
Response to Reviewer 1 
 

We sincerely thank Reviewer 1 for taking the time to carefully review our manuscript and 

provide constructive feedback. The reviewer’s comments were highly valuable in 

identifying areas of improvement, need for clarity, and strengthening the scientific 

interpretation of our results. In the revised manuscript, Reviewer 1’s comments are shown 

in blue, with our responses provided directly below each comment. 

 

1. Line 13 and 149: Although UAV technology offers extremely high-resolution data, it 

is important to recognize that the TSEB model, like most resistance-based energy 

balance models, must be applied over an appropriate spatial domain to satisfy its physical 

assumptions and underlying formulations. Consequently, TSEB cannot be applied at the 

leaf level; the radiative transfer and turbulent exchange processes on which it depends 

require the model to be run at spatial resolutions of the order of meters. The 15 cm 

resolution of multispectral and thermal imagery used for running TSEB may need 

stronger justification for its selection. Evapotranspiration maps are helpful for irrigation 

management; however, 15 cm resolution may not be feasible for practical irrigation 

applications. 

 

We thank the reviewer for this important comment and fully agree that resistance-based 

two-source energy balance models such as TSEB are not physically formulated for 

individual leaves. The aerodynamic resistance and radiative transfer parameterizations in 

TSEB assume canopy–soil exchange occurs over a representative surface element 

(typically on the order of meters), as is commonly considered in satellite applications. 

In our study, the 15 cm GSD was selected to minimize mixed pixels and allow a more 

robust discrimination of soil and vegetation fractions (especially under partial canopy 

cover), which improves the retrieval of key TSEB drivers. This strategy has been used in 

several UAV TSEB studies that exploit very high resolution imagery primarily to reduce 

mixed-pixel contamination, while still evaluating and interpreting results at aggregated 

scales (e.g., Hoffmann et al., 2016; Gómez-Candón et al., 2021; Nassar et al., 2020; Gao 

et al., 2023; Pintér & Nagy, 2022). In our study, final ET estimates were aggregated to the 

EC flux footprint scale (~tens of meters), ensuring appropriate spatial comparability. At 

this aggregated scale, modeled ET showed strong agreement with EC observations, 

indicating that results remain physically consistent despite the high-resolution inputs. 

Finally, we agree that 15 cm resolution is finer than required for practical irrigation 

operations, where management zones are typically defined at coarser resolution. We 

therefore clarify in the revised manuscript that the 15 cm outputs provide diagnostic value 

for identifying within field spatial heterogeneity in crop water use and stress development, 

and that these maps can be readily resampled/aggregated to operational irrigation 

management units (e.g., irrigation sectors or variable-rate irrigation zones). 



Paper improvement: 

We have expanded the Methods/Discussion to clarify  

 the physical interpretation scale of TSEB 

 that high-resolution imagery is used to improve retrieval of canopy/soil 

fractions and inputs 

 that results intended for irrigation practice should be aggregated to coarser 

management resolutions. 

2. Line 162-163: The radiometric sensor calibration and imagery correction are 

important for reliable LST data. Cited a reference and explained how the calibration 

parameters were used in the calibration? 

We expanded Section 2.4.1 to clarify the radiometric correction applied to the FLIR Vue 

Pro R imagery and added supporting references. Before each flight, the camera radiometric 

settings were updated using field measurements (emissivity, object distance/flight altitude, 

air temperature, and relative humidity). These parameters are used in the internal 

radiometric processing of the camera to correct apparent surface temperature for emissivity 

and atmospheric effects. We also added citations that document the sensitivity of UAV 

microbolometer LST to these parameters and the need for careful correction/calibration 

(Kelly et al., 2019; Han et al., 2020; Virtue et al., 2021). We also clarify that despite these 

radiometric corrections, bias may remain in uncooled thermal sensors under varying 

environmental conditions, motivating our subsequent target-based correction procedure. 

