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Abstract 17 

Groundwater plays a vital role in terrestrial water and energy cycles, yet it remains 18 
oversimplified in most Earth system models (ESMs), limiting their ability to represent key land-19 

atmosphere interactions, including evapotranspiration partitioning, drought propagation, and 20 

boundary layer development. The original coupling of ParFlow with the Common Land Model 21 

(CoLM) in 2005 not only demonstrated the feasibility of integrating physically based 22 

groundwater models into ESMs, but also revealed emergent behaviors—such as lateral 23 

moisture redistribution, along with the buffering effects that emerge from enhanced subsurface 24 

connectivity—that cannot be captured by traditional land surface models (LSMs). This study 25 

reviews key findings from two decades of ParFlow–land/atmosphere coupled modeling efforts, 26 
highlighting how groundwater–land–atmosphere interactions shape surface energy balance 27 

and hydrologic connectivity across three dimensions: upward feedbacks, downward influences, 28 

and the critical zone of coupling. Given the substantial advances in LSMs such as CoLM over 29 

the past two decades, a renewed recoupling effort is warranted to enhance our understanding 30 

of groundwater’s role across a broader range of Earth system processes. Preliminary efforts to 31 

recouple ParFlow with the updated water and energy modules of CoLM demonstrate improved 32 

performance when evaluated against reanalysis and observational data. To ensure long-term 33 

sustainability, we propose a modular and maintainable coupling framework addressing 34 
functional extensibility, data/code interoperability, and parallel computing needs, in which area, 35 

TerrSysMP2 has taken early steps and may be considered an initial forerunner. Finally, we 36 

summarize existing ParFlow-based coupled systems and highlight the need for a community-37 

led model intercomparison project (PLCMIP) to benchmark performance, evaluate process 38 

coupling under varied configurations, and foster cross-community collaboration. 39 

 40 
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 42 

1. Introduction 43 

In 2005, a study titled "Development of a Coupled Land Surface and Groundwater Model" 44 

was published in Journal of Hydrometeorology (Maxwell and Miller, 2005). It introduced the 45 

coupling of ParFlow (Ashby and Falgout, 1996; Jones and Woodward, 2001) and the Common 46 
Land Model (CLM) (Dai et al., 2003), and validated the framework using both synthetic and 47 

real-world test cases. The study highlighted the role of groundwater in land surface processes 48 

(Fan et al., 2019; Zeng et al., 2018; De Graaf and Stahl, 2022; Seuffert et al., 2002), particularly 49 

lateral subsurface flow (Figure 1)—a component that was not explicitly represented in most 50 

land surface models (LSMs) at the time. This work represented an early step toward 51 

incorporating physically based groundwater dynamics into Earth system modeling frameworks. 52 

Since LSMs serve as the lower boundary in ESMs, this coupling provided a practical 53 
pathway to incorporate groundwater dynamics into larger-scale Earth system frameworks. 54 

Compared to earlier coupling attempts based on tightly integrated or proprietary platforms (Yeh 55 

and Eltahir, 2005; Ivanov et al., 2004; York et al., 2002), this effort leveraged established 56 

community models and an open design philosophy, facilitating broader applicability and long-57 

term adaptability. The resulting ParFlow-CLM model and other subsequent models coupled 58 

with ParFlow have been applied in a range of hydrological and land–atmosphere studies 59 

(Maxwell et al., 2007; Maxwell et al., 2011; Shrestha et al., 2014), contributing to improved 60 

understanding of water and energy exchanges across subsurface, land surface, and 61 
atmospheric domains (Rahman et al., 2015; Sulis et al., 2017; Keune et al., 2016; Forrester 62 

and Maxwell, 2020). Even today, groundwater–land surface coupling remains underutilized in 63 

many large-scale modeling frameworks, where groundwater models are often run offline with 64 

limited interaction with land–atmosphere processes (De Graaf et al., 2017; Reinecke et al., 65 

2019; Verkaik et al., 2022). 66 

The groundwater model, ParFlow, simulates fully 3D variably saturated subsurface flow 67 

and overland flow by integrating Richards' equation with the shallow water equation in a unified 68 

numerical framework (Kollet and Maxwell, 2006; Osei-Kuffuor et al., 2014; Maxwell, 2013). 69 
Meanwhile, the Common Land Model (CLM, now CoLM) captures water and energy processes 70 

from the canopy top to the bottom of the root zone. These two models were coupled through 71 

the root zone (Figure 1), where net fluxes from CoLM after the interactions of infiltration and 72 

evapotranspiration (ET) are treated as source/sink terms in ParFlow, while ParFlow returns soil 73 

moisture and pressure head to CoLM to close the water and energy balance. Such a coupling 74 

approach in terms of physics has been widely adopted by the following coupling works (Niu et 75 

al., 2014; Fang et al., 2022; Maina et al., 2025). 76 

After two decades of continuous development, LSMs such as CoLM have seen substantial 77 

advancements in functionality, code architecture, data structures, I/O systems, pre-/post-78 

processing tools, and high-performance computing capabilities. ParFlow has undergone similar 79 

progress on the hydrological modeling front. Although the original coupling between ParFlow 80 
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and CoLM was once considered sustainable, it is now increasingly inadequate in the face of 81 

growing model complexity and volume. In light of these developments, we outline a sustainable 82 

framework to support the next stage of ParFlow-LSM coupling development, with CoLM serving 83 

as a primary example. This cross-disciplinary effort is expected to provide a robust platform for 84 
the broader scientific community to efficiently apply coupled models, pursue advanced Earth 85 

system inquiries, and strengthen collaborative research. Given the scope of this task, 86 

implementation will necessarily proceed in phases. 87 

 88 
Figure 1. Illustration of the lateral groundwater flow, the critical zone of water table depth, 89 
and the coupling strategy between ParFlow and land surface models. Modified from 90 
Yang et al. (2023). 91 

