
1 

Radar Characterization of the Basal Unit at the Southern Flank of Dome A, East 1 
Antarctica 2 

 3 
Authors: Shuai Yan1,2, Duncan Young2, Donald Blankenship2, T.J. Fudge1, Duyi Li2, Laura 4 
Lindzey3, Hunter Reeves2,4, Alejandra Vega-Gonzalez2,5, Shivangini Singh2,4, Megan Kerr2,4, 5 
Emily Wilbur1, and Michelle Koutnik1 6 
 7 
Author affiliations: 8 

1. Department of Earth and Space Sciences, University of Washington, Seattle, 98195, USA 9 
2. University of Texas Institute for Geophysics, Jackson School of Geosciences, University 10 

of Texas at Austin, Austin, 78758, USA 11 
3. Ocean Engineering Department, Applied Physics Laboratory, University of Washington, 12 

Seattle, 98105, USA 13 
4. Department of Earth and Planetary Sciences, Jackson School of Geosciences, University 14 

of Texas at Austin, Austin, 78712, USA 15 
5. Department of Environmental Sciences, University of Virginia, Charlottesville, 22904, 16 

USA 17 

Abstract: 18 

The basal unit near the base of the Antarctic Ice Sheet (AIS) plays a critical role in AIS dynamics 19 
and the preservation of old ice, yet its structure and origin remain poorly understood. Using a 20 
new airborne ice-penetrating radar dataset collected by the NSF Center for Oldest Ice 21 
Exploration (NSF COLDEX), we investigate the radar characteristics of the basal unit at the 22 
southern flank of Dome A, East Antarctica. We combine manual mapping with Delay-Doppler 23 
analysis to characterize the spatial distribution of incoherent scattering and to distinguish 24 
between two types of radar-apparent basal unit top boundaries: a sharp transition from specular 25 
to scattering reflections (type I) and a gradual disappearance of specular reflections due to radar 26 
signal attenuation (type II). We find that incoherent scattering is widespread upstream and 27 
decreases downstream, correlating with both subglacial topographic roughness and a shift from 28 
type I to type II boundaries. These patterns are interpreted as resulting from spatial variability in 29 
englacial temperature, with warmer ice downstream enhancing signal attenuation and obscuring 30 
radar features. Although incoherent scattering is not visible in the downstream region, its 31 
absence may reflect radar detection limits rather than true absence of scattering reflectors in the 32 
basal unit. Moreover, the observed correlation between scattering and subglacial roughness 33 
suggests deeper geological controls in which subglacial lithology influences both basal 34 
temperature and subglacial morphology. 35 
 36 
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1. Introduction: 38 

1.1 The Antarctic basal unit 39 
Ice-penetrating radar (IPR) has been a foundational tool in advancing our understanding of the 40 
cryosphere (Schroeder et al., 2020). IPR data have played a central role in mapping subglacial 41 
topography (e.g., Pritchard et al., 2025), characterizing subglacial hydrology (e.g., Livingstone et 42 
al., 2022; Yan et al., 2022), and reconstructing past glacial and environmental changes in polar 43 
regions (e.g., Beem et al., 2018; Jamieson et al., 2023). Englacial stratigraphy mapped by IPR 44 
provides a valuable record of past ice sheet dynamics and offers critical guidance for identifying 45 
promising sites in the search for old ice cores (Bingham et al., 2024). Near the base of the 46 
Antarctic Ice Sheet (AIS), however, radar sounding often encounters a distinct zone—referred to 47 
as the basal unit (e.g., Goldberg et al., 2020) or deep scattering zone (e.g., Cavitte, 2017)—where 48 
coherent and traceable englacial reflections cannot be detected. The basal unit typically 49 
manifests as either an echo-free zone or a zone of non-stratigraphic, incoherent echo (Fig. 1), 50 
both indicative of complex and poorly understood basal processes. In addition to its unique radar 51 
appearance, studies of ice flow at Little Dome C constrained by the stratigraphic horizons in the 52 
upper part of the ice column (Cavitte et al., 2021) indicate that the basal unit there may be largely 53 
stagnant, in contrast to the overlying stratigraphic unit, which shows evidence of flow (Chung et 54 
al., 2023, 2024). This potential decoupling raises important questions about the physical nature 55 
and origin of the basal unit at Little Dome C and elsewhere. Given that observed basal units 56 
indicate complex basal processes, they are significant to our understanding of AIS dynamics and 57 
the preservation of old ice in Antarctica. 58 
 59 
The properties and dynamics of the Antarctic basal unit are poorly constrained, and several 60 
mechanisms have been proposed to explain its radar-obscuring character:  61 

