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Abstract. Accurate quantification of anthropogenic CO, emissions is crucial for mitigating climate change and verifying
emission reduction policies. This study conducts a comparative analysis of China’s anthropogenic CO, emissions for the period
between 2000 and 2023 based on six widely used bottom-up inventories at their latest version (ODIAC2023, EDGAR2024,
MEIC-global-CO, v1.0, CAMS-GLOB-ANT v6.2, GEMS v1.0, and CEADs). The national total CO, emissions increase from
3.43 (3.21-3.63) Gt year! in 2000 to 12.03 (11.35-12.98) Gt year™' in 2023, with three growth periods: rapid growth (2000—
20132, 0.56+0.0135 Gt year™"), near-stagnation (20132-2016, -0.071+0.02245 Gt year'), and renewed growth (2016-2023,
0.30+0.016 Gt year™'). Emissions are dominated by the electricity and heat production, and the industry and construction (78%
of total emissions), with the former replacing the latter as the largest source after 2017. EDGAR consistently reports the highest
national CO; emissions, while MEIC provides the lowest, contributing to the large deviations after 2012. EDGAR and MEIC
report different spatial distributions of the transport sector. EDGAR concentrates emissions along major roads and MEIC
distributes them more diffusely. Extreme outliers (>10° ton CO, km year!, against an average of 102 ton CO, km™ year'") in
these inventories arise from discrepancies in point source data in the Carbon Monitoring for Action (CARMA) versus the
China Power Emissions Database (CPED). Overall, the uncertainty of total national anthropogenic CO; emissions is within 5%

(10), and the uncertainties are about 10—50% (10) at the provincial level.
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1 Introduction

The global mean temperature in 2024 was 1.5°C above pre-industrial levels, making it the warmest year in the 175-year record
of observations (WMO, 2025). This increases the urgency of achieving the Paris Agreement’s goal of limiting global warming
to a maximum of 1.5°C (Schleussner et al., 2016). Atmospheric carbon dioxide (CO,) is the dominant greenhouse gas (IPCC,
2017), and its concentration (430.5 ppm in May 2025) is now 1.5 times higher than pre-industrial levels (280 ppm), mainly
due to anthropogenic activities (WMO 2024; Etheridge et al., 1996). China, which is responsible for about 80% of East Asia’s

anthropogenic CO» emissions (Xia et al., 2025) and about 32% of global CO, emissions according to the Global Carbon Project

(GCP, 2024: available at: https://globalcarbonbudget.org/), has committed to reaching peak emissions by 2030 and carbon

neutrality by 2060. Besides, China’s energy structure is also undergoing an obvious transition driven by policies such as the

renewable portfolio standards (RPS) and the clean air policy, which promote cleaner energy and industrial upgrades. The share

of renewables in total power generation increased from 16.6% in 2000 to 28.2% in 2020, although fossil fuels still dominate

and overcapacity issues remain (Zhao et al., 2022). Under this ongoing energy transitionFe-achieve-these-targets, accurate

quantification of anthropogenic CO» emissions and understanding the uncertainties in emissions inventories are needed to

guide emission reduction policies toward the dual-carbon goals (Li et al., 2017a).

A variety of bottom-up emission inventories have been developed to quantify anthropogenic CO» emissions based on activity
data and emission factors (EFs). The gridded inventories apply spatial proxies to allocate emissions across grid cells (Han et
al., 2020a), including point sources (e.g., power plants), line sources (e.g., road networks), and area sources (e.g., population
density, gross domestic product (GDP), nighttime lights). Global gridded products provide consistent, worldwide estimates
with high spatial resolution (1 km or 0.1°), such as the Open-Data Inventory for Anthropogenic Carbon Dioxide (ODIAC)
(Oda et al., 2018; Oda and Maksyutov, 2011), the Emissions Database for Global Atmospheric Research (EDGAR) (Janssens-
Maenhout et al., 2019), and-the Global Emission Modeling System (GEMS) (Wang et al., 2013), and the Copernicus
Atmosphere Monitoring Service (CAMS-GLOB-ANT, hereafter referred to as CAMS. Soulie et al., 2024). China-specific

inventories use provincial energy statistics and locally optimized EFs to account for national and subnational CO> emissions,
such as the Multi-resolution Emission Inventory for China (MEIC) (R. Xu et al., 2024; Li et al., 2017a; B. Zheng et al., 2018),
the China High Resolution Emission Database (CHRED) (Cai et al., 2018) and the China Emission Accounts and Datasets
(CEADs) (J. Xu et al., 2024; Y. Guan et al., 2021; Shan et al., 2018, 2020).