Paper improvement:  

We expanded Section 2.4.1 to  

 explain how radiometric correction parameters were applied 

 add reference supporting this approach. 

 

3. Line 174-181: Was a thermal infrared sensor or similar used to measure LST from 

the ground-based reference targets? Later, it stated that a multiple regression model was 

developed, but it is unclear how the ground temperature was measured and how the 

environmental variables were used to generate the model. 

Thank you for the opportunity to clarify. Ground reference temperatures were not measured 

with a ground thermal camera. Instead, during the 2021 season we deployed two reference 

targets for each flight: (1) a high-emissivity metal “hot” plate and (2) a “cold” water target. 

Target temperatures were measured at the time of UAV overpass (beginning and ending of 

each flight) using calibrated contact thermometry (contact probe attached to the back of the 

plate; immersion probe for the water container). These measurements were used as 

reference temperatures and compared to the corresponding radiometric temperatures 

extracted from the UAV thermal imagery over the same targets. 



Although radiometric correction parameters (emissivity, distance/altitude, air temperature, 

RH) were applied in the FLIR Vue Pro R settings, a systematic temperature offset remained 

and varied with meteorological conditions. Therefore, we developed a multiple linear 

regression model based on the data collected in 2021 (when the targets were deployed) that 

relates the temperature difference to on-site air temperature, wind speed, and relative 

humidity. These predictors were selected because UAV uncooled microbolometers are 

known to show environment-dependent residual bias, particularly linked to wind and 

atmospheric conditions (Kelly et al., 2019; Han et al., 2020; Virtue et al., 2021). The fitted 

regression was then applied to subsequent campaigns (2022-2023) to correct UAV LST 

without requiring repeated deployment of reference targets for every later flight. 

Paper improvement:  

 We further clarified the reference targets and how the regression was implemented.  

 We corrected the reference number made in the paragraph which was incorrect and 

now points to the correct figure in the appendix.  

4. Line 193: There is a lack of understanding of the terms: 1) fractional vegetation cover, 

2) vegetation fractional from the viewing angle, and 3) fraction of green LAI. Also, there 

is an error in naming the terms throughout the paper; for example, at line 193, fractional 

vegetation cover was labeled FVC, and equation B1 shows the calculation of the green 

area index. Similar for line 221. 

We thank the reviewer for pointing this out. We agree that our original wording was 

ambiguous and could be interpreted as conflating three distinct variables that play different 

roles in TSEB: (1) fractional vegetation cover derived from multispectral imagery, (2) 

view-angle dependent canopy fraction used for radiative partitioning in TSEB, and (3) the 

fraction of green LAI used to account for senescence effects. The confusion arose because 

we used Beer–Lambert-type relationships to derive two LAI related inputs from different 

sensors (multispectral GAI and LiDAR PAI), while TSEB/pyTSEB also uses a Beer–

Lambert relation internally to compute a separate directional canopy fraction (fc) for 

radiative partitioning. In addition, the terminology used in the main text around lines 193 

and 221, as well as the presentation in Table 1, did not sufficiently distinguish these 

concepts. 

To remove ambiguity, we have harmonized definitions and symbols and clarified how each 

quantity is obtained and used. In the revised manuscript we now clearly separate and 

consistently define: 

 Fractional vegetation cover (FVC): the areal fraction of ground covered by 

vegetation when viewed from nadir. We estimate FVC from multispectral imagery 

(NDVI thresholding), and use FVC only as an intermediate variable to derive GAI 

via a modified Beer–Lambert relationship calibrated with ground LAI 

measurements. The use of FVC to LAI conversion via Beer–Lambert-type 

relationships is common in crop remote sensing (e.g., Ali et al., 2015; Thorp et al., 

2010; Jia et al., 2017; Zhang et al., 2019; Yue et al., 2021).  



