a smaller extent of summer peaks in

the Central Valley than the 2010climo simulation and HRRR forecasts, these differences are unlikely to affect planners, given

the area’s overall weak wind resource. The seasonal diversity of peak wind generation across California may be advantageous

for planners in balancing the supply and demand of different renewable resources, especially given that solar resources are

systematically greater in summer. Notably, seasonal peak reversals can occur over short distances, such as winter peaks along470

the coastline and summer peaks in the adjacent Coast Ranges.
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#1 Overview of entire-CA CF through PySAM
• PySAM preprocessing updated to the remote master (Matthew: 

functionality to read lats/lons from netcdf)

Fig. 6

Annual mean Month of peak 
capacity factor

Winter Spring Summer Fall

Figure 6. Statewide spatial distribution of wind CFs (%) for California, estimated using PySAM, along with the month of peak CF. From

left to right: annual mean (ANN), winter (DJF), spring (MAM), summer (JJA), and fall (SON) wind CFs, and the corresponding month of

peak CF. From top to bottom: E3SM-25kmNARRM, SCREAM-3kmCARRM 2010climo, HRRR, SCREAM-3kmCARRM present-day, and

SCREAM-800mCARRM present-day simulations. Valid EIA plant locations are indicated by small black dots on the map.
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Consistent with earlier findings from the EIA, E3SM-25kmNARRM stands out as an outlier, especially in winter when its

wind CF is significantly higher than that of other models. Given the strong dependence of wind resources on local topography,

resolution and the model’s ability to resolve topography clearly play a role. When zooming into an evaluation region such as

Kern County, the higher-resolution models exhibit pronounced spatial heterogeneity within a single county, whereas the 25 km475

model lacks this spatial detail (Figs. 1c–1d).

To better understand the winter time discrepancy, Figure 7 focuses on key variables directly influencing winter wind CF,

particularly the hub-height winds, as well as large-scale circulation. Notably, E3SM-25kmNARRM not only simulates stronger

zonal winds over California but also exhibits stronger northerly winds over Southern California. Its winter blocking ridge is

both stronger and located farther offshore relative to ERA5, consistent with its hub-height wind bias (i.e., excessive westerly and480

northerly winds). Note that the ridge shape in 3kmCARRM-2010climo resembles that in 25kmNARRM, although it extends

further over land (Fig. 7). Nevertheless, 3kmCARRM produces much more realistic wind CFs. Another notable feature is

the pronounced ridge difference between 1) the group consisting of 2010climo and 25kmNARRM (both ultimately reflecting

the 2010–2014 climate) and 2) the two present-day simulations (reflecting the 2015–2020 present-day climate under CMIP6

SSP5-8.5 forcing). The differences in wind CFs, however, are still primarily driven by the resolution differences across the485

groups. Together, these comparisons suggest that large-scale circulation plays a relatively minor role in wind simulation, while

resolution and topographic representation are the dominant factors.

For the SCREAM-CARRM simulations, both present-day simulations exhibit a stronger ridge than ERA5, while the 2010climo

simulation is closer in ridge strength. However, somewhat unexpectedly, the present-day simulations better capture the ridge’s

position and structure.490
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#3 Zoom in: DJF wind, over Kern, 
large-scale circulation
• 25kmNARRM: the winter 

blocking ridge is both stronger 
and positioned farther offshore 
from California compared to 
ERA5—this is consistent with its 
U90M/V90M bias (excessive 
westerly and northerly winds)

• SCREAM-CARRMs:
• ridge strength: both 

SSP585 runs show a 
stronger ridge than ERA5, 
while the F2010 run 
appears more accurate

• ridge position & shape: 
both SSP585 runs 
outperform F2010 in 
positioning and structure

HRRR postprocessing is ongoing
Steve: internal variability could 
play a role

Fig. 7

V850 Z500 ΔERA5U850

Figure 7. Direct drivers of wind CF and large-scale circulation. From left to right: wind CFs, 90 m (hub-height) zonal winds (U90M), 90 m

meridional winds (V90M), 850 hPa zonal winds (U850), 850 hPa meridional winds (V850), 500 hPa geopotential height with the zonal mean

removed (Z500), and the differences between each model-simulated U850, V850, and Z500 and those from ERA5, respectively. From top to

bottom: E3SM-25kmNARRM, SCREAM-3kmCARRM 2010climo, HRRR, SCREAM-3kmCARRM present-day, SCREAM-800mCARRM

present-day simulations, and ERA5. As ERA5 provides wind output only at 100 m height, the 100 m winds are used as the hub-height winds

for ERA5. Global U850, V850, and Z500 are not available from HRRR because it is a regional model and does not cover the global domain.
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3.3.5 Diurnal cycle of simulated wind power generation