In this paper, we begin by reviewing key insights gained from two decades of research 92 

involving ParFlow-based coupled modeling systems. Building on this foundation, we highlight 93 

how increasing model complexity and functionality are driving a shift toward a next-generation 94 
coupling paradigm. We then present a re-coupling of the latest versions of ParFlow (PF) and 95 

CoLM, focusing on core functionalities of CoLM to demonstrate feasibility and highlight 96 

improvements in overall model performance. This science-oriented integration of basic 97 

modules—built upon the original coupling interface—serves as a foundation for broader re-98 

coupling efforts that will incorporate additional functional components under a redesigned, 99 

sustainable coupling framework. It also helps us better understand how both models have 100 

evolved since their original coupling in 2005, thereby informing the development of a next-101 

generation framework. In recognition of the increasing number of LSMs being coupled with 102 
ParFlow, we further propose a ParFlow-Land Surface Coupled Model Intercomparison Project 103 

(PLCMIP) to promote collaboration and knowledge exchange across the community. 104 

2. A brief review of ParFlow-Land/Atmosphere coupled modeling 105 

The coupled model provides a more realistic representation of groundwater dynamics than 106 

traditional LSMs, while also offering more advanced ecohydrological processes at the land 107 

surface than conventional groundwater models. Over the past two decades, its major scientific 108 

contributions can be summarized in three key areas: 109 
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1. It captures the feedbacks from groundwater to land and atmospheric processes—an 110 

area often overlooked or omitted in both atmospheric and groundwater research 111 

communities. 112 

2. It highlights the critical range of water table depth (WTD) that mediates these feedbacks. 113 

3. It elucidates the impacts of land cover and climate change on groundwater and other 114 

complex ecohydrological interactions. 115 

2.1 Feedbacks from groundwater to land surface and atmosphere 116 

A major consensus in the community is that the representation of groundwater in ESMs 117 

significantly affects the spatiotemporal distribution of soil moisture, thereby influencing surface 118 

turbulent fluxes such as latent and sensible heat, as well as the spatiotemporal dynamics of the 119 

atmospheric boundary layer (Forrester and Maxwell, 2020; Rihani et al., 2015). This is primarily 120 

due to the limited simulation depth in LSMs and the absence of lateral groundwater flow. The 121 
former limits drainage in ridge areas, resulting in insufficient water release and an 122 

overestimation of soil moisture; the latter suppresses groundwater convergence in valley areas, 123 

leading to underestimation of soil moisture there.  124 

Generally, lateral groundwater flow enhances soil moisture in topographic lows, 125 

suppresses boundary layer development, and increases the evaporative fraction, thereby 126 

weakening land–atmosphere coupling and reducing near-surface temperatures (Forrester and 127 

Maxwell, 2020; Keune et al., 2016). These responses are further modulated by the subsurface 128 

hydraulic conductivities (K), with more pronounced sensitivities to K under simplified 129 
groundwater parameterizations (Williams and Maxwell, 2011; Keune et al., 2016; Rihani et al., 130 

2010). Notably, the impact of groundwater and subsurface properties on surface flux 131 

partitioning and boundary layer development tends to be most pronounced in the afternoon, 132 

when radiative forcing peaks and land–atmosphere interactions intensify (Rahman et al., 2015; 133 

Rihani et al., 2015; Forrester and Maxwell, 2020; Maxwell et al., 2007). 134 

Forrester and Maxwell (2020) conducted WRF-based weather simulations over the 135 

mountainous regions of Colorado to investigate the impact of different lower boundary 136 
conditions, providing a detailed explanation of the processes mentioned above. The study 137 

included a baseline scenario and several comparative scenarios, with particular emphasis on 138 

one that used PF-WRF to explicitly represent three-dimensional groundwater flow. In the 139 

baseline scenario, conventional WRF simulation was employed, with the subsurface depth of 140 

2 m, divided into four layers with thicknesses of 0.1, 0.3, 0.6, and 1 m from top to bottom. The 141 

bottom boundary used the native Noah model setting, which allows free drainage and further 142 

adjusts fluxes based on terrain. In the PF-WRF scenario, the subsurface depth was increased 143 

to 102 meters by adding a fifth layer of 100 m in thickness, with the bottom boundary set as 144 
impermeable. The Noah model and ParFlow were coupled through the top four layers, resulting 145 

in a coupling depth of 2 m.  146 
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Simulation results showed that in the PF-WRF scenario, the enhanced drainage in ridge 147 

areas and lateral groundwater convergence led to a decrease in soil moisture over ridges and 148 

an increase over valleys. Correspondingly, the boundary layer height also exhibited increases 149 

in ridge areas and decreases in valley areas. These changes in soil moisture and boundary 150 
layer height showed significant seasonal variations. Furthermore, the results revealed that 151 

under the influence of microtopography, the local variation of soil moisture was highly 152 

heterogeneous, weakening the general trend of soil moisture varying with elevation as seen in 153 

the baseline scenario.  154 

Additionally, in the baseline scenario, the coupling strength between evaporative fraction 155 

(EF, the ratio of latent heat to the sum of latent and sensible heat) and boundary layer height 156 

was weakened or even reversed in the PF-WRF scenario. That is, the significant negative 157 

correlation between EF and boundary layer height decreased or turned positive; this may be 158 
due to the temporal variations in EF caused by lateral flow. Moreover, the PF-WRF scenario 159 

with lateral flow showed stronger morning mountain breezes (upslope) and valley breezes 160 

