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Abstract. Glaciers and ice sheets cover some 15 million square kilometres of the Earth’s surface, shaping continental 12 

landscapes and modifying climate on a global scale. Recent decades of atmospheric and oceanic warming have induced 13 

rapid glacier loss worldwide that has caused sea level rise, flooding, changes to Earth’s overall energy balance and changes 14 

in water resources. Accounting for the total impact of glacier change requires observations on a global scale, and planning 15 

for future change will require improved understanding of the physical controls that govern glacier change. One key factor 16 

that dictates glacier and ice sheet loss is changes in rates of ice flow, the physics of which remain poorly constrained. Our 17 

physical understanding of ice flow can be advanced with high resolution monitoring of glacier flow, in near real time. 18 

Automated tracking of glacier flow from space became possible with the launch of Landsat 4 in 1982. Since then, an 19 

increasing number of optical and radar satellite sensors have now provided a full decade of year-round, global data coverage. 20 

This recent plethora of data has introduced new challenges for efficiently processing such large and myriad data streams, in 21 

a standardized manner, with low latency. Here we present the NASA Making Earth System Data Records for Use in 22 

Research Environments (MEaSUREs) Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) global 23 

glacier velocity dataset, which is freely available to the public and is currently on major release version 2.0. ITS_LIVE has 24 

computed surface velocities using every, excluding those with high cloud cover, available image from Landsat 4 through 9 25 

and Sentinel 1 & 2, creating a global glacier velocity record of over 36 million image pairs dating back to 1982. The 26 

ITS_LIVE processing chain automatically performs feature tracking on more than 20,000 image pairs per day, within 27 

minutes of image availability, and will soon include data from Sentinel 1C and NASA-ISRO SAR Mission (NISAR) 28 

satellites. This paper describes the ITS_LIVE processing chain and provides guidance for working with the cloud-optimized 29 

velocity data it produces. 30 
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1 Introduction 34 

In recent decades, glacier velocity observations have revealed a complex and evolving landscape of ice flow that 35 

spans the globe and shapes the Earth’s surface and human behaviour. In the distant past, glacier flow has carved great fjords, 36 

such as those of Greenland, where fishing and tourism along the coast represent major pillars of the country’s modern 37 

economy (Bendixen et al., 2019). In modern times, satellite observations have revealed glacier acceleration that has 38 

increased ice discharge to the ocean and raised sea levels (IPCC, 2023; Otosaka et al., 2023), impacted ocean circulation 39 

and primary productivity (Li et al., 2024; Perner et al., 2019), and shifted Earth’s energy balance (Hansen et al., 2011; Sicart 40 

et al., 2008). Understanding and accounting for the myriad impacts of global changes in ice dynamics have been made 41 

possible by global satellite data coverage, and as we face a future of certain climate change, preparing for the impacts of 42 

glacier variability will require near-real time monitoring of glacier dynamics on a global scale.  43 

The use of satellite images to measure glacier velocity began in the 1980s with manual identification of persistent 44 

features (e.g. crevasses) that were displaced between pairs of satellite images (e.g., Lucchitta and Ferguson, 1986; Whillans 45 

and Bindschadler, 1988). By the 1990s, template matching algorithms (i.e. normalized cross correlation) were developed to 46 

systematically measure displacement fields from image pairs for investigations of glacier flow (Bindschadler and Scambos, 47 

1991; Scambos et al., 1992), and that work has since led to the development of several open-source software packages for 48 

feature tracking, including COSI-Corr (Leprince et al., 2007), MATLAB-based ImGRAFT (Messerli and Grinsted, 2015), 49 

Python-based PyCorr (Fahnestock et al., 2016), and the autoRIFT package (Gardner et al., 2018; Lei et al., 2021) used to 50 

generate the ITS_LIVE data described in this paper. After years of algorithm development and remote sensing data 51 

collection, a few major efforts have generated large-scale ice velocity mosaics that have each enabled a new wave of 52 

advancements in glaciological observation and modelling.  53 

One of the first large-scale ice velocity mapping projects used RADARSAT synthetic aperture radar (SAR) data 54 

to map the flow of the Greenland Ice Sheet (Joughin et al., 2010), and soon after, multiple years of SAR data were stitched 55 

together to create a nearly complete map of the flow of the Antarctic Ice Sheet (Rignot et al., 2011). In the years that 56 

followed, ice-sheet-wide mosaics came available at annual (Gardner et al., 2022; Joughin, 2023a; Mouginot et al., 2017) 57 

and subannual (Joughin, 2022, 2023b; Solgaard and Kusk, 2022) intervals, and image-pair level velocity data were made 58 

available for the full Landsat 8 record via GoLIVE (Scambos et al., 2016) and later ITS_LIVE (Gardner et al., 2022). 59 

Beyond the ice sheets, glacier velocity data have been generated globally for a single snapshot in time (Millan et al., 2021), 60 

as annual mosaics (Gardner et al., 2022), and as displacement fields measured in individual image pairs from various satellite 61 

sensors (Gardner et al., 2022; Scambos et al., 2016). The large and rapidly growing volume of remote sensing data now far 62 

exceeds the storage and processing capabilities of any laptop computer or local workstation, meaning modern, cloud-63 

optimized approaches for velocity data generation and storage will be essential to usher in the next generation of 64 
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glaciological advancement (López et al., 2023). The cloud-native processing chain developed for ITS_LIVE version 2.0 is 79 

described below.  80 

2 Processing System  81 

Due to the sheer volume of data and intensive processing needs, ITS_LIVE decided to adopt a cloud-first approach 82 

to data processing and access. The ITS_LIVE processing chain is an Amazon Web Service (AWS) cloud-native application. 83 

It is composed of three major components: (1) ITS_LIVE Monitoring that watches for new satellite image acquisitions, (2) 84 

Hybrid Pluggable Processing Pipeline (HyP3) ITS_LIVE that orchestrates the processing of image pairs, and (3) HyP3-85 

autoRIFT that processes image pairs and publishes them to the ITS_LIVE AWS OpenData Simple Storage Service (S3) 86 

bucket. 87 

2.1 ITS_LIVE Monitoring  88 

The ITS_LIVE Monitoring stack (Kennedy et al., 2025a) uses an event-driven architecture to listen for new input 89 

satellite data products to be published, find new images to use for velocity estimation, and submit qualifying image-pairs 90 

(criteria described in Sec. 3) for processing to HyP3 ITS_LIVE (Sec. 2.2-3). Figure 1 illustrates the data flow for Landsat 91 

