Response to Reviewer 1

We sincerely thank Reviewer 1 for taking the time to carefully review our manuscript and
provide constructive feedback. The reviewer’s comments were highly valuable in
identifying areas of improvement, need for clarity, and strengthening the scientific
interpretation of our results. In the revised manuscript, Reviewer 1’s comments are shown
in blue, with our responses provided directly below each comment.

1. Line 13 and 149: Although UAV technology offers extremely high-resolution data, it
Is important to recognize that the TSEB model, like most resistance-based energy
balance models, must be applied over an appropriate spatial domain to satisfy its physical
assumptions and underlying formulations. Consequently, TSEB cannot be applied at the
leaf level; the radiative transfer and turbulent exchange processes on which it depends
require the model to be run at spatial resolutions of the order of meters. The 15 cm
resolution of multispectral and thermal imagery used for running TSEB may need
stronger justification for its selection. Evapotranspiration maps are helpful for irrigation
management; however, 15 cm resolution may not be feasible for practical irrigation
applications.

We thank the reviewer for this important comment and fully agree that resistance-based
two-source energy balance models such as TSEB are not physically formulated for
individual leaves. The aerodynamic resistance and radiative transfer parameterizations in
TSEB assume canopy-soil exchange occurs over a representative surface element
(typically on the order of meters), as is commonly considered in satellite applications.

In our study, the 15 cm GSD was selected to minimize mixed pixels and allow a more
robust discrimination of soil and vegetation fractions (especially under partial canopy
cover), which improves the retrieval of key TSEB drivers. This strategy has been used in
several UAV TSEB studies that exploit very high resolution imagery primarily to reduce
mixed-pixel contamination, while still evaluating and interpreting results at aggregated
scales (e.g., Hoffmann et al., 2016; Gomez-Candon et al., 2021; Nassar et al., 2020; Gao
et al., 2023; Pintér & Nagy, 2022). In our study, final ET estimates were aggregated to the
EC flux footprint scale (~tens of meters), ensuring appropriate spatial comparability. At
this aggregated scale, modeled ET showed strong agreement with EC observations,
indicating that results remain physically consistent despite the high-resolution inputs.

Finally, we agree that 15 cm resolution is finer than required for practical irrigation
operations, where management zones are typically defined at coarser resolution. We
therefore clarify in the revised manuscript that the 15 cm outputs provide diagnostic value
for identifying within field spatial heterogeneity in crop water use and stress development,
and that these maps can be readily resampled/aggregated to operational irrigation
management units (e.g., irrigation sectors or variable-rate irrigation zones).



Paper improvement:
We have expanded the Methods/Discussion to clarify

. the physical interpretation scale of TSEB

o that high-resolution imagery is used to improve retrieval of canopy/soil
fractions and inputs
o that results intended for irrigation practice should be aggregated to coarser

management resolutions.

2. Line 162-163: The radiometric sensor calibration and imagery correction are
important for reliable LST data. Cited a reference and explained how the calibration
parameters were used in the calibration?

We expanded Section 2.4.1 to clarify the radiometric correction applied to the FLIR Vue
Pro R imagery and added supporting references. Before each flight, the camera radiometric
settings were updated using field measurements (emissivity, object distance/flight altitude,
air temperature, and relative humidity). These parameters are used in the internal
radiometric processing of the camera to correct apparent surface temperature for emissivity
and atmospheric effects. We also added citations that document the sensitivity of UAV
microbolometer LST to these parameters and the need for careful correction/calibration
(Kelly et al., 2019; Han et al., 2020; Virtue et al., 2021). We also clarify that despite these
radiometric corrections, bias may remain in uncooled thermal sensors under varying
environmental conditions, motivating our subsequent target-based correction procedure.

Paper improvement:

We expanded Section 2.4.1 to
e explain how radiometric correction parameters were applied
e add reference supporting this approach.

3. Line 174-181: Was a thermal infrared sensor or similar used to measure LST from
the ground-based reference targets? Later, it stated that a multiple regression model was
developed, but it is unclear how the ground temperature was measured and how the
environmental variables were used to generate the model.

