

1 **Radar Characterization of the Basal Unit at the Southern Flank of Dome A, East**
2 **Antarctica**

3
4 **Authors:** Shuai Yan^{1,2}, Duncan Young², Donald Blankenship², T.J. Fudge¹, Duyi Li², Laura
5 Lindzey³, Hunter Reeves^{2,4}, Alejandra Vega-Gonzalez^{2,5}, Shivangini Singh^{2,4}, Megan Kerr^{2,4},
6 Emily Wilbur¹, and Michelle Koutnik¹

7
8 **Author affiliations:**

9 1. Department of Earth and Space Sciences, University of Washington, Seattle, 98195, USA
10 2. University of Texas Institute for Geophysics, Jackson School of Geosciences, University
11 of Texas at Austin, Austin, 78758, USA
12 3. Ocean Engineering Department, Applied Physics Laboratory, University of Washington,
13 Seattle, 98105, USA
14 4. Department of Earth and Planetary Sciences, Jackson School of Geosciences, University
15 of Texas at Austin, Austin, 78712, USA
16 5. Department of Environmental Sciences, University of Virginia, Charlottesville, 22904,
17 USA

18 **Abstract:**

19 The basal unit near the base of the Antarctic Ice Sheet (AIS) plays a critical role in AIS dynamics
20 and the preservation of old ice, yet its structure and origin remain poorly understood. Using a
21 new airborne ice-penetrating radar dataset collected by the NSF Center for Oldest Ice
22 Exploration (NSF COLDEX), we investigate the radar characteristics of the basal unit at the
23 southern flank of Dome A, East Antarctica. We combine manual mapping with Delay-Doppler
24 analysis to characterize the spatial distribution of incoherent scattering and to distinguish
25 between two types of radar-apparent basal unit top boundaries: a sharp transition from specular
26 to scattering reflections (type I) and a gradual disappearance of specular reflections due to radar
27 signal attenuation (type II). We find that incoherent scattering is widespread upstream and
28 decreases downstream, correlating with both subglacial topographic roughness and a shift from
29 type I to type II boundaries. These patterns are interpreted as resulting from spatial variability in
30 englacial temperature, with warmer ice downstream enhancing signal attenuation and obscuring
31 radar features. Although incoherent scattering is not visible in the downstream region, its
32 absence may reflect radar detection limits rather than true absence of scattering reflectors in the
33 basal unit. Moreover, the observed correlation between scattering and subglacial roughness
34 suggests deeper geological controls in which subglacial lithology influences both basal
35 temperature and subglacial morphology.

36 Deleted: bedrock

38 **1. Introduction:**

39 **1.1 The Antarctic basal unit**

40 Ice-penetrating radar (IPR) has been a foundational tool in advancing our understanding of the
41 cryosphere (Schroeder et al., 2020). IPR data have played a central role in mapping subglacial
42 topography (e.g., Pritchard et al., 2025), characterizing subglacial hydrology (e.g., Livingstone et
43 al., 2022; Yan et al., 2022), and reconstructing past glacial and environmental changes in polar
44 regions (e.g., Beem et al., 2018; Jamieson et al., 2023). Englacial stratigraphy mapped by IPR
45 provides a valuable record of past ice sheet dynamics and offers critical guidance for identifying
46 promising sites in the search for old ice cores (Bingham et al., 2024). Near the base of the
47 Antarctic Ice Sheet (AIS), however, radar sounding often encounters a distinct zone—referred to
48 as the basal unit (e.g., Goldberg et al., 2020) or deep scattering zone (e.g., Cavitte, 2017)—where
49 coherent and traceable englacial reflections cannot be detected. The basal unit typically
50 manifests as either an echo-free zone or a zone of non-stratigraphic, incoherent echo (Fig. 1),
51 both indicative of complex and poorly understood basal processes. In addition to its unique radar
52 appearance, studies of ice flow at Little Dome C constrained by the stratigraphic horizons in the
53 upper part of the ice column (Cavitte et al., 2021) indicate that the basal unit there may be largely
54 stagnant, in contrast to the overlying stratigraphic unit, which shows evidence of flow (Chung et
55 al., 2023, 2024). This potential decoupling raises important questions about the physical nature
56 and origin of the basal unit at Little Dome C and elsewhere. Given that observed basal units
57 indicate complex basal processes, they are significant to our understanding of AIS dynamics and
58 the preservation of old ice in Antarctica.

59 **Deleted: scattering**

60 The properties and dynamics of the Antarctic basal unit are poorly constrained, and several
61 mechanisms have been proposed to explain its radar-obscuring character:

- 62 (1) One explanation suggests that radar echoes disappear where dielectric contrast diminishes
63 and where ice core stratigraphy becomes disrupted due to ice flow–induced deformation
64 (Drews et al., 2009). Under this hypothesis, no special deformation profile is assumed for
65 the basal unit relative to the stratigraphic unit above. Instead, the hypothesized disruption
66 arises from ice flowing over rough subglacial terrain. Because the basal unit is in direct
67 contact with this terrain, it is more susceptible to such disruption.
- 68 (2) Enhanced attenuation near the base of the ice sheet may also contribute to the absence of
69 echo, which is associated with higher englacial temperature (MacGregor et al., 2015).
70 Once their signal is reduced below the noise floor of the radar system, englacial
71 reflections can no longer be detected. The ice–bedrock interface typically produces a
72 much stronger reflection and often remains visible, even after experiencing greater
73 attenuation (traveling through a thicker ice column).
- 74 (3) Debris entrained during basal freeze-on or introduced through bedrock erosion may also
75 contribute to the incoherent backscatter observed in radar data (Franke et al., 2023, 2024;
76 Winter et al., 2019). It is proposed that such embedded debris, acting as point reflectors,
77 scatters the radar signal and hinders the resolution of internal features within the basal

78 **Deleted: clear**

79 **Deleted: Franke et al. (2023)**

81 unit. This mechanism has been proposed in regions such as the Gamburtsev Mountains,
82 East Antarctica (Bell et al., 2011), and northern Greenland (Leysinger Vieli et al., 2018),
83 where basal freeze-on processes and rugged subglacial terrain are thought to enhance
84 debris incorporation.

85 (4) Deformed or folded layering may also contribute to the observed incoherent echo.
86 Wolovick et al. (2014) demonstrated that ice flowing over basal slippery patches can
87 induce large-scale folding. Such folding can disrupt stratigraphic coherence, potentially
88 producing the diffuse scattering signals detected within the basal unit. This deformation-
89 driven mechanism may act in tandem with freeze-on processes (e.g., Bell et al., 2011),
90 where the refreezing of subglacial water and debris entrainment further complicate the
91 radar signature of deep ice.

92 (5) Other studies point to variations in ice crystal orientation fabric (COF) as a contributing
93 factor (Lilien et al., 2021). By analyzing radar data together with deep ice-core data,
94 Mutter and Holschuh (2025) find that incoherent scattering often coincides with either
95 gradual shifts or rapidly fluctuating COF in deep ice, particularly in regions where strain
96 is localized due to grain size-dependent strength differences. Interestingly, they also note
97 that “macro-scale deformation and layer folding at scales below the range resolution of
98 radar do not seem to result in incoherent scattering or induce an echo-free zone”.