(1) One explanation suggests that radar echoes disappear where dielectric contrast diminishes 62 
and where ice core stratigraphy becomes disrupted due to ice flow–induced deformation 63 
(Drews et al., 2009). Under this hypothesis, no special deformation profile is assumed for 64 
the basal unit relative to the stratigraphic unit above. Instead, the hypothesized disruption 65 
arises from ice flowing over rough subglacial terrain. Because the basal unit is in direct 66 
contact with this terrain, it is more susceptible to such disruption. 67 

(2) Enhanced attenuation near the base of the ice sheet may also contribute to the absence of 68 
echo, which is associated with higher englacial temperature (MacGregor et al., 2015). 69 
Once their signal is reduced below the noise floor of the radar system, englacial 70 
reflections can no longer be detected. The ice–bedrock interface typically produces a 71 
much stronger reflection and often remains visible, even after experiencing greater 72 
attenuation (traveling through a thicker ice column). 73 

(3) Debris entrained during basal freeze-on or introduced through bedrock erosion may also 74 
contribute to the incoherent backscatter observed in radar data (Franke et al., 2023, 2024; 75 
Winter et al., 2019). It is  proposed that such embedded debris, acting as point reflectors, 76 
scatters the radar signal and hinders the resolution of internal features within the basal 77 
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unit. This mechanism has been proposed in regions such as the Gamburtsev Mountains, 81 
East Antarctica (Bell et al., 2011), and northern Greenland (Leysinger Vieli et al., 2018), 82 
where basal freeze-on processes and rugged subglacial terrain are thought to enhance 83 
debris incorporation. 84 

(4) Deformed or folded layering may also contribute to the observed incoherent echo. 85 
Wolovick et al. (2014) demonstrated that ice flowing over basal slippery patches can 86 
induce large-scale folding. Such folding can disrupt stratigraphic coherence, potentially 87 
producing the diffuse scattering signals detected within the basal unit. This deformation-88 
driven mechanism may act in tandem with freeze-on processes (e.g., Bell et al., 2011), 89 
where the refreezing of subglacial water and debris entrainment further complicate the 90 
radar signature of deep ice. 91 

(5) Other studies point to variations in ice crystal orientation fabric (COF) as a contributing 92 
factor (Lilien et al., 2021). By analyzing radar data together with deep ice-core data, 93 
Mutter and Holschuh (2025) find that incoherent scattering often coincides with either 94 
gradual shifts or rapidly fluctuating COF in deep ice, particularly in regions where strain 95 
is localized due to grain size–dependent strength differences. Interestingly, they also note 96 
that “macro-scale deformation and layer folding at scales below the range resolution of 97 
radar do not seem to result in incoherent scattering or induce an echo-free zone”, 98 
challenging earlier assumptions.  99 