(downslope), which may have enhanced mountain-valley circulation. Lateral groundwater flow 161 

also modulated low-level convection in river valleys, particularly increasing convective available 162 

potential energy (CAPE) in the afternoon, thereby perturbing regional precipitation. 163 

Keune et al. (2016) conducted simulations over the European CORDEX region using the 164 

TerrSysMP modeling system (Shrestha et al., 2014), setting up two scenarios: one with fully 165 

three-dimensional groundwater flow (3D) and the other with one-dimensional free drainage 166 
(FD). Similarly, their results revealed that different representations of groundwater led to 167 

variations in CAPE, indicating influences on the evolution of atmospheric boundary layer and 168 

free troposphere. The 3D scenario weakened land–atmosphere coupling, thereby suppressing 169 

the occurrence of extreme weather events, which is consistent with the findings of Forrester 170 

and Maxwell (2020). More specifically, the simulated 2 m air temperature was generally lower 171 

in the 3D scenario than in the FD scenario, providing useful insights for simulating European 172 

heatwaves during the study period.  173 

The study also showed that model differences were primarily located in areas with shallow 174 

water tables (depth < 5 m), which aligns with findings of Forrester and Maxwell (2020) that 175 

humidity, potential temperature, and vertical wind exhibit more pronounced differences in 176 

mountainous valley regions. In addition, the study revealed that variations in deep soil (depth > 177 

3 m) hydraulic conductivities led to discrepancies in simulation results. The FD scenario was 178 

more sensitive to the choice of conductivity values, suggesting that simplified physical 179 

representations may further amplify the impact of parameter uncertainty. 180 

Williams and Maxwell (2011), using coupled PF-WRF simulations, further explored the 181 
feedbacks of geological conditions on land–atmosphere processes such as latent heat flux and 182 

wind speed. Based on idealized scenarios, they conducted ensemble simulations by perturbing 183 

the hydraulic conductivity field. The results showed that conditioning the hydraulic conductivity 184 

significantly reduced uncertainties in simulating land–atmosphere interactions compared to 185 
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unconditioned cases. The ensemble mean was closer to the control scenario; for instance, the 186 

mean and distribution of simulated wind speed showed reduced uncertainty. These findings 187 

provide important implications for various wind energy applications.  188 

2.2 The critical zone of WTD in groundwater–land interactions 189 

As discussed above, numerous studies have revealed feedbacks of groundwater on land–190 

atmosphere processes. A key scientific question thus arises: what is the quantitative 191 

relationship between land surface states/fluxes and the WTD? Maxwell and Condon (2016), in 192 

their study over the continental US, confirmed the critical role of lateral groundwater flow in 193 

modulating the partitioning between evaporation (E) and transpiration (T). This influence is most 194 

pronounced when the WTD lies between 0.5 and 5 m. Shallower WTD leads to elevated bare-195 

soil evaporation and transpiration, while deeper WTD suppresses both fluxes. Notably, in 196 

regions where bare-soil evaporation is limited and transpiration is sustained, the T/E ratio peaks.  197 

Similarly, many studies using PF-CLM have identified a critical WTD range within which 198 

land surface variables—such as latent heat flux, sensible heat flux, and surface temperature—199 

are highly sensitive to WTD but exhibit diminished sensitivity beyond this range (Figure 1). For 200 

instance, Ferguson’s work over the Little Washita watershed suggests a critical WTD range of 201 

approximately 1–10 m (Ferguson and Maxwell, 2012, 2011, 2010), while Yang et al. (2020); 202 

Yang et al. (2023) reported comparable results over the North China Plain. Rihani et al. (2015) 203 

also illustrate the coupling between WTD and planetary boundary layer depth in this transition 204 

zone from ridges to valleys along hillslopes. Generally, when WTD is shallower than this range, 205 
soil is nearly saturated and energy availability becomes the limiting factor, weakening the 206 

sensitivity of surface states/fluxes to WTD. Conversely, when WTD exceeds this range, gravity-207 

driven drainage dominates, limiting moisture availability and again reducing sensitivity. The 208 

upper bound of this range is typically <1 m, while the lower bound often aligns with the model’s 209 

coupling depth (Kollet and Maxwell, 2008). However, in some cases, such as Maxwell and 210 

Condon (2016), the lower bound extends beyond the nominal 2 m coupling depth, likely due to 211 

capillary rise from the water table. 212 

This critical WTD range varies across regions, influenced by differences in subsurface 213 

characteristics and rooting depth, though current understanding remains limited. Fan et al. 214 

(2017), through analysis of over 2,200 global root depth observations and model-based 215 

inversion, showed that rooting depth is regulated by the capillary rise zone. Even within the 216 

same species and climate, rooting depth may vary with WTD conditions. In some environments, 217 

vegetation develops both shallow fibrous roots and deep taproots to access water under varying 218 

conditions—shallow roots for near-surface moisture during wet periods, and deep roots for 219 

capillary water during droughts. On well-drained uplands, rooting depth is controlled by 220 
infiltration and may not reach significant depths. In contrast, in shallow groundwater zones, 221 

oxygen stress may inhibit root growth and decouple vegetation from groundwater. This adaptive 222 

rooting strategy suggests that in natural systems, the depth and intensity of groundwater–land 223 

surface coupling may exceed what models typically simulate. 224 
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Maxwell et al. (2007) further investigated how groundwater feedbacks on land surface 225 

processes change under different climate change scenarios, including hot, hot and dry, and hot 226 

and wet. It is not difficult to infer that changes in latent heat flux and recharge (precipitation 227 

minus ET) within the critical WTD range exhibit strongest spatial variability. Generally, these 228 
findings suggest that groundwater feedbacks on land surface processes are closely linked to 229 

topographic and climatic conditions. For instance, in the aforementioned mountainous regions 230 

of Colorado, spatial variability in WTD leads to diverse groundwater–land surface interactions. 231 