Figure 8 shows the diurnal cycle in simulated wind CFs. Note that EIA data are not included, as hourly EIA records are not

available. Each panel displays average seasonal (horizontal, month) and diurnal (vertical, time PST) variation, grouped by

geographic cluster.
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#5 3kmCARRM and HRRR have similar diurnal cycles 
(stronger at night)

Fig. 8

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (don’t need to do this for diurnal)

Þ 08/10 SoCal and NoCal lists were wrong!!!
Figure 8. Diurnal and seasonal variation in wind CFs (%) estimated using PySAM. From top to bottom: E3SM-25kmNARRM, SCREAM-

3kmCARRM 2010climo, HRRR, SCREAM-3kmCARRM present-day, and SCREAM-800m CARRM present-day simulations, respectively.

Each subplot corresponds to a cluster in Fig. 2.
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First, all simulations exhibit highly consistent diurnal cycles, with higher values at night and lower during the day. E3SM-495

25kmNARRM appears highly anomalous, mainly due to the previously discussed seasonal phase reversal and significantly

underestimated summer generation. Nevertheless, its diurnal timing remains relatively consistent with the other simulations.

All models simulated peak values occur at approximately 21–24 PST, while minimum values occur near 12–13 PST. Second,

in the two comparisons with similar internal variability, diurnal cycle differences are substantially smaller than seasonal cycle

differences. The seasonal cycles in Figure 8 represent an alternate visualization of those in Figs. 3–5.500

3.3.6 Overall mean absolute error of wind energy generation

Figure 9 summarizes the overall discrepancy in simulated wind CFs using mean absolute error (MAE, black bar) as the metric.

For the NorCal and Kern plants, HRRR shows the lowest MAE, while SCREAM-3kmCARRM 2010climo yields the highest.

The SCREAM-800mCARRM simulation produces slightly lower MAE than SCREAM-3kmCARRM in the present-day group.

In SoCal, the lowest MAE is found in E3SM-25kmNARRM and the SCREAM-3kmCARRM present-day simulation. All the505

MAE differences remain within 8%, with the vast majority under 2%, indicating that the choice of meteorological model has

a relatively small overall impact on wind power generation estimates. However, we caution against overinterpreting the MAE

plots in isolation, since MAE only reflects the magnitude of at the annual scale across all plants, while compensating errors

across different seasons cannot be captured in this figure.
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#* Same story but as a summary of the 
seasonal cycle comparisons

Fig. 9

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (cannot do this for PLUSWIND as 
it will filter all)

Þ 08/10 SoCal and NoCal lists were wrong!!!
Figure 9. Multi-year mean monthly absolute errors of wind CFs by plant (%) from PySAM simulations compared to monthly EIA data:

E3SM-25kmNARRM (darkorchid), SCREAM-3kmCARRM 2010climo (blue), HRRR (orange), SCREAM-3kmCARRM present-day (deep-

skyblue), and SCREAM-800m CARRM present-day (dodgerblue). Each dot represents the absolute difference between the multi-year mean

monthly CF and the corresponding EIA value for each plant. The black horizontal bar shows the mean absolute error (MAE) for each group,

averaged over all months and plants.

3.4 Solar510

For solar energy, we did not apply the geographic clustering. Instead, we grouped all plants by tracker configuration: single-

axis, fixed-axis, and dual-axis. Unlike wind, solar is more uniformly distributed and hence no natural classification emerges.

Fig. 10 shows the PV plants after aggregating the EIA plants to the 3.25 km CARRM grid.
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Fig. 10

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (cannot do this for PLUSWIND as 
it will filter all)

Figure 10. Geographic distribution of solar plants in California. EIA plants are aggregated to the 3kmCARRM model grid; each filled dot

represents the mean solar CF (%) from valid monthly EIA records between 2013 and 2023.

