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Abstract. Accurate quantification of anthropogenic CO2 emissions is crucial for mitigating climate change and verifying 

emission reduction policies. This study conducts a comparative analysis of China’s anthropogenic CO2 emissions for the period 

between 2000 and 2023 based on six widely used bottom-up inventories at their latest version (ODIAC2023, EDGAR2024, 

MEIC-global-CO2 v1.0, CAMS-GLOB-ANT v6.2, GEMS v1.0, and CEADs). The national total CO2 emissions increase from 

3.43 (3.21–3.63) Gt year-1 in 2000 to 12.03 (11.35–12.98) Gt year-1 in 2023, with three growth periods: rapid growth (2000–20 

2012, 0.56±0.015 Gt year-1), near-stagnation (2012–2016, 0.01±0.045 Gt year-1), and renewed growth (2016–2023, 0.30±0.016 

Gt year-1). Emissions are dominated by the electricity and heat production, and the industry and construction (78% of total 

emissions), with the former replacing the latter as the largest source after 2017. EDGAR consistently reports the highest 

national CO2 emissions, while MEIC provides the lowest, contributing to the large deviations after 2012. EDGAR and MEIC 

report different spatial distributions of the transport sector. EDGAR concentrates emissions along major roads and MEIC 25 

distributes them more diffusely. Extreme outliers (>105 ton CO2 km-2 year-1, against an average of 102 ton CO2 km-2 year-1) in 

these inventories arise from discrepancies in point source data in the Carbon Monitoring for Action (CARMA) versus the 

China Power Emissions Database (CPED). Overall, the uncertainty of total national anthropogenic CO2 emissions is within 5% 

(1σ), and the uncertainties are about 10–50% (1σ) at the provincial level. 
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1 Introduction 30 

The global mean temperature in 2024 was 1.5℃ above pre-industrial levels, making it the warmest year in the 175-year record 

of observations (WMO, 2025). This increases the urgency of achieving the Paris Agreement’s goal of limiting global warming 

to a maximum of 1.5℃ (Schleussner et al., 2016). Atmospheric carbon dioxide (CO2) is the dominant greenhouse gas (IPCC, 

2017), and its concentration (430.5 ppm in May 2025) is now 1.5 times higher than pre-industrial levels (280 ppm), mainly 

due to anthropogenic activities (WMO 2024; Etheridge et al., 1996). China, which is responsible for about 80% of East Asia’s 35 

anthropogenic CO2 emissions (Xia et al., 2025), has committed to reaching peak emissions by 2030 and carbon neutrality by 

2060. To achieve these targets, accurate quantification of anthropogenic CO2 emissions and understanding the uncertainties in 

emissions inventories are needed to guide emission reduction policies (Li et al., 2017a).  

A variety of bottom-up emission inventories have been developed to quantify anthropogenic CO2 emissions based on activity 

data and emission factors (EFs). The gridded inventories apply spatial proxies to allocate emissions across grid cells (Han et 40 

al., 2020a), including point sources (e.g., power plants), line sources (e.g., road networks), and area sources (e.g., population 

density, gross domestic product (GDP), nighttime lights). Global gridded products provide consistent, worldwide estimates 

with high spatial resolution (1 km or 0.1°), such as the Open-Data Inventory for Anthropogenic Carbon Dioxide (ODIAC) 

(Oda et al., 2018; Oda and Maksyutov, 2011), the Emissions Database for Global Atmospheric Research (EDGAR) (Janssens-

Maenhout et al., 2019), and the Global Emission Modeling System (GEMS) (Wang et al., 2013). China-specific inventories 45 

use provincial energy statistics and locally optimized EFs to account for national and subnational CO2 emissions, such as the 

Multi-resolution Emission Inventory for China (MEIC) (R. Xu et al., 2024; Li et al., 2017a; B. Zheng et al., 2018), the China 

High Resolution Emission Database (CHRED) (Cai et al., 2018) and the China Emission Accounts and Datasets (CEADs) (J. 

Xu et al., 2024; Y. Guan et al., 2021; Shan et al., 2018, 2020). 

Despite the different allocation methods and underlying data, the uncertainties in the overall magnitudes and trends of CO2 50 

emissions between the global inventories are within 10% at the global scale (Oda et al., 2019; Han et al., 2020a; R. Xu et al., 

2024). However, at the national scale, the uncertainties can reach 40-100% (Peylin et al., 2013) and can be even larger at the 

regional and city scales, e.g., 300% in the Beijing-Tianjin-Hebei area (Han et al., 2020b). The uncertainties between the 

different inventories are caused by three factors. First, different official statistics can lead to large emission gaps (D. Guan et 

al., 2012; Hong et al., 2017). Previous studies have shown significant discrepancies in energy consumption from different 55 

official statistics in China. Provincial-level data tend to align more closely with satellite observations than national-level 

statistics (Akimoto et al., 2006; D. Guan et al., 2012; Zhao et al., 2012). Second, the EF is another key element that causes the 

differences. The IPCC-based EFs used by ODIAC and EDGAR may not correctly reflect the specific fuel quality and 

combustion technologies in China (e.g., the EF for raw coal in CEADs and ODIAC is 0.499 and 0.746, respectively) (Han et 

al., 2020a). Third, spatial proxies determine how emissions are distributed across grid cells. For example, relying on outdated 60 

point-source databases such as the Carbon Monitoring for Action (CARMA) (the last update was on 28 November, 2012) may 

incorrectly distribute emissions in urban areas and introduce extrapolation errors (Han et al., 2020a; Wang et al., 2013; M. Liu 
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et al., 2013), while more comprehensive power plant inventories such as the China Power Emissions Database (CPED) provide 

better spatial accuracy (Li et al., 2017b; F. Liu et al., 2015).  