The transitional zones between ridges and valleys are often the key areas for such interactions. 232 

In humid regions, the water table often follows surface topography (Gleeson et al., 2011), 233 

facilitating strong groundwater–land surface coupling. However, in arid regions, WTD may 234 

exceed the lower bound of the critical range, reducing the significance of groundwater 235 

feedbacks. In natural systems, this interaction is often governed by the complex interplay 236 
between climate, topography, geology, and vegetation. 237 

2.3 The impacts of land cover and climate changes on groundwater 238 

Climate change has exacerbated mountain pine beetle infestations, leading to widespread 239 

tree mortality in the Rocky Mountains (Bearup et al., 2014). Mikkelson et al. (2013) studied the 240 

impacts of beetle-induced forest dieback on water and energy balances at the hillslope scale 241 

using PF-CLM simulations. An idealized hillslope model (500 m × 1000 m × 12.5 m) was used, 242 

with scenarios representing different stages of infestation—green, red, grey, and dieback—by 243 

modifying the leaf area index and stomatal conductance. Simulation results showed similar 244 
levels of ET across all scenarios in winter, but significantly higher ET in summer under the 245 

green scenario, primarily due to transpiration. In contrast, the other scenarios exhibited lower 246 

ET limited by soil moisture availability, with evaporation being the dominant process. The 247 

dieback scenario produced the highest peak in snow water equivalent (SWE), and reduced 248 

canopy cover allowed more solar radiation to penetrate, accelerating snowmelt. This earlier 249 

and more rapid melt resulted in earlier and higher streamflow peaks, as well as increased 250 

subsurface storage. A related particle tracking study (Bearup et al., 2016) further demonstrated 251 
greater groundwater contributions to streamflow during late summer. 252 

Condon et al. (2020) conducted a continental-scale simulation across the United States 253 

using the PF-CLM CONUS 1.0 model (Maxwell et al., 2015) to examine groundwater responses 254 

to 1°C, 2°C, and 4°C warming scenarios. Warming was found to enhance ET, with shallow 255 

groundwater providing supplementary moisture to meet the increased demand, thereby 256 

partially mitigating land surface water stress. However, prolonged warming ultimately led to 257 

continuous groundwater depletion and a decoupling of groundwater from land surface 258 

processes. The magnitude of ET increases, and groundwater storage loss varied with WTD, 259 
with the strongest responses occurring within the previously identified critical WTD range. 260 

Overall, the humid eastern U.S. exhibited greater sensitivity to warming than the arid western 261 

regions. These findings highlight the risk of underestimating groundwater–land surface 262 

feedbacks when using simplified groundwater parameterizations in ESMs. 263 
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2.4 Enhanced LSM functionality motivates recoupling 264 

These selected representative studies have demonstrated the critical role of groundwater 265 

in Earth system processes. Over the past two decades, CoLM—like many other LSMs—has 266 

undergone substantial development, including functional extensions, improved 267 
parameterization schemes, and the introduction of multiple alternative process representations. 268 

However, our understanding of how groundwater interacts with these additional processes—269 

including how various parameterizations respond to and influence groundwater dynamics—270 

remains limited. These limitations underscore the pressing need to upgrade the coupling 271 

between ParFlow and LSMs. The key scientific advances of CoLM are summarized as follows 272 

(Yuan and Dai, 2025): 273 

 (1) Radiation transfer: a three-dimensional vegetation shortwave (Yuan et al., 2014) and 274 

longwave radiation transfer scheme has been incorporated, the SNICAR snow radiation 275 
transfer scheme has been added to simulate snow albedo and radiation absorption within the 276 

snowpack, and an improved two-stream approximation scheme for vegetation radiation transfer 277 

has been provided (Yuan et al., 2017). (2) Turbulent fluxes: the model enhances the continuity 278 

of dynamic parameters and processes across transitions from dense to sparse vegetation. 279 

Resistance coefficients below the canopy are calculated using a profile integration method. A 280 

new turbulent exchange scheme supports multiple coexisting plant functional types (PFTs) 281 

within a three-dimensional canopy. Several soil resistance parameterizations are provided to 282 

improve surface evapotranspiration estimates. Additionally, a surface turbulent flux scheme has 283 
been introduced to account for large-eddy effects. (3) Canopy interception and plant 284 

hydraulics: the model includes multiple canopy interception schemes and a plant hydraulics 285 

module governed by Darcy’s law. Different parameterizations emphasize distinct physical 286 

processes and support investigation of the evolution, drivers, and trends of interception under 287 

varying conditions. The hydraulics module replaces empirical formulations that relate plant 288 

stress to soil water potential and improves the simulation of land-atmosphere water exchange 289 

under changing environments. (4) Leaf temperature: A simplified one-dimensional two-big-290 
leaf scheme has been implemented to improve the numerical stability of leaf temperature 291 

simulations. In addition, a new parameterization has been developed for leaf temperature in 292 

multi-PFT scenarios with a three-dimensional canopy structure. (5) Other functional 293 

extensions: additional modules have been developed for biogeochemistry, urban systems, 294 

crop modeling, land use and land cover change, wildfire, ozone-related ecophysiological stress, 295 

and integrated hydrological processes. 296 

3. Foundational step toward sustainable coupling 297 

To explore the feasibility of re-coupling the latest versions of ParFlow and CoLM, we 298 
conducted a preliminary integration of the two models. This effort focuses exclusively on the 299 

basic water and energy modules of CoLM and is built upon the existing ParFlow-CLM coupling 300 