As outlined in the Methods section, PV systems are classified by tracker configuration into three categories based on the

EIA records: fixed-axis, single-axis, and dual-axis. Fixed-axis arrays are expected to deliver the lowest energy yield, whereas515

single- and dual-axis trackers continuously adjust panel orientation along one or two axes to follow the trajectory of the sun,

keeping the modules closer to normal incidence and thus systematically producing more electricity than fixed-axis systems.

3.4.1 How much do meteorological models impact the solar energy?

Figure 11 shows the solar CFs in California as estimated by PySAM, using SCREAM-3kmCARRM 2010climo and HRRR

simulations. Compared to wind, the seasonal cycle of solar CFs is much simpler with a clear summer peak and winter low.520

Even in the dual-axis case, despite having only three samples, the seasonal pattern remains smooth. This likely reflects the

stable solar resource in California’s sunny climate. In cloudier regions, where solar variability is higher, such smoothness may

not hold.
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Fig. 11

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (cannot do this for PLUSWIND as 
it will filter all)

Þ 08/06 make the single-year-single-gridpoint lines 
thinner

do_filter_corrcoefdist=True

Figure 11. As in Fig. 4, but for solar CFs, grouped by tracking type: fixed-axis, single-axis, and dual-axis.

Across the three tracker classes, the overestimation of the simulated solar CFs relative to EIA records grows with tracker

complexity. For fixed-axis arrays, both SCREAM-3kmCARRM 2010climo and HRRR reproduce the observations well: on525

average, 3kmCARRM deviates by < 3% in every month. For single-axis systems, the overestimation in both models stays

below 6%, and for dual-axis systems it remains below 13%. This monotonic increase suggests that the tracker algorithms

implemented in PySAM are somewhat idealized; in practice, mechanical or control limitations likely cause slower or less

precise tracking, reducing the actual gains.

Notably, SCREAM-3kmCARRM 2010climo performs remarkably well in reproducing EIA-recorded solar power genera-530

tion, even outperforming the high-frequency-assimilated HRRR. Agreement in energy output alone does not imply accurate

meteorological modeling, as uncertainties in generation modeling are difficult to quantify and the reliability of EIA monthly

records is not well characterized. Nevertheless, we will show in a later section that SCREAM also outperforms HRRR in

simulating surface solar radiation, further supporting its potential value for solar resource assessment.
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3.4.2 How much does horizontal resolution affect the solar energy?535

Figure 12 shows comparisons that help to understand the impact of resolution on solar energy simulations. As with the previous

evaluation group, CFs from plants with tracking (single- or dual-axis) tend to produce more solar energy than those without

tracking. On the other hand, the influence of spatial resolution (25 km vs. 3.25 km vs. 800 m) appears minor in this con-

text. However, in cloudier climates, resolution may play a larger role by better capturing sub-grid cloud structures that affect

irradiance.540
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Fig. 12
do_filter_corrcoefdist=True

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (cannot do this for PLUSWIND as 
it will filter all)

Þ 08/06 make the single-year-single-gridpoint lines 
thinner

Figure 12. As in Fig. 11 but for for 3.25 km vs. 800 m SCREAM-CARRMs present-day simulations.

3.4.3 Statewide solar CFs, meteorological factors, and large-Scale circulation

Figure 13 shows the spatial distribution of solar CFs across California. Due to the state’s predominance of clear-sky conditions,

the spatial heterogeneity of solar CFs is much smaller than that of wind CFs, generally decreasing from south to north in
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latitudinal bands. In winter, the northernmost part of California has the lowest CFs, around 9%, while in summer, most regions

reach 25–30%.545
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#1 Overview of entire-CA CF through PySAM
• PySAM preprocessing updated to the remote master (Matthew: 

functionality to read lats/lons from netcdf)

Fig. 13

JJA diff
diff.new_vs_nouv10m.solar_availability_2
015-2019_5_track_mode.fmt.yseasmean.nc
SI-O3-3kmCARRM-
s20151001.SCREAM_fork.12212023.dane.2240

• update to use U10M, V10M has a tiny effect for solar CF!
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Figure 13. As in Fig. 6, but for solar CFs using the fixed-axis tracking assumption.
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Among all simulations, HRRR stands out as an outlier, consistently producing higher solar CFs than all SCREAM/E3SM