 Directional canopy fractional cover in TSEB/pyTSEB (fc): a view-angle 

dependent canopy fraction used internally for radiative partitioning between 

canopy and soil. In pyTSEB, this fc term is computed from LAI using a Beer–

Lambert formulation (in our implementation) and is therefore not equivalent to the 

nadir FVC derived from multispectral soil–vegetation pixel classification.  

 Fraction of green LAI (fg): the fraction of LAI that is photosynthetically active 

(“green”). This term is used to account for senescence and avoid treating senescent 

canopy structure as fully transpiring vegetation. In our workflow, fg is derived 

during senescence from the relationship between multispectral GAI and LiDAR 

PAI (i.e., fg=GAI/PAI) and is used as the model input controlling canopy activity 

during senescence. 

We also clarify an important implementation detail in pyTSEB, which contributed to 

potential confusion: fc can be provided as a user input; however, when LAI is supplied, 

pyTSEB computes fc internally from the LAI input using Beer–Lambert extinction. In 

practice, if both LAI and fc are provided simultaneously, the internally derived fc from the 

LAI input is used for radiative partitioning. For this reason, we intentionally did not 

prescribe an external fc in our workflow, and instead allowed pyTSEB to derive fc 

consistently from the LAI input (GAI or PAI). We have now clarified this explicitly in the 

revised Methods and Table 1. Finally, we clarify that using different LAI-type inputs 

(multispectral -derived GAI vs LiDAR-derived PAI) affects not only the canopy structure 

input itself, but also the internally computed fc used for radiative partitioning.  

Paper improvements: 

 Clarified in the Methods (Section 2.4.4) and Table 1 that fc is computed internally 

by pyTSEB from LAI (GAI/PAI) and is not derived from MS soil–vegetation pixel 

classification in our workflow.  

 Standardized terminology and symbols for multispectral FVC, internal TSEB 

directional canopy fraction fc, and fraction of green LAI (fg) throughout the 

manuscript, including around lines 193 and 221. 

 Revised Table 1, Fig. 4, and Appendix descriptions to clearly distinguish MS-

derived FVC from directional fc and to better align with the original TSEB 

formulation and pyTSEB implementation. 

We believe these revisions remove the ambiguity and make it clear that FVC in our 

workflow is not the same as fc in the TSEB equations, even though both rely on Beer–

Lambert concept. 



4b. Table 1 shows the model input; however, the fractional cover listed in equation (A10) 

is based on vegetation fractional cover viewed from an angle, which differs from the 

fractional cover calculated from multispectral data using soil and canopy pixel 

classification. Revise the original paper of TSEB formulation. Figure 4 shows equation 

A10, which is not related to the PT equation 

We thank the reviewer for pointing this out. We agree that the original manuscript 

contained inconsistent equation numbering and cross-referencing between Table 1, Figure 

4, and Appendix A, which created confusion regarding the interpretation of fc and its 

relation to radiometric temperature and the Priestley–Taylor (PT) formulation. 

In the original submission, Eq. A10 was incorrectly used for multiple different terms: Table 

1 referenced fc as Eq. A10, Figure 4 linked Eq. A10 to the Priestley–Taylor term, and 

Appendix A used Eq. A10 for the observed directional radiometric temperature TRAD. 

This mislabeling contributed to confusion. 

We have now corrected the equation numbering and labeling consistently throughout the 

manuscript. In the revised Appendix A, fc (directional canopy fraction) is now correctly 

defined in Eqs. A12–A13, and Table 1 has been updated to reference these equations 

accordingly. The observed directional radiometric temperature TRAD is now consistently 

labeled as Eq. A10 (previously A9 in Figure 4), and the Priestley–Taylor formulation is 

now consistently labeled as Eq. A11 (previously mis-referenced as A10). Figure 4 and all 

Appendix cross-references have been updated to reflect these corrections. 

 Paper improvement: 

 The misalignment in equation numbering that caused incorrect cross-referencing 

has been corrected. This has been corrected throughout Appendix A, Figure 4, 

and Table 1. 