Images.  92 

For Landsat 8/9 data, ITS_LIVE monitoring subscribes to the USGS’s Simple Notification Service (SNS) Topic 93 

which broadcasts messages describing newly available Landsat data. All level 1, teir 1 and 2 products from Collection 2 are 94 

placed into an AWS Simple Queue Service (SQS), which then triggers an AWS Lambda that evaluates if the corresponding 95 

scene qualifies for processing based on the scene’s metadata in the USGS SpatioTemporal Asset Catalogs (STAC). Each 96 

qualifying scene is used as a reference scene, the USGS STAC catalog is searched for qualifying secondary scenes, and 97 

each reference and secondary scene pair are submitted to HyP3 ITS_LIVE for processing. New velocity granules are 98 

published to the its-live-data AWS S3 bucket by HyP3 ITS_LIVE, typically within 15 minutes of a new Landsat data product 99 

being broadcast. 100 
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 109 
Figure 1: Landsat data flow, from acquisition to ITS_LIVE velocity. Landsat acquisitions are downlinked, processed 110 

by the USGS ground segment, published to the USGS-Landsat AWS S3 bucket, and broadcast via an AWS SNS 111 

topic. ITS_LIVE monitoring subscribes to this topic, selects older secondary scenes to pair with the new scene, and 112 

submits the pairs for processing. Scenes are processed by HyP3 ITS_LIVE (Sec. 2.2) and new velocity granules are 113 

published to ITS_LIVE’s S3 bucket. New velocity granules are typically available within 15 minutes of the 114 

corresponding new scene being broadcast. Landsat 9 Satellite rendering courtesy Northrop Grumman, USGS logos 115 

courtesy U.S. Geological Survey, and STAC logo adapted from stacspec.org. 116 

 117 

The Sentinel-2 data flow mimics the Landsat data flow, with the primary difference being that Sentinel-2 scenes 118 

are acquired, downlinked, and processed by ESA. Within a few hours of Sentinel-2 image availability, scenes are published 119 

by Synergize to an S3 bucket, catalogued in Element84’s Earth Search STAC catalogue, and broadcast by an AWS SNS 120 

topic in the eu-central-1 region. Once a new scene has been broadcast, we check that it qualifies for processing by using 121 

metadata from the Earth Search STAC catalogue as well as SentinelHub’s RESTful Online Data Archive (RODA) 122 

Application Programming Interface (API) since the percent data coverage is missing from the STAC catalogue. If the new 123 

scene qualifies, it is used as the reference scene, and the Earth Search STAC catalogue and RODA are used to find 124 

corresponding secondary scenes that qualify for processing. To comply with institutional policies and minimize the cost of 125 

pulling scenes across regions, we download Sentinel-2 scenes from Google Cloud. If scenes are not available on Google 126 

Cloud, we wait 8 hours and try again, repeating the check up to 3 times. Images submitted for processing may take up to 24 127 

hours to be published in the ITS_LIVE S3 bucket from when the new scene SNS message was broadcast, meaning velocity 128 

estimates from Sentinel-2 are available within about 30 hours after publication by ESA. 129 

The near-real-time processing chain for Sentinel-1 and NISAR resembles the Landsat processing chain, with a 130 

distinction that Sentinel-1 scenes are acquired, downlinked, and processed by ESA and NISAR scenes will be acquired, 131 

downlinked, and processed by NASA JPL. Within 24 hours of publication of Sentinel-1 scenes or acquisition of NISAR 132 
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scenes, the new scenes are ingested and archived by the Alaska Satellite Facility (ASF) NASA Distributed Active Archive 133 

Center (DAAC) in a private S3 bucket and catalogued in NASA’s Common Metadata Repository (CMR). CMR allows 134 

users to set up Near-Real-Time Notification subscriptions for collections which will broadcast messages into a user-provided 135 

AWS SQS queue when new scenes are ingested. Once a new scene has been broadcast, we will check that it qualifies for 136 

processing, query CMR for corresponding secondary scenes, and submit pairs for processing. Processing velocity estimates 137 

for Sentinel-1 is significantly more complex than the optical products, and this will likely hold true for NISAR products. 138 

Therefore, we expect new velocity estimates to typically be available within 2 hours of the new scene being catalogued by 139 

NASA, or <30 hours after publication by ESA or acquisition by NASA. It should be noted that at the time of writing, 140 

ITS_LIVE processing of Sentinel-1 was temporarily put on hold due to the cost of processing. A major code refactoring of 141 

the SAR processing pipeline is being undertaken to significantly reduce processing costs and to prepare ingestion of NISAR 142 

data. At the time of writing, Sentinel-1 data has only been processed for the period 2014-2022. We anticipate low-latency 143 

SAR processing to resume by mid-2025. 144 

2.2 HyP3 ITS_LIVE 145 

We utilize a custom deployment of the open-source, cloud-native ASF HyP3 processing pipeline (Hogenson et al., 146 

2020, Johnston et al., 2025) deployed to the us-west-2 region, which is the same region that houses USGS Landsat, NASA’s 147 

mirror of Sentinel-1, and NASA’s NISAR mission products, as well as the ITS_LIVE data products. In the HyP3 148 

architecture, storage and egress costs are minimized by bringing the compute to the data. HyP3 is built using a serverless 149 

architecture and can easily scale to handle large processing campaigns; for ITS_LIVE v2 data, we have scaled up to 10,000 150 

vCPUs and were able to process 25 million image pairs in a single month.  151 

HyP3 is a user-driven, high-throughput processing pipeline. Users, or in our case, the ITS_LIVE Monitoring stack, 152 

can request new data products through the API, which follows the OpenAPI specification and is self-documented with a 153 

SwaggerUI, or through a Python Software Development Kit (SDK). Processing requests are tracked in an AWS DynamoDB 154 

and executed through AWS StepFunctions, which: track the job status, runs HyP3 plugins (containers; see Sec. 2.3) via 155 

AWS Batch, and updates processing records with information. When jobs are completed, job status, output file locations, 156 

and other relevant job metadata is available to users via the API or SDK.  157 

2.3 HyP3 autoRIFT 158 

HyP3 autoRIFT (Kennedy et al., 2025b) is a docker container that follows the HyP3 plugin specification and is 159 

used to process input image pairs and publish ITS_LIVE velocity granules. HyP3 autoRIFT is responsible for the end-to-160 

end processing workflow and contains the autoRIFT processing code (described in Sec. 3) for both the optical and radar 161 

data, as well as a Python library that handles finding and staging necessary input data (images, DEMs, parameter files, etc.), 162 

determining the correct processing parameters to use for a scene pair, executing the processing workflow, packaging the 163 
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autoRIFT outputs into an ITS_LIVE NetCDF data product, generating product browse and thumbnail images, and finally 164 

uploading the products to an AWS S3 bucket. 165 

3 Velocity calculations  166 

ITS_LIVE employs a two-tiered approach (Level 2 and Level 3 products) to processing optical or SAR data streams 167 

on common UTM or polar stereographic grids. Level 2 image pairs are processed for every available combination of satellite 168 

images separated by fewer than a threshold number of days for each sensor, then compiled into Level 3 regional velocity 169 

mosaics. To maximize computational efficiency and minimize distortion or loss of information that could result from 170 

interpolation and grid transformations, ITS_LIVE developed the Geogrid algorithm [Yang et al. 2022] that provides a direct 171 

mapping between image coordinates (radar or optical) and map coordinates. The algorithm allows autoRIFT to perform 172 

feature tracking in the native image coordinates that are then directly mapped to geographic coordinates. This is achieved 173 

by centring search chips on a predefined grid then mapping these locations to native image coordinates, accounting for 174 

rotations and distortions between mappings. ITS_LIVE then generates velocities on a uniform grid without the need for 175 

resampling or interpolating, regardless of whether the data are in line-of-sight coordinates (radar) or in a native projection 176 

that differs from the target projection. For all sensors, ITS_LIVE version 2.0 velocities are determined at the same 177 

geographic locations on a common 120 m resolution grid. 178 

3.1 Level 2 image pairs   179 

Using a template-matching approach, displacement fields are calculated from image pairs acquired up to 546 days 180 

apart for optical images and 12 days for radar images. Our goal is to increase the temporal span for radar images if we’re 181 

able to achieve increased processing efficiency, i.e. reduced cost. All image pairs are processed by the autonomous Repeat 182 