RRM simulations evaluated here (Fig. 13). Moreover, HRRR simulates more shortwave radiation reaching the ground (Fig-

ure 14). This likely explains why HRRR deviates more from EIA records than SCREAM-CARRMs, as surface shortwave

radiation and near-surface air temperature are the major meteorological drivers of solar CF. The former determines the avail-

able solar energy, while the latter affects PV performance and cell temperature. Radiation is highly sensitive to cloud condi-550

tions, which are subject to large uncertainties and depend on temperature and humidity. HRRR shows lower humidity than

SCREAM-CARRMs, as indicated by the dew point, which is consistent with its higher shortwave radiation. Cell tempera-

ture, which affects the electrical characteristics and efficiency of PV modules, is mainly driven by ambient temperature and

insolation; some detailed PV models also take dew point and wind speed into account (Mayer and Gróf, 2021). Temperature

simulations are fairly consistent across all models and closely match ERA5.555
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#2 Zoom in: DJF and directly 
dependent vars 
• wind: 25km NARRM not only shows 

stronger zonal winds over California but 
also exhibits stronger northerly winds

• solar: HRRR’s FSDS is higher than in all 
E3SM runs and ERA5, consistent with its 
highest solar CF

• humidity:
• 25km NARRM shows clearly too-

high humidity, while HRRR is too 
low
The low dew point in HRRR is 
consistent with its high FSDS

• The high dew point combined with 
low wind speed in 25km NARRM 
may have offset its radiative errors, 
resulting in FSDS values closer to 
ERA5

à address one question: Is the high bias in 
HRRR’s solar CF primarily due to radiation, 
or due to assumptions in PySAM?

Fig. 14
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Figure 14. Direct drivers of solar CF and large-scale circulation. From left to right: solar CFs, total downwelling solar flux at surface (FSDS),

2 m temperature, and 2 m dew point.

3.4.4 Overall mean absolute error of solar energy generation

Figure 15 summarizes the overall discrepancies in simulated solar CFs using MAE. Fixed-axis systems show the smallest

MAE (all below 4%), while single-axis tracking ranges from 4–6%, and dual-axis systems exhibit overestimation of 8–12%.

This pattern suggests a possible systematic effect: as tracking complexity increases, so do the discrepancies. One plausible

explanation is that PySAM’s tracking algorithms may idealize real-world performance, especially for dual-axis systems that560
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rarely achieve perfect sun-following in practice. Notably, SCREAM-CARRMs show smaller discrepancies than HRRR across

all tracking types.

#6 Solar CFs 
• have much smaller sensitivity among 

forcings and resolutions in CARRMs
• CARRMs have smaller solar CF bias 

than HRRR

Fig. 15

Þ 08/01 move all filters (2.5 MW + 
min_low_months=3 & max_nonnan_months = 12 
& CFval_low_months =5 to EIA plant level

Þ 08/06 updated to filter years with too many 
scaled plants!!! (cannot do this for PLUSWIND as 
it will filter all)

Figure 15. As in Fig. 10 but for for solar CFs.

4 Conclusions

This study evaluates wind and solar power generation derived via PySAM from SCREAM-CARRMs at 3.25 km and 800 m

resolutions, through comparisons with EIA records, PLUSWIND, and HRRR. The following summarizes our responses to the565

three central questions raised in the Results:

1. How much do generation modeling assumptions impact the wind energy? For wind, differences between PySAM and

PLUSWIND are larger than those arising from internal assumptions within PLUSWIND, but still smaller than discrepan-

cies caused by differing meteorological models. For solar, however, modeling assumptions play a bigger role – especially

for systems with axis tracking. As seen in Figure 15, errors increase with tracking complexity, suggesting that PySAM’s570

idealized tracking assumptions may not reflect the mechanical or operational limitations of real-world systems.