Thank you for the opportunity to clarify. Ground reference temperatures were not measured
with a ground thermal camera. Instead, during the 2021 season we deployed two reference
targets for each flight: (1) a high-emissivity metal “hot” plate and (2) a “cold” water target.
Target temperatures were measured at the time of UAV overpass (beginning and ending of
each flight) using calibrated contact thermometry (contact probe attached to the back of the
plate; immersion probe for the water container). These measurements were used as
reference temperatures and compared to the corresponding radiometric temperatures
extracted from the UAV thermal imagery over the same targets.



Although radiometric correction parameters (emissivity, distance/altitude, air temperature,
RH) were applied in the FLIR Vue Pro R settings, a systematic temperature offset remained
and varied with meteorological conditions. Therefore, we developed a multiple linear
regression model based on the data collected in 2021 (when the targets were deployed) that
relates the temperature difference to on-site air temperature, wind speed, and relative
humidity. These predictors were selected because UAV uncooled microbolometers are
known to show environment-dependent residual bias, particularly linked to wind and
atmospheric conditions (Kelly et al., 2019; Han et al., 2020; Virtue et al., 2021). The fitted
regression was then applied to subsequent campaigns (2022-2023) to correct UAV LST
without requiring repeated deployment of reference targets for every later flight.

Paper improvement:

e We further clarified the reference targets and how the regression was implemented.
e We corrected the reference number made in the paragraph which was incorrect and
now points to the correct figure in the appendix.

4. Line 193: There is a lack of understanding of the terms: 1) fractional vegetation cover,
2) vegetation fractional from the viewing angle, and 3) fraction of green LAI. Also, there
Is an error in naming the terms throughout the paper; for example, at line 193, fractional
vegetation cover was labeled FVC, and equation B1 shows the calculation of the green
area index. Similar for line 221.

We thank the reviewer for pointing this out. We agree that our original wording was
ambiguous and could be interpreted as conflating three distinct variables that play different
roles in TSEB: (1) fractional vegetation cover derived from multispectral imagery, (2)
view-angle dependent canopy fraction used for radiative partitioning in TSEB, and (3) the
fraction of green LAI used to account for senescence effects. The confusion arose because
we used Beer—Lambert-type relationships to derive two LAI related inputs from different
sensors (multispectral GAI and LIiDAR PAI), while TSEB/pyTSEB also uses a Beer—
Lambert relation internally to compute a separate directional canopy fraction (fc) for
radiative partitioning. In addition, the terminology used in the main text around lines 193
and 221, as well as the presentation in Table 1, did not sufficiently distinguish these
concepts.

To remove ambiguity, we have harmonized definitions and symbols and clarified how each
quantity is obtained and used. In the revised manuscript we now clearly separate and
consistently define:

e Fractional vegetation cover (FVC): the areal fraction of ground covered by
vegetation when viewed from nadir. We estimate FVVC from multispectral imagery
(NDVI thresholding), and use FVC only as an intermediate variable to derive GAI
via a modified Beer—Lambert relationship calibrated with ground LAl
measurements. The use of FVC to LAI conversion via Beer—Lambert-type
relationships is common in crop remote sensing (e.g., Ali et al., 2015; Thorp et al.,
2010; Jia et al., 2017; Zhang et al., 2019; Yue et al., 2021).



e Directional canopy fractional cover in TSEB/pyTSEB (fc): a view-angle
dependent canopy fraction used internally for radiative partitioning between
canopy and soil. In pyTSEB, this fc term is computed from LAI using a Beer—
Lambert formulation (in our implementation) and is therefore not equivalent to the
nadir FVC derived from multispectral soil-vegetation pixel classification.

e Fraction of green LAI (fg): the fraction of LAI that is photosynthetically active
(“green”). This term is used to account for senescence and avoid treating senescent
canopy structure as fully transpiring vegetation. In our workflow, fq is derived
during senescence from the relationship between multispectral GAI and LiDAR
PAI (i.e., f;=GAI/PAI) and is used as the model input controlling canopy activity
during senescence.