Previous studies have demonstrated large discrepancies among anthropogenic CO2 emission inventories in China and 65 

investigated the possible reasons. Han et al (2020a) compared nine global and regional inventories for China and found that 

differences in activity data and EFs can lead to significant uncertainties in emission estimates, with the maximum difference 

in 2012 reaching up to 33.8%. L. Zheng et al (2025) conducted a cross-scale comparison of EDGAR, MEIC, and CEADs and 

showed that coarse aggregation reduces the impact of outlier emission values, and leads to stronger agreement between 

inventories at a resolution of 3° × 3° compared to 0.25° × 0.25°. At the city level, Liu et al (2024) found that the relative 70 

standard deviations between six inventories are more than 50%, with uncertainties showing a strong logarithmic dependence 

on proxy variables such as population density and nightlight data. In recent years, China has announced a series of policy 

measures aimed at reducing carbon emissions, alongside changes in factory technology and energy structure. These 

developments underscore the urgent need for accurate and timely quantification of anthropogenic CO₂ emissions. Moreover, 

emission inventories are continuously updated to incorporate improved inputs (e.g., activity data, EFs, and refined 75 

methodology). Therefore, it is crucial to use the latest versions of the various inventories to better understand the recent changes 

in China's anthropogenic CO2 emissions. 

To this aim, this study conducts a comprehensive analysis of the spatiotemporal variation of China’s anthropogenic CO₂ 

emissions and investigates the differences among six widely used emission inventories at their latest versions: the global 

inventories ODIAC, EDGAR, MEIC, GEMS, and the global anthropogenic emissions for the Copernicus Atmosphere 80 

Monitoring Service (CAMS-GLOB-ANT, hereafter referred to as CAMS), and the China-specific inventory CEADs. The data 

and methods are presented in Section 2. We report our results in Section 3 and conclude the paper in Section 4. 

2 Data and methods 

Six anthropogenic CO2 emission inventories, including five gridded inventories (ODIAC2023, EDGAR2024, MEIC-global-

CO2 v1.0, CAMS v6.2, and GEMS v1.0) and one urban total emission inventory (CEADs), are applied to provide estimates 85 

of total emissions at the national, provincial, and city levels in China. The specific information of these inventories is presented 

in Section 2.1. Table 1 lists the temporal and spatial resolution, data version, and principal downscaling proxies of those 

inventories. All five gridded inventories were standardized to a common 0.1° × 0.1° coordinate system and a common unit 

of ton CO2 km-2 year-1 (Section 2.2). 

  90 
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Table 1. Specification of emission inventory statistics. 

 ODIAC EDGAR MEIC CAMS GEMS CEADs 

Version ODIAC2023 EDGAR2024 v1.0 v6.2 v1.0 NA 

Domain Global Global Global Global Global China 

Temporal 

coverage 

2000-2022 1970-2023 1970-2023 2000-2026 1700-2019 1997-2021 

Time 

resolution 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annually 

Annual 

Point 

source 

CARMA CARMA CPED EDGAR WRI NA 

Line source NA OpenStreetMa

p and 

OpenRailway

Map 

CDRM EDGAR NA NA 

Area source Nightlight data Population 

density and 

nightlight data 

Population 

density and 

land use 

Population 

density 

Population 

density, 

nightlight 

data and 

vegetation 

density 

NA 

Spatial 

resolution 

1km×1km, 1°×1° 0.1°×0.1° 0.1°×0.1° 0.1°×0.1° 0.1°×0.1° NA 

Unit of 

gridded 

emissions 

ton C cell-1 

month-1 

ton CO2 km-2 

year-1 

ton CO2 cell-1 

year-1 

kg CO2 m-2 

s-1 

g CO2 km-2 

year-1 

NA 

Emission 

estimates 

Global Global and 

national 

Global, 

national and 

provincial 

Global and 

National 

Global and 

national 

National, 

provincial and 

city 

Year 

published 

2024 2024 2024 2023 2024 2017 

Data source https://db.cger.ni

es.go.jp/dataset/O

DIAC/DL_odiac

https://edgar.jr

c.ec.europa.eu

/dataset_ghg2

http://meicmo

del.org.cn/?pa

ge_id=2341 

https://ecca

d.sedoo.fr/

#/metadata/

https://gems.

pku.edu.cn/d

ata/database 

https://www.cea

ds.net.cn/data/ 
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2023.html (last 

access: 19 April 

2025) 

024#p1 (last 

access: 19 

April 2025) 

(last access: 

19 April 2025) 

479 (last 

access: 19 

April 2025) 

(last access: 

19 April 

2025) 

(last access: 19 

April 2025) 

References Oda and 

Maksyutov 

(2011); Oda et al 

(2018) 

Janssens-

Maenhout et al 

(2019) 

R. Xu et al 

(2024) 

Soulie et al 

(2024);  

Wang et al 

(2013) 

J. Xu et al 

(2024); Y. Guan 

et al (2021b); 

Shan et al (2020, 

2018) 

 

2.1 Emission inventories 

ODIAC is a global grid-based CO₂ inventory that provides monthly emissions at a high spatial resolution of 1 km × 1 km. 