Collectively, these hypotheses underscore the complexity of basal unit processes and highlight 100 
the need for further observational, modeling, and sampling efforts to better characterize this 101 
relatively poorly understood part of the ice sheet given the range of hypotheses that can 102 
contribute to their character in radar data.  103 
 104 
1.2 The southern flank of Dome A      105 
This study focuses on the southern flank of Dome A, East Antarctica, a region that remains one 106 
of the least studied sectors of the continent despite its glaciological significance (Fig. 2) 107 
(Pritchard et al., 2025). Dome A sits atop the subglacial Gamburtsev Mountains, which are 108 
believed to have played a central role in the initiation of East Antarctic glaciation (Bo et al., 109 
2009). The geomorphology of the subglacial Gamburtsev Mountains likely records the early 110 
history of ice sheet development in this region (Lea et al., 2024). The southern flank, situated 111 
between Dome A and the South Pole, is characterized by rugged subglacial topography 112 
(Pritchard et al., 2025), an extensive hydrological network (Kerr et al., 2023; Wolovick et al., 113 
2013), and the probable presence of a subglacial sedimentary basin (Aitken et al., 2023). As ice 114 
flows from Dome A toward the South Pole, the surface slope of the ice sheet decreases markedly 115 
(Fig. 2-a), coinciding with a subtle deflection in flow direction toward the Recovery Subglacial 116 
Highlands. Along this flow path, the ice transitions from the rugged subglacial terrain of the 117 
Gamburtsev Mountains to the relatively smooth bedrock of the South Pole Basin farther 118 
downstream (Fig. 2-b). These changes in subglacial conditions and ice flow configuration likely 119 
influence basal unit dynamics. Together, these factors make the southern flank of Dome A an 120 
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ideal natural laboratory for investigating the physical properties of the basal unit and the 125 
processes governing its formation and variability. 126 
 127 
The National Science Foundation Center for Oldest Ice Exploration (NSF COLDEX) is 128 
commissioned to explore Antarctica for the oldest continuous ice core, with the goal of 129 
advancing our understanding of the evolution and future of Earth’s climate system. As part of 130 
this effort, NSF COLDEX coordinated two seasons of airborne geophysical surveys over the 131 
southern flank of Dome A (2022-23 and 2023-24) (Fig. 2-a) (Young et al., 2025). The survey 132 
design includes a majority of flight lines aligned with the overall ice flow direction (from grid 133 
north-east to grid south-west in Fig. 2), facilitating future ice flow modeling efforts. Additional 134 
lines oriented perpendicular to the flow were included to support across-transect tracing of 135 
englacial stratigraphy and leveling of potential field datasets, such as airborne gravity and 136 
magnetics. This new airborne geophysical dataset provides new, direct measurements of ice 137 
thickness, englacial stratigraphy, and subglacial topography, and offers critical insights into the 138 
regional subglacial hydrological and geological conditions. In this study, we leverage this new 139 
dataset to investigate the radar characteristics of the basal unit. Specifically, we map the spatial 140 
extent and thickness variation of incoherent echo within the basal unit and use Delay-Doppler 141 
analysis to investigate the potential mechanisms driving changes in basal unit radar 142 
characteristics. 143 
 144 