interface. Our goal is to understand how both models have advanced over the past two decades, 301 

in terms of functionality, code architecture (e.g., parallelism), data structures, I/O interfaces, 302 
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and pre-/post-processing tools. This process also helps identify key variables and processes—303 

along with their implementation in code—that are critical for a more comprehensive coupling 304 

effort. Although this re-coupling effort uses CoLM as an example, the experience and insights 305 

gained are also applicable to coupling ParFlow with other LSMs. 306 

This initial re-coupling serves to evaluate model performance with respect to physical 307 

processes, particularly highlighting potential improvements gained through two decades of 308 

development. It also establishes a set of benchmarks for testing and debugging as more CoLM 309 

modules are progressively incorporated. Without this incremental approach, the complexity of 310 

multiple physical processes would make testing and debugging considerably challenging. In 311 

addition, we fully leverage the lessons learned through trial and error over the past twenty years 312 

to ensure a more stable execution of the coupled model (Ferguson et al., 2016). While this 313 

phase emphasizes gaining a deeper understanding of the physical processes, future work on 314 
sustainable coupling will likely shift toward technical aspects—such as refining the coupling 315 

interface, improving modularity, and ensuring long-term maintainability. These efforts will 316 

collectively inform our understanding of the challenges and opportunities involved in 317 

establishing a sustainable coupling framework. 318 

3.1 Model setup, experimental design, and evaluation data 319 

The modeling domain, selected from the CONCN domain (Yang et al., 2025), is located in 320 

the North Pearl River Basin (Figure 2). This area was chosen as it serves as a demonstration 321 

area for the CONCN model and possesses more complete infrastructure e.g., the processed 322 
ERA5-Land reanalysis data (Muñoz-Sabater et al., 2021). Since the CONCN model and CoLM 323 

use four and ten soil layers, respectively, the CONCN model structure was adjusted to align 324 

with CoLM’s vertical discretization. The ParFlow model employed in this study comprises 11 325 

layers: the top 10 layers match CoLM in thickness, while the additional 11th layer represents 326 

the deep aquifer. ParFlow and CoLM are coupled through the top 10 layers. The coupled model 327 

maintains a horizontal resolution of ~1 km, consistent with the CONCN model and includes 252 328 

and 146 grid cells in the x and y directions, respectively. This corresponds to a spatial extent of 329 
approximately 242.35 km (x direction) × 140.41 km (y direction) × 103.43 m (z direction). Soil 330 

properties for CoLM inputs were derived from the Global Soil Dataset for Earth System 331 

Modeling (GSDE) (Shangguan et al., 2014). Soil parameters for ParFlow were reconstructed 332 

based on the sand and clay weight percentages from the same GSDE dataset, following the 333 

USDA soil classification system. Properties for the 11th layer were obtained from GLHYMPS 334 

1.0 (Gleeson et al., 2011; Gleeson et al., 2014), as used in the CONCN model. The e-folding 335 

of aquifer hydraulic conductivity with depth was implemented using a characteristic depth of 50 336 

m (Fan et al., 2007). Other surface input parameters—including Manning’s roughness 337 
coefficients, topographic slopes, and land cover types—were adopted directly from the CONCN 338 

model configuration (Yang et al., 2025).  339 
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 340 
Figure 2. Location of the modeling domain 341 

We first spun up the standalone ParFlow model using potential recharge data clipped from 342 

the CONCN domain. Then we drove the coupled model using the 2018 meteorological forcing 343 
from ERA5-Land reanalysis. However, this is an area with limited snow. To demonstrate snow 344 

performance, we created a synthetic case by applying the water year 2003 forcing from a 345 

station (Defnet et al., 2024) located in Colorado to a single column model. To evaluate changes 346 

in model performance, we also constructed 11-layer models (with 10 coupled layers) using the 347 

old ParFlow-CLM for both real-world and synthetic cases. We compared the simulated sensible 348 

heat, latent heat, skin temperature, transpiration, SWE, and the water flux exchange between 349 

the new and old models (Figures 3 and 4). Here, water flux exchange refers to the source/sink 350 

terms in Richards’ equation: positive values represent infiltration, while negative values are 351 
caused by ET. We also evaluated the simulation performance of the first four variables using 352 

ERA5-Land reanalysis. For the synthetic cases, we used data from the Snow Telemetry 353 

(SNOTEL) network maintained by the Natural Resources Conservation Service (NRCS)—354 

specifically, the measured SWE at the same location as the meteorological forcing—to evaluate 355 

the models’ overall ability to simulate the timing and magnitude of snowpack.   356 
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 357 
Figure 3. Comparison of latent heat flux, sensible heat flux, surface temperature, and 358 
transpiration between the old CLM/ParFlow and the new CoLM/ParFlow models. The 359 
corresponding values from ERA5-Land are plotted in the left column for reference. The 360 
right column shows the differences between the model simulations and ERA5-Land for 361 
each variable. Each subplot represents spatial averages over the entire modeling 362 
domain. For clarity and to prevent overlapping, the plotting order is intentionally varied 363 
across subplots. 364 

 365 

 366 
Figure 4. (a) shows the simulated snow water equivalent from the CoLM/ParFlow and 367 
CLM/ParFlow single column models, compared against SNOTEL observations. (b) 368 
presents the spatially averaged net water fluxes from CoLM and CLM to ParFlow, 369 
representing the source and sink terms in the ParFlow domain; both fluxes represent 370 
spatial averages over the entire modeling domain.  371 