We also clarify an important implementation detail in pyTSEB, which contributed to
potential confusion: fc can be provided as a user input; however, when LAI is supplied,
pyTSEB computes fc internally from the LAI input using Beer—Lambert extinction. In
practice, if both LAI and f. are provided simultaneously, the internally derived fc from the
LAI input is used for radiative partitioning. For this reason, we intentionally did not
prescribe an external fc in our workflow, and instead allowed pyTSEB to derive fc
consistently from the LAI input (GAI or PAI). We have now clarified this explicitly in the
revised Methods and Table 1. Finally, we clarify that using different LAI-type inputs
(multispectral -derived GAI vs LiDAR-derived PAI) affects not only the canopy structure
input itself, but also the internally computed . used for radiative partitioning.

Paper improvements:

e Clarified in the Methods (Section 2.4.4) and Table 1 that fc is computed internally
by pyTSEB from LAI (GAI/PAI) and is not derived from MS soil-vegetation pixel
classification in our workflow.

o Standardized terminology and symbols for multispectral FVC, internal TSEB
directional canopy fraction f;, and fraction of green LAl (fg) throughout the
manuscript, including around lines 193 and 221.

e Revised Table 1, Fig. 4, and Appendix descriptions to clearly distinguish MS-
derived FVC from directional f. and to better align with the original TSEB
formulation and pyTSEB implementation.

We believe these revisions remove the ambiguity and make it clear that FVC in our
workflow is not the same as fc in the TSEB equations, even though both rely on Beer—
Lambert concept.



4b. Table 1 shows the model input; however, the fractional cover listed in equation (A10)
Is based on vegetation fractional cover viewed from an angle, which differs from the
fractional cover calculated from multispectral data using soil and canopy pixel
classification. Revise the original paper of TSEB formulation. Figure 4 shows equation
A10, which is not related to the PT equation

We thank the reviewer for pointing this out. We agree that the original manuscript
contained inconsistent equation numbering and cross-referencing between Table 1, Figure
4, and Appendix A, which created confusion regarding the interpretation of f. and its
relation to radiometric temperature and the Priestley—Taylor (PT) formulation.

In the original submission, Eq. A10 was incorrectly used for multiple different terms: Table
1 referenced fc as Eq. A10, Figure 4 linked Eg. A10 to the Priestley—Taylor term, and
Appendix A used Eqg. A10 for the observed directional radiometric temperature TRAD.
This mislabeling contributed to confusion.

We have now corrected the equation numbering and labeling consistently throughout the
manuscript. In the revised Appendix A, fc (directional canopy fraction) is now correctly
defined in Egs. A12—-A13, and Table 1 has been updated to reference these equations
accordingly. The observed directional radiometric temperature TRAD is now consistently
labeled as Eq. A10 (previously A9 in Figure 4), and the Priestley—Taylor formulation is
now consistently labeled as Eq. A11 (previously mis-referenced as A10). Figure 4 and all
Appendix cross-references have been updated to reflect these corrections.

Paper improvement:
e The misalignment in equation numbering that caused incorrect cross-referencing
has been corrected. This has been corrected throughout Appendix A, Figure 4,
and Table 1.

5. Line 362: TSEB model compute the surface energy fluxes Rn, H, G and LE or ET is
calculated as a residual from the energy balance, in order to evaluate the outputs from
TSEB model it is also necessary to compare the modeled and measured Rn, H and G.
Additionally, TSEB model output are based on closed energy balance and EC data are
non-closed energy balance it is recommended to compare for both scenarios: energy
balance closed and non-closed.

Our original focus was on ET because it is the primary variable for water-use monitoring
and several recent UAV TSEB studies had validated LE/ET alone (Tunca 2023; De Lima
2024; Pintér & Nagy 2022). However, we agree that assessing the full set of energy fluxes
improves transparency. We have therefore updated the revised manuscript to include direct
comparisons of modeled versus EC-derived net radiation (Rn), sensible heat flux (H), and
ground heat flux (G), and we now present validation results using both open and closed
energy-balance EC fluxes.