2. Methods: 145 

2.1 Mapping the presence of incoherent scattering within the basal unit 146 
During the NSF COLDEX airborne geophysics campaign, two independent IPR systems were 147 
deployed on the survey aircraft: the MARFA 60 MHz radar system developed by the University 148 
of Texas Institute for Geophysics (Young et al., 2016), and a newly developed UHF array based 149 
on the University of Kansas accumulation radar (Kaundinya et al., 2024). The new UHF array is 150 
designed primarily for high-resolution mapping of englacial radio-stratigraphy in the upper 151 
portion of the ice column, but lacks the penetration depth needed to image the full ice thickness 152 
or resolve the basal unit. Consequently, this study focuses on data collected with the MARFA 153 
system, which is optimized for deep ice penetration and provides enhanced imaging of the 154 
lowermost part of the ice sheet.  155 
 156 
The boundary between the basal unit and the overlying stratigraphic ice unit, along with the 157 
spatial extent and thickness variation of incoherent echo, is manually mapped using the 158 
DecisionSpace Geosciences 10ep software package, which contains semi-automatic tracing 159 
algorithms and enables cross-transects tracing and comparison (Cavitte et al., 2021; Yan et al., 160 
2025b) (Fig. 3). We define the top of the basal unit—i.e., the boundary between the basal unit 161 
and the overlying stratigraphic unit—as the deepest depth at which any clear and traceable 162 
englacial reflection is observed. This boundary does not necessarily occur at the same englacial 163 
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reflection across the study area; rather, it varies spatially, with some deeper reflections visible in 170 
certain locations but absent in others. For calculating ice unit thicknesses, a constant velocity of 171 
168.5 m μs⁻¹ is assumed for radio wave propagation in ice. To improve the clarity of englacial 172 
reflections during manual tracing, 2-D focusing was applied following the procedure described 173 
in Peters et al. (2007), which helps correct for along-track scattering and enhance signal 174 
coherence. The resulting thickness map of the basal unit is reported in Yan et al. (2025a) (Fig. 2-175 
c), while this manuscript presents the mapped distribution of incoherent echo within the basal 176 
unit. 177 
 178 
2.2 Delay-Doppler analysis 179 
Delay-Doppler analysis distinguishes between specular and scattering reflections in IPR 180 
sounding data. As a radar passes over a target, smooth (typically with roughness less than ⅛ of a 181 
wavelength) and continuous surfaces will tend to reflect incident energy specularly at a defined 182 
angle. In contrast, rough surfaces or volume scatterers distribute energy over a broad range of 183 
angles. This effect can be seen through the delayed off nadir energy over rough surfaces 184 
(Campbell et al., 2013; Oswald and Gogineni, 2008; Young et al., 2016), and can also be 185 
detected through along track Doppler filtering (Michaelides and Schroeder, 2019). The phase 186 
history of subsurface scatterers enables estimation of the angles at which echoes are returned, 187 
providing additional insight into scattering geometry (Peters et al., 2005; Schroeder et al., 2015; 188 
Tyler et al., 1992).  189 
 190 
In this study, we apply Doppler filtering using 1000-meter along-track apertures to compare the 191 
SNR of returns from three angular windows: nadir and ±11° off-nadir (in air), with evaluations 192 
spaced every 500 meters along the flight path. Energythat appears only in one angular view is 193 
classified as specular, while t that observed in all views is classified as scattering. We use the 194 
gradient in the ratio of specular to scattering of 10 dB/µsec to identify the top of the basal unit 195 
and a 3 dB scattered/specular ratio threshold to identify englacial scattering below that limit. 196 
 197 

3. Absence of stratigraphic reflection within the basal unit 198 

Our Delay-Doppler analysis reveals that the majority of internal reflections within the overlying 199 
stratigraphic ice unit exhibit predominantly specular characteristics, consistent with coherent and 200 
well-preserved dielectric contrasts (Fig. 4). The bed reflection varies between specular and non-201 
specular across the survey region, likely reflecting spatial variability in basal material properties 202 
and the presence or absence of subglacial water (Carter et al., 2007). Within the basal unit, non-203 
stratigraphic, incoherent echo is attributed to scattering energy, indicating a shift in the nature of 204 
radar reflectors—potentially due to embedded debris, ice fabric heterogeneity, or other complex 205 
basal processes. 206 
 207 
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There are two primary mechanisms for the disappearance of clear, traceable stratigraphic 218 
reflections within the basal unit. The first is a change in the nature of reflectors—from specular 219 
reflectors in the overlying stratigraphic ice to diffuse, scattering reflectors in the basal unit. The 220 
second is enhanced englacial attenuation, which causes both specular and scattering signals near 221 
the bed to weaken below the radar system’s noise floor and become undetectable. In the first 222 
case, we expect a relatively sharp transition from specular to scattering energy; in the second, a 223 
gradual decay of specular reflections with depth. In visual identification and manual mapping of 224 
basal unit thickness, the top boundary of the radar-apparent basal unit is essentially the shallower 225 
of these two depths: either the point of reflector transition (hereafter referred to as a type I 226 
boundary) or the depth at which reflections fade below the noise floor (type II boundary). A 227 
conceptual sketch illustrating this distinction is provided in Fig. 5.  228 
 229 
Delay-Doppler analysis can help distinguish between these two types of boundaries. Specifically, 230 
we compute the ratio of specular to scattering energy (Fig. 4-a), then calculate the vertical 231 
gradient of this ratio over a two-way travel time interval of 1 microsecond (Fig. 4-b). A steeper 232 
negative gradient indicates a sharp transition from specular to scattering reflections—consistent 233 
with a type I boundary—while a more gradual decline suggests progressive attenuation of 234 
specular energy with depth, indicative of a type II boundary. This quantitative approach provides 235 
a useful diagnostic for boundary classification, especially in regions where visual interpretation 236 
alone may be ambiguous. 237 
 238 
Between the southern flank of Dome A and the South Pole, we observe both types of boundary. 239 
Our Delay-Doppler analysis suggests that the basal unit boundary is predominantly type I in the 240 
upstream region—marked by a sharp transition from specular to scattering reflections—whereas 241 
in the downstream region, it is primarily type II, characterized by the gradual fading of specular 242 
reflections below the noise floor (Fig. 3, Fig. 5-a). This pattern suggests that, in the downstream 243 
region, where the transition appears more subdued, specular energy may be attenuated below the 244 
noise floor at the top of the basal unit, rather than abruptly replaced by scattering.  245 
 246 