99 challenging earlier assumptions.

100 Collectively, these hypotheses underscore the complexity of basal unit processes and highlight
101 the need for further observational, modeling, and sampling efforts to better characterize this
102 relatively poorly understood part of the ice sheet given the range of hypotheses that can
103 contribute to their character in radar data.

104
105 **1.2 The southern flank of Dome A**
106 This study focuses on the southern flank of Dome A, East Antarctica, a region that remains one
107 of the least studied sectors of the continent despite its glaciological significance (Fig. 2)
108 (Pritchard et al., 2025). Dome A sits atop the subglacial Gamburtsev Mountains, which are
109 believed to have played a central role in the initiation of East Antarctic glaciation (Bo et al.,
110 2009). The geomorphology of the subglacial Gamburtsev Mountains likely records the early
111 history of ice sheet development in this region (Lea et al., 2024). The southern flank, situated
112 between Dome A and the South Pole, is characterized by rugged subglacial topography
113 (Pritchard et al., 2025), an extensive hydrological network (Kerr et al., 2023; Wolovick et al.,
114 2013), and the probable presence of a subglacial sedimentary basin (Aitken et al., 2023). As ice
115 flows from Dome A toward the South Pole, the surface slope of the ice sheet decreases markedly
116 (Fig. 2-a), coinciding with a subtle deflection in flow direction toward the Recovery Subglacial
117 Highlands. Along this flow path, the ice transitions from the rugged subglacial terrain of the
118 Gamburtsev Mountains to the relatively smooth bedrock of the South Pole Basin farther
119 downstream (Fig. 2-b). These changes in subglacial conditions and ice flow configuration likely
120 influence basal unit dynamics. Together, these factors make the southern flank of Dome A an

Deleted: scattering observed in radar data

Deleted: macro-scale deformation and layer folding below the radar's range resolution do not appear to induce incoherent scattering or echo-free zones

125 ideal natural laboratory for investigating the physical properties of the basal unit and the
126 processes governing its formation and variability.
127
128 The National Science Foundation Center for Oldest Ice Exploration (NSF COLDEX) is
129 commissioned to explore Antarctica for the oldest continuous ice core, with the goal of
130 advancing our understanding of the evolution and future of Earth's climate system. As part of
131 this effort, NSF COLDEX coordinated two seasons of airborne geophysical surveys over the
132 southern flank of Dome A ([2022-23 and 2023-24](#)) (Fig. 2-a) (Young et al., 2025). The survey
133 design includes a majority of flight lines aligned with the overall ice flow direction (from grid
134 north-east to grid south-west in Fig. 2), facilitating future ice flow modeling efforts. Additional
135 lines oriented perpendicular to the flow were included to support across-transect tracing of
136 englacial stratigraphy and leveling of potential field datasets, such as airborne gravity and
137 magnetics. This new airborne geophysical dataset provides new, direct measurements of ice
138 thickness, englacial stratigraphy, and subglacial topography, and offers critical insights into the
139 regional subglacial hydrological and geological conditions. In this study, we leverage this new
140 dataset to investigate the radar characteristics of the basal unit. Specifically, we map the spatial
141 extent and thickness variation of incoherent ~~echo~~ within the basal unit and use Delay-Doppler
142 analysis to investigate the potential mechanisms driving changes ~~in~~ basal unit radar
143 characteristics.
144

Deleted: scattering

Deleted: the

Deleted: of

145 2. Methods:

146 2.1 Mapping the presence of incoherent scattering within the basal unit

147 During the ~~NSF~~ COLDEX airborne geophysics campaign, two independent IPR systems were
148 deployed on the survey aircraft: the MARFA 60 MHz radar system developed by the University
149 of Texas Institute for Geophysics (Young et al., 2016), and a newly developed UHF array based
150 on the University of Kansas accumulation radar (Kaundinya et al., 2024). The new UHF array is
151 designed primarily for high-resolution mapping of englacial radio-stratigraphy in the upper
152 portion of the ice column, but lacks the penetration depth needed to image the full ice thickness
153 or resolve the basal unit. Consequently, this study focuses on data collected with the MARFA
154 system, which is optimized for deep ice penetration and provides enhanced imaging of the
155 lowermost part of the ice sheet.

Deleted: the

Deleted: →

156 The boundary between the basal unit and the overlying stratigraphic ice unit, along with the
157 spatial extent and thickness variation of incoherent ~~echo~~, is manually mapped using the
158 DecisionSpace Geosciences 10ep software package, which contains semi-automatic tracing
159 algorithms and enables cross-transects tracing and comparison (Cavitt et al., 2021; Yan et al.,
160 2025b) ([Fig. 3](#)). We define the top of the basal unit—i.e., the boundary between the basal unit
161 and the overlying stratigraphic unit—as the deepest depth at which any clear and traceable
162 englacial reflection is observed. This boundary does not necessarily occur at the same englacial
163

Deleted: scattering

170 reflection across the study area; rather, it varies spatially, with some deeper reflections visible in
171 certain locations but absent in others. For calculating ice unit thicknesses, a constant velocity of
172 $168.5 \text{ m } \mu\text{s}^{-1}$ is assumed for radio wave propagation in ice. To improve the clarity of englacial
173 reflections during manual tracing, 2-D focusing was applied following the procedure described
174 in Peters et al. (2007), which helps correct for along-track scattering and enhance signal
175 coherence. The resulting thickness map of the basal unit is reported in Yan et al. (2025a) (Fig. 2-
176 c), while this manuscript presents the mapped distribution of incoherent echo within the basal
177 unit.

178

179 2.2 Delay-Doppler analysis

180 Delay-Doppler analysis distinguishes between specular and scattering reflections in IPR
181 sounding data. As a radar passes over a target, smooth (typically with roughness less than $\frac{1}{8}$ of a
182 wavelength) and continuous surfaces will tend to reflect incident energy specularly at a defined
183 angle. In contrast, rough surfaces or volume scatterers distribute energy over a broad range of
184 angles. This effect can be seen through the delayed off nadir energy over rough surfaces
185 (Campbell et al., 2013; Oswald and Gogineni, 2008; Young et al., 2016), and can also be
186 detected through along track Doppler filtering (Michaelides and Schroeder, 2019). The phase
187 history of subsurface scatterers enables estimation of the angles at which echoes are returned,
188 providing additional insight into scattering geometry (Peters et al., 2005; Schroeder et al., 2015;
189 Tyler et al., 1992).

190

191 In this study, we apply Doppler filtering using 1000-meter along-track apertures to compare the
192 SNR of returns from three angular windows: nadir and $\pm 11^\circ$ off-nadir (in air), with evaluations
193 spaced every 500 meters along the flight path. Energy that appears only in one angular view is
194 classified as specular, while that observed in all views is classified as scattering. We use the
195 gradient in the ratio of specular to scattering of 10 dB/ μsec to identify the top of the basal unit
196 and a 3 dB scattered/specular ratio threshold to identify englacial scattering below that limit.