Energy balance closure was performed using the Bowen-ratio-preserving correction
following Twine et al. (2000), consistent with approaches commonly used in comparable
UAV TSEB studies (e.g., Hoffmann et al., 2016; Brenner et al., 2017, 2018; Weit et al.,
2023; Gao et al., 2023). We initially emphasized comparisons against open EC fluxes to
avoid introducing closure-related assumptions (Mokhtari et al., 2021; Nassar et al., 2021),
but now provide both open and closed comparisons for completeness.

We provide these plots at the end of this response in Figure R1 — R4 for quick reference.
These figures will be further added to the manuscript with minor edits to match formatting.

Paper improvement:

The revised manuscript now reports performance metrics and figures using both open and
closed EC fluxes, including:

e Figure R1 modeled versus measured flux scatter plots for the different LST inputs

e Figure R2 RMSE and R? bar plot results of different LST inputs when compared
against closed EC fluxes

e Figure R3 modeled versus measured flux scatter plots for the different LAI inputs

e Figure R4 RMSE and R? bar plot results of different LAI inputs when compared
against closed EC fluxes

5b. The crop water stress can be derived from TSEB outputs. The paper does not present
a method for assessing crop water stress.The following paper explains a method to get
CWSI from TSEB: https://doi.org/10.1016/j.jag.2025.104737. Assessment of different
remote sensing techniques to estimate the CWSI of almond trees using canopy
temperature.

We thank the reviewer for this valuable suggestion. We agree that UAV-derived TSEB
outputs can be used not only to estimate evapotranspiration (ET), but also to derive spatial
indicators of crop water stress. In the original manuscript, we focused primarily on the
reliability of UAV-TSEB ET estimates (input retrieval, calibration, and validation against
EC). Nevertheless, potential water-deficit areas could already be identified from within-
field spatial variability in ET during each flight, where locally reduced ET indicated
reduced canopy water use relative to adjacent high-ET zones. These patterns were
consistent with later observed reductions in multispectral greenness and LiDAR-derived
canopy density, supporting the utility of thermal-based ET mapping for early detection of
emerging stress signals.

We have expanded the revised Discussion to more explicitly describe how TSEB outputs
can support crop water stress monitoring. In particular, integrating rainfall/soil moisture
information and hourly to daily scaling can improve stress quantification. We now also cite
and discuss recent work demonstrating how thermal stress indices such as the Crop Water


https://doi.org/10.1016/j.jag.2025.104737

Stress Index (CWSI) can be derived from TSEB outputs using temperature and energy
balance constraints (including the study suggested by the reviewer).

In addition, we have now included a daily ET upscaling component using the approach
evaluated by Cammalleri et al. (2014), which has also been applied and tested in UAV
based contexts (e.g., Nassar et al., 2021). Using our best-performing UAV TSEB
configuration, we now generate daily ET estimates and directly compare them with EC
daily ET, reported for both open and closed conditions. We additionally include a daily-
scale stress proxy by presenting daily ET relative to FAO-56 reference/potential ET (Ks)
which highlights spatial and seasonal patterns of water deficit conditions.

Paper improvements:

e Clarified that the current study focuses on instantaneous ET accuracy and model-
input optimization but discuss how they should be interrelated into daily ET
amounts to support irrigation and crop stress detection efforts.

e Added a paragraph to the Discussion explaining how spatial ET patterns indicate
potential water stress and how TSEB outputs could support CWSI derivation.

e Added afigure (Figure R5 in “New Figures” at the end of this response)

6. Line 545: A Daily ET map is needed for irrigation scheduling, and an extrapolation
technique using weather data can be used to upscale from hourly to daily ET. However,
soil moisture and rainfall data are required for irrigation scheduling. In the literature,
extrapolation techniques were assessed for ET derived from UAV data.