4. Presence of incoherent scattering within the basal unit 247 

We observe a widespread presence of incoherent scattering within the basal unit in the upstream 248 
portion of the survey region (grid northeast in Fig. 2 and Fig. 5). To quantify its spatial thickness 249 
variation, we calculate its fractional thickness relative to the total thickness of the basal unit (Fig. 250 
5-b). Near Dome A (i.e., the upstream area), the basal unit is almost entirely filled with 251 
incoherent scattering, with fractional thickness values approaching 100%. This fraction gradually 252 
decreases downstream as the ice flows toward the South Pole Basin, and eventually, the 253 
incoherent scattering disappears entirely and the basal unit manifests solely as an echo-free zone 254 
(Fig. 3, Fig. 6-b). Notably, during this transition from full scattering to entirely echo-free, the 255 
scattering consistently diminishes from the base upward—i.e., the echo-free zone first develops 256 
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at the bottom of the basal unit, immediately above the bedrock, and then progressively thickens 265 
upward as it evolves downstream (Fig. 3). Also, the appearance and thickness variation of the 266 
incoherent scattering also correlate with the rate at which specular horizons fade vertically, 267 
which reflects a transition from type I to type II boundaries (Fig. 6). 268 
 269 
 The COLDEX survey is situated directly downstream of the Antarctica's Gamburtsev Province 270 
(AGAP) Project (Corr et al., 2020). It has been hypothesized that  the AGAP IPR sounding 271 
reveals packages formed by freezing of subglacial water and subsequent entrainment of debris 272 
(Bell et al., 2011; Creyts et al., 2014; Wolovick et al., 2013). We provide side-by-side 273 
comparisons of this basal unit as imaged by the COLDEX and AGAP IPR sounding at several 274 
intersection points in Fig. 7. We notice that (1) the incoherent scattering exhibits characteristics 275 
similar to the unit directly overlying the basal freeze-on package, and (2) this incoherent 276 
scattering is widespread within the AGAP survey in the region intersecting the COLDEX survey, 277 
that is, around and downstream of the area where widespread basal freeze-on was inferred by 278 
Bell et al. (2011). Based on this observation, we consider the incoherent scattering unlikely to 279 
represent the basal freeze-on package given its distinct radar signature. Instead, we interpret the 280 
incoherent scattering as arising from either (1) deformation and folding caused by ice flowing 281 
across slippery patches of the bedrock (as suggested for other locations by Wolovick et al., 282 
2012), or (2) variations in ice crystal orientation fabric (as suggested other locations by Mutter 283 
and Holschuh, 2025).    284 
 285 
We interpret both the observed variation in incoherent scattering thickness and the shift from 286 
type I to type II boundary types as potential indicators of spatial heterogeneity in englacial 287 
temperature. In particular, we suggest that warmer ice in the downstream region leads to 288 
increased radar signal attenuation, which reduces the detectability of deep reflections and 289 
obscures the specular-to-scattering transition. As a result, the radar-apparent basal unit thickness 290 
may reflect not only physical changes in ice properties but also thermal conditions influencing 291 
signal propagation. Additionally, subglacial melting in warmer areas may remove scattering 292 
reflectors from the base of the basal unit, thereby shifting the remaining scattering reflectors to 293 
greater depths, while simultaneously raising the critical depth at which radar reflections fall 294 
below the noise floor. Together, these effects contribute to a transition from type I to type II 295 
boundary. This interpretation also aligns with the observation that widespread subglacial lakes 296 
are found in the inner South Pole Basin, near the South Pole point, while almost no subglacial 297 
lakes are detected in the outer South Pole Basin, closer to Dome A (Kerr et al., 2023). Within 298 
this conceptual framework, the downstream extent of the scattering reflectors remains uncertain. 299 
In the downstream area, incoherent scattering disappears within the basal unit, but this does not 300 
necessarily indicate that reflectors are absent. Instead, they may simply be undetectable due to 301 
increased radar attenuation in warmer ice. 302 
 303 
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There are alternative explanations for the observed decline of incoherent scattering downstream. 333 
If the scattering arises from disturbed or folded stratigraphy, or formed during basal freeze-on, 334 
the dielectric contrasts responsible for scattering may be reduced as the ice is advected 335 
downstream. Two processes in particular— diffusion and ice deformation—can diminish these 336 
contrasts over time. Diffusion acts to smooth out electrical property variations, reducing the 337 
amplitude of dielectric contrasts and thereby weakening the radar-scattering signal. This process 338 
becomes increasingly effective with time and distance along the flowline, especially near the 339 
bed, where ice temperatures are higher and diffusion rates are enhanced (e.g., Fudge et al., 2024). 340 
In parallel, mechanical deformation can further homogenize the ice and reduce the amplitude of 341 
contrasts. This deformation is also likely strongest near the ice-rock interface. Together, 342 
diffusion and deformation may progressively erase the dielectric contrasts responsible for the 343 
scattering echo, leading to its gradual disappearance downstream. 344 
 345 
The radar data we have so far cannot definitively resolve the causes of (1) the absence of 346 
stratigraphic reflections and (2) the presence and thickness variation of incoherent scattering 347 
within the basal unit. To resolve these uncertainties and test the outstanding hypotheses, future 348 
work should prioritize targeted coring campaigns and in situ borehole observations, particularly 349 
in zones where radar data show a transition from incoherent scattering to echo-free conditions. 350 
Platforms such as RAID (Goodge et al., 2021; Shackleton et al., 2025) may provide access to 351 
these challenging depths with relatively high drilling speed and efficiency. Additionally, 352 
polarimetric radar sounding can provide valuable insight into variations in crystal orientation 353 
fabric (COF), which may further constrain these hypotheses. In parallel, numerical modeling will 354 
be essential. Future simulations could quantify spatial patterns of basal melting and refreezing, 355 
evaluate how debris entrainment affects basal ice rheology, evaluate modeled fabric evolution 356 
compared to an observed fabric distribution,  and predict radar attenuation based on modeled 357 
englacial temperature fields. Such observational, modeling, and sampling work would provide a 358 
powerful framework for testing competing basal unit formation mechanisms and improving our 359 
understanding of basal ice processes. 360 
 361 