197

198 3. Absence of stratigraphic reflection within the basal unit

199 Our Delay-Doppler analysis reveals that the majority of internal reflections within the overlying
200 stratigraphic ice unit exhibit predominantly specular characteristics, consistent with coherent and
201 well-preserved dielectric contrasts (Fig. 4). The bed reflection varies between specular and non-
202 specular across the survey region, likely reflecting spatial variability in basal material properties
203 and the presence or absence of subglacial water (Carter et al., 2007). Within the basal unit, non-
204 stratigraphic, incoherent echo, is attributed to scattering energy, indicating a shift in the nature of
205 radar reflectors—potentially due to embedded debris, ice fabric heterogeneity, or other complex
206 basal processes.

207

Deleted: off-nadir

Deleted: scattering

Deleted: Reflections

Deleted: are

Deleted: hathose

Deleted: which isare

Deleted: are

Deleted: 3

Deleted: incoherent scattering

Deleted: true

218 There are two primary mechanisms for the disappearance of clear, traceable stratigraphic
219 reflections within the basal unit. The first is a change in the nature of reflectors—from specular
220 reflectors in the overlying stratigraphic ice to diffuse, scattering reflectors in the basal unit. The
221 second is enhanced englacial attenuation, which causes both specular and scattering signals near
222 the bed to weaken below the radar system's noise floor and become undetectable. In the first
223 case, we expect a relatively sharp transition from specular to scattering energy; in the second, a
224 gradual decay of specular reflections with depth. In visual identification and manual mapping of
225 basal unit thickness, the top boundary of the radar-apparent basal unit is essentially the shallower
226 of these two depths: either the point of reflector transition (hereafter referred to as a type I
227 boundary) or the depth at which reflections fade below the noise floor (type II boundary). A
228 conceptual sketch illustrating this distinction is provided in Fig. 5.

Deleted: more

229
230 Delay-Doppler analysis can help distinguish between these two types of boundaries. Specifically,
231 we compute the ratio of specular to scattering energy (Fig. 4-a), then calculate the vertical
232 gradient of this ratio over a two-way travel time interval of 1 microsecond (Fig. 4-b). A steeper
233 negative gradient indicates a sharp transition from specular to scattering reflections—consistent
234 with a type I boundary—while a more gradual decline suggests progressive attenuation of
235 specular energy with depth, indicative of a type II boundary. This quantitative approach provides
236 a useful diagnostic for boundary classification, especially in regions where visual interpretation
237 alone may be ambiguous.

Deleted: 4

238
239 Between the southern flank of Dome A and the South Pole, we observe both types of boundary.
240 Our Delay-Doppler analysis suggests that the basal unit boundary is predominantly type I in the
241 upstream region—marked by a sharp transition from specular to scattering reflections—whereas
242 in the downstream region, it is primarily type II, characterized by the gradual fading of specular
243 reflections below the noise floor (Fig. 3, Fig. 5-a). This pattern suggests that, in the downstream
244 region, where the transition appears more subdued, specular energy may be attenuated below the
245 noise floor at the top of the basal unit, rather than abruptly replaced by scattering.

Deleted: 3

Deleted: 3

247 **4. Presence of incoherent scattering within the basal unit**

248 We observe a widespread presence of incoherent scattering within the basal unit in the upstream
249 portion of the survey region (grid northeast in Fig. 2 and Fig. 5). To quantify its spatial thickness
250 variation, we calculate its fractional thickness relative to the total thickness of the basal unit (Fig.
251 5-b). Near Dome A (i.e., the upstream area), the basal unit is almost entirely filled with
252 incoherent scattering, with fractional thickness values approaching 100%. This fraction gradually
253 decreases downstream as the ice flows toward the South Pole Basin, and eventually, the
254 incoherent scattering disappears entirely and the basal unit manifests solely as an echo-free zone
255 (Fig. 3, Fig. 6-b). Notably, during this transition from full scattering to entirely echo-free, the
256 scattering consistently diminishes from the base upward—i.e., the echo-free zone first develops

Deleted:

Deleted: 5

Deleted: -b

Deleted: ..

265 at the bottom of the basal unit, immediately above the bedrock, and then progressively thickens
266 upward as it evolves downstream (Fig. 3). Also, the appearance and thickness variation of the
267 incoherent scattering also correlate with the rate at which specular horizons fade vertically,
268 which reflects a transition from type I to type II boundaries (Fig. 6).

269
270 The COLDEX survey is situated directly downstream of the Antarctica's Gamburtsev Province
271 (AGAP) Project (Corr et al., 2020). It has been hypothesized that the AGAP IPR sounding
272 reveals packages formed by freezing of subglacial water and subsequent entrainment of debris
273 (Bell et al., 2011; Creyts et al., 2014; Wolovick et al., 2013). We provide side-by-side
274 comparisons of this basal unit as imaged by the COLDEX and AGAP IPR sounding at several
275 intersection points in Fig. 7. We notice that (1) the incoherent scattering exhibits characteristics
276 similar to the unit directly overlying the basal freeze-on package, and (2) this incoherent
277 scattering is widespread within the AGAP survey in the region intersecting the COLDEX survey,
278 that is, around and downstream of the area where widespread basal freeze-on was inferred by
279 Bell et al. (2011). Based on this observation, we consider the incoherent scattering unlikely to
280 represent the basal freeze-on package given its distinct radar signature. Instead, we interpret the
281 incoherent scattering as arising from either (1) deformation and folding caused by ice flowing
282 across slippery patches of the bedrock (as suggested for other locations by Wolovick et al.,
283 2012), or (2) variations in ice crystal orientation fabric (as suggested other locations by Mutter
284 and Holschuh, 2025).

285 We interpret both the observed variation in incoherent scattering thickness and the shift from
286 type I to type II boundary types as potential indicators of spatial heterogeneity in englacial
287 temperature. In particular, we suggest that warmer ice in the downstream region leads to
288 increased radar signal attenuation, which reduces the detectability of deep reflections and
289 obscures the specular-to-scattering transition. As a result, the radar-apparent basal unit thickness
290 may reflect not only physical changes in ice properties but also thermal conditions influencing
291 signal propagation. Additionally, subglacial melting in warmer areas may remove scattering
292 reflectors from the base of the basal unit, thereby shifting the remaining scattering reflectors to
293 greater depths, while simultaneously raising the critical depth at which radar reflections fall
294 below the noise floor. Together, these effects contribute to a transition from type I to type II
295 boundary. This interpretation also aligns with the observation that widespread subglacial lakes
296 are found in the inner South Pole Basin, near the South Pole point, while almost no subglacial
297 lakes are detected in the outer South Pole Basin, closer to Dome A (Kerr et al., 2023). Within
298 this conceptual framework, the downstream extent of the scattering reflectors remains uncertain.
299 In the downstream area, incoherent scattering disappears within the basal unit, but this does not
300 necessarily indicate that reflectors are absent. Instead, they may simply be undetectable due to
301 increased radar attenuation in warmer ice.