Image Feature Tracking (autoRIFT) algorithm version 1.4.0, which was originally developed for Landsat imagery (Gardner 183 

et al., 2018), has since been expanded to handle Sentinel 2 and Sentinel 1 data (Lei et al., 2021, 2022), and is now a registered 184 

and maintained conda-forge Python package that gained wide use within the research community (e.g., Hong et al., 2022; 185 

Kochtitzky et al., 2022; Liu et al., 2024).  186 

 187 
Table 1: Source imagery characteristics 188 

Satellite Operation Sensor Type Product* Resolution Wavelength /Frequency 
Landsat 4 1982-1993 optical L1TP/GT Band 2 30 m Green: 0.52-0.60 µm 
Landsat 5 1984-2013 optical L1TP/GT Band 2 30 m Green: 0.52-0.60 µm 
Landsat 7 1999-2024 optical L1TP/GT Band 8 15 m Pan: 0.52-0.90 µm 
Landsat 8 2013-present optical L1TP/GT Band 8 15 m Pan: 0.50-0.68 µm 
Landsat 9 2021-present optical L1TP/GT Band 8 15 m Pan: 0.50-0.68 µm 
Sentinel 2 A 2015-present optical L1C Band 8 10 m NIR: 0.78-0.90 µm 
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Sentinel 2 B 2017-present optical L1C Band 8 10 m NIR: 0.78-0.90 µm 
Sentinel 1 A 2014-present radar SLC TOPS-IW 5×20 m C: 5.405 GHz 
Sentinel 1 B 2017-2021 radar SLC TOPS-IW  5×20 m C: 5.405 GHz 
Sentinel 1 C 2024-present radar SLC TOPS-IW 5×20 m C: 5.405 GHz 
* LITP = Level 1 Precision and terrain-correction 
   LIGT = Level 1 Systematic terrain-corrected 
   SLC TOPS-IW = Single Look Complex Terrain Observation by Progressive Scan Interferometric Wide swath 

 191 

3.1.1 Optical data from Landsat 4-9 and Sentinel 2A/B/C 192 

ITS_LIVE continuously processes optical images from Landsat 4 (1982-1993), Landsat 5 (1984-2013), Landsat 7 193 

(1999-2024), Landsat 8 (2013-present), Landsat 9 (2021-present), Sentinel 2A (2015-present), Sentinel 2B (2017-2025), 194 

and Sentinel 2C (2024-present), see Table 1. Surface displacements are calculated for “same-path-row” image pairs that are 195 

acquired from the same satellite position and look geometry and are separated in time by fewer than 546 days. To increase 196 

data density prior to the launch of Landsat 8, images acquired from differing satellite positions (i.e. cross-path-row), 197 

generally from crossing ascending and descending orbits, are also processed if they have a time separation between 10 and 198 

96 days. Feature tracking of cross-path-row image pairs produces velocity fields with lower signal-to-noise due to residual 199 

parallax from imperfect terrain correction that is largely self-cancelling in imagery acquired with the same viewing geometry 200 

(i.e. same-path-row). 201 

All optical images are preprocessed using a 5x5 Wallis operator to normalize for local variability in image radiance 202 

caused by shadows, topography, and sun angle, all of which can generate spurious artifacts when applying feature tracking 203 

to derive surface flow from optical imagery. For Landsat 4 and 5 Band 2 images, along-track artifacts introduced by the 204 

Thematic Mapper whisk broom sensor are removed using Fourier filtering. Missing data in Landsat 7 images, introduced 205 

after the Scan Line Corrector failure in May of 2003, are filled with random noise so that they do not contribute to the 206 

amplitude of the correlation peak used in the feature tracking.  207 

Using autoRIFT, preprocessed same-path-row and cross-path-row pairs of images are searched for matching 208 

features by finding local normalized cross-correlation (NCC) maxima at sub-pixel resolution by oversampling the 209 

correlation surface by a factor of 16 using a Gaussian kernel. As a first step, a sparse grid pixel-integer NCC search (1/16 210 

of the density of the full search grid) is used to determine areas of coherent correlation between image pairs. Results from 211 

the sparse search guide a dense search with search centres spaced such that there is 50% overlap between adjacent template 212 

windows. Areas of unsuccessful retrievals, as determined using a Normalized Displacement Coherence NDC filter (Gardner 213 

et al., 2018), are searched with progressively increasing template chip sizes. Minimum and maximum acceptable template 214 

chip sizes for each search centre are defined geographically and depend on land surface type (ice or rock), spatial gradient 215 

of a reference velocity mapping, distance from ocean, and distance from ice edge. The data are then filtered one last time 216 

using the NDC filter, and small data gaps are filled by interpolation. Interpolated values are indicated in each image-pair 217 
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data product as interp_mask = 1. Our reference velocity is derived a synthesis of Version 1 MEaSUREs ITS_LIVE 221 

Regional Glacier and Ice Sheet Surface Velocities (Gardner et al. 2022), MEaSUREs Version 1 of the Multi-year Greenland 222 

Ice Sheet Velocity Mosaic (Joughin et al. 2016), and Version 1 MEaSUREs Phase-Based Antarctica Ice Velocity Map 223 

(Mouginot et al., 2019).  224 

To reduce computational demand, autoRIFT employs a downstream search that centres the NCC search template 225 

window in the search image at the expected downstream location of displacement, as determined from the reference velocity. 226 

The NCC search radius is unique in both x- and y-directions and varies spatially. The NCC search radius is defined according 227 

to the surface type (ice or rock), magnitude of the component reference velocity (vx, vy), and the distance from the ocean. 228 

Ocean area is identified according to the Global Self-consistent, Hierarchical, High- resolution Geography Database 229 

(GSHHG). In Greenland, land ice area is identified according to a data set provided by F. Paul (Bolch et al., 2013); in 230 

Antarctica, land ice is identified according to Depoorter et al., 2013, and everywhere else land ice is determined using the 231 

Randolph Glacier Inventory Release 6.0. Rock is defined as neither ocean nor land ice. 232 

3.1.2 SAR data from Sentinel 1A-1B  233 

The ITS_LIVE project also includes velocity products derived from Synthetic Aperture Radar (SAR) imagery. 234 

SAR imagery has qualities that are valuable for imaging of polar glaciers and ice sheets as retrievals are not obscured by 235 

cloud or limited by solar illumination. These capabilities are highly complementary to optical retrievals. ITS_LIVE 236 

continuously processes “same-path-frame” SAR images from Sentinel 1A (2014-present), Sentinel 1B (2016-2021) and 237 