5. Potential geological control on basal thermal condition 362 

We observe a strong correlation between the presence and fractional thickness of incoherent 363 
scattering and the subglacial topographic roughness, defined as the standard deviation of bed 364 
elevation over a 400-meter horizontal window (Fig. 2-d). Above the rugged terrain of the 365 
Subglacial Gamburtsev Mountains, where topographic roughness is high, we observe a 366 
correspondingly high fractional thickness of incoherent scattering within the basal unit. As the 367 
ice flows downstream into the relatively smooth South Pole Basin, the fractional thickness of 368 
scattering decreases and eventually disappears. Further downstream, as the ice approaches the 369 
Recovery Subglacial Highlands—where topographic roughness again increases—incoherent 370 
scattering re-emerges, with fractional thicknesses exceeding 90% in some areas. 371 
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 374 
It is possible that variation in subglacial geology exerts a primary control on both basal thermal 375 
conditions and subglacial roughness, thereby driving the observed correlation between 376 
incoherent scattering and bed topography. In particular, geological heterogeneity—especially 377 
when coupled with the presence of subglacial water—may redistribute the background 378 
geothermal flux, leading to elevated basal temperatures in localized areas and enhancing radar 379 
signal attenuation (Yan et al., 2022a). At the same time, contrasts in lithology and tectonic 380 
structure can influence patterns of erosion and sediment deposition, shaping the subglacial 381 
landscape and its roughness (Yan et al., 2022b). Together, these processes suggest that the spatial 382 
variability of basal unit radar signature may reflect a coupled system in which subglacial geology 383 
governs both the basal thermal regime and subglacial landform.  384 
 385 
This interpretation remains a quantitative hypothesis that requires further validation. Ongoing 386 
work within NSF COLDEX is investigating the subglacial geological and hydrological context 387 
of the region using IPR sounding and potential field datasets (Kerr et al., 2023, 2024). Follow-up 388 
modeling work can build on these constraints to simulate englacial temperature fields and 389 
estimate corresponding radar attenuation profiles. Comparing these modeled attenuation patterns 390 
with radar observations would offer a critical test of whether the observed transitions in basal 391 
boundary type and scattering characteristics can be attributed to thermally driven variations in 392 
radar signal propagation. Such work is also essential for assessing the potential of radar-derived 393 
basal unit characteristics as indirect indicators of basal thermal structure. 394 
 395 