Total emissions are derived from the Carbon Dioxide Information Analysis Center (CDIAC), which compiles CO2 estimates 95 

from fossil fuel combustion, cement production, and gas flaring using United Nations energy statistics (Andres et al., 2016; 

Oda et al., 2018, 2019). These national totals are then spatially allocated for point sources using the CARMA power plant 

database and for area sources using satellite-based nightlight data. ODIAC does not explicitly map line sources such as road 

traffic. Although streetlights have been proposed as a proxy for such sources (Oda and Maksyutov, 2011), this approach may 

over-allocate emissions in brightly lit urban areas relative to rural or low-light regions due to the complexity of actual traffic 100 

distribution (Wang et al., 2013). We use ODIAC2023, which covers the years from 2000 to 2022. 

EDGAR is developed by the Joint Research Centre (JRC) and the Netherlands Environmental Assessment Agency. It combines 

national energy balance data from the International Energy Agency (IEA) with sector-specific activity data from sources such 

as BP plc, the United States Geological Survey (USGS), the World Steel Association, the Global Gas Flaring Reduction 

Partnership (GGFR), the National Oceanic and Atmospheric Administration (NOAA), and the International Fertilizer 105 

Association (IFA). Emissions are calculated using IPCC default EFs and spatially disaggregated using CARMA (point source), 

OpenStreetMap (line source), and population density and nighttime lights (area sources). We use EDGAR2024, which provides 

annual and monthly data from 1970 to 2023 at a spatial resolution of 0.1° × 0.1°. 

MEIC is developed by Tsinghua University to estimate global and regional CO2 emissions, with a particular focus on China. 

Emissions are estimated by integrating activity data from multiple international and local statistics, with 72% of global CO2 110 

emissions estimated based on information from individual countries in 2021. In China, the energy statistics data is obtained 

from the provincial-level database: China Energy Statistics Yearbook (CESY). Point emissions are allocated using the China 

coal-fired Power plant Emissions Database (CPED), which includes more than 7600 generating units—approximately 1300 

additional small power plants more than CARMA—and has been validated using satellite imagery. MEIC uses the 

transportation network data from the China Digital Road Network Map (CDRM) to constrain the distribution of vehicle activity 115 

as well as population density, GDP, and land use for other sectors (Li et al., 2017a; Xu et al., 2024b). We use the MEIC-global-
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CO2 product v1.0, the latest version with a spatial resolution of 0.1°, covering the period from 1970 to 2023 at monthly and 

annual resolutions. 

CAMS is a global inventory developed as part of the Copernicus Atmosphere Monitoring Service project. It builds on EDGAR 

and integrates several complementary datasets, including the Community Emissions Data System (CEDS), the CAMS-GLOB-120 

TEMPO for temporal emission profiles, and the CAMS-GLOB-SHIP for ship emissions. CAMS provides monthly emissions 

of 36 compounds (GHGs and major air pollutants) across 17 emission sectors (e.g., transportation, electricity generation, 

industry, etc.) at a resolution of 0.1° × 0.1° (Soulie et al., 2024). The version used in this study is CAMS-GLOB-ANT v6.2, 

which covers the period from 2000 to 2026. 

GEMS is a global CO₂ inventory that is developed as a successor to Peking University CO2 (PKU). It updates the EFs based 125 

on the latest literature and on-site measurements, and refines the technology splits in sectors such as road transport. The energy 

statistics come from the National Bureau of Statistics (NBS) for China and from sub-national datasets for many developed and 

developing countries. For countries lacking sub-national fuel consumption data, national-level statistics from IEA are used. 

Emissions are classified into seven sectors (power generation, industry, residential and commercial emissions, transportation, 

agriculture, and natural emissions) or six fuel/activity types (coal, oil, gas, waste, biomass, and industrial processes). The 130 

spatial allocation uses World Resources Institute (WRI) for point sources and combines vegetation density, population density, 

and nighttime lights for the remaining emissions (Wang et al., 2013). We use GEMS v1.0, which covers the period 1700–2021 

with a spatial resolution of 0.1°. However, the version available at the time of our analysis only included data up to 2019, 

which is therefore the endpoint used throughout our study. 

CEADs provides annual CO2 emissions at national, provincial, and city scales. The national and provincial emissions are based 135 

on CESY and NBS, respectively. In addition to total CO2 emissions, CEADs provides an energy inventory, a CO2 emission 

inventory for industrial processes, and EFs. CEADs uses locally optimized EFs derived from extensive sample 

measurements—such as 602 coal samples and over 4000 coal mines for coal EFs—which are considered more representative 

of China’s actual fuel characteristics than the IPCC-based default values (Shan et al., 2018, 2020; J. Xu et al., 2024; Y. Guan 

et al., 2021). In this study, we use the national and provincial CEADs datasets from 2000 to 2021. 140 

2.2 Data preprocessing 

To extract the data, we first used a mask with national boundaries (https://cloudcenter.tianditu.gov.cn/administrativeDivision) 

to extract the emissions within mainland China for the five global grid-based inventories (ODIAC, EDGAR, MEIC, CAMS, 

and GEMS). To enable consistent comparison between inventories, all gridded datasets were processed to a uniform spatial 

resolution of 0.1° × 0.1°, with emission units standardized to ton CO2 km-2 year-1. Unit conversions accounted for original 145 

formats and required area normalization for datasets with grid-cell-based values (e.g., ODIAC: ton C cell-1 month-1, MEIC: 

ton CO2 cell-1 year-1). A stoichiometric factor (44/12) was applied to convert carbon to CO2 where necessary (e.g., ODIAC). 