303
Deleted: it first vanishes at the bottom of the basal unit
Deleted: 6
Deleted: 5

Deleted: Similarly widespread incoherent scattering has been documented near Dome A, directly upstream of the COLDEX survey region (Bell et al., 2011).
Deleted: suited
Deleted: 1
Deleted: the basal unit mapped by
Deleted: above the Subglacial Gamburtsev Mountains is primarily formed through the

Deleted: During this freeze-on process, debris may become entrained in the ice, potentially contributing to the incoherent scattering observed in IPR sounding. Given the similar radar signature, we infer that the incoherent scattering observed in the upstream portion of the COLDEX survey region may have formed through the same mechanism. However, it remains unclear how far this scattering-rich basal ice is advected downstream, whether similar scattering reflectors form locally in the downstream area, or whether incoherent scattering is present at all in those regions. In the downstream area, incoherent scattering disappears within the basal unit, but this does not necessarily indicate that reflectors are absent. Instead, they may simply be undetectable due to increased radar attenuation in warmer ice. Therefore, radar data alone cannot confirm the origin, presence or absence of scattering features at depth.

Deleted: lowering the depth of the scattering reflectors
Deleted: attenuation

333 There are alternative explanations for the observed decline of incoherent scattering downstream.
334 If the scattering arises from disturbed or folded stratigraphy, or formed during basal freeze-on,
335 the dielectric contrasts responsible for scattering may be reduced as the ice is advected
336 downstream. Two processes in particular—diffusion and ice deformation—can diminish these
337 contrasts over time. Diffusion acts to smooth out electrical property variations, reducing the
338 amplitude of dielectric contrasts and thereby weakening the radar-scattering signal. This process
339 becomes increasingly effective with time and distance along the flowline, especially near the
340 bed, where ice temperatures are higher and diffusion rates are enhanced (e.g., Fudge et al., 2024).
341 In parallel, mechanical deformation can further homogenize the ice and reduce the amplitude of
342 contrasts. This deformation is also likely strongest near the ice-rock interface. Together,
343 diffusion and deformation may progressively erase the dielectric contrasts responsible for the
344 scattering echo, leading to its gradual disappearance downstream.
345

346 The radar data we have so far cannot definitively resolve the causes of (1) the absence of
347 stratigraphic reflections and (2) the presence and thickness variation of incoherent scattering
348 within the basal unit. To resolve these uncertainties and test the outstanding hypotheses, future
349 work should prioritize targeted coring campaigns and in situ borehole observations, particularly
350 in zones where radar data show a transition from incoherent scattering to echo-free conditions.
351 Platforms such as RAID (Goodge et al., 2021; Shackleton et al., 2025) may provide access to
352 these challenging depths with relatively high drilling speed and efficiency. Additionally,
353 polarimetric radar sounding can provide valuable insight into variations in crystal orientation
354 fabric (COF), which may further constrain these hypotheses. In parallel, numerical modeling will
355 be essential. Future simulations could quantify spatial patterns of basal melting and refreezing,
356 evaluate how debris entrainment affects basal ice rheology, evaluate modeled fabric evolution
357 compared to an observed fabric distribution, and predict radar attenuation based on modeled
358 englacial temperature fields. Such observational, modeling, and sampling work would provide a
359 powerful framework for testing competing basal unit formation mechanisms and improving our
360 understanding of basal ice processes.
361

362 5. Potential geological control on basal thermal condition

363 We observe a strong correlation between the presence and fractional thickness of incoherent
364 scattering and the subglacial topographic roughness, defined as the standard deviation of bed
365 elevation over a 400-meter horizontal window (Fig. 2-d). Above the rugged terrain of the
366 Subglacial Gamburtsev Mountains, where topographic roughness is high, we observe a
367 correspondingly high fractional thickness of incoherent scattering within the basal unit. As the
368 ice flows downstream into the relatively smooth South Pole Basin, the fractional thickness of
369 scattering decreases and eventually disappears. Further downstream, as the ice approaches the
370 Recovery Subglacial Highlands—where topographic roughness again increases—incoherent
371 scattering re-emerges, with fractional thicknesses exceeding 90% in some areas.

Deleted: uncertainty

Commented [MRK1]: Mention this? Maybe check with Emily on how to state this since there probably isn't a publication to site yet, though this may have been done at EGRIP

Deleted: exploration and modeling

374
375 It is possible that variation in subglacial geology exerts a primary control on both basal thermal
376 conditions and subglacial roughness, thereby driving the observed correlation between
377 incoherent scattering and bed topography. In particular, geological heterogeneity—especially
378 when coupled with the presence of subglacial water—may redistribute the background
379 geothermal flux, leading to elevated basal temperatures in localized areas and enhancing radar
380 signal attenuation (Yan et al., 2022a). At the same time, contrasts in lithology and tectonic
381 structure can influence patterns of erosion and sediment deposition, shaping the subglacial
382 landscape and its roughness (Yan et al., 2022b). Together, these processes suggest that the spatial
383 variability of basal unit radar signature may reflect a coupled system in which subglacial geology
384 governs both the basal thermal regime and subglacial landform.

385
386 This interpretation remains a quantitative hypothesis that requires further validation. Ongoing
387 work within NSF COLDEX is investigating the subglacial geological and hydrological context
388 of the region using IPR sounding and potential field datasets (Kerr et al., 2023, 2024). Follow-up
389 modeling work can build on these constraints to simulate englacial temperature fields and
390 estimate corresponding radar attenuation profiles. Comparing these modeled attenuation patterns
391 with radar observations would offer a critical test of whether the observed transitions in basal
392 boundary type and scattering characteristics can be attributed to thermally driven variations in
393 radar signal propagation. Such work is also essential for assessing the potential of radar-derived
394 basal unit characteristics as indirect indicators of basal thermal structure.

395

396 6. Impact of elevated noise floor

397 We observe an elevated noise floor in radar data from several flight lines during the survey (Fig.
398 8). Although this does not compromise overall data quality for mapping major features like bed
399 topography or thick internal layers, it does hinder the identification of weaker, diffuse features
400 such as incoherent scattering. In affected transects, higher background noise reduces the contrast
401 needed to visually detect and map basal scattering. To illustrate this effect, Fig. 8 compares
402 intersecting flight lines with differing noise levels, highlighting how noise conditions impact the
403 visibility of incoherent scattering.

404
405 Additionally, we notice noise arising from electromagnetic interference (EMI) between the
406 MARFA and UHF radar systems. An example is visible in Fig. 4a near the 100, 250, and 450 km
407 distance marks at two-way travel times deeper than 35 μ s, and visible in the right-side panel of
408 Fig. 8a and Fig. 8e. The EMI noise appears to impact the delay-Doppler analysis by producing
409 spurious specular returns, which interfere with and obscure the real radar signal. The EMI was
410 remedied midway through the first survey season (2022–23), so only the earliest transects from
411 the first season are affected.