 

5. Line 362: TSEB model compute the surface energy fluxes Rn, H, G and LE or ET is 

calculated as a residual from the energy balance, in order to evaluate the outputs from 

TSEB model it is also necessary to compare the modeled and measured Rn, H and G. 

Additionally, TSEB model output are based on closed energy balance and EC data are 

non-closed energy balance it is recommended to compare for both scenarios: energy 

balance closed and non-closed. 

 

Our original focus was on ET because it is the primary variable for water-use monitoring 

and several recent UAV TSEB studies had validated LE/ET alone (Tunca 2023; De Lima 

2024; Pintér & Nagy 2022). However, we agree that assessing the full set of energy fluxes 

improves transparency. We have therefore updated the revised manuscript to include direct 

comparisons of modeled versus EC-derived net radiation (Rn), sensible heat flux (H), and 

ground heat flux (G), and we now present validation results using both open and closed 

energy-balance EC fluxes. 



Energy balance closure was performed using the Bowen-ratio-preserving correction 

following Twine et al. (2000), consistent with approaches commonly used in comparable 

UAV TSEB studies (e.g., Hoffmann et al., 2016; Brenner et al., 2017, 2018; Weit et al., 

2023; Gao et al., 2023). We initially emphasized comparisons against open EC fluxes to 

avoid introducing closure-related assumptions (Mokhtari et al., 2021; Nassar et al., 2021), 

but now provide both open and closed comparisons for completeness. 

We provide these plots at the end of this response in Figure R1 – R4 for quick reference. 

These figures will be further added to the manuscript with minor edits to match formatting.  

Paper improvement: 

 

The revised manuscript now reports performance metrics and figures using both open and 

closed EC fluxes, including:  

 Figure R1 modeled versus measured flux scatter plots for the different LST inputs 

 Figure R2 RMSE and R2 bar plot results of different LST inputs when compared 

against closed EC fluxes 

 Figure R3 modeled versus measured flux scatter plots for the different LAI inputs 

 Figure R4 RMSE and R2  bar plot results of different LAI inputs when compared 

against closed EC fluxes 

5b. The crop water stress can be derived from TSEB outputs. The paper does not present 

a method for assessing crop water stress.The following paper explains a method to get 

CWSI from TSEB: https://doi.org/10.1016/j.jag.2025.104737. Assessment of different 

remote sensing techniques to estimate the CWSI of almond trees using canopy 

temperature. 

 

We thank the reviewer for this valuable suggestion. We agree that UAV-derived TSEB 

outputs can be used not only to estimate evapotranspiration (ET), but also to derive spatial 

indicators of crop water stress. In the original manuscript, we focused primarily on the 

reliability of UAV–TSEB ET estimates (input retrieval, calibration, and validation against 

EC). Nevertheless, potential water-deficit areas could already be identified from within-

field spatial variability in ET during each flight, where locally reduced ET indicated 

reduced canopy water use relative to adjacent high-ET zones. These patterns were 

consistent with later observed reductions in multispectral greenness and LiDAR-derived 

canopy density, supporting the utility of thermal-based ET mapping for early detection of 

emerging stress signals. 

We have expanded the revised Discussion to more explicitly describe how TSEB outputs 

can support crop water stress monitoring. In particular, integrating rainfall/soil moisture 

information and hourly to daily scaling can improve stress quantification. We now also cite 

and discuss recent work demonstrating how thermal stress indices such as the Crop Water 

https://doi.org/10.1016/j.jag.2025.104737


Stress Index (CWSI) can be derived from TSEB outputs using temperature and energy 

balance constraints (including the study suggested by the reviewer). 