We thank the reviewer for this important point and agree that daily ET estimates are
required for many agronomic applications (e.g., irrigation scheduling), and that several
methods exist to temporally upscale high-resolution UAV ET snapshots to daily time
series. In the original manuscript, our primary objective was to evaluate the accuracy and
sensitivity of UAV TSEB ET estimates on flight days, focusing on calibration, input
uncertainty, and validation against eddy covariance fluxes. This focused on improving the
direct calculation of instantaneous ET using UAV multi-sensor inputs (thermal,
multispectral, LIDAR) and evaluating these outputs against 1-hour averaged eddy
covariance (EC) fluxes. This approach isolates the effects of model inputs, surface
temperature, LAI, and the fraction of green LAI (fy), on the accuracy of ET itself, without
adding uncertainty from temporal upscaling or cumulative stress metrics.

To better address the reviewer’s comment, we have expanded the Discussion to explicitly
reference established temporal upscaling approaches that combine UAV ET with
meteorological forcing and/or reference ET for daily scaling and gap filling (e.g., Sdnchez
etal., 2019; Brenner et al., 2017; Pintér & Nagy, 2022). In addition, we now include a new
figure showing daily UAV TSEB ET trajectories throughout each growing season ,
compared against EC daily ET (open and closed energy balance) and FAO-56



potential/reference ET, thereby illustrating how UAV ET snapshots can be integrated into
a daily ET framework.

Paper improvements:

e Added a paragraph to the Discussion explaining the rationale for using
instantaneous ET validation and its implications for daily scaling.

o Added citations to studies addressing temporal upscaling/daily ET interpolation to
better contextualize UAV ET mapping within daily ET applications.

o Added a new figure in the revised manuscript demonstrating daily ET interpolation
from instantaneous UAV acquisitions and seasonal dynamics (Figure R5 in “New
Figures™ at the end of this document)

7. Using high-resolution UAV imagery allows for canopy and soil temperature pixel
separation. TSEB-2T, using canopy and soil temperatures, reported better results than
TSEB-PT. TSEB-2 T does not consider Priestley-Taylor formulation initialization. Why
was the criterion to use TSEB-PT having high-resolution imagery?

We thank the reviewer for raising this point. The TSEB-2T configuration explicitly
separates canopy and soil temperatures, which can be advantageous when thermal imagery
allows a reliable separation of canopy and soil components (e.g., sparse canopies with
substantial soil exposure). However, comparative studies report mixed results regarding
the relative performance of TSEB-2T versus TSEB-PT, with only marginal or inconsistent
improvements depending on canopy structure and conditions (e.g., Nieto et al., 2019;
Guzinski et al., 2020; Gao et al., 2023). In practice, TSEB-2T is most often applied to
vineyards/orchards or other sparse canopies where soil contributions remain significant.

In our study, we initially evaluated both TSEB-2T and TSEB-PT for the 2021 campaign.
We found that TSEB-2T slightly improved ET estimation during early-stage sugar beet
conditions when canopy cover was sparse. However, as canopy closure increased, the
improvement was not consistent and in some cases performance deteriorated relative to
TSEB-PT. Given the highly dynamic canopy development of sugar beet and potato, and
the near-complete canopy cover of winter wheat for most of the season, the TSEB-PT
configuration proved more stable and robust across crop stages.

Moreover, TSEB-PT is more widely adopted in UAV and satellite use cases and provides
a well-established framework for sensitivity evaluation of key UAV-derived inputs (e.g.,
LST, LAI, and fg) which is the main focus of this study. The model’s internal canopy/soil
partitioning (through LAI and (fc) extinction-based radiative partitioning and iterative
resistance constraints) enables consistent flux estimation across partial to full canopy cover
conditions.

Thus, our decision to use TSEB-PT was guided by its proven stability across varying
canopy structures, broad applicability across crops, and interpretability for testing high-
resolution UAV input datasets (LIDAR, multispectral, and thermal). Nevertheless, we
acknowledge that for canopies with persistent soil exposure (e.g., vineyards, orchards),



TSEB-2T may offer advantages, as also discussed in Gao et al. (2023). This rationale and
supporting references have been added to the revised manuscript.