412

Deleted: 7

Deleted: 1

Deleted: 7

417 These observations underscores an important consideration for future surveys targeting fine-scale
418 features: while data may appear high quality in general terms, reliable mapping of low-contrast
419 structures depends heavily on signal-to-noise performance. System sensitivity, signal processing
420 strategies, EMI mitigation between radar systems, and noise control all play critical roles in
421 reliable radar-based detection. Therefore, the competency and configuration of radar systems—
422 particularly for deep-ice sounding—must be carefully considered when designing surveys or
423 interpreting mapping results.
424

Deleted: is

Deleted: electromagnetic interference (

Deleted:)

425 7. Conclusion:

426 This study leverages new ice-penetrating radar data from the NSF COLDEX airborne geophysics
427 campaign to investigate the basal unit along the southern flank of Dome A, East Antarctica.
428 Through manual mapping and Delay-Doppler analysis, we document the spatial variation of
429 incoherent scattering within the basal unit and identify two types of basal unit top boundary: a
430 sharp specular-to-scattering transition (type I) and a gradual attenuation-driven disappearance of
431 specular stratigraphic reflections (type II). Our results show that incoherent scattering is most
432 prevalent upstream near Dome A and diminishes downstream as ice flows towards the South
433 Pole, a trend that correlates with both subglacial topographic roughness and shift from type I to
434 type II boundary types.
435

Deleted: IPR

436 We interpret this trend as a result of spatial variability in englacial temperature, with warmer ice
437 in the downstream region increasing radar attenuation and suppressing the visibility of deep
438 reflections. This interpretation is further supported by the consistent disappearance of incoherent
439 scattering from the base upward. Moreover, the observed correlation between incoherent
440 scattering and subglacial roughness may point to underlying geological controls, in which
441 subglacial lithology influences both basal temperature and subglacial landform. Together, these
442 interpretations highlight the need for future investigations—through numerical modeling and
443 targeted in situ measurements—to better constrain englacial temperature fields and subglacial
444 geological conditions.

445 8. Author Contribution

446 D.Y., S.S., and M.K. participated in field data acquisition, with S.Y. and D.B. contributing to the
447 design of the field survey. Manual mapping of radar features was conducted by S.Y., A.V.-G.,
448 and S.S. D.Y. led the Delay-Doppler analysis. Figures were prepared by S.Y., D.Y., and D.L. All
449 authors contributed to data interpretation and manuscript writing and approved the final version
450 of the paper.
451

452 9. Competing Interests

453 The authors declare that they have no conflict of interest.

458

459 **10. Acknowledgements**

460 This work was supported by the NSF Center for Oldest Ice Exploration, an NSF Science and
461 Technology Center (NSF 2019719), as well as the G. Unger Vetlesen Foundation. We thank the
462 NSF Office of Polar Programs, the NSF Office of Integrative Activities, University of Texas at
463 Austin, University of Washington, and Oregon State University for financial, logistical, and
464 administrative support, and the NSF Antarctic Infrastructure and Logistics Program, Kenn Borek
465 Air, Earthscope and the Antarctic Support Contractor for logistical support. We acknowledge the
466 support of this work by Landmark Software and Services, a Halliburton Company. Maps in this
467 manuscript were prepared using the QGIS platform, the Generic Mapping Tools (GMT, Wessel
468 et al., 2019), and the Norwegian Polar Institute's Quantarctica package. This is UTIG
469 contribution #xxxx.
470

471 **11. Data Availability**

472 Unfocused IPR sounding data can be accessed at <https://doi.org/10.15784/601768>. Focused IPR
473 sounding data can be accessed through the Open Polar Radar GeoPortal at:
474 https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/ and
475 https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/. IPR measured subglacial
476 topography, surface elevation, subglacial roughness, and subglacial specularity content can be
477 found at: <https://doi.org/10.18738/T8/M77ANK>. The thickness variation of the basal unit can be
478 found at <https://doi.org/10.15784/601912>. Fractional thickness of incoherent scattering within the
479 basal unit can be found at: <https://doi.org/10.15784/601972>. Delay-Doppler analysis result can be
480 found at: <https://dataVERSE.tdl.org/previewurl.xhtml?token=b81c2f4c-6f76-4532-9476-05ff303debb2>.
481

Deleted: <https://ops.cresis.ku.edu>

Deleted: [https://urldefense.com/v3/_https://dataVERSE.tdl.org/previewurl.xhtml?token=a04c95b4-3d81-404b-a7fa-142f977ef0cd_!!K-Hz7m0Vt54lhYIJm70TWTxbT43HrbX14HwjNxE0qaStnpV_V1-Wcq2cgXks4BgWV6Z9cHzFSJfvdnOW2hzBULVmGwBkf_zw\\$](https://urldefense.com/v3/_https://dataVERSE.tdl.org/previewurl.xhtml?token=a04c95b4-3d81-404b-a7fa-142f977ef0cd_!!K-Hz7m0Vt54lhYIJm70TWTxbT43HrbX14HwjNxE0qaStnpV_V1-Wcq2cgXks4BgWV6Z9cHzFSJfvdnOW2hzBULVmGwBkf_zw$) ...

491 **Figure captions:**

492 Figure 1. Example ice-penetrating radargram showing a cross-sectional view of the ice sheet.
493 The location and orientation of this profile are indicated in Fig. 2 as transect B–B'. Radar transect
494 name: CLX/MKB2n/R72a.

495
496 Figure 2. Data products from the NSF COLDEX airborne geophysical survey. (a) Survey flight
497 lines (blue) overlaid on ice surface elevation contours at 200 m intervals (black). The location of
498 the survey region is shown in the inset map at upper left. (b) Subglacial topography of the survey
499 region with 200 m elevation contours. (c) Mapped thickness of the basal unit with 100 m
500 thickness contours. (d) Subglacial roughness across the survey region, represented as the
501 standard deviation of bed elevation over a 400 m window, with contours at 20 m intervals. All
502 the maps in this figure, Fig. 6, and Fig. 7 are in the WGS 84 / Antarctic Polar Stereographic
503 (EPSG:3031) coordinate system.

504
505 Figure 3. Three example radargrams showing the presence and thickness variation of incoherent
506 scattering within the basal unit. In each radargram, white dash line marks the top of the basal
507 unit, and yellow dash line marks the bottom of incoherent scattering. The locations and
508 orientations of these profiles are indicated in Fig. 2. Radar transects names: AA':
509 CLX_MKB2n_R56a; BB': CLX/MKB2n/R72a; CC': CLX_MKB2n_R84b.

510
511 Figure 4. Delay-Doppler analysis for the radar transect shown in Fig. 1 (B–B' in Fig. 2). (a)
512 Power ratio between specular and scattering reflections, with black dash lines marking the top
513 and bottom of the incoherent scattering echo. (b) Vertical gradient of the power ratio,
514 highlighting the sharpness of transitions.

515
516 Figure 5. Conceptual sketch illustrating the distinction between type I and type II basal unit top
517 boundaries. Black dots represent scattering reflectors within the basal unit. The red-shaded
518 region indicates areas of elevated englacial attenuation, where both specular and scattering
519 reflections weaken and fall below the radar system's noise floor. The radar-apparent basal unit
520 boundary is shown as a dashed black line. We note that the variations in ice thickness and
521 subglacial topography shown in this conceptual sketch are intended only as a schematic
522 illustration and do not necessarily correspond to actual correlations between such variations and
523 basal unit boundary types.

524
525 Figure 6. Spatial transition from type I to type II radar-apparent basal unit boundaries. (a)
526 Vertical gradient of specular energy at the top of the basal unit, contoured at 0.5 dB μ s⁻¹
527 intervals. (b) Fractional thickness of incoherent scattering within the basal unit, contoured at
528 20% intervals.