In addition, we have now included a daily ET upscaling component using the approach 

evaluated by Cammalleri et al. (2014), which has also been applied and tested in UAV 

based contexts (e.g., Nassar et al., 2021). Using our best-performing UAV TSEB 

configuration, we now generate daily ET estimates and directly compare them with EC 

daily ET, reported for both open and closed conditions. We additionally include a daily-

scale stress proxy by presenting daily ET relative to FAO-56 reference/potential ET (Ks) 

which highlights spatial and seasonal patterns of water deficit conditions.  

Paper improvements: 

 Clarified that the current study focuses on instantaneous ET accuracy and model-

input optimization but discuss how they should be interrelated into daily ET 

amounts to support irrigation and crop stress detection efforts. 

 Added a paragraph to the Discussion explaining how spatial ET patterns indicate 

potential water stress and how TSEB outputs could support CWSI derivation.  

 Added  a figure (Figure R5 in “New Figures” at the end of this response) 

 

6.  Line 545: A Daily ET map is needed for irrigation scheduling, and an extrapolation 

technique using weather data can be used to upscale from hourly to daily ET. However, 

soil moisture and rainfall data are required for irrigation scheduling. In the literature, 

extrapolation techniques were assessed for ET derived from UAV data. 

We thank the reviewer for this important point and agree that daily ET estimates are 

required for many agronomic applications (e.g., irrigation scheduling), and that several 

methods exist to temporally upscale high-resolution UAV ET snapshots to daily time 

series. In the original manuscript, our primary objective was to evaluate the accuracy and 

sensitivity of UAV TSEB ET estimates on flight days, focusing on calibration, input 

uncertainty, and validation against eddy covariance fluxes. This focused on improving the 

direct calculation of instantaneous ET using UAV multi-sensor inputs (thermal, 

multispectral, LiDAR) and evaluating these outputs against 1-hour averaged eddy 

covariance (EC) fluxes. This approach isolates the effects of model inputs, surface 

temperature, LAI, and the fraction of green LAI (fg), on the accuracy of ET itself, without 

adding uncertainty from temporal upscaling or cumulative stress metrics.  

To better address the reviewer’s comment, we have expanded the Discussion to explicitly 

reference established temporal upscaling approaches that combine UAV ET with 

meteorological forcing and/or reference ET for daily scaling and gap filling (e.g., Sánchez 

et al., 2019; Brenner et al., 2017; Pintér & Nagy, 2022). In addition, we now include a new 

figure showing daily UAV TSEB ET trajectories throughout each growing season , 

compared against EC daily ET (open and closed energy balance) and FAO-56 



potential/reference ET, thereby illustrating how UAV ET snapshots can be integrated into 

a daily ET framework. 

Paper improvements: 

 Added a paragraph to the Discussion explaining the rationale for using 

instantaneous ET validation and its implications for daily scaling. 

 Added citations to studies addressing temporal upscaling/daily ET interpolation to 

better contextualize UAV ET mapping within daily ET applications. 

 Added a new figure in the revised manuscript demonstrating daily ET interpolation 

from instantaneous UAV acquisitions and seasonal dynamics (Figure R5 in “New 

Figures” at the end of this document) 

7. Using high-resolution UAV imagery allows for canopy and soil temperature pixel 

separation. TSEB-2T, using canopy and soil temperatures, reported better results than 

TSEB-PT. TSEB-2 T does not consider Priestley-Taylor formulation initialization. Why 

was the criterion to use TSEB-PT having high-resolution imagery? 

We thank the reviewer for raising this point. The TSEB-2T configuration explicitly 

separates canopy and soil temperatures, which can be advantageous when thermal imagery 

allows a reliable separation of canopy and soil components (e.g., sparse canopies with 

substantial soil exposure). However, comparative studies report mixed results regarding 

the relative performance of TSEB-2T versus TSEB-PT, with only marginal or inconsistent 

improvements depending on canopy structure and conditions (e.g., Nieto et al., 2019; 

Guzinski et al., 2020; Gao et al., 2023). In practice, TSEB-2T is most often applied to 

vineyards/orchards or other sparse canopies where soil contributions remain significant. 