Spatial resampling was performed to align with the MEIC coordinate system, using nearest-neighbor interpolation or area-

weighted aggregation depending on the original resolution. National totals were taken directly from original reports, except 
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for ODIAC, which was summed from gridded data. At the provincial level, emissions were taken directly from the MEIC and 150 

CEADs data, while for the other datasets, estimates for the provinces were calculated using spatial zonal statistics based on 

standardized administrative boundary masks (https://cloudcenter.tianditu.gov.cn/administrativeDivision). 

3 Results 

3.1 National total CO2 emissions 

The six bottom-up inventories show a significant increase in total national CO2 emissions from 2000 to 2023 (GEMS to 2019, 155 

CEADs to 2021, ODIAC to 2022), with average emissions increasing from 3.43 Gt year-1 in 2000 to 12.03 Gt year-1 in 2023 

(Fig. 1). The differences between the emission inventories become more pronounced after 2012 and diverge in recent years, 

with the emission range (maximum-minimum difference) and the standard deviation (SD) increasing from 0.41 and 0.14 Gt 

year-1 in 2000 to 1.63 and 0.58 Gt year-1 in 2023. Before 2012, both metrics are relatively stable and low (range < 0.82 Gt year-

1, SD < 0.30 Gt year-1). After 2013, however, the range is above 1.03 Gt year-1 and peaked at 1.64 Gt year-1 in 2021, mainly 160 

due to EDGAR reporting the highest emissions versus MEIC reporting the lowest emissions. 

 

 

Figure 1. Annual anthropogenic CO2 emissions in mainland China from 2000 to 2023, as reported by six emission inventories: EDGAR, 

MEIC, CAMS, CEADs (up to 2021), ODIAC (up to 2022), and GEMS (up to 2019). Apart from ODIAC, all inventories provide national 165 
totals directly. We calculated China's emissions by summing the grid values within China for ODIAC. The shaded area indicates the standard 

deviation of the six inventories. 
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The increase in CO2 emissions shows three different phases (Fig. 1, Table 2). The first phase (2000–2012) shows the most 

rapid growth, with an average growth rate of 0.56 ± 0.015 Gt year⁻¹, driven by industrialization, urbanization, and rising 

energy demand. In contrast, emissions become relatively stable from 2012 to 2016 under the influence of adjustment of energy 170 

structure and industrial upgrades implemented as part of China’s 12th Five-Year Plan (Han 2020a; L. Zheng et al., 2025), 

resulting in an average annual increase rate of 0.01 ± 0.045 Gt year-1 and slightly negative rates in MEIC (−0.04 ± 0.02 Gt 

year⁻¹), CEADs (−0.09 ± 0.057 Gt year⁻¹), and ODIAC (−0.001 ± 0.035 Gt year⁻¹). From 2016 to 2023, all inventories show 

increased CO2 emissions again, with a slower rate (0.30 ± 0.016 Gt year-1) compared to the first phase. 

 175 

Table 2. Linear regression statistics (correlation coefficient (R) and slope with its uncertainty) between CO2 emissions and year for all six 

inventories and their average. 

  
Average 

emissions 
EDGAR MEIC CAMS  CEADs ODIAC GEMS 

2000-

2012 

Slope 0.56 0.58 0.55 0.57 0.57 0.54 0.56 

Uncertainty 

of slope 
0.015 0.016 0.016 0.016 0.019 0.014 0.014 

R 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 

2012-

2016 

Slope 0.01 0.10 -0.04 0.05 -0.09 -0.00 0.09 

Uncertainty 

of slope 
0.045 0.066 0.020 0.043 0.057 0.035 0.065 

R 0.07 0.65 -0.75 0.59 -0.67 -0.02 0.09 

2016- 

Slope 0.30 0.34 0.26 0.25 0.34 0.30 0.15 

Uncertainty 

of slope 
0.016 0.024 0.023 0.024 0.027 0.024 0.022 

R 0.99*** 0.98*** 0.98*** 0.97*** 0.99*** 0.98*** 0.98* 

Note: *, **, *** denote P<0.05, P<0.01, P<0.001 respectively. 

 

In response to the Paris Agreement’s requirement of a global stocktake every five years (https://unfccc.int/sites/default/files/ 180 

paris_agreement_english_.pdf), we analyze China’s emissions variation every five years (Fig. 2), using 2002 as the baseline 

year. The highest growth is recorded in the period from 2002 to 2007 (> 0.57 Gt year-1) and 2007-2012 (> 0.51 Gt year-1), 

followed by a stable period in the years from 2012 to 2017, in which the CEADs even records a slight decline (-0.01 Gt year-

1). Growth then resumed in 2017-2022 and 2022-2023, averaging 0.20 Gt year-1 and 0.24 Gt year-1, respectively.  