530 [Figure 7. Side-to-side comparison of the COLDEX survey and the AGAP survey at three of their](#)
531 [intersection points. The yellow arrow highlights an example of the basal freeze-on packages as](#)
532 [hypothesized by Bell et al., 2011. The location of the survey region is shown in the inset map at](#)
533 [upper left. We note that the radar system used in the AGAP survey operates at a different center](#)
534 [frequency \(150 MHz\), which results in different vertical resolution and may alter the appearance](#)
535 [of the same reflector—particularly for reflectors whose characteristic dimensions are comparable](#)
536 [to the radar wavelength.](#)

537
538 [Figure 8. Comparison of basal unit appearance at the intersection point of intersecting radar](#)
539 [transects, illustrating the impact of elevated noise floor. Survey lines are color-coded by noise](#)
540 [floor, with darker colors indicating higher noise levels. Radargrams from the intersecting](#)
541 [transects are shown to demonstrate how elevated noise reduces the visibility of incoherent](#)
542 [scattering within the basal unit. This map covers the same area as Fig. 2 and Fig. 6. The noise](#)
543 [floor of each shown radargram at the intersection point is: \(a\) left: -116 dB, right: -115 dB; \(b\)](#)
544 [left: -117 dB, right: -118 dB; \(c\) left: -107 dB, right: -115 dB; \(d\) left: -106 dB, right: -115 dB;](#)
545 [\(e\) left: -114 dB, right: -115 dB.](#)

546
547

Deleted: 7

549 **References:**

550 Aitken, A. R. A., Li, L., Kulessa, B., Schroeder, D., Jordan, T. A., Whittaker, J. M.,
551 Anandakrishnan, S., Dawson, E. J., Wiens, D. A., Eisen, O., and Siegert, M. J.: Antarctic
552 Sedimentary Basins and Their Influence on Ice-Sheet Dynamics, *Rev. Geophys.*, 61,
553 e2021RG000767, <https://doi.org/10.1029/2021RG000767>, 2023.

554 Beem, L. H., Cavitte, M. G. P., Blankenship, D. D., Carter, S. P., Young, D. A., Muldoon, G. R.,
555 Jackson, C. S., and Siegert, M. J.: Ice-flow reorganization within the East Antarctic Ice Sheet
556 deep interior, *Geol. Soc. Lond. Spec. Publ.*, 461, 35–47, <https://doi.org/10.1144/SP461.14>, 2018.

557 Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson,
558 N., Jordan, T., Rose, K., Studinger, M., and Wolovick, M.: Widespread Persistent Thickening of
559 the East Antarctic Ice Sheet by Freezing from the Base, *Science*, 331, 1592–1595,
560 <https://doi.org/10.1126/science.1200109>, 2011.

561 Bingham, R. G., Bodart, J. A., Cavitte, M. G., Chung, A., Sanderson, R. J., Sutter, J. C., Eisen,
562 O., Karlsson, N. B., MacGregor, J. A., and Ross, N.: Antarctica's internal architecture: Towards
563 a radiostratigraphically-informed age–depth model of the Antarctic ice sheets, *EGUphere*, 2024,
564 1–66, 2024.

565 Bo, S., Siegert, M. J., Mudd, S. M., Sugden, D., Fujita, S., Xiangbin, C., Yunyun, J., Xueyuan,
566 T., and Yuansheng, L.: The Gamburtsev mountains and the origin and early evolution of the
567 Antarctic Ice Sheet, *Nature*, 459, 690–693, <https://doi.org/10.1038/nature08024>, 2009.

568 Campbell, B. A., Putzig, N. E., Carter, L. M., Morgan, G. A., Phillips, Roger. J., and Plaut, J. J.:
569 Roughness and near-surface density of Mars from SHARAD radar echoes, *J. Geophys. Res.*
570 Planets, 118, 436–450, <https://doi.org/10.1002/jgre.20050>, 2013.

571 Carter, S. P., Blankenship, D. D., Peters, M. E., Young, D. A., Holt, J. W., and Morse, D. L.:
572 Radar-based subglacial lake classification in Antarctica, *Geochem. Geophys. Geosystems*, 8,
573 <https://doi.org/10.1029/2006GC001408>, 2007.

574 Cavitte, M., Young, D., Mulvaney, R., Ritz, C., Greenbaum, J., Ng, G., Kempf, S., Quartini, E.,
575 Muldoon, G., Paden, J., Frezzotti, M., Roberts, J., Tozer, C., Schroeder, D., and Blankenship, D.:
576 A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the
577 Holocene to the mid-Pleistocene Marie, *Earth Syst. Sci. Data Discuss.*, 13, 4759–4777,
578 <https://doi.org/10.5194/essd-2020-393>, 2021.

579 Cavitte, M. G. P.: Flow re-organization of the East Antarctic ice sheet across glacial cycles,
580 2017.

581 Chung, A., Parrenin, F., Steinhage, D., Mulvaney, R., Martín, C., Cavitte, M. G. P., Lilien, D. A.,
582 Helm, V., Taylor, D., Gogineni, P., Ritz, C., Frezzotti, M., O'Neill, C., Miller, H., Dahl-Jensen,
583 D., and Eisen, O.: Stagnant ice and age modelling in the Dome C region, Antarctica, *The
584 Cryosphere*, 17, 3461–3483, <https://doi.org/10.5194/tc-17-3461-2023>, 2023.

585 Chung, A., Parrenin, F., Mulvaney, R., Vittuari, L., Frezzotti, M., Zanutta, A., Lilien, D. A.,

586 Cavitte, M. G. P., and Eisen, O.: Age, thinning and spatial origin of the Beyond EPICA ice from
587 a 2.5D ice flow model, EGUsphere, 1–21, <https://doi.org/10.5194/egusphere-2024-1650>, 2024.

588 Corr, H., Ferraccioli, F., Jordan, T., and Robinson, C.: Antarctica's Gamburtsev Province
589 (AGAP) Project - Radio-echo sounding data (2007-2009) (1.0),
590 <https://doi.org/10.5285/0F6F5A45-D8AF-4511-A264-B0B35EE34AF6>, 2020.

591 Creyts, T. T., Ferraccioli, F., Bell, R. E., Wolovick, M., Corr, H., Rose, K. C., Frearson, N.,
592 Damaske, D., Jordan, T., Braaten, D., and Finn, C.: Freezing of ridges and water networks
593 preserves the Gamburtsev Subglacial Mountains for millions of years, *Geophys. Res. Lett.*, 41,
594 8114–8122, <https://doi.org/10.1002/2014GL061491>, 2014.

595 Drews, R., Eisen, O., Weikusat, I., Kipfstuhl, S., Lambrecht, A., Steinhage, D., Wilhelms, F.,
596 and Miller, H.: Layer disturbances and the radio-echo free zone in ice sheets, *The Cryosphere*, 3,
597 195–203, <https://doi.org/10.5194/tc-3-195-2009>, 2009.