In our study, we initially evaluated both TSEB-2T and TSEB-PT for the 2021 campaign. 

We found that TSEB-2T slightly improved ET estimation during early-stage sugar beet 

conditions when canopy cover was sparse. However, as canopy closure increased, the 

improvement was not consistent and in some cases performance deteriorated relative to 

TSEB-PT. Given the highly dynamic canopy development of sugar beet and potato, and 

the near-complete canopy cover of winter wheat for most of the season, the TSEB-PT 

configuration proved more stable and robust across crop stages. 

Moreover, TSEB-PT is more widely adopted in UAV and satellite use cases and provides 

a well-established framework for sensitivity evaluation of key UAV-derived inputs (e.g., 

LST, LAI, and fg) which is the main focus of this study. The model’s internal canopy/soil 

partitioning (through LAI and (fc) extinction-based radiative partitioning and iterative 

resistance constraints) enables consistent flux estimation across partial to full canopy cover 

conditions. 

Thus, our decision to use TSEB-PT was guided by its proven stability across varying 

canopy structures, broad applicability across crops, and interpretability for testing high-

resolution UAV input datasets (LiDAR, multispectral, and thermal). Nevertheless, we 

acknowledge that for canopies with persistent soil exposure (e.g., vineyards, orchards), 



TSEB-2T may offer advantages, as also discussed in Gao et al. (2023). This rationale and 

supporting references have been added to the revised manuscript. 

Paper improvements:  

 Added to the introduction and discussion with mentioned citations about possible 

improvements with TSEB-2T with vegetation with large and/or consistent soil 

exposure.  

 Added explanation in introduction to why TSEB-PT was chosen over TSEB-2T in 

this use case but that there could be benefits to using TSEB-2T in other cases.  

8. How was the shadow managed in the multispectral and thermal imagery, and how was 

the impact on TSEB results? 

We acknowledge that cast shadows can influence both thermal and multispectral UAV 

products, particularly in heterogeneous or vertically structured canopies (e.g., orchards and 

vineyards) and under low solar elevation angles (Aboutalebi et al., 2019; Lu et al., 2022; 

Gao et al., 2023). In our study, however, shadow effects were expected to be limited 

because crop height was relatively low (≤0.6 m for sugar beet and potato), and winter wheat 

reached dense canopy closure during later stages. Under these conditions, shading has a 

smaller impact on the observed top-of-canopy radiometric temperature and vegetation 

reflectance compared to tall, discontinuous canopies. 

For the thermal imagery, we note that UAV measurements represent an instantaneous 

canopy temperature snapshot that inherently includes local sunlit/shaded conditions. This 

may become more critical when temporally upscaling to daily ET (since shadow positions 

shift throughout the day). However, our primary evaluation focuses on instantaneous ET 

(hourly EC comparison around overpass), where such temporal shadow dynamics are less 

influential. For multispectral imagery, shadows can affect soil–vegetation discrimination 

and spatial LAI/GAI estimates, but this impact was minimized by conducting flights under 

relatively high solar angles and over homogeneous crop canopies. 

Importantly, the LiDAR structural LAI/PAI is independent of illumination conditions and 

therefore not affected by shading, representing an additional advantage of the multi-sensor 

approach, particularly under conditions where multispectral canopy retrievals may be 

shadow biased. 

We have added a short discussion to explicitly acknowledge the potential impact of 

shadows on UAV thermal and multispectral products, and to note that explicit 

shadow/sunlit separation or bidirectional correction may be more critical for taller, 

discontinuous canopies (e.g., vineyards/orchards) and for daily ET upscaling applications 

(Aboutalebi et al., 2019; Gao et al., 2023). 

Paper improvements: 



 We added a short section describing shadow effects and mitigation strategies in the 

UAV processing workflow, and clarified how residual shadow related uncertainty 

may affect multispectral and thermal data. 