Sentinel 1C (2024-present) (see Table 1), separated by 12 days or fewer. When applied to SAR imagery, autoRIFT generates 238 

a rotation matrix that allows derivative surface velocities to be generated from two Level 2 ITS_LIVE granules, one 239 

ascending and one descending, using only range offsets that are significantly more precise than azimuth offsets (Joughin et 240 

al., 1998).  241 

Processing of SAR data closely mimics the processing steps described for optical data, with the following 242 

distinctions: All Sentinel-1 Single Look Complex (SLC, Level 1.1) of TOPS IW mode data are pre-processed using the 243 

NASA/JPL’s InSAR Scientific Computing Environment Version 2 (ISCE2) software (https://github.com/isce-244 

framework/isce2) prior to dense offset-tracking, where the two SLC images are precisely co-registered using the satellite 245 

orbit geometry. We use the Global Copernicus GLO-30 Digital Elevation Model in our SAR processing. All SAR images 246 

are preprocessed using a 21x21 Wallis operator to normalize for local variability in radar backscatter caused by topography, 247 

followed by a 32-bit floating point to 8-bit integer data compression to save space and improve efficiency. Pre-processed 248 

same-path-frame pairs of images are searched for matching features by finding local normalized cross-correlation (NCC) 249 

maxima at sub-pixel resolution by oversampling the correlation surface by a search-chip-size-dependent factor. Correlation 250 

surface oversample values of 32, 64, 128 and 128 are used for chip sizes of 240 m, 480 m, 960 m and 1920 m, respectively, 251 

using a Gaussian kernel (Lei et al., 2022). The search-chip-size-dependent factor is used to match the oversampling ratio 252 
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with maximum achievable precision from the data. See Lei et al. (2022) for a more detailed description of the Sentinel-257 

1processing. 258 

3.1.4 Velocity uncertainty in Level 2 image pairs  259 

Sources of uncertainty in ITS_LIVE Level 2 velocity data products are related to the accuracy of the geolocation 260 

that can be obtained for an image pair, and the quality of the correlation peak for a given sub-image pixel match. The 261 

observed initial offset error, assessed as the uncorrected offset to stable surfaces (rock or slow moving ice), averages under 262 

half a pixel for both Landsat 8 and Sentinel 2A/B/C, less for Sentinel 1A/B/C, but can be as large as a full pixel. Geolocation 263 

offsets are corrected by adjusting scene-pair velocities to known stable surfaces such as rock or slow-moving ice, and after 264 

correction, displacement accuracy is better than a tenth of a pixel (Lei et al., 2021). Correlation-related errors are also on 265 

the order of less than a pixel where correlation peaks are distinct. With restrictive masking of weakly correlated offset 266 

matches, remaining offsets over stationary targets have conservative root-mean-square errors of 0.1 pixels, which translate 267 

to conservative estimates of individual velocity errors of ~1 m/day for a pair of Landsat images separated by 16 days, or 268 

0.12 m/day error for a pair of Landsat images separated by 96 days, in agreement with similar data products (Mouginot et 269 

al., 2017). Offset errors are significantly smaller with larger search chip sizes, and, as each search chip used for offset 270 

determination contains 50% overlap with adjacent chips, the surrounding offsets can be averaged with the error decreasing 271 

as: 272 

𝑣!/#	%&&'& ≅	
𝑚𝑒𝑎𝑛(𝑣!/#	%&&'&)

*
𝑛
4,

( 	273 

	274 

where n is the number of offsets averaged. To correct for geolocation errors, component velocities vx and vy are tied to a 275 

"stable" surface wherein the median of each velocity component is set to zero over rock surfaces and set to the median 276 

reference velocity over slow-moving areas (ice movement of less than 15 m yr-1) of Greenland and Antarctica. If an image 277 

pair does not intersect a stable surface, an alternative error metric included with almost equivalent performance that uses 278 

the area of the slowest 25% of the reference velocity. After geolocation corrections are applied, velocity uncertainty in each 279 

component direction is calculated as the root-mean-square of measured velocities over the stable reference surface. An 280 

additional error metric v_error is calculated as:  281 

𝑣%&&'& =	.*
𝑣𝑥%&&'& ∗

𝑣𝑥
𝑣 ,

(
+ *𝑣𝑦%&&'& ∗

𝑣𝑦
𝑣 ,

(
	282 

 SAR orbit and viewing geometry between same-path-frame image pairs are highly stable, so the geolocation error 283 

is very small for an image pair consisting of the same satellite (both images from Sentinel-1A or both from Sentinel-1B). 284 

However, the inter-satellite (Sentinel-1A/B) image pairs suffer from subswath-dependent and full swath-dependent 285 

Deleted: -2286 
Deleted: -1287 
Deleted:  (15 m for Landsat 8)288 

Deleted:  289 



 

10 
 

geolocation errors due to systematic issues. To correct for subswath-dependent geolocation error, 11 Sentinel-1A/B image 290 

pairs were characterized over the interior of Greenland with slow-moving ice surface, and the inter-swath range/azimuth 291 

pixel offset bias estimates are then used as a static correction of the subswath-dependent geolocation error in each ITS_LIVE 292 

Sentinel-1 image pair product (Lei et al., 2022).  293 

3.2 Data cubes 294 

After generating Level 2 image pair data, a cloud optimised data cube product is generated internally to collect 295 

Level 2 data for compositing and mosaicking. In this process, each glacierized region is subdivided into 100 km by 100 km 296 

tiles, and Level 2 data within each tile are stored as layers in a Zarr file.  297 

3.3 Level 3 composites and mosaics 298 

Individual annual and climatological composites are created for each 100 km by 100 km data cube. As a first step, 299 

Level 2 optical and SAR data undergo numerous quality controls to account for issues related to geolocation errors, sensor-300 

specific performance, and feature-locking, all of which are described in Appendix A. Filtered Level 2 optical and SAR 301 

image pair velocities are combined to form annual composites for data cube using an error-weighted least-squares approach 302 

that simultaneously solves for the mean annual velocity and a sinusoid that characterizes the climatological average seasonal 303 

cycle (Greene et al., 2020). In this approach, total displacement measured between the acquisition times of each image pair 304 

is fit to an amplitude and phase of a sinusoid, and a constant value corresponding to each year. Displacement coefficients 305 

are then converted to velocity values to obtain annual mean velocity values vx, vy, and v. The result is a mathematical best-306 

fit characterization of typical seasonal velocity variability that accounts for total displacement over long polar winters when 307 

optical data are often unavailable, and an annual mean velocity value that is unbiased by the timing of image acquisitions 308 

throughout the year. In this process, outlier observations determined by a median absolute deviation filter are discarded after 309 

an initial fit to all data, then the fit is repeated with outliers removed.  310 

In addition to annual velocity values, overall summary climatology composites are generated for each region as 311 