 185 
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Figure 2. Average annual CO₂ emission growth rate during the five-year periods. 

 

We use four major emission sectors defined by MEIC: electricity and heat production, industry and construction, residential 

and commercial, and transport (Table S1). To ensure comparability, we reclassify the sectoral CO2 emissions in the other 190 

inventories according to this framework (Table S2). The sectoral CO2 emissions show that the electricity and heat production 

sector and the industry and construction sector dominate emissions and together account for over 78% of total emissions (Fig. 

3). Prior to 2016, emissions from the industry and construction exceeded emissions from the electricity and heat production. 

However, since 2012, the sector of industry and construction has become stable and even declined in some inventories (MEIC, 

CEADs, and GEMS), while the sector of electricity and heat production shows a steady upward trend after 2017. As a result, 195 

the electricity and heat production became the largest emitting sector in most inventories after 2017 (CEADs: 2016, MEIC and 

GEMS: 2017, EDGAR: 2018). In addition, residential and commercial emissions as well as the transport sector, show similar 

trends in most inventories (except GEMS). In most inventories (e.g., EDGAR, MEIC, CAMS, and CEADs), emissions from 

the residential and commercial sector gradually exceeded those from the transport sector after 2016, while a reverse pattern 

was observed in GEMS. The changes in the size of sectoral CO2 emissions indicate the changes in China's energy structure 200 

and economic growth. 
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Figure 3. Anthropogenic CO2 emissions by sector—electricity and heat production, industries and construction, residential and commercial, 

and transport—for the period 2000–2023, as reported by EDGAR (a), MEIC (b), CAMS (c), CEADs (d), and GEMS (e). Although CEADs 205 

provides both national- and provincial-level sectoral data, the national-level version is used here for consistency with other inventories. 

ODIAC does not provide sectoral CO2 emissions. 

3.2 Spatial distribution at national scale 

3.2.1 Total CO2 emissions  

Since all five inventories (ODIAC, EDGAR, MEIC, CAMS, and GEMS) contain spatially explicit emission estimates for 2019, 210 

which is the latest year covered in GEMS version used in this study, we chose 2019 as the reference year for comparing the 

spatial patterns (Fig. 4) and the differences between the inventories using MEIC as a baseline (Fig. 5). As expected, the highest 

emissions are concentrated in Eastern China—especially in the North China Plain (NCP), the Beijing-Tianjin-Hebei (BTH), 

the Yangtze River Delta (YRD) and the Pearl River Delta (PRD)—as hotspots of anthropogenic CO2 emissions due to high 

population density and industrial activity (Fig. 4a-e). ODIAC shows the most intense emissions in the eastern regions, but has 215 

large spatial gaps in the west, as it relies on nighttime lighting that does not capture emissions in poorly lit areas (Fig. 4a). This 

approach tends to over-allocate emissions to brightly lit urban areas, while regions with limited nighttime lighting, including 
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both sparsely populated areas and areas with high population but limited lighting, such as Western Sichuan, Inner Mongolia, 

and Xinjiang, are not captured. 

 220 

 

Figure 4. Spatial distribution of CO₂ emissions in 2019 at a resolution of 0.1° from ODIAC (a), EDGAR (b), MEIC (c), CAMS (d), and 

GEMS (e), together with the mean (f) and standard deviation (SD) (g) of the emission inventories. Sub-graph (h) shows the scatter plot 

illustrating the correlation between the grid-level mean emissions and the standard deviation. 

 225 
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Figure 5. Spatial distribution of CO2 emission differences in 2019 between MEIC and each of the other inventories: (a) ODIAC minus 

MEIC, (b) EDGAR minus MEIC, (c) CAMS minus MEIC, and (d) GEMS minus MEIC. 

The SD between the five inventories (Fig. 4g) is strongly correlated with the mean of the emissions (Fig. 4f), with a slope of 230 

0.93 and a correlation coefficient (R) of 0.95 between log-transformed estimates (Fig. 4h). This indicates that emission 

uncertainties are highly correlated with emission levels, and that higher uncertainties coincide with higher emissions in 

economic and industrial regions such as NCP, BTH, YRD, and PRD. 

To assess spatial consistency, we compared ODIAC, EDGAR, CAMS, and GEMS with MEIC as a benchmark (Fig. 5). 

Compared to MEIC, ODIAC allocates more emissions in most coastal areas and northeastern provinces (e.g., Shandong, YRD, 235 

BTH, PRD, and Northeast China), but distributes lower CO2 emissions in the southwest region (e.g., Guizhou, Chongqing), 

where population density is relatively high but satellite nightlight signals are weak (Fig. 5a). CAMS shows an opposite pattern, 

reporting lower emissions in most coastal and northeastern areas, but slightly higher values in parts of Jiangsu and Guangdong 

(Fig. 5c). GEMS shows slightly lower emissions in remote western areas (e.g., Xinjiang, Tibet, western Inner Mongolia) and 

relatively higher values in eastern provinces (Fig. 5d).  240 

In space, EDGAR shows widespread lower emissions compared to MEIC, with negative differences dominating the spatial 

pattern (Fig. 5b). Positive differences, which are mainly concentrated along road distribution, are much rarer (only 39% of the 

number of negative difference grids). Despite this pattern, EDGAR yields a higher average grid-cell difference from MEIC 

(110.60 ton CO2 km-2 year-1) than GEMS (43.12 ton CO2 km-2 year-1), and is only moderately lower than ODIAC (171.22 ton 

CO2 km-2 year-1) and CAMS (168.80 ton CO2 km-2 year-1). This suggests that although the positive differences between 245 
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EDGAR and MEIC are spatially limited, they might be large in magnitude, potentially linking to emission hotspots such as 

highways or industrial clusters. We explore this further in Section 3.2.2. 