Paper improvements:

e Added to the introduction and discussion with mentioned citations about possible
improvements with TSEB-2T with vegetation with large and/or consistent soil
exposure.

e Added explanation in introduction to why TSEB-PT was chosen over TSEB-2T in
this use case but that there could be benefits to using TSEB-2T in other cases.

8. How was the shadow managed in the multispectral and thermal imagery, and how was
the impact on TSEB results?

We acknowledge that cast shadows can influence both thermal and multispectral UAV
products, particularly in heterogeneous or vertically structured canopies (e.g., orchards and
vineyards) and under low solar elevation angles (Aboutalebi et al., 2019; Lu et al., 2022;
Gao et al., 2023). In our study, however, shadow effects were expected to be limited
because crop height was relatively low (<0.6 m for sugar beet and potato), and winter wheat
reached dense canopy closure during later stages. Under these conditions, shading has a
smaller impact on the observed top-of-canopy radiometric temperature and vegetation
reflectance compared to tall, discontinuous canopies.

For the thermal imagery, we note that UAV measurements represent an instantaneous
canopy temperature snapshot that inherently includes local sunlit/shaded conditions. This
may become more critical when temporally upscaling to daily ET (since shadow positions
shift throughout the day). However, our primary evaluation focuses on instantaneous ET
(hourly EC comparison around overpass), where such temporal shadow dynamics are less
influential. For multispectral imagery, shadows can affect soil-vegetation discrimination
and spatial LAI/GAI estimates, but this impact was minimized by conducting flights under
relatively high solar angles and over homogeneous crop canopies.

Importantly, the LIDAR structural LAI/PAI is independent of illumination conditions and
therefore not affected by shading, representing an additional advantage of the multi-sensor
approach, particularly under conditions where multispectral canopy retrievals may be
shadow biased.

We have added a short discussion to explicitly acknowledge the potential impact of
shadows on UAV thermal and multispectral products, and to note that explicit
shadow/sunlit separation or bidirectional correction may be more critical for taller,
discontinuous canopies (e.g., vineyards/orchards) and for daily ET upscaling applications
(Aboutalebi et al., 2019; Gao et al., 2023).

Paper improvements:



e We added a short section describing shadow effects and mitigation strategies in the
UAYV processing workflow, and clarified how residual shadow related uncertainty
may affect multispectral and thermal data.

Minor Comments

e Line 42: The citation is missing a parenthesis
o The missing parenthesis has been added.

e Line 115: Adding the flux footprint of the EC tower may explain the
predominant winds on the study site
o The flux footprint reference has been updated in the main text and now
correctly points to its location in the Appendix.

e Line 236: Net radiation (Rn) is not the same as incoming solar radiation; line
147 shows incoming solar radiation as Rn
o The misuse of “Rn” to refer to incoming shortwave radiation has been
corrected.

e Line 293: there is no plot b) correlation of weather conditions with the
difference (delta) between the thermal sensor and actual temperature of ground
thermal targets for each date.

o The text now correctly cites the relocated Appendix figure.

New Paper Figures

This document provides additional figures generated for the revision, including (i)
expanded validation against open and energy-balance-closed eddy covariance (EC) fluxes
for all energy balance components, (ii) sensitivity comparisons for land surface
temperature (LST) and LAI/green fraction parameterizations, and (iii) daily ET upscaling
and stress proxy analysis.



o
=}
S

Open EC
Energy Balance
TSEB Flux (W/m?)

%)
=3
1S3

s o
o =)
3 3

TSEB Flux (W/m?)
©
54
2

Closed EC
Energy Balance

0

“p f:l
¥.

0

A
*
P
0

A
4
¥
]
°

200 400
EC Flux (W/m?)

200 400
EC Flux (W/m?)