Level 3 data files containing 0000 in place of a year in the filename. Summary velocities are calculated using a least-squares 312 

fit applied to image-pair data with a mid date between January 1, 2014 and January 1, 2023. Seasonal components (vx_amp, 313 

vy_amp, v_amp, vx_phase, vy_phase, v_phase) are determined directly from the least squares fit. The mean velocity and 314 

velocity trend are determined from an error-weighted linear fit to the annual values. We then solve the fit velocity for an 315 

arbitrary date of July 2, 2018 to create a consistent map of velocity with minimal spatial variation that might otherwise be 316 

caused by a simple mean of the data available in each grid cell. The intention here is to create a best snapshot of flow that 317 

can be used in mass-conserving divergence or gradient calculations, with a consistent effective timestamp across all pixels. 318 

The slope of the linear fit to annual values is also provided as velocity trends dvx_dt, dvy_dt, and dv_dt in the summary 319 
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mosaic file. Note that the date range used for climatology calculations will be updated as the record lengthens. It is 320 

recommended that users inspect product metadata to confirm the dates of the input data.  321 

Regional mosaics are then created by re-projecting 100 km by 100 km composites into a common projection and 322 

merging. When reprojecting that data, care is taken to rotate and scale the velocity components to be consistent with the 323 

target map projection. Overlapping composites are weighted by data counts. Count is taken as the maximum count of 324 

overlapping composites. ITS_LIVE produces mosaics for the 16 regions shown in Figure 2 that cover the majority of 325 

glacierized area. For areas that fall outside of these 16 regions, users can work directly with the unmerged composites. 326 

 327 

 328 
Figure 2. Shaded rectangles show the coverage of the 16 ITS_LIVE mosaic regions. Regions follow a similar naming 329 

convention as the Randolph Glacier Inventory Version 6. All 3086 100 km by 100 km ITS_LIVE data cubes are 330 

shown with black outlines.  331 

3.3.1 Error estimates and quality metrics 332 

Annual velocity mosaics contain a count variable indicating the number of image pairs that at least partially 333 

contribute to the error-weighted least-squares fit for that year. Annual mosaics also contain estimates of vx_error, vy_error, 334 

and v_error, which are error-weighted means of error estimates of all contributing Level 2 data for each year.  335 

Climatology mosaics containing 0000 in the filenames include a count variable indicating the total number of 336 

image pairs used to estimate the climatology velocities, trends, and seasonal variability and an outlier_percent indicating 337 
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the percentage of Level 2 data excluded from the Level 3 climatology fit. Formal errors from Level 2 products are propagated 338 

through to the annual mosaics but can produce an overly optimistic estimate of product errors, so we adopt a more 339 

conservative approach and calculate the errors as the standard error of the mean. This is calculated by taking the root-sum-340 

of-squares of the residuals to the least squares fit and dividing by the number of observations. Annual errors are then 341 

propagated to determine mean flow mosaics errors. Estimates of vx_amp_error, vy_amp_error, and v_amp_error 342 

describe the overall mismatch of velocity observations to the seasonal fit. Uncertainty of seasonal phase values cannot be 343 

estimated formally, but is expected to be accurate within a few days or weeks where amplitudes are significant and hundreds 344 

or more image pairs contribute to the fit (Greene et al., 2020).  345 

4 Data counts and global statistics 346 

ITS_LIVE version 2.0 global velocity mosaics describe the flow of 14,190,690 km2 of Earth’s land ice, covering 347 

every glacier larger than 5 km2 north of 83°S. The data reveal diverse landscapes of glacier flow and complex responses to 348 

an evolving climate. The summary mosaics show that the world’s fastest land ice is in Greenland, where the central trunk 349 

of Sermeq Kujalleq (Jakobshavn Glacier) exceeds 10,000 m yr-1. The fastest grounded ice in Antarctica flows from Pine 350 

Island Glacier into the Amundsen Sea at more than 4000 m yr-1, and the fastest glacier outside the great ice sheets is Hubbard 351 

Glacier in Alaska, where average speeds exceed 3000 m yr-1. Annual mosaics show Alaska’s Columbia Glacier exhibits 352 

velocities  comparable to Hubbard Glacier near its terminus, but its top speed is not accurately reflected in the climatology 353 

due to rapid retreat that has been ongoing there since the 1980s. Elsewhere in the Arctic, Storisstraumen Glacier (Basin 3) 354 

in Svalbard has averaged nearly 3000 m yr-1 while slowing steadily at a rate of 200 m yr-2 over the past decade. Glaciers in 355 

mid- to low- latitudes are generally characterized by slow velocities. However, areas of fast flow are observed for the largest 356 

glaciers (e.g. Pio XI glacier, Patagonian icefield reaches 3000 m/yr, Fedchenko glacier, Pamir, reaches 800 m/yr), at 357 

localized icefalls (Khumbu icefall, Nepal, up to 400 m/yr; Bossons icefall, French Alps, up to 500 m/yr) or during glacier 358 

surges, which are particularly prevalent in the Pamir and Karakoram (Khurdopin glacier, Karakoram, peaked above 3500 359 

m/yr in May 2017).  360 

 Level 3 summary mosaics of ITS_LIVE version 2.0 confirm that glaciers around Greenland have accelerated over 361 

the past decade, and Antarctica’s most significant dynamic changes are concentrated in the Amundsen Sea Embayment, 362 

most notably at Pine Island and Thwaites glaciers. Although velocity variability is seen in every region of the globe, glaciers 363 

have not responded uniformly to recent climate change. In the data, we do not see any definitive global bias toward glacier 364 

acceleration or deceleration since 2014, but we do see subtle regional trends, and a diversity of behaviours within each 365 

region. The largest magnitudes of dv_dt in Alaska are driven by surges, and the sign of these linear trends are closely linked 366 

to the timing of surge activity. For example, the velocities of Seward, Steller, and  Lowell glaciers all trended upward in the 367 

past decade due to recent surge events, while the velocities of Fisher, Walsh, and Klutan trended downward following surge 368 
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events that initiated in 2015 and 2016. Similarly, several glaciers in Svalbard and the Canadian Arctic show decadal velocity 369 

trends that can be attributed to timing of surge events.  370 

 Globally, the highest concentration of high-amplitude seasonal variability is observed in Alaska, where velocities 371 

tend to peak in spring or summer. In contrast, some glacier velocities in High Mountain Asia peak in spring, while others 372 

peak in fall. We confirm previous reports of seasonally variable discharge in Greenland that peaks in summer (King et al., 373 

2018), but find little evidence of seasonal variability around Antarctica, particularly on grounded ice.   374 

 In total, more than 36,000,000 image pairs currently contribute to ITS_LIVE version 2.0, beginning with the 1982 375 

launch of Landsat 4. The record is somewhat sparse globally until the 2013 launch of Landsat 8 (Figure 3), which was 376 

followed by yearly launches of Sentinel satellites through 2017 and the launch of Landsat 9 in 2021. Now, almost every 377 

grid cell in the world is captured by multiple satellites each year, velocity is directly measured throughout long polar nights 378 

with the Sentinel 1 satellites, and some locations are characterized by as many as 100,000 velocity estimates per year. The 379 

sheer volume of observations now available suggest that glaciology is no longer a field held back by data starvation.  380 

 381 

 382 
Figure 3: Time series of the number of Level 2 image pairs contributing to each grid cell of each Level 3 annual 383 

velocity mosaic of Greenland. Satellite names appear in the first year they contribute to an annual mosaic in 384 