3.2.2 Sectoral CO2 emissions in EDGAR  

To explain the higher average grid-cell emissions of EDGAR (110.60 ton CO2 km-2 year-1 higher than MEIC in 2019) despite 

predominantly negative spatial differences, we analyze the discrepancies at the grid level (Fig. 6a). The cumulative sum of 250 

positive emission differences exceeds that of the negative ones when the absolute differences exceed 105 ton CO2 km-2 year-1. 

Although these extremes accounted for only 0.14% of the total grids, their cumulative magnitude (1.97×108 ton CO2 km-2 year-

1) is 1.91 times the absolute sum of all remaining grids (≤ 105 ton CO2 km-2 year-1, totaling -1.03×108 ton CO2 km-2 year-1). 

This confirms that the positive average grid-cell difference of EDGAR is caused by a small number of grids with extremely 

high emissions (>105 ton CO2 km-2 year-1). 255 

 

 

Figure 6. (a) Cumulative distribution of gridded emission differences (ton CO₂ km-2 year-1) between EDGAR and MEIC inventories. The 

cumulative sum for negative differences (blue line) is calculated using their absolute magnitudes and plotted against the corresponding 

positive values on the x-axis (i.e., 100 represents -100). The spatial distributions of the differences are shown in (b) EDGAR emissions 260 
without transport minus MEIC total emissions and (c) EDGAR transport emissions minus MEIC transport emissions. 

 

Spatially, most of the grids with positive emission differences are shown along major road networks (Fig. 5b). When the 

EDGAR’s transport sector is removed (Fig. 6b), the proportion of positive grids reduces drastically from 28.55% to 9.40%, 

confirming that the EDGAR's road transport emissions produce spatially extensive positive differences. However, the number 265 

of extreme positive emission differences (>105 ton CO2 km-2 year-1) remains unchanged after removing transport, suggesting 

that these extreme differences originate from non-transport sectors. A sectoral breakdown confirms that industry and 

construction contribute the most to the overall differences (1.16 Gt year-1), followed by electricity and heat production (0.56 

Gt year-1), while residential and commercial (–0.28 Gt year-1), and transport (–0.06 Gt year-1) play a smaller role. Given these 

magnitudes, we conclude that the extremely high emitters—though few in number—are most likely from localized industrial 270 

and power generation activities, where EDGAR may allocate emissions more aggressively to point sources than MEIC. This 

divergence may stem from EDGAR’s use of the CARMA power plant database, while MEIC uses CPED. Although CARMA 
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and CPED report similar total emissions (2% difference), CPED contains approximately 1300 more small power plants (F. Liu 

et al., 2015; Han et al., 2020a). CARMA’s sparser coverage concentrates emissions at fewer locations, thus producing 

EDGAR’s extreme positive grid anomalies. 275 

Despite the small total transport discrepancy (< 0.06 Gt year-1) between EDGAR and MEIC, their spatial patterns differ 

significantly (Fig. 6c). EDGAR concentrates transport emissions along major road networks, while MEIC distributes them 

more diffusely across China, which links to the different spatial allocation methods of EDGAR and MEIC. Notably, including 

transport emissions reduces the proportion of positive emission differences from 46.38% (non-transport only) to 28.55% (total 

difference). This indicates that the transport sectors of EDGAR and MEIC play a key role in the spatial pattern of positive 280 

emission differences, even though their total emissions are comparable.  

3.3 CO2 emission estimates at provincial level 

3.3.1 Provincial estimates in CEADs 

CEADs provides two forms of CO2 emission estimates for provinces: the “province” series (referred to as CEADs (provinces)), 

which provides total emissions directly for each province, and the “sectors” series (referred to as CEADs (sectors)), which 285 

compiles fuel- and sector-specific emissions before summing them to the provincial totals. However, in some provinces, 

particularly Shanxi, these two estimates differ significantly (Fig. 7a). In Shanxi, CEADs (provinces) exceeds CEADs (sectors) 

after 2008, with the discrepancy growing from 167.03 Mt year-1 in 2008 to 1167.73 Mt year-1 in 2021. In contrast, the CEADs 

(sectors) closely matches the other five independent inventories (ODIAC, EDGAR, MEIC, CAMS and GEMS), with its mean 

emissions deviating by no more than 3.84 Mt year-1 from the average of the five inventories. 290 
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Figure 7. (a) Anthropogenic CO₂ emissions in Shanxi Province from six inventories: EDGAR, MEIC, CAMS, CEADs, ODIAC, and GEMS. 

CEADs provides two types of provincial-level estimates: reported provincial-level totals ("CEADs (provinces)") and aggregated sectoral 

emissions ("CEADs (sectors)"). Emissions from other inventories were derived by spatial aggregation of raster data. (b) Comparison between 295 
total national emissions from CEADs and the sum of provincial level emissions from CEADs (sectors) and CEADs (nation). 