Minor Comments 
 

 Line 42: The citation is missing a parenthesis 

o The missing parenthesis has been added. 

 

 Line 115: Adding the flux footprint of the EC tower may explain the 

predominant winds on the study site 

o The flux footprint reference has been updated in the main text and now 

correctly points to its location in the Appendix. 

 

 Line 236: Net radiation (Rn) is not the same as incoming solar radiation; line 

147 shows incoming solar radiation as Rn 

o The misuse of “Rn” to refer to incoming shortwave radiation has been 

corrected. 

 

 Line 293: there is no plot b) correlation of weather conditions with the 

difference (delta) between the thermal sensor and actual temperature of ground 

thermal targets for each date. 

o The text now correctly cites the relocated Appendix figure. 

 

 

New Paper Figures 
This document provides additional figures generated for the revision, including (i) 

expanded validation against open and energy-balance-closed eddy covariance (EC) fluxes 

for all energy balance components, (ii) sensitivity comparisons for land surface 

temperature (LST) and LAI/green fraction parameterizations, and (iii) daily ET upscaling 

and stress proxy analysis. 



 

Figure R1. Comparison of modeled TSEB fluxes against eddy covariance (EC) flux observations 

for each crop season. The upper panels show comparisons using open EC energy balance fluxes, 

while the lower panels show comparisons using closed EC energy balance fluxes obtained with the 

Bowen-ratio-preserving correction. The colors indicate the two land surface temperature inputs 

while the shapes indicate the different fluxes. Shaded points represent observations acquired during 

the defined crop senescence period. 

 



Figure R2. RMSE and R² between modeled TSEB-PT ET and EC derived ET, open and 

closed energy balances, averaged over the EC flux footprint. Two TSEB-PT model runs 

are compared based on land surface temperature (LST) input: original (OG) and target 

corrected (TC). Statistical metrics are presented for the entire growing season and 

excluding senescence periods, highlighting the influence of canopy condition on model 

performance. 

 

 

Figure R3. Comparison of modeled TSEB energy balance fluxes against eddy covariance (EC) 

observations for each crop season under different UAV derived vegetation parameter 

configurations (LAI inputs and fraction of green LAI). The upper panels show comparisons using 

open EC fluxes, while the lower panels show comparisons using closed energy balance EC fluxes 

obtained with a Bowen-ratio-preserving correction. Colors indicate the LAI/fg configurations, while 

marker shapes distinguish the individual flux components. Lighter markers represent observations 

acquired during the defined crop senescence period. 

 



 

Figure R4.  RMSE and R² between TSEB-PT modeled ET and EC derived ET, open and 

closed energy balances, averaged over the EC flux footprint. Two different LAI inputs 

were evaluated: green area index (GAI) and plant area index (PAI). Statistical metrics are 

shown for all campaign dates and separately for dates excluding senescence. During 

senescence periods, a third approach using the fraction of green LAI (fg = GAI/PAI) was 

also evaluated to scale transpiration according to functional canopy condition. 

 

 



Figure R5. Daily evapotranspiration (ET) time series and daily-scale stress proxy derived 

from UAV–TSEB and EC measurements. Top panels: interpolated daily ET from UAV 

acquisition compared against EC daily ET (open and closed energy balances) and FAO-56 

reference/potential ET. Bottom panels: corresponding relative ET stress proxy (Ks) 

computed as the ratio of daily actual ET to FAO-56 reference/potential ET, illustrating 

seasonal development of water deficit conditions across crops. Horizontal dashed lines 

represent 0.7 possible water stress and 0.5 likely water stress compared to atmospheric 

demand. The different shapes depict different spatial domains of pixel averages from the 

UAV instantaneous UAV ET that is then upscaled to daily it with including TSEB field 

average, the flux footprint weighted average, and the average within the potential water 

limitation zones  (PWLZ) from figures 14 and 15. 
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