6. Impact of elevated noise floor 396 

We observe an elevated noise floor in radar data from several flight lines during the survey (Fig. 397 
8). Although this does not compromise overall data quality for mapping major features like bed 398 
topography or thick internal layers, it does hinder the identification of weaker, diffuse features 399 
such as incoherent scattering. In affected transects, higher background noise reduces the contrast 400 
needed to visually detect and map basal scattering. To illustrate this effect, Fig. 8 compares 401 
intersecting flight lines with differing noise levels, highlighting how noise conditions impact the 402 
visibility of incoherent scattering.  403 
 404 
Additionally, we notice noise arising from electromagnetic interference (EMI) between the 405 
MARFA and UHF radar systems. An example is visible in Fig. 4a near the 100, 250, and 450 km 406 
distance marks at two-way travel times deeper than 35 µs, and visible in the right-side panel of 407 
Fig. 8a and Fig. 8e. The EMI noise appears to impact the delay–Doppler analysis by producing 408 
spurious specular returns, which interfere with and obscure the real radar signal. The EMI was 409 
remedied midway through the first survey season (2022–23), so only the earliest transects from 410 
the first season are affected. 411 
 412 
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These observations underscores an important consideration for future surveys targeting fine-scale 417 
features: while data may appear high quality in general terms, reliable mapping of low-contrast 418 
structures depends heavily on signal-to-noise performance. System sensitivity, signal processing 419 
strategies, EMI mitigation between radar systems, and noise control all play critical roles in 420 
reliable radar-based detection. Therefore, the competency and configuration of radar systems—421 
particularly for deep-ice sounding—must be carefully considered when designing surveys or 422 
interpreting mapping results.  423 
 424 

7. Conclusion: 425 

This study leverages new ice-penetrating radar data from the NSF COLDEX airborne geophysics 426 
campaign to investigate the basal unit along the southern flank of Dome A, East Antarctica. 427 
Through manual mapping and Delay-Doppler analysis, we document the spatial variation of 428 
incoherent scattering within the basal unit and identify two types of basal unit top boundary: a 429 
sharp specular-to-scattering transition (type I) and a gradual attenuation-driven disappearance of 430 
specular stratigraphic reflections (type II). Our results show that incoherent scattering is most 431 
prevalent upstream near Dome A and diminishes downstream as ice flows towards the South 432 
Pole, a trend that correlates with both subglacial topographic roughness and shift from type I to 433 
type II boundary types.  434 
 435 
We interpret this trend as a result of spatial variability in englacial temperature, with warmer ice 436 
in the downstream region increasing radar attenuation and suppressing the visibility of deep 437 
reflections. This interpretation is further supported by the consistent disappearance of incoherent 438 
scattering from the base upward. Moreover, the observed correlation between incoherent 439 
scattering and subglacial roughness may point to underlying geological controls, in which 440 
subglacial lithology influences both basal temperature and subglacial landform. Together, these 441 
interpretations highlight the need for future investigations—through numerical modeling and 442 
targeted in situ measurements—to better constrain englacial temperature fields and subglacial 443 
geological conditions. 444 
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Figure captions: 491 