3.2 Performance gains from updated CoLM support recoupling 372 

Simulations of all variables by CoLM/PF exhibit improved performance relative to CLM/PF 373 
when evaluated against ERA5-Land reanalysis data (Figure 3). CoLM/PF produces a more 374 

realistic partitioning of turbulent fluxes, characterized by increased latent heat and reduced 375 

sensible heat (Figures 3a and 3c). Notably, transpiration simulated by CoLM/PF is substantially 376 

higher and aligns more closely with ERA5-Land data (Figure 3g). Additionally, CoLM/PF more 377 
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accurately reproduces the fluctuations in land surface temperature compared to CLM/PF 378 

(Figure 3e). In the single column simulations (Figure 4a), CoLM/PF also generates a higher 379 

peak SWE than CLM/PF, showing better agreement with SNOTEL observations, although both 380 

models display deviations in the timing of SWE accumulation. This discrepancy may stem from 381 
the idealized subsurface configurations used in both models. Improvements in both 382 

transpiration and SWE are further supported by previous research; for instance, O'neill et al. 383 

(2021) reported consistently lower ET and SWE from CLM/PF in the assessment of CONUS 384 

1.0 model. The overall advancement in model performance can likely be attributed to the more 385 

sophisticated process representations embedded in CoLM.  386 

 387 
Figure 5. (a) and (b) show the simulated water table depth and overland flow by 388 
CoLM/ParFlow and CLM/ParFlow, respectively. Each subplot represents spatial 389 
averages over the entire modeling domain. 390 

Figure 4b illustrates the net fluxes transferred from the land surface to the subsurface, 391 

which directly influence hydrologic dynamics such as WTD and overland flow. These exchange 392 

fluxes show greater variability in the CoLM/PF simulation, suggesting more dynamic surface–393 

subsurface interactions. Consistent with this, Figure 5 reveals more pronounced temporal 394 

variability in both WTD and overland flow. A generally deeper water table is observed in 395 

CoLM/PF (Figure 5a), which is likely a result of the higher plant water uptake, i.e., increased 396 

transpiration, depicted in Figures 3a, 3g and 4b. Consequently, the reduction in baseflow from 397 
groundwater may explain the observed decrease in low levels of overland flow (Figure 5b). 398 

To improve the representation of turbulent exchanges between the vegetation canopy and 399 

the atmosphere, the model employs a profile-integrated approach to resolve key dynamical 400 

parameters (e.g., turbulent diffusivity K(z)) with explicit vertical resolution. In particular, 401 

resistance-related variables—such as displacement height (d) and roughness length (z0), which 402 

characterize canopy-atmosphere momentum exchange, as well as aerodynamic resistances 403 

for leaves (rb) and ground surface (rd), which govern within-canopy and near-surface heat and 404 

vapor transfer—are refined to account for structural heterogeneity. Meanwhile, profile-405 
integrated functions are dynamically computed based on vegetation structure and atmospheric 406 

stability, and directly determine resistance terms (e.g., rah, raw). This also includes revised 407 

roughness length formulations that explicitly account for atmospheric stability, extending 408 

beyond the original neutral-based assumptions in schemes such as Raupach (1994, 1992). 409 

This combined approach yields a more physically consistent and vertically continuous 410 
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treatment of turbulent fluxes under non-neutral stratification, enhancing realism in complex 411 

canopy conditions. In addition, other schemes—such as those related to soil thermal 412 

parameters (including heat capacity and heat conductivity), as well as soil color and associated 413 

reflectance—also differ between the CoLM/PF and CLM/PF models. All of these differences 414 
motivate a coupled model intercomparison project to evaluate how different schemes, either 415 

within a single model or across different models, affect the performance of the coupled model 416 

and land–hydrology process interactions. 417 

In this initial coupling process, we found that the main changes were related to data 418 

structure, module organization, module names, and variable naming conventions. For example, 419 

structures were broken down into multiple arrays, modules were split and reorganized based 420 

on functionality, some modules were removed from the main program and used as 421 

preprocessing components, and module adjustments were often accompanied by renaming. A 422 
large number of variable names were also changed. Moreover, the inclusion of multiple 423 

parameterization schemes has increased code complexity to some extent, resulting in 424 

significantly larger module sizes. Nevertheless, most physical processes have retained their 425 

original core parameterizations. This means that the primary task in this initial coupling stage 426 

is to identify the key physical processes and the critical variables within the new system 427 

structure. Several new parameterization schemes have also been implemented—for example, 428 

those associated with the turbulent exchange discussed above—though the application of other 429 

schemes will require further testing in future work. 430 

4. A sustainable recoupling framework for future development  431 

Here, we propose a sustainable framework for future CoLM/ParFlow coupling based on 432 

our preliminary work (Figure 6). This framework consists of four key components: a coupler-433 

based architecture, a robust initial foundation, protocols for scalable upgrades, and a 434 

community interaction platform. 435 

• Coupler-based architecture for long-term sustainability 436 

While the current ParFlow-Land interface built in ParFlow supports efficient coupling with 437 

land surface and atmospheric models, demonstrates good parallel performance, and avoids 438 

the overhead associated with inter-model communication, it lacks compatibility with 439 

standardized coupling frameworks and protocols. This limits the integration of coupled models 440 

into broader Earth system modeling frameworks. In contrast, coupler-based architectures—441 

such as ESMF/NUOPC, CESM/cpl7, and OASIS3-MCT—are now standard in modern Earth 442 

system modeling. They preserve the native data structures, domain decomposition, and parallel 443 
logic of each model, which is particularly important given the substantial structural differences 444 

between ParFlow and CoLM. For instance, this approach allows retaining ParFlow’s GPU-445 

based parallelism (Hokkanen et al., 2021) and CoLM’s MPI-based structure, along with their 446 

respective domain decomposition strategies. It also enables continued use of each model’s 447 

preferred data format and processing tools—for example, ParFlow’s .pfb format and pftools, 448 
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as well as CoLM’s NetCDF-based workflow. Adopting a standardized coupler thus facilitates 449 

modular development, cross-system compatibility, and long-term maintainability. Looking 450 

forward, such coupler-based designs could also be extended to support surrogate model 451 

integration (Bennett et al., 2024; Tran et al., 2021), enabling hybrid workflows that combine 452 
physical models and AI-based components. 453 