 

At the national level, we assess both provincial datasets by aggregating their values across all provinces and comparing the 

results with the national total reported by CEADs (Fig. 7b). When the CEADs (sectors) are summed, the reconstructed national 

CO2 emissions match the national CEADs values almost perfectly, showing a mean annual deviation of only 0.01 Gt year-1 300 

over the period 2000-2021. In contrast, the aggregated CEADs (provinces) reports significantly higher national totals and 

exceeds the national CEADs emissions by an average of 0.85 Gt year-1. These comparisons demonstrate that the sector-based 

CEADs provides consistent provincial totals that are in line with both the independent inventories and the national compilation 

of CEADs. We therefore recommend using the CEADs (sectors) for all analyses at the national and provincial levels. 

3.3.2 Comparison of emission inventories in typical provinces  305 

The mean and SD of the provincial CO2 emissions from 2000 to 2023 are shown in Figure S1. To investigate the causes of the 

discrepancies in the inventories, we select a subset of representative provinces for a detailed comparison. Representative 

provinces are identified using the SD and the mean emissions between the six emission inventories, calculated for the period 

2000-2023. Each year, all provinces are ranked based on these two metrics, and cumulative scores are calculated by summing 

the annual ranks over the entire 24-year period (2000-2023). The top six provinces in each category are selected, resulting in 310 

a list of nine representative provinces (some provinces repeat in the ranking of the two metrics): Inner Mongolia, Liaoning, 

Hebei, Shandong, Henan, Hubei, Shanghai, Jiangsu, and Guangdong (Table 3). In the third emissions phase (2016–2023), each 

of the six provinces with the highest emissions contributes more than 5.4 % of total national emissions, and together they 

account for almost 40 % of China’s emissions. To investigate the emission patterns and cross-inventory agreement, we examine 

the CO₂ emissions of these nine representative provinces (Fig. 8). 315 
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Table 3. The top six provincial-level regions with the highest cumulative CO₂ emissions and the highest SD among the inventories (2000–

2023), and CO2 emission percentage of the top six provinces with the highest emissions from 2016 to 2023. 

Top six provinces by 

mean emissions 

Cumulative 

rank score 

CO2 emission 

fractions (2016-

2023) 

Top six provinces 

by SD 

Cumulative 

rank score 

Shandong 24 8.43% Hubei 67 

Jiangsu 53 7.48% Hebei 69 

Hebei 72 6.37% Guangdong 106 

Guangdong 112 5.71% Liaoning 114 

Henan 115 5.41% Shandong 120 

Inner Mongolia 148 6.15% Shanghai 136 

Note: Cumulative rank score refers to the sum of a province’s annual rank (from highest to lowest) in terms of mean emissions or inter-

inventory standard deviation (SD) 320 
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Figure 8. Anthropogenic CO2 emissions from 2000 to 2023 for nine typical provinces: Hebei (a), Shandong (b), Guangdong (c), Liaoning 

(d), Hubei (e), Shanghai (f), Inner Mongolia (g), Henan (h), and Jiangsu (i). These provinces are selected based on either the highest average 

emissions or the highest SD among the inventories. 325 

Among the provinces with higher emissions, Hebei, Shandong, and Guangdong rank at the top in terms of both mean emissions 

and SD (Table 3). In Hebei (Fig. 8a), CAMS and ODIAC report emissions averaging 416 Mt year-1, which is 32% less than 

the other four inventories (618 Mt year-1), thereby contributing significantly to the SD. In Shandong (Fig. 8b), all inventories 

show increased emissions, but EDGAR (873 Mt year-1 on average) reports emissions over 30% higher than the others (670 Mt 

year-1), resulting in a pronounced dispersion. Guangdong (Fig. 8c) shows a pronounced ODIAC bias, with an average of 663 330 

Mt year-1, over 53% higher than the average of the other five inventories (433 Mt year-1). It is noteworthy that ODIAC 

significantly distributes more emissions in Jiangsu, Shanghai and Guangdong—especially in the latter two provinces. This 

suggests that the downscaling approach in ODIAC may overweight emissions in dense urban agglomeration (or city cluster). 

Liaoning, Hubei, and Shanghai (Fig. 8d-f) are selected due to their larger inter-inventory SD. In these provinces, CAMS 

exceeds the mean of the five inventories by 50-90% in Liaoning, 60-110% in Hubei, and 50-230% in Shanghai, which increases 335 

the dispersion. In Hubei, the high SD is also due to persistent dispersion across all six inventories (Fig. 8e). CAMS consistently 
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provides the highest estimates, while ODIAC provides the lowest, making Hubei the province with the highest SD, despite 

average CO2 emissions being only moderate. 