600

Sugar Beet (2021)

600 :
® = 600
£ C B
Z 400 Z
< 400
g A E
= a =
m
g 2
22200 ot ® & 200
A3
L
&
&
o 0
0 100 200 300 400 500
EC Flux (W/m?)
| ]
600
|
L J
. - 600
= L B
= 400 E
E A E 400
= =
m 4 =
L(H 200 . |23)
[ (J 17
P - A9 = 200
®
A

0 100

200

300 400 500

EC Flux (W/m?)

Potato (2022)

4.‘0

200 400
EC Flux (W/m?)

600

0 200 400
EC Flux (W/m?)

600

Winter Wheat (2023)

Input Data Type

® LSTc
LSTog

Flux Type
¢ G
A H

e LE
® Rp

Figure R1. Comparison of modeled TSEB fluxes against eddy covariance (EC) flux observations
for each crop season. The upper panels show comparisons using open EC energy balance fluxes,
while the lower panels show comparisons using closed EC energy balance fluxes obtained with the
Bowen-ratio-preserving correction. The colors indicate the two land surface temperature inputs
while the shapes indicate the different fluxes. Shaded points represent observations acquired during
the defined crop senescence period.

]
Q
g E
O S m
b s @«
=R 2
()
=)
C 5 o
;:04
S8}
]
(0]
g £
-—1”—1
k=S &
—om§
Q
D>y
S &an
OSFI
o &
m

0.3
0.2
0.1

0.0
1.00
0.75
0.50
0.35
0.00

0.3
0.2
0.1

0.0
1.00
0.75
0.50
0.35
0.00

st =157,

0.21 (7727227

Sugar Beet (2021)

st =157,

Sugar Beet (2021)

YA
5| [m |

0.14

0.83

0.87

/ 7
’m

Potato (2022)

0.98

Potato (2022)

- LST =LSTrc Senescence Dates Removed

7

Winter Wheat (2023)

- LST =LSTc Senescence Dates Removed

Winter Wheat (2023)

0.15



Figure R2. RMSE and R2 between modeled TSEB-PT ET and EC derived ET, open and
closed energy balances, averaged over the EC flux footprint. Two TSEB-PT model runs
are compared based on land surface temperature (LST) input: original (OG) and target
corrected (TC). Statistical metrics are presented for the entire growing season and
excluding senescence periods, highlighting the influence of canopy condition on model
performance.
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Figure R3. Comparison of modeled TSEB energy balance fluxes against eddy covariance (EC)
observations for each crop season under different UAV derived vegetation parameter
configurations (LAI inputs and fraction of green LAI). The upper panels show comparisons using
open EC fluxes, while the lower panels show comparisons using closed energy balance EC fluxes
obtained with a Bowen-ratio-preserving correction. Colors indicate the LAI/fyconfigurations, while
marker shapes distinguish the individual flux components. Lighter markers represent observations
acquired during the defined crop senescence period.
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Figure R4. RMSE and R? between TSEB-PT modeled ET and EC derived ET, open and
closed energy balances, averaged over the EC flux footprint. Two different LAI inputs
were evaluated: green area index (GAI) and plant area index (PAI). Statistical metrics are
shown for all campaign dates and separately for dates excluding senescence. During
senescence periods, a third approach using the fraction of green LAI (fg = GAI/PAI) was
also evaluated to scale transpiration according to functional canopy condition.
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Figure R5. Daily evapotranspiration (ET) time series and daily-scale stress proxy derived
from UAV-TSEB and EC measurements. Top panels: interpolated daily ET from UAV
acquisition compared against EC daily ET (open and closed energy balances) and FAO-56
reference/potential ET. Bottom panels: corresponding relative ET stress proxy (Ks)
computed as the ratio of daily actual ET to FAO-56 reference/potential ET, illustrating
seasonal development of water deficit conditions across crops. Horizontal dashed lines
represent 0.7 possible water stress and 0.5 likely water stress compared to atmospheric
demand. The different shapes depict different spatial domains of pixel averages from the
UAYV instantaneous UAV ET that is then upscaled to daily it with including TSEB field
average, the flux footprint weighted average, and the average within the potential water
limitation zones (PWLZ) from figures 14 and 15.
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