2. How much do meteorological models impact the wind and solar energy? Despite being based on two fundamentally

different meteorological models, both SCREAM-3kmCARRM 2010climo and HRRR yield similar wind and solar power

outputs when processed with PySAM. The MAE differs by 1-5% for wind and 1-2% for solar. While the data-assimilated

HRRR differs less from EIA data for wind, SCREAM-3kmCARRM aligns more closely for solar power.575
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3. How much does horizontal resolution affect the wind and solar energy? The transition from E3SM-25kmNARRM to

SCREAM-3kmCARRM results in a performance leap for wind energy, particularly in capturing the seasonal cycle,

highlighting the importance of improved horizontal resolution and better representation of topography. In contrast, the

difference between the 3.25 km and 800 m SCREAM-CARRM present-day simulations (and E3SM-3kmCARRM and

HRRR from bullet 2) is minimal, with MAE differences below 2%, indicating limited resolution sensitivity at these finer580

scales in SCREAM. Solar PV generation shows much lower resolution sensitivity across E3SM-25kmNARRM, 3.25 km

SCREAM-CARRM, and 800 m SCREAM-CARRM than the differences between SCREAM and HRRR.

It should be noted that MAE alone cannot fully reveal model performances. Seasonal patterns offer more insight, especially

for those interested in meteorological model biases. Wind power discrepancies are particularly intriguing: in the absence of

direct hub-height wind observations and hourly EIA data, we cannot precisely quantify the source of EIA–model differences585

without more data. Although absolute biases remain unknown, comparisons across the three questions provide a sense of the

relative influence of different factors on modeled generation.

The comparison between SCREAM-3kmCARRM and HRRR suggests that structural differences in the meteorological mod-

els (such as dynamics, physical parameterizations, and data assimilation/nudging techniques) have less impact on generation

estimates than horizontal resolution. The importance of resolution for wind energy is supported by findings from PLUSWIND590

and by our comparison between 25kmNARRM, 3kmCARRM and 800mCARRM – where the seasonal phase mismatch previ-

ously identified in NARRM is no longer present, underscoring the improvements gained through km-scale modeling. This has

critical implications for power system planning, as seasonal variability plays a key role in balancing supply and demand, and

its uncertainty cannot be effectively mitigated by short-duration storage technologies such as batteries (e.g., Staadecker et al.,

2024). However, increasing resolution from 3.25 km to 800 m adds little value for SCREAM’s wind power, in particular, the595

seasonal pattern shows that while the 800 m simulation reduces wintertime overestimation, it amplifies summertime overesti-

mation. The lack of large sensitivity between 3.25 km and 800 m likely depends on SCREAM’s turbulence scheme and should

not necessarily be generalized to other models.

The more pronounced wintertime overestimation of wind power by SCREAM compared to HRRR may indicate a systematic

seasonal bias in SCREAM-CARRMs’ wind simulations. This can be partially explained by the weaker high-pressure blocking600

ridges in the 2010climo simulation, which tend to favor an overestimated frequency of atmospheric rivers and associated cold-

front winds. The limited added value from increased resolution (800 m vs. 3.25 km) is consistent with the weak sensitivity of

SCREAM-CARRMs’ sub-grid scale transport of turbulence in the 5 km to 800 m regime, as reported in Bogenschutz et al.

(2023), and could be attributed in part to model errors in the turbulence gray zone (e.g., Wyngaard, 2004; Chow et al., 2019;

Honnert et al., 2020) (also see discussions in Zhang et al., 2025). Specifically, horizontal turbulent mixing (neglected in most605

PBL schemes including SHOC) may become non-negligible at 800 m, especially in complex terrain where three-dimensional

effects matter (e.g., Juliano et al., 2022; Arthur et al., 2025b).

For generation modeling, PySAM applied to HRRR yields wind generation estimates closer to EIA and with less overesti-

mation than PLUSWIND, suggesting that loss estimation may be the dominant factor. Although PLUSWIND’s turbine power

curve derived from plant-level turbine diameter and capacity is theoretically more accurate than PySAM’s default curve, its as-610
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sumed ~7% loss factor (Millstein et al., 2023) appears to be underestimated, based on the comparison between HRRR+PySAM

and HRRR+PLUSWIND. In addition, we provide PySAM with each model’s own hourly temperature, humidity, and pressure

fields to calculate air density – ensuring consistency with the wind inputs. In contrast, PLUSWIND uses the same MERRA2-

based air density estimates even when driven by high-resolution wind fields like HRRR, potentially introducing a resolution

mismatch.615

For solar, SCREAM shows smaller discrepancies from EIA than HRRR. This may partly reflect California’s clear-sky

conditions, where model biases are less amplified. The better performance of SCREAM-CARRMs in simulating solar CF

is consistent with their smaller bias in surface-reaching shortwave radiation. It highlights SCREAM’s potential in regions

with similar climates. As discussed earlier, axis-tracking type remains the dominant source of variation, with discrepancies

increasing alongside tracking complexity. This suggests that PySAM’s multi-axis tracking assumptions may be overly idealized620

compared to real-world system behavior.