Inner Mongolia, Henan, and Jiangsu (Fig. 8g-i) are selected for their high emissions rather than their extreme dispersion. Inner 

Mongolia followed the national three-stage growth pattern, with MEIC and CEADs—both China-tailored inventories—340 

matching within 11 Mt year-1 and even outperforming other inventories after 2016 (Fig. 8g). In Henan, domestic inventories 

(MEIC and CEADs) show two distinct phases: growth until 2012, followed by a decline, while the other global-based 

inventories (except GEMS) slowly increase after 2016 (Fig. 8h). In Jiangsu, all inventories show a two-phase trend, with rapid 

growth before 2012 and relative stabilization thereafter. After 2012, ODIAC and EDGAR report the highest emissions in 

Jiangsu, while MEIC shows the lowest trend (Fig. 8j). In the nine provinces, CEADs and MEIC estimates are largely consistent, 345 

especially in Inner Mongolia, Shandong, Henan, Hubei, and Shanghai. 

Comparing the variability of emissions in the nine provinces and at the national level, the coefficient of variation (CV = 

SD/mean; Fig. S2) for total national emissions in China is the lowest and most stable for the period 2000-2023. In contrast, 

the time-averaged CV of the nine provinces with high emissions is at least 2.8 times higher than the national average (0.044). 

Liaoning, Hubei, and Shanghai, which show the largest SD between inventories, have even higher CVs, with values of 0.45, 350 

0.34, and 0.26, respectively. These values exceed the national CV by a factor of 5, while Shanghai's CV exceeds the national 

CV by a factor of 10. This contrast emphasizes that the uncertainties at the provincial level (10-50%) are larger than the 

deviations at the national level (<5%), which is due to systematic biases in certain inventories and their different downscaling 

methods. We suggest establishing more ground-based CO2 monitoring sites to verify and estimate anthropogenic CO2 

emissions in these provinces. 355 

4 Conclusions and discussion 

China’s annual anthropogenic CO₂ total emission increases from 3.42 Gt in 2000 to 12.03 Gt in 2023. The discrepancies among 

the inventories have widened from 0.41 Gt year-1 to 1.63 Gt year-1, which is mainly due to the highest estimates reported from 

EDGAR and the lowest values estimated from MEIC, especially after 2012. Our results are consistent with L. Zheng et al. 

(2025) but opposite to Han et al. (2020a), demonstrating the differences in emission versions (Our study: EDGAR2024, MEIC-360 

global-CO2 v1.0; Zheng: EDGAR v7.0, MEIC-China-CO2 v1.4; Han: EDGAR v4.3.2, MEIC-China-CO2 v1.3).  

The six inventories in this study agree on three emission phases: a rapid increase of 0.56 ± 0.015 Gt year⁻¹ (2000–2012), a 

near-stagnation phase of 0.01 ± 0.045 Gt year⁻¹ under the 12th Five-Year Plan (2012–2016), and a renewed growth of 0.30 ±

0.016 Gt year⁻¹ (2016–2023), with recent increases highlighting the challenges in controlling anthropogenic CO2 emissions. 

In terms of emission sectors, emissions are dominated by electricity and heat production, industry and construction (together 365 

accounting for 78% of total emissions). The former source overtook the latter as the largest source after 2017, reflecting 

changes in China’s energy structure. 
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In spatial terms, the higher emissions strongly corresponded with the higher uncertainty (reference 2019: R = 0.95, P< 0.01). 

Eastern regions, particularly the BTH, YRD, and PRD city clusters, had both the highest emissions and the largest SD. This 

pattern confirms the finding of Wang et al. (2013) that areas with high emission level have the largest uncertainties. Different 370 

allocation methods are the main reason for the spatial discrepancies between the inventories. The ODIAC nightlight proxy 

distributes more emissions in urban areas and fewer emissions in the western regions. EDGAR, which is based on the CARMA 

database, concentrated power plant emissions on fewer grids, resulting in extreme anomalies where the difference (EDGAR-

MEIC) exceeds 105 ton CO2 km-2 year-1. In contrast, MEIC uses the more detailed CPED and distributes similar total CO2 

emissions (difference within 2% of CARMA) across a larger number of power plants (Liu et al., 2015). The overall spatial 375 

grid-based difference between EDGAR and MEIC is dominated by negative values (71.45% of grids), due to the different 

allocation methods for the transport sector. EDGAR allocates emissions along major roads, while MEIC uses a more diffuse 

distribution. Despite a minimal overall difference in the sector of transport (< 0.06 Gt), the spatial mismatch was substantial, 

with 70.37% of transport-related grid differences being negative, due to the different disaggregation methods: OpenStreetMap 

and OpenRailwayMap in EDGAR versus CDRM in MEIC. 380 

At the provincial level, CEADs data show critical inconsistencies: its provincial sectoral emissions are consistent with the 

multi-inventory means, but the provincial series reports lower emissions in Shanxi by more than 127% (approximately 500 Mt 

year-1). We therefore recommend sector-based CEADs for province-level analyses. The uncertainty in the province scale is 

significantly higher than the national scale. For example, the coefficient of variation (CV) of Shanghai (0.45) is ten times 

higher than the national CV (0.044). The pronouncedly higher emissions in the coastal megacities (e.g., Shanghai, Jiangsu, 385 

and Guangdong) by ODIAC and the abnormal increase in CAMS by 50-230% in Liaoning, Hubei, and Shanghai exacerbate 

this divergence. Overall, reliable emissions quantification requires scale-appropriate inventories (e.g., the sectoral CEADs 

emissions versus the province-based CEADs emissions), improved spatial proxies (e.g., CPED vs. CARMA), and ensemble 

approaches to mitigate biases, especially in the carbon-intensive eastern regions. 
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