ITS_LIVE version 2.0.  385 

 386 

4.1 Limitations and uncertainties 387 

Although Level 2 image pairs can be processed within minutes of satellite image availability, some appreciable 388 

lag is necessary before Level 3 mosaics can be generated. Because we process image pairs separated by up to 546 days, 389 
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some observations covering December 2023, for example, will not be available until their paired images are acquired in 390 

June 2025. To ensure that all available data are included in annual mosaics, ITS_LIVE generates Level 3 mosaics in 391 

dedicated campaigns after all contributing images are acquired. 392 

Level 2 image pairs are most accurate where rock or other stable surfaces are present within the satellite image 393 

frame for georeferencing. Data users should be aware that feature tracking directly measures displacements, and precision 394 

is limited by image pixel size and image quality. Velocity is calculated as displacement over time, so errors in velocity can 395 

be mitigated by increasing the time between images (dt), but long separation times between images come at the cost of 396 

temporal resolution and can allow the surface to change or lose its distinguishing features between image acquisitions. As 397 

described above, at some locations near ice edges, ice falls, or bends in glacier flow, surface patterns may be replicated with 398 

enough similarity that long values of dt confuse the feature-tracking algorithm by allowing it to skip or lock onto the 399 

incorrect pattern cycle. A filter is in place to identify and discard velocity values that likely correspond to skipping or locking 400 

before Level 3 mosaics are calculated (Section 3.3 and Appendix A), but users of Level 2 data should be aware of the 401 

potential benefits and risks of using image pairs with short versus long dt values.  402 

Level 3 velocity uncertainty reduces where an abundance of Level 2 observations are available, so mosaics 403 

generally have lower uncertainty values toward the poles, where satellite orbit patterns converge and many images overlap. 404 

Low data counts can result from sparse orbits, persistent cloud cover that obscures optical images, or high accumulation 405 

rates that create featureless or frequently changing surfaces that cannot be tracked. For example, data counts are particularly 406 

low along the high peaks of the Southern Andes, where cloud cover is common and accumulation rates are high. Whereas 407 

the median data count among land-ice grid cells is 5407 in the summary mosaic of Region 5 (Greenland), the median value 408 

is only 881 in Region 17 (South America), and some high elevation locations in this region have nearly no valid data at all. 409 

Metrics of seasonal variability are most accurate where several hundred or more image pairs contribute to the 410 

sinusoid fit (Greene et al., 2020). This condition is met in most locations around the world, but where data counts are lower, 411 

the least-squares fit becomes especially sensitive to extreme velocity values and v_amp may be larger than the true 412 

amplitude of seasonal variability. We note that the sinusoid fit to the seasonal cycle is a best-fit model that describes only 413 

the fundamental mode of seasonal variability and does not account for higher-order acceleration/deceleration or changes in 414 

seasonal behaviour from one year to the next. The timing of the maximum velocity in a sinusoid fit may not align with 415 

ephemeral spikes in velocity, and although filters are in place to remove outliers before performing the final fit, discrete 416 

events such as glacier surges can in some cases contaminate the overall seasonal characterization. We recommend exploring 417 

the complete time series of Level 2 data at any given location to interpret the summary mosaic metrics of seasonal variability. 418 

Similarly, interpretation of dv_dt velocity trends since 2014 may warrant inspection of the complete time series to determine 419 

any potential influence of surge type behaviour that is nonlinear by nature and cannot be accurately characterized by a linear 420 

fit.  421 
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The update of ITS_LIVE velocity data from version 1.0 to version 2.0 includes a change in reporting of velocity 422 

values. Whereas version 1.0 included a correction for map distortion, velocities in version 2.0 are now reported in map units 423 

of the projection in which the data are published. Projection distortion can be on the order of a few percent in some locations 424 

and should be corrected when comparing to in situ observations (e.g., GPS), but the change was made for consistency within 425 

the data product, to allow calculation of flow lines from the velocity components in map projected coordinates, and to allow 426 

flux estimates that no longer require the flux-gate cross-section to be corrected for map distortion.  427 

5 Data access and tools 428 

   429 
Figure 4: An example velocity record for lower Hubbard Glacier, Alaska. Upper left: ice flow speed for three points 430 

shown in the map on the right. Lower left: The same data, color-coded by satellite. Sentinel-1 (red) adds significant 431 

detail and sampling density in this very cloudy coastal setting, and provides speeds through the winter. Basemap 432 

from Earthstar Geographics (TerraColor NextGen) imagery. An interactive version of this figure can be accessed at  433 

[https://its-live.jpl.nasa.gov/app/index.html?z=11&lat=60.0151&lon=-139.4886&lat=60.0378&lon=-434 

139.4213&lat=60.0548&lon=-139.3423&int=1&int=100&x=2017-11-10&x=2024-12-12&y=-31&y=5115]. 435 

 436 

ITS_LIVE version 2.0 velocity data are hosted on Amazon AWS as part of the AWS Open Data Sponsorship 437 

Program and served through NASA’s National Snow and Ice Data Center Distributed Active Archive Center (NSIDC 438 

DAAC). The data can be accessed in several ways according to user needs and preferences.  439 

Level 2 image pairs and Level 3 mosaics can be accessed through the NSIDC using the ITS_LIVE app at 440 

https://nsidc.org/apps/itslive/. In this app, users can pan and zoom an interactive map to find Level 3 annual and summary 441 
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mosaics for each region or build search queries to find and download Level 2 image pair granules as NetCDF files.  A suite 442 

of other Python tools and notebooks are available at https://github.com/nasa-jpl/its_live and similar utilities for data 443 

download and analysis are available for Julia and MATLAB users, links to which are provided on the main ITS_LIVE 444 

website (https://its-live.jpl.nasa.gov) along with other helpful information. 445 

The Level 2 velocity pipeline generates a large amount of data, such that any single point on Earth may be covered 446 

by 100,000 image pairs or more. To eliminate the need for users to download or open such a large number of granules, 447 

ITS_LIVE also provides all Level 2 data in 3,086 100 km by 100 km cloud optimized Zarr data cubes that are structured 448 

for rapid time-series access. The data cubes retain all fields and metadata from the original Level 2 data, and are hosted on 449 

public AWS S3 cloud storage, allowing users to write generic workflows that do not require downloading tens or hundreds 450 

of thousands of individual Level 2 NetCDF files. ITS_LIVE also hosts a geojson catalogue of all of the data cubes on public 451 

S3 cloud storage. Utilities for working with Zarr data cubes can be found at https://github.com/nasa-jpl/its_live.  452 

 The adoption of cloud-hosted, cloud-optimized Zarr data cubes has enabled the creation of a serverless web app 453 

(Figure 4) that allows users to interactively explore glacier velocity time series at any location on Earth. The interface allows 454 

users to enter geographic coordinates or select points on a map to instantly plot the full record of velocity data at specified 455 

locations. Users can then share a hyperlink to the same map with collaborators or students, for frictionless workflows and 456 

lesson plans that are open and replicable. The map interface can be accessed at https://its-live.jpl.nasa.gov/app/index.html. 457 