Overall, this work demonstrates the importance of high-resolution simulations for wind and solar estimates and that SCREAM-

RRM is a viable tool for such energy resource assessments. With improved observational constraints and efforts to better

quantify generation modeling uncertainties, future work can further understand SCREAM’s biases and apply SCREAM to

long-term power generation prediction and optimization.625

Code and data availability. The SCREAM 100 m San Francisco Bay Area Regionally Refined Model 0.0 version code, model, and anal-

ysis data (including the lists of valid EIA wind and PV plants in California used in our analysis) can be found at Zhang (2025) (https:

//doi.org/10.5281/zenodo.16809290, last access: 11 August 2025). The SCREAM 3.25 km and 800 m CARRMs source code is also avail-

able on GitHub at: https://github.com/jsbamboo/E3SM/tree/jzhang/update20231221_bogensch_CA_32xRRM (for SCREAMv0, last ac-

cess: 11 August 2025) and an archive (CApySAM-CA3kmCA800m-SCREAMv0-v0.0; https://github.com/jsbamboo/E3SM/releases/tag/630

CApySAM-CA3kmCA800m-SCREAMv0-v0.0, last access: 11 August 2025).

Appendix A: Applying an independent-plant ratio threshold to EIA monthly data

During our analysis, we encountered a puzzling phenomenon: for all simulations, the seasonal cycle of the Shasta CF (2013–2023

climatology) was completely out of phase with the multi-year mean seasonal cycle recorded in the EIA data. This plant was

so unusual because no other plant in the km-scale simulations exhibited such an off-seasonal-phase issue. In the absence of635

nearby wind observations, it was difficult to determine whether all models were wrong or whether the EIA record was wrong.

A key insight came from an anonymous reviewer of Lee et al. (2025), who cautioned:

“EIA gathers monthly data from a subset of plants from each state, creates monthly weights for that state, and then,

for the rest of the plants in the state, distributes reported annual generation to each month based on the state-level

weights... You can observe this in the data if you take the ratio of July to January (or any two months) across a640

set of plants in a state. Some of the plants will have independent ratios, but many plants will have the exact same
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July to January ratio. For those plants with non-independent monthly profiles, EIA only gathers annual generation

records.”

In fact, the EIA-923 documentation (https://www.eia.gov/electricity/monthly/pdf/technotes.pdf, last accessed: 8 August

2025) briefly describes the imputation method on pages 3 and 15:645

“Imputation: For monthly data, if the reported values appeared to be in error and the data issue could not be

resolved with the respondent, or if the facility was a nonrespondent, a regression methodology is used to impute

for the facility. The same procedure is used to estimate (“predict”) data for facilities not in the monthly sample.

The regression methodology relies on other data to make estimates for erroneous or missing responses.”

“Imputation: For select survey data elements collected monthly, regression prediction, or imputation, is done for650

missing data, including non-sampled units and any non-respondents. For data collected annually, imputation is

performed for non-respondents.”

To assess the degree of imputation in the annually collected data, and in particular to understand the mysterious behavior of

Shasta, we quantified the severity of scaling for each plant and each year.

For the valid EIA plants selected by the aforementioned uality control criteria, we computed the Pearson correlation distance655

(i.e., 1 minus the Pearson correlation coefficient) for monthly data between every pair of plants for each year. The yearly

distances were plotted as scatterplots (Fig. A1). If the distance value was less than 10−6 (i.e., close to 0, accounting for

truncation error), then the plant pair was deemed non-independent. Vertical lines in Fig. A1 indicate that a plant i has an

identical correlation coefficient with multiple other plants (j = 1, . . . ,N ), implying that the j plants are non-independent and

plant i is independent. If in a given year, there were no plant pairs with zero distance and no vertical lines, the year was660

classified as a fully-independent year , meaning no scaling existed among any plants. Taking wind as an example: in 2017, all

plants are non-independent (all scatter points are bright green with no blue vertical lines); in 2013, most plants are independent,

but some are non-independent (clusters with distance = 0 appear larger in size and are more blue in color); in 2023, there are

no blue vertical lines and no clusters with distance = 0 (all scatter points have the same size), indicating that all plants in that

year are independent.665
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Fig. A1