Figure 1. Example ice-penetrating radargram showing a cross-sectional view of the ice sheet. 492 
The location and orientation of this profile are indicated in Fig. 2 as transect B–B′. Radar transect 493 
name: CLX/MKB2n/R72a. 494 
 495 
Figure 2. Data products from the NSF COLDEX airborne geophysical survey. (a) Survey flight 496 
lines (blue) overlaid on ice surface elevation contours at 200 m intervals (black). The location of 497 
the survey region is shown in the inset map at upper left. (b) Subglacial topography of the survey 498 
region with 200 m elevation contours. (c) Mapped thickness of the basal unit with 100 m 499 
thickness contours. (d) Subglacial roughness across the survey region, represented as the 500 
standard deviation of bed elevation over a 400 m window, with contours at 20 m intervals. All 501 
the maps in this figure, Fig. 6, and Fig. 7 are in the WGS 84 / Antarctic Polar Stereographic 502 
(EPSG:3031) coordinate system. 503 
 504 
Figure 3. Three example radargrams showing the presence and thickness variation of incoherent 505 
scattering within the basal unit. In each radargram, white dash line marks the top of the basal 506 
unit, and yellow dash line marks the bottom of incoherent scattering. The locations and 507 
orientations of these profiles are indicated in Fig. 2. Radar transects names: AA’: 508 
CLX_MKB2n_R56a; BB’: CLX/MKB2n/R72a; CC’: CLX_MKB2n_R84b. 509 
 510 
Figure 4. Delay-Doppler analysis for the radar transect shown in Fig. 1 (B–B′ in Fig. 2). (a) 511 
Power ratio between specular and scattering reflections, with black dash lines marking the top 512 
and bottom of the incoherent scattering echo. (b) Vertical gradient of the power ratio, 513 
highlighting the sharpness of transitions. 514 
 515 
Figure 5. Conceptual sketch illustrating the distinction between type I and type II basal unit top 516 
boundaries. Black dots represent scattering reflectors within the basal unit. The red-shaded 517 
region indicates areas of elevated englacial attenuation, where both specular and scattering 518 
reflections weaken and fall below the radar system’s noise floor. The radar-apparent basal unit 519 
boundary is shown as a dashed black line. We note that the variations in ice thickness and 520 
subglacial topography shown in this conceptual sketch are intended only as a schematic 521 
illustration and do not necessarily correspond to actual correlations between such variations and 522 
basal unit boundary types. 523 
 524 
Figure 6. Spatial transition from type I to type II radar-apparent basal unit boundaries. (a) 525 
Vertical gradient of specular energy at the top of the basal unit, contoured at 0.5 dB μs-1 526 
intervals. (b) Fractional thickness of incoherent scattering within the basal unit, contoured at 527 
20% intervals. 528 
 529 
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Figure 7. Side-to-side comparison of the COLDEX survey and the AGAP survey at three of their 530 
intersection points. The yellow arrow highlights an example of the basal freeze-on packages as 531 
hypothesized by Bell et al., 2011. The location of the survey region is shown in the inset map at 532 
upper left. We note that the radar system used in the AGAP survey operates at a different center 533 
frequency (150 MHz), which results in different vertical resolution and may alter the appearance 534 
of the same reflector—particularly for reflectors whose characteristic dimensions are comparable 535 
to the radar wavelength. 536 
 537 
Figure 8. Comparison of basal unit appearance at the intersection point of intersecting radar 538 
transects, illustrating the impact of elevated noise floor. Survey lines are color-coded by noise 539 
floor, with darker colors indicating higher noise levels. Radargrams from the intersecting 540 
transects are shown to demonstrate how elevated noise reduces the visibility of incoherent 541 
scattering within the basal unit. This map covers the same area as Fig. 2 and Fig. 6. The noise 542 
floor of each shown radargram at the intersection point is: (a) left: -116 dB, right: -115 dB; (b) 543 
left: -117 dB, right: -118 dB; (c) left: -107 dB, right: -115 dB; (d) left: -106 dB, right: -115 dB; 544 
(e) left: -114 dB, right: -115 dB.   545 
 546 
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