6 Conclusions   458 

One of ITS_LIVE’s goals is to provide as complete a record of ice flow as practical from online imagery collections - 459 

an observational record of glacier flow that is global in scope, processed with open source tools in a consistent way, that 460 

can be extended with new data as it is acquired. ITS_LIVE has now processed more than 36 million satellite image pairs, 461 

spanning the globe and covering four decades and counting. The data are free and easily available in multiple file formats, 462 

can be accessed locally or in the cloud, and open-source tools are available in multiple computing languages to help users 463 

access, analyse, and understand the data. The release of version 2.0 preserves traditional NetCDF granule access while also 464 

supporting cloud-native Zarr access for modern big-data machine learning applications. Level 2 image pairs are available 465 

for process studies that require high resolution reconstructions of dynamic time series; Level 3 mosaics can easily be 466 

employed to estimate ice-sheet mass discharge and sea level contributions; and together, the ITS_LIVE products will enable 467 

precise ice-sheet and glacier model calibration and validation for improved projections of future changes in Earth’s climate 468 

system. Version 2.0 velocity products compliment additional ITS_LIVE geophysical data products of surface elevation 469 

(Nilsson et al., 2022, 2023; Nilsson and Gardner, 2024), ice-shelf basal melt (Paolo et al., 2024, 2023), and ice-sheet extent 470 

(Greene, 2024; Greene et al., 2022, 2024), which together aim to characterize changes in the world’s ice in every dimension, 471 

in usable, interoperable formats. 472 



 

17 
 

Version 2.0 of ITS_LIVE velocity products have been processed at 120 m resolution globally, which is an 473 

improvement over the 240 m resolution of the version 1.0 products. Future releases of ITS_LIVE velocity data products are 474 

expected to include data from the Sentinel-1C and NISAR. ITS_LIVE is also assessing ways to fill in the historical archive 475 

with data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument that was 476 

launched aboard the Terra satellite in 1999 and RADARSAT-1 that was launched in 1995 and decommissioned in 2013.  477 

The dense spatiotemporal coverage of the ITS_LIVE version 2.0 and future releases will help scientists discover 478 

previously unknown patterns of glacier flow and the mechanisms that cause and control them. In the data, users will find 479 

glaciers surging, shear margins migrating, kinematic waves propagating up and down glaciers, dynamic responses to calving 480 

events and ice-shelf thinning, and speedups and slowdowns driven by seasonal changes in basal hydrology. A world of new 481 

insights now reside in ITS_LIVE version 2.0, and are waiting to be discovered.   482 

Deleted: NASA-ISRO Synthetic Aperture Radar (483 
Deleted: )484 
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Appendix A 485 

 486 

The following details the processing steps used to generate composites from the multi-sensor data cubes (one composite per 487 

data cube):  488 

A. Add systematic errors to image pair component velocity errors, based on level of co-registration as 489 

indicated by the “stable_shift_flag” attribute that is included with the product. The stable_shift_flag is 490 

a flag for tracking the velocity bias correction: 0 = no correction; 1 = correction from overlapping stable 491 

surface mask (stationary or slow-flowing surfaces with velocity < 15 meter/year)(top priority); 2 = 492 

correction from slowest 25% of overlapping velocities (second priority). A random error for each image-493 

pair is provided with each granule and is calculated as the standard deviation between the reference and 494 

the measured component velocities over the co-registration surface (i.e. stable or slowest 25%). A default 495 

random error is assigned when stable_shift_flag = 0. We add an additional systematic error to the random 496 

errors as listed in Table 1A. 497 
 498 

Table 2A: Systematic error added to v[x/y] _error as a function of stable_shift_flag 499 

stable_shift_flag vx_error vy_error 

0 vx_error_random + 100 m/yr vy_error_random + 100 m/yr 

1 vx_error_random + 5 m/yr vy_error_random + 5 m/yr 

2 vx_error_random + 20 m/yr vy_error_random + 20 m/yr 

 500 
B. Over ice sheets it was found that image-pairs that were co-registered to limited areas of “stable” surfaces 501 

could contain unrealistically small velocity errors. These unrealistically small errors cause issues with the 502 

error-weighted composite generation. To correct for this, in regions RGI05A (Greenland) and RGI19A 503 

(Antarctica), we replaced vx_error and vy_error with vx_error_slow and vy_error_slow, respectively. 504 

C. Apply a StableShiftFilter. This routine discards low-quality image-pair data that have absolute vx/vy 505 

stable_shift values that exceed per each mission group thresholds (thresholds determined from 506 

histograms of stable_shift values for each sensor) that are listed in Table 2A. 507 
 508 

Table 3A: Mission specific StableShiftFilter thresholds 509 

Mission StableShiftFilter threshold 

Landsat 4/5 Infinite 

Landsat 7 Infinite 

Deleted: 1510 

Deleted: 2511 
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Landsat 8/9 61.6 m 

Sentinel 1 1.1 m 

Sentinel 2 28.5 m 

 512 

If an image-pair exceeds the mission specific threshold in StableShiftFilter (i.e. very large vy_stable_shifts 513 

have been applied) then the following actions were taken: If stable_shift_flag == 1 then the image-pair 514 

was excluded and if stable_shift_flag == 2 then the stable shift was removed from the velocity field (i.e. 515 

added back to vx/vy/vr/va). 516 

D. ITS_LIVE velocities are produced by finding correlated features between two image chips, a process 517 

referred to as feature tracking. In some locations, feature tracking can be susceptible to surface “skipping” 518 

or “locking”, where instead of tracking the surface features that are the intended targets, the correlation 519 

incorrectly locks onto features that have shapes that are similar to the intended target features (Figure A1). 520 

The problem is caused by high-frequency radiometric features that are not removed by the high-pass filter, 521 

and are stationary because of topography, surface water, curved flow lines (constrains both x and y), 522 

crevasse chains or some combination of all. Radar speckle tracking will also suffer from “skipping” where 523 

high frequency stationary features exist in the amplitude image (ice falls, curved flow lines, surface water). 524 

The degree of locking/skipping depends on the surface features, sensor characteristics (spatial resolution, 525 

radiometric resolution), the high-pass preprocessing filter and the search chip size. The three places where 526 

skipping/locking is most prevalent is near ice edges, ice falls and flow bends.  527 

 528 
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 529 
Figure A1. Example of surface skipping/locking feature tracking matches that result in periodic 530 

near-zero velocities. Retrieved flow speeds are shown for blue “x” that is located at the edge of an 531 

ice fall. Flow speeds are generally in the range 300-1000 m/yr. The clustering of flow speeds near 0 532 

m yr-1 are erroneous and result from surface skipping/locking. Basemap from Maxar (Vivid) 533 

imagery captured on Oct 15, 2022. Image generated from ITS_LIVE app for data cube 534 

exploration: https://its-live.jpl.nasa.gov/app/index.html?z=15&lat=36.1289&lon=74.5466&x=1987-535 