• Strong foundations through early-stage mapping 454 

Laying a solid foundation during the initial coupling phase is critical. First, a mapping 455 

between ParFlow’s grid and CoLM’s subgrids must be established to support future model 456 

extensions. The current coupling only supports integration based on the LCT (Land Cover Type) 457 

subgrid, whereas important functional extensions such as biogeochemistry and 3D vegetation 458 
canopy processes rely on plant function types (PFTs) and the associated PFT and PC (Plant 459 

Community) subgrids. The mapping between grids of different models is a key concern in the 460 

coupling community and directly affects coupling performance (Valcke, 2022). Currently, most 461 

approaches rely on physical interpolation methods; incorporating an AI-based scale 462 

transformation layer with mass conservation constraints could be a promising enhancement. 463 

Second, key variables and processes from newly introduced modules or previously untested 464 

parameterizations must be identified. For example, the plant hydraulics module requires soil 465 

hydraulic conductivity fields, which are not included in the current coupling interface. More 466 
importantly, a structured logging system should be implemented to track all exchanged 467 

variables, their associated modules, and the corresponding grid structures, thereby ensuring 468 

transparency and traceability throughout development.  469 

• Protocols for efficient and maintainable coupler upgrades 470 

Two key aspects are emphasized. First, the architecture of interfaces and coupling layers 471 

should be designed for long-term clarity and ease of maintenance. Taking ESMF/NUOPC as 472 
an example, the model-side interfaces and coupler-side connector and mediator layers are 473 

implemented with a focus on modular organization, encapsulated data exchange, and well-474 

structured control flow, ensuring that the system can be reliably extended as new model 475 

features or physical processes are introduced. Second, developers introducing new modules, 476 

parallelization strategies, or grid structures, within one model must explicitly assess their 477 

potential impact on the other model, clarify any newly introduced variables or data structures to 478 

be exchanged via the coupler, and submit pull requests with corresponding explanations. 479 

Senior maintainers should review these changes and provide targeted feedback on necessary 480 
updates to the interface and coupling logic. All modifications affecting model interaction must 481 

be tracked in the logging system described above, and no update should be considered 482 

complete until it is formally registered in the log. 483 

• Community platform for collaboration and maintenance 484 

A dedicated community platform—such as a GitHub repository, mailing list, or model 485 

portal—should be established to support developer–user interaction, technical discussion, and 486 
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feedback collection. This platform will also serve to announce new model releases, coupling 487 

layer updates, or changes in the logging system. Transparent communication and community-488 

driven collaboration are essential for the long-term sustainability and extensibility of the coupled 489 

model system. Looking forward, we envision extending this platform into a broader, community-490 
driven environment for managing and operating ParFlow–LSM coupled models, drawing 491 

inspiration from efforts such as eWaterCycle (Hut et al., 2022). Beyond supporting collaboration 492 

and information sharing, such a platform could streamline model configuration, coupling 493 

workflows, data exchange, and reproducibility—thereby accelerating adoption, improving 494 

transparency, and fostering integration across hydrological and Earth system science 495 

communities. This would also address a current gap, as ParFlow-based coupled systems 496 

remain largely fragmented and lack standardized tools for integration, testing, and 497 

dissemination. 498 

 499 
Figure 6. The coupling framework for sustainable development 500 

5. ParFlow-Land coupled model intercomparison project (PLCMIP)   501 

Over the past decades, numerous land and/or atmosphere models coupled with ParFlow 502 

have been developed (Table 1). These models vary in their functional capabilities and adopt 503 

different coupling strategies, which may significantly affect computational efficiency. The two 504 

models coupled with CoLM aim to understand the fundamental interactions of water and energy 505 
between subsurface and land surface processes (Dai et al., 2003; Maxwell and Miller, 2005). 506 

In contrast, the two models coupled with ARPS and WRF (Maxwell et al., 2007; Maxwell et al., 507 

2011; Skamarock and Klemp, 2008; Xue et al., 2000; Xue et al., 2001), along with the two 508 

generations of TerrSysMP (Shrestha et al., 2014; Oleson et al., 2008; Lawrence et al., 2019; 509 

Poll et al., 2024), provide capabilities to explore two-way feedbacks across each interface within 510 
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the subsurface–land surface–atmosphere system. Furthermore, the coupling of ParFlow with 511 

TREES (Tai et al., 2018; Mackay et al., 2015) and ELM-FATES (Fang et al., 2022; Caldwell et 512 

al., 2019; Fisher et al., 2015; Leung et al., 2020) introduces advanced vegetation dynamics into 513 

land surface process representations. Finally, integration with NASA-LIS enables data 514 
assimilation within the coupled modeling framework (Maina et al., 2025; Kumar et al., 2008; Niu 515 

et al., 2011), and TerrSysMP also incorporates the PDAF (Parallel Data Assimilation 516 

Framework) to support data assimilation capabilities (Kurtz et al., 2016).  517 

Model intercomparison provides a valuable means to assess model development and 518 

foster connections or collaborations across research communities. Several well-known 519 

intercomparison projects exist, such as the Coupled Model Intercomparison Project (CMIP) for 520 

ESM intercomparison (Eyring et al., 2016), and the Land Surface, Snow and Soil Moisture 521 