Figure A1. Scatter plots for assessing plant independence for (a) wind and (b) solar. Each point represents the Pearson correlation distance

for a given year and plant pair, with the value on the x-axis and the year on the y-axis. Distances closer to zero (considering a truncation error

of 10−6) are shown in brighter green, and the sizes of the corresponding scatter points are set larger; conversely, larger distances are shown

in blue with a constant size. A vertical jitter of ±0.25 is applied to the y-axis for each year. This visualization step highlights independent

samples: plants that have a fixed Pearson correlation distance with multiple other plants, which appear as short blue vertical lines in the

figure. The number of independent plants and their proportion relative to all plants in that year are quantified and displayed as text to the

right of each subplot for each year.

From Fig. A1, it can be seen that 2023 was the only fully-independent year between 2013–2023. (Note: as of 9 August 2025

21:43 PST, the EIA has not yet released the 2024 EIA–860 form). The degree of scaling (i.e., the proportion of plants whose

seasonal cycles are scaled from other plants) varies from year to year: for wind, in 2017–2022, the vast majority of plants

(>90%) had artificial seasonal cycles, whereas for solar, a large fraction (>80%) of plants had artificial seasonal cycles starting

as early as 2013. To visualize this more directly, Fig. A2 shows Shasta’s independence status for each year from 2013–2023:670

red for independent years, blue for non-independent years, and thin gray lines for other plants.
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Fig. A2

Figure A2. Determination of whether the Shasta plant is independent in each year based on the Pearson correlation distance for each plant

pair in that year. When Shasta is independent, it is shown as a thick red line; when non-independent, as a thick blue line. All other valid

plants are shown as thin gray lines.

Based on this analysis, we conclude that removing years when scaled plants are too dominant is logically more correct for

seasonal pattern analysis. However, removing those years would reduce the sample size for annual-mean discrepancy analysis.

Therefore, we set an “independent-plant ratio” threshold of Nindependent > 15%, which leads to the exclusion of the following

years: wind: {2017, 2018, 2019, 2020, 2021, 2022}, solar: {2013, 2015, 2017, 2018, 2019}. Figure A3 compares the seasonal675

cycle of wind and solar CFs before and after applying the “independent-plant ratio > 15%” threshold. However, this distance-

correlation filter cannot be applied to PLUSWIND, as it would remove all available years (2018–2021).

Comparing results with and without this threshold shows that the largest impact is on the Shasta wind plant (Fig. A3a):

without the threshold, Shasta exhibits an exactly out-of-phase seasonal cycle between all model simulations and the EIA

record; with the threshold applied, this artificial behavior disappears entirely, since 2017–2022 are exactly the years when the680
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Shasta wind CF was scaled from other plants (Fig. A2). This correction also affects northern California, shifting the wind

CF peak month from May to July (Fig. A3a), but has little effect on wind in other regions of California or on any PV plants

(Fig. A3b).
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2013-2023: N(months_EIA) = 132

wind: years_to_exclude = [2017, 
2018, 2019, 2020, 2021, 2022]: 
N(months_EIA) = 60

use N[independent] > 15% as a threshold ---!!! 
FOCUS_EIA_data.00.EIA_corrcoef-dist.py

solar: years_to_exclude = [2013, 2015, 
2017, 2018, 2019]: N(months_EIA) = 72

2013-2023: N(months_EIA) = 132

Fig. C1

Figure A3. Seasonal variation in the (a) wind and (b) solar CFs (%) estimated using PySAM from SCREAM-3kmCARRM 2010climo,

before (upper) and after (bottom) applying the “independent-plant ratio > 15%” threshold. The years before filtering are 2013–2023, while

the remaining valid years after filtering are {2013, 2014, 2015, 2016, 2023} for wind and {2014, 2016, 2020, 2021, 2022, 2023} for solar,

respectively. Each subplot corresponds to a cluster in Fig. 2, with Shasta also included here. Simulations are shown in blue, and EIA records

in gray. Light lines represent individual years; bold lines represent the multi-year climatology.
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