04-16&x=2022-12-27&y=-131&y=1401&int=1&int=500 536 

 537 

  538 

Sensors that have a lower spatial and/or radiometric resolution and image-pairs that are acquired further 539 

apart in time are most prone to surface skipping/locking. We apply the SensorExcludeFilter to identify 540 

and remove surface skipping/locking errors as follows: 541 

 542 
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a. Load landice_2km_inbuffer mask for the data cube being processed. landice_2km_inbuffer is a 543 

binary mask that defines the extent of glacierized areas after applying a 2 km inward buffer from 544 

the glacier edge.  545 

b. Define sensor groups: Landsat 4/5, Landsat 7, Landsat 8/9, Sentinel 2, Sentinel 1 546 

c. Exclude any data that has a velocity magnitude > 20,000 m per year from further analysis. 547 

d. Apply SensorExcludeFilter for locations that are within 2 km of the ice edged: 548 

landice_2km_inbuffer mask == 0. The following steps are taken when applying the 549 

SensorExcludeFilter:  550 

i. Sentinel-2 image-pair data is used as the reference sensor group as it is least prone to 551 

skipping/locking errors. If there are no Sentinel-2 granules for a given location then the 552 

SensorExcludeFilter is not applied. 553 

ii. Only include image-pair data with time separation less than or equal 64 days. This is 554 

done as image-pair data with longer time separations are more prone to skipping/locking 555 

errors. 556 

iii. For each sensor group we compute mean vx and mean vy and then calculate the unit 557 

vector. All image-pair vx and vy are then projected onto their corresponding sensor 558 

group unit vector. 559 

iv. Projected velocities are binned into 1/5 of a year bins spanning the time range of the 560 

Sentinel 2 data. For bins with more than three values the following statistics are 561 

calculated: mean projected velocity, standard deviation and count. If the reference 562 

sensor (Sentinel-2) has no bins with more than three values then the 563 

SensorExcludeFilter is not applied. 564 

v. For each non-reference sensor group we identify bins that are valid for both the sensor 565 

group and the reference sensor. If there are fewer than three co-valid bins then we do 566 

not apply the SensorExcludeFilter to that sensor group. If there are more than three co-567 

valid bins we compute standard error between the co-valid projected velocities. If the 568 

mean of the co-valid sensor group values is 3 times the standard error below the mean 569 

of the reference sensor, then the sensor group is excluded from composites calculation 570 

at that location. Here, excluded values are likely experiencing significant 571 

skipping/locking errors and therefore should not be included in the composites. 572 

E. Next, we apply the MaxDtFilter that determines the maximum image-pair time separation that should be 573 

included in the composite creation. This is done to minimize skipping/locking errors that are more 574 
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prevalent with increasing image-pair time separations. A maximum image-pair time separation (dt_max) 575 

is determined for each sensor and each location as follows: 576 

a. Calculate the median composite velocities for all image-pair data with time separation less than 577 

or equal 16 days. Each point must have at least 50 valid values. If a location has fewer than 50 578 

valid values, the time separation threshold is progressively increased from 16 to 32 to 64 to 128 579 

to 256 to infinity until at least 50 valid values are identified. If this condition is never met then 580 

the location is set to no-data in the composite creation. Where the condition is met, we calculate 581 

the median velocity magnitude and unit flow vector from the median composite velocities. 582 

b. If the median velocity magnitude is less than or equal to 50 m/yr then MaxDtFilter is not applied.  583 

c. Project all image-pair velocities to the median unit flow vector 584 

d. Bin projected velocities by image pair time separation into bins with edges 0, 16, 32, 64, 128, 585 

256, and infinity days 586 

e. For each bin calculate the median, count, and the median absolute deviation from the median 587 

times 1.4826 to make it a consistent robust estimator to the standard error (NMAD). 588 

f. Compute minimum and maximum projected velocity bounds for each bin based on median ± 589 

(NMAD * 0.67) 590 

g. Identify a reference bin as the first bin with 50 or more velocities moving from bin 0 to 16 days 591 

through to 256 to infinity days. If no such bin exists, the reference bin is set to the first bin with 592 

two or more velocities. If no such bin exists, MaxDtFilter is not applied. 593 

h. Find the first bin, moving from bin 0 to 16 days through to 256 to infinity days, that does not 594 

have overlapping bounds with the reference bin. Set maximum allowed time separation (dt_max) 595 

equal to the lower bound of the identified bin. If all bins overlap then dt_max is not applied. 596 

i. For composite creation, only include data for which the image-pair time separation is less than 597 

or equal to dt_max. 598 

F. Determine annual and climatological glacier velocities for each 120 m pixel location following Greene et 599 

al. (2020): 600 

a. Apply a 15 point moving window filter to all input velocity data. 601 

b. Create a matrix M of coefficients that define the percentage of each year spanned by each image-602 

pair. The matrix M is used in the least-squares calculation to obtain a mean annual velocity 603 

corresponding to each year. 604 

c. Calculate the least squares weighting for each value as 1 divided by the square of the 605 

displacement error (velocity error time dt). 606 
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d. Determine annual composite outputs as the optimal fit of all valid data in an error weighted least 607 

squares sense. 608 

e. For climatological composites we do the same least squares fit but only include image-pair data 609 

with a mid date between January 1, 2014 and January 1, 2023.  Mean velocity and velocity trend 610 

is determined from an error weighted linear fit to the annual data (time-intercept of January 1, 611 

2018). 612 

G. In areas distant from the ice edge (landice_2km_inbuff == 1) and with low radiometric contrast, Sentinel 613 

2 image-pair velocities can contain high noise due to image processing artifacts. These artifacts can 614 

introduce significant noise into the composite creation. To mitigate this, we apply a S2Filter as follows:  615 

a. Recompute the annual and climatological composite outputs excluding all Sentinel 2 data.  616 

b. If the original seasonal amplitude is twice as large as the recomputed seasonal amplitude, and 617 

the difference in the seasonal amplitudes is greater than 2 m per yr, then exclude Sentinel 2 data, 618 

at this location, from the composites.  619 

H. If annual velocity magnitude is greater than 20,000 m per year then all data for that year is excluded. If 620 

the seasonal amplitude is greater than 10,000 m per year then all data for that point is excluded.  621 
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I.  622 

Code availability 623 

All code created for the ITS_LIVE project is open sourced:  624 

● The autoRIFT feature tracking software is located at https://github.com/nasa-jpl/autoRIFT.  625 

● The Hyp3 ITS_LIVE image monitoring software is located at https://github.com/ASFHyP3/its-live-monitoring.   626 

● The Hyp3 autoRIFT deployment software is located at: https://github.com/ASFHyP3/hyp3-autorift. 627 

● The serverless web application is located at: https://github.com/nasa-jpl/itslive-web. 628 

● Python tools for working with the ITS_LIVE data are located at: https://github.com/nasa-jpl/itslive-py 629 

Data availability 630 

All ITS_LIVE products are freely accessible and can be found at the following locations: 631 

1. The NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC): 632 

https://nsidc.org/data. 633 

2. The Amazon Web Services through support of the Open Data Sponsorship Program: 634 

https://registry.opendata.aws/its-live-data. 635 

Author contributions 636 

ASG, MF and TS conceived of the ITS_LIVE project. ASG wrote its underlying autoRIFT software and the composite 637 

algorithms. JHK built the HyP3 autoRIFT plugin, deployed and managed HyP3 ITS_LIVE, and built the ITS_LIVE 638 
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