Model Intercomparison Project (LS3MIP) (Van Den Hurk et al., 2016), which is designed to 522 
assess the performance of land modules in current ESMs. In addition, individual 523 

intercomparison activities have also been widely conducted within the land surface modeling 524 

community (Scanlon et al., 2018; Liu et al., 2023). ParFlow has also participated in various 525 

model intercomparison projects involving hydrologic models and individual studies, such as 526 

those by Maxwell et al. (2014); Sulis et al. (2017); Kollet et al. (2017); Sulis et al. (2010). Given 527 

the differences among the ParFlow-based coupled models mentioned above, a dedicated 528 

model intercomparison project (MIP) is needed to systematically evaluate coupled models and 529 

support the development of a community platform for benchmarking and collaboration, with the 530 
following objectives:  531 

(1) To quantify the strength and spatiotemporal variability of groundwater–land–532 

atmosphere interactions resulting from different parameterization schemes used in various land 533 

surface and atmospheric models. 534 

(2) To compare computational efficiency across different coupling strategies. 535 

(3) To identify the unique functionalities and strengths of each coupled model, providing 536 

users with guidance in selecting the most appropriate model for their specific research needs. 537 

6. Summary 538 

Twenty years after the original ParFlow-CLM coupling (Maxwell and Miller, 2005), this study 539 

reaffirms the long-term scientific and technical significance of that foundational effort. Over two 540 

decades, the coupled system has made major contributions in establishing the critical role of 541 

groundwater in modulating subsurface–land–atmosphere feedbacks and identifying the 542 

existence of a critical water table depth range that governs these bidirectional interactions. 543 

Technically, this coupling demonstrated a viable approach for integrating a groundwater model 544 

with a land surface scheme—the lower boundary of Earth system models—thereby providing 545 
a template for incorporating groundwater processes into ESMs. To revisit and update this 546 

legacy, we carried out a preliminary re-coupling of the latest versions of ParFlow and CoLM, 547 
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focusing on core water and energy processes. This re-coupling already reveals improved model 548 

performance and provides a functional platform for incremental expansion and benchmarking.  549 

Looking forward, developing a sustainable ParFlow–LSM coupling framework will require 550 

a more comprehensive and community-oriented design. This includes adopting a lightweight 551 
coupler architecture that preserves each model’s native data structures, parallel strategies, and 552 

processing tools, while supporting modular integration of new physical or surrogate 553 

components. To support long-term maintainability and usability, we envision a shared platform 554 

that integrates model configuration, coupling workflows, data exchange, and benchmarking 555 

functions. Such a platform would enhance transparency, reproducibility, and ease of adoption 556 

across the hydrologic and Earth system modeling communities. In parallel, we propose 557 

launching a model intercomparison project (PLCMIP) to systematically evaluate performance, 558 

compare coupling strategies, and guide future development. 559 

 560 

 561 
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Table 1. ParFlow and Land/Atmosphere coupled models 562 

Coupled 
model Model description Coupling 

approach Reference 

CoLM The Common Land Model CoLM as a 
subroutine 

Maxwell and 
Miller, 2005; 

Dai et al., 2003 

ARPS 
The mesoscale atmospheric model 
Advanced Regional Prediction System; 
coupled with the built-in land surface 
model 

ARPS as a 
subroutine 

Maxwell et al., 
2007; 

Xue et al., 
2000, 2001 

WRF 

The community numerical weather 
prediction Weather Research and 
Forecasting model, version 3.0; 
coupled with the built-in Noah model 

WRF as a 
subroutine 

Maxwell et al., 
2011; 

Skamarock 
and Klemp, 

2008 

CLM3.5 The NCAR Community Land Model 
(version 3.5) in TerrSysMP 

Coupler. Ocean 
Atmosphere Sea 
Ice Soil, version 
3.0 (OASIS3) 

Shrestha et 
al., 2014; 
Oleson et 
al., 2008 

TREES 
A plant physiology model: Terrestrial 
Regional Ecosystem Exchange 
Simulator 

TREES as a 
subroutine 

Tai et al., 
2018; 

Mackay et al., 
2015 

ELM 

The Energy Exascale Earth System 
Model (E3SM) land model (ELM) that 
includes the Functionally Assembled 
Terrestrial Ecosystem Simulator 
(FATES) 

ParFlow as a 
subroutine 

Fang et al., 
2022; 

Caldwell et al., 
2019; 

Leung et al., 
2020; 

Fisher et al., 
2015 

eCLM 
An adaption of the NCAR Community 
Land Model (version 5.0) in 
TerrSysMP2 

Coupler. 
OASIS3-MCT, 
where MCT 
represents Model 
Coupling Toolkit 

Poll et al., 
2024; 

Lawrence et 
al., 2019 

Noah-MP Noah-MP in the NASA Land 
Information System (LIS) 

Coupler. The 
Earth System 
Modeling 
Framework and 
the National 
United 
Operational 
Prediction 
Capability 
(ESMF/NUOPC) 

Maina et al., 
2025; 

Kumar et al., 
2008; 

Niu et al., 2011 

CoLM2024 The Common Land Model, version 
2024 

CoLM2024 as a 
subroutine This study 

 563 

https://doi.org/10.5194/egusphere-2025-3935
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 19 

Code and data availability  564 

The datasets used in this study are all from public sources and are cited in the main text. 565 

ParFlow version 3.13, as used in this study, is available at 566 

https://doi.org/10.5281/zenodo.4816884 (Smith et al., 2024). The new ParFlow–CoLM model 567 

and the test cases, including input and output files, are available at 568 
https://doi.org/10.5281/zenodo.16879407 (Yang, 2025), and a copy is also available on GitHub 569 

at https://github.com/aureliayang/parflow-colm. 570 
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