598 Franke, S., Gerber, T., Warren, C., Jansen, D., Eisen, O., and Dahl-Jensen, D.: Investigating the
599 Radar Response of Englacial Debris Entrained Basal Ice Units in East Antarctica Using
600 Electromagnetic Forward Modeling, *IEEE Trans. Geosci. Remote Sens.*, 61, 1–16,
601 <https://doi.org/10.1109/TGRS.2023.3277874>, 2023.

602 Franke, S., Wolovick, M., Drews, R., Jansen, D., Matsuoka, K., and Bons, P. D.: Sediment
603 Freeze-On and Transport Near the Onset of a Fast-Flowing Glacier in East Antarctica, *Geophys.*
604 *Res. Lett.*, 51, e2023GL107164, <https://doi.org/10.1029/2023GL107164>, 2024.

605 Fudge, T. J., Sauvage, R., Vu, L., Hills, B. H., Severi, M., and Waddington, E. D.: Effective
606 diffusivity of sulfuric acid in Antarctic ice cores, *Clim. Past*, 20, 297–312,
607 <https://doi.org/10.5194/cp-20-297-2024>, 2024.

608 Goldberg, M. L., Schroeder, D. M., Castelletti, D., Mantelli, E., Ross, N., and Siegert, M. J.: Automated
609 detection and characterization of Antarctic basal units using radar sounding data:
610 demonstration in Institute Ice Stream, West Antarctica, *Ann. Glaciol.*, 61, 242–248,
611 <https://doi.org/10.1017/aog.2020.27>, 2020.

612 Goodge, J. W., Severinghaus, J. P., Johnson, J., Tosi, D., and Bay, R.: Deep ice drilling, bedrock
613 coring and dust logging with the Rapid Access Ice Drill (RAID) at Minna Bluff, Antarctica, *Ann.*
614 *Glaciol.*, 62, 324–339, <https://doi.org/10.1017/aog.2021.13>, 2021.

615 Jamieson, S. S. R., Ross, N., Paxman, G. J. G., Clubb, F. J., Young, D. A., Yan, S., Greenbaum,
616 J., Blankenship, D. D., and Siegert, M. J.: An ancient river landscape preserved beneath the East
617 Antarctic Ice Sheet, *Nat. Commun.*, 14, 6507, <https://doi.org/10.1038/s41467-023-42152-2>,
618 2023.

619 Kaundinya, S., Paden, J., Jacob, S., Shupert, C., Schroeder, B., Hale, R., Arnold, E., Sarkar, U.
620 D., Occhiogrosso, V., Taylor, L., McMillan, S., and Rodriguez-Morales, F.: A Multi-Channel
621 Airborne UHF Radar Sounder System for Oldest Ice Exploration: Development and Data
622 Collection, in: IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing
623 Symposium, 41–44, <https://doi.org/10.1109/IGARSS53475.2024.10640448>, 2024.

624 Kerr, M., Young, D. A., Yan, S., Singh, S., Fudge, T. J., Blankenship, D. D., and Vega
625 Gonzalez, A.: Characterizing the Subglacial Hydrology of the South Pole Basin, Antarctica
626 Using COLDEX Airborne Geophysics, in: AGU Fall Meeting Abstracts, C31D-1369, 2023.

627 Kerr, M., Young, D., Shen, W., Ng, G., Singh, S., Buhl, D., Greenbaum, J., Yan, S., and
628 Blankenship, D.: Are there thick sediments within South Pole Basin? Investigating the lithology
629 of SPB using COLDEX airborne geophysics, in: EGU General Assembly Conference Abstracts,
630 12510, 2024.

631 Lea, E. J., Jamieson, S. S. R., and Bentley, M. J.: Alpine topography of the Gamburtsev
632 Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology, *The Cryosphere*,
633 18, 1733–1751, <https://doi.org/10.5194/tc-18-1733-2024>, 2024.

634 Leysinger Vieli, G. J.-M. C., Martín, C., Hindmarsh, R. C. A., and Lüthi, M. P.: Basal freeze-on
635 generates complex ice-sheet stratigraphy, *Nat. Commun.*, 9, 4669,
636 <https://doi.org/10.1038/s41467-018-07083-3>, 2018.

637 Lilien, D. A., Steinhage, D., Taylor, D., Parrenin, F., Ritz, C., Mulvaney, R., Martín, C., Yan, J.-
638 B., O'Neill, C., Frezzotti, M., Miller, H., Gogineni, P., Dahl-Jensen, D., and Eisen, O.: Brief
639 communication: New radar constraints support presence of ice older than 1.5 Myr at
640 Little Dome C, *The Cryosphere*, 15, 1881–1888, <https://doi.org/10.5194/tc-15-1881-2021>, 2021.

641 Livingstone, S. J., Ng, F. S. L., Dow, C. F., Ross, N., Siegert, M. J., Siegfried, M., and Sole, A.
642 J.: Subglacial lakes and their changing role in a warming climate, *Nat. Rev. Earth Environ.*,
643 <https://doi.org/10.1038/s43017-021-00246-9>, 2022.

644 MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Paden, J. D., Gogineni, S. P., Young, S.
645 K., Rybarski, S. C., Mabrey, A. N., Wagman, B. M., and Morlighem, M.: Radiostratigraphy and
646 age structure of the Greenland Ice Sheet, *J. Geophys. Res. Earth Surf. Res.*,
647 <https://doi.org/10.1002/2013JF002871>. Received, 2015.

648 Michaelides, R. J. and Schroeder, D.: Doppler-based discrimination of radar sounder target
649 scattering properties: A case study of subsurface water geometry in Europa's ice shell, *Icarus*,
650 326, 29–36, <https://doi.org/10.1016/j.icarus.2019.02.037>, 2019.

651 Mutter, E. L. and Holschuh, N.: Advancing interpretation of incoherent scattering in ice-
652 penetrating radar data used for ice core site selection, *The Cryosphere*, 19, 3159–3176,
653 <https://doi.org/10.5194/tc-19-3159-2025>, 2025.

654 Oswald, G. K. A. and Gogineni, S. P.: Recovery of subglacial water extent from Greenland radar
655 survey data, *J. Glaciol.*, 54, 94–106, <https://doi.org/10.3189/002214308784409107>, 2008.

656 Peters, M. E., Blankenship, D. D., and Morse, D. L.: Analysis techniques for coherent airborne
657 radar sounding: Application to West Antarctic ice streams, *J. Geophys. Res. Solid Earth*, 110, 1–
658 17, <https://doi.org/10.1029/2004JB003222>, 2005.

659 Peters, M. E., Blankenship, D. D., Carter, S. P., Kempf, S. D., Young, D. A., and Holt, J. W.:
660 Along-track focusing of airborne radar sounding data from west antarctica for improving basal

661 reflection analysis and layer detection, *IEEE Trans. Geosci. Remote Sens.*, 45, 2725–2736,
662 <https://doi.org/10.1109/TGRS.2007.897416>, 2007.

663 Pritchard, H. D., Fretwell, P. T., Fremantle, A. C., Bodart, J. A., Kirkham, J. D., Aitken, A.,
664 Bamber, J., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Christianson,
665 K., Conway, H., Corr, H. F. J., Cui, X., Damaske, D., Damm, V., Dorschel, B., Drews, R.,
666 Eagles, G., Eisen, O., Eisermann, H., Ferraccioli, F., Field, E., Forsberg, R., Franke, S., Goel, V.,
667 Gogineni, S. P., Greenbaum, J., Hills, B., Hindmarsh, R. C. A., Hoffman, A. O., Holschuh, N.,
668 Holt, J. W., Humbert, A., Jacobel, R. W., Jansen, D., Jenkins, A., Jokat, W., Jong, L., Jordan, T.
669 A., King, E. C., Kohler, J., Krabill, W., Maton, J., Gillespie, M. K., Langley, K., Lee, J.,
670 Leitchenkov, G., Leuschen, C., Luyendyk, B., MacGregor, J. A., MacKie, E., Moholdt, G.,
671 Matsuoka, K., Morlighem, M., Mouginot, J., Nitsche, F. O., Nost, O. A., Paden, J., Pattyn, F.,
672 Popov, S., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J. L., Ross, N., Ruppel, A., Schroeder,
673 D. M., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tabacco, I., Tinto, K.
674 J., Urbini, S., Vaughan, D. G., Wilson, D. S., Young, D. A., and Zirizzotti, A.: Bedmap3 updated
675 ice bed, surface and thickness gridded datasets for Antarctica, *Sci. Data*, 12, 414,
676 <https://doi.org/10.1038/s41597-025-04672-y>, 2025.

677 Schroeder, D. M., Blankenship, D. D., Raney, R. K., and Grima, C.: Estimating subglacial water
678 geometry using radar bed echo specularity: Application to Thwaites Glacier, West Antarctica,
679 *IEEE Geosci. Remote Sens. Lett.*, 12, 443–447, <https://doi.org/10.1109/LGRS.2014.2337878>,
680 2015.

681 Schroeder, D. M., Bingham, R. G., Blankenship, D. D., Christianson, K., Eisen, O., Flowers, G.
682 E., Karlsson, N. B., Koutnik, M. R., Paden, J. D., and Siegert, M. J.: Five decades of
683 radioglaciology, *Ann. Glaciol.*, 61, 1–13, <https://doi.org/10.1017/aog.2020.11>, 2020.

684 Shackleton, S., Goodge, J., Balter-Kennedy, A., Yan, S., Severinghaus, J., Briner, J., Brook, E.,
685 Christianson, K., Cloutier, M., Drebber, J., Feinberg, J., Ferraccioli, F., Fitzgerald, P., Higgins,
686 J., Hishamunda, V., Jih, R., Johnson, J., Karplus, M., Kerr, M., Kirkpatrick, L., Maiken
687 Kristiansen Revheim, Kurz, M., Lipovsky, B., Maletic, E., Julia Marks Peterson, Phillips-
688 Lander, C., Piccione, G., Reading, A., Rongen, M., Salerno, R., Shen, W., Sing, S., Smith-
689 Shields, S., Alejandra Vega Gonzalez, Walcott-George, C., Wiens, D., Hanxiao, W., Wenbo
690 Wu,), and Young, D.: The future of deep ice-sheet research in Antarctica with the Rapid Access
691 Ice Drill, 2025.

692 Tyler, G. L., Simpson, R. A., Maurer, M. J., and Holmann, E.: Scattering properties of the
693 Venusian surface: Preliminary results from Magellan, *J. Geophys. Res. Planets*, 97, 13115–
694 13139, <https://doi.org/10.1029/92JE00742>, 1992.

695 Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The
696 Generic Mapping Tools Version 6, *Geochem. Geophys. Geosystems*, 20, 5556–5564,
697 <https://doi.org/10.1029/2019GC008515>, 2019.

698 Winter, K., Woodward, J., Ross, N., Dunning, S. A., Hein, A. S., Westoby, M. J., Culberg, R.,
699 Marrero, S. M., Schroeder, D. M., Sugden, D. E., and Siegert, M. J.: Radar-Detected Englacial
700 Debris in the West Antarctic Ice Sheet, *Geophys. Res. Lett.*, 46, 10454–10462,

701 <https://doi.org/10.1029/2019GL084012>, 2019.

702 Wolovick, M. J., Bell, R. E., Creyts, T. T., and Frearson, N.: Identification and control of
703 subglacial water networks under Dome A, Antarctica, *J. Geophys. Res. Earth Surf.*, 118, 140–
704 154, <https://doi.org/10.1029/2012JF002555>, 2013.

705 Wolovick, M. J., Creyts, T. T., Buck, W. R., and Bell, R. E.: Traveling slippery patches produce
706 thickness-scale folds in ice sheets, *Geophys. Res. Lett.*, 41, 8895–8901,
707 <https://doi.org/10.1002/2014GL062248>, 2014.

708 Yan, S., Blankenship, D. D., Greenbaum, J. S., Young, D. A., Li, L., Rutishauser, A., Guo, J.,
709 Roberts, J. L., Ommen, T. D. V., Siegert, M. J., and Sun, B.: A newly discovered subglacial lake
710 in East Antarctica likely hosts a valuable sedimentary record of ice and climate change, *Geology*,
711 50(8), 949–953, <https://doi.org/10.1130/G50009.1>, 2022a.

712 Yan, S., Blankenship, D. D., Young, D. A., Greenbaum, J. S., Jamieson, S. S. R., Ross, N.,
713 Paxman, G. J. G., Clubb, F. J., Roberts, J. L., van Ommen, T. D., Bo, S., and Siegert, M. J.:
714 Aero-geophysical constraints on the crustal structure of the western margin of the Aurora
715 Subglacial Basin, East Antarctica, AGU Fall Meeting Abstracts, ADS Bibcode:
716 2022AGUFMNS45B0327Y, NS45B-0327, 2022b.

717 [Yan, S., Young, D. A., Vega Gonzalez, A., Singh, S., Kerr, M., and Blankenship, D. D.: Basal
718 Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar \[Dataset\].](#)
719 <https://doi.org/10.15784/601912>, 2025a.

720 Yan, S., Koutnik, M. R., Blankenship, D. D., Greenbaum, J. S., Young, D. A., Roberts, J. L.,
721 Ommen, T. van, Sun, B., and Siegert, M. J.: Holocene hydrological evolution of subglacial Lake
722 Snow Eagle, East Antarctica implied by englacial radiostratigraphy, *J. Glaciol.*, 1–38,
723 <https://doi.org/10.1017/jog.2025.15>, 2025b.

724 Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini, E.: The
725 distribution of basal water between Antarctic subglacial lakes from radar sounding, *Philos.
726 Trans. R. Soc. Math. Phys. Eng. Sci.*, 374, <https://doi.org/10.1098/rsta.2014.0297>, 2016.

727 Young, D. A., Paden, J. D., Yan, S., Kerr, M. E., Singh, S., Vega González, A., Kaundinya, S.
728 R., Greenbaum, J. S., Chan, K., Ng, G., Buhl, D. P., Kempf, S. D., and Blankenship, D. D.:
729 Coupled Ice Sheet Structure and Bedrock Geology in the Deep Interior of East Antarctica:
730 Results From Dome A and the South Pole Basin, *Geophys. Res. Lett.*, 52, e2025GL115729,
731 <https://doi.org/10.1029/2025GL115729>, 2025.

732

733