Despite the different allocation methods and underlying data, the uncertainties in the overall magnitudes and trends of CO;
emissions between the global inventories are within 10% at the global scale (Oda et al., 2019; Han et al., 2020a; R. Xu et al.,
2024). However, at the national scale, the uncertainties can reach 40-100% (Peylin et al., 2013) and can be even larger at the
regional and city scales, e.g., 300% in the Beijing-Tianjin-Hebei area (Han et al., 2020b). The uncertainties between the
different inventories are caused by three factors. First, different official statistics can lead to large emission gaps (D. Guan et
al., 2012; Hong et al., 2017). Previous studies have shown significant discrepancies in energy consumption from different

official statistics in China. Provincial-level data tend to align more closely with satellite observations than national-level
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statistics (Akimoto et al., 2006; D. Guan et al., 2012; Zhao et al., 2012). Second, the EF is another key element that causes the
differences. The IPCC-based EFs used by ODIAC and EDGAR may not correctly reflect the specific fuel quality and
combustion technologies in China (e.g., the EF for raw coal in CEADs and ODIAC is 0.499 and 0.746, respectively) (Han et
al., 2020a). Third, spatial proxies determine how emissions are distributed across grid cells. For example, relying on outdated

point-source databases such as the Carbon Monitoring for Action (CARMA) (the last update was on 28 November, 2012) may

incorrectly distribute emissions in urban areas and introduce extrapolation errors (Han et al., 2020a; Wang et al., 2013; M. Liu
etal., 2013), while more comprehensive power plant inventories such as the China Power Emissions Database (CPED) provide
better spatial accuracy (Li et al., 2017b; F. Liu et al., 2015).

Previous studies have demonstrated large discrepancies among anthropogenic CO, emission inventories in China and
investigated the possible reasons. Han et al (2020a) compared nine global and regional inventories for China and found that
differences in activity data and EFs can lead to significant uncertainties in emission estimates, with the maximum difference
in 2012 reaching up to 33.8%. £E-Zheng et al (2025) conducted a cross-scale comparison of EDGAR, MEIC, and CEADs and
showed that coarse aggregation reduces the impact of outlier emission values, and leads to stronger agreement between
inventories at a resolution of 3° x 3° compared to 0.25° x 0.25°. At the city level, Liu et al (2024) found that the relative
standard deviations between six inventories are more than 50%, with uncertainties showing a strong logarithmic dependence
on proxy variables such as population density and nightlight data. In recent years, China has announced a series of policy
measures aimed at reducing carbon emissions, alongside changes in factory technology and energy structure. These
developments underscore the urgent need for accurate and timely quantification of anthropogenic CO: emissions. Moreover,

emission inventories are continuously updated to incorporate improved inputs (e.g., activity data, EFs, and refined

methodology). Therefore, it is crucial to use the latest versions of the various inventories to capture these methodological

updates and better understand the most recent patternsehanges ofir China's anthropogenic CO, emissions.

To this aim, this study conducts a comprehensive analysis of the spatiotemporal variation of China’s anthropogenic CO:
emissions and investigates the differences among six widely used emission inventories at their latest versions: the global
inventories ODIAC, EDGAR, MEIC, GEMS,
Meﬂﬁefmg—Sewre%é@ArMS—GLQBﬁANLhereaﬁeHefeﬁeeH%CAMS) and the China-specific inventory CEADs. The data

and methods are presented in Section 2. We report our results in Section 3 and conclude the paper in Section 4. Compared

with previous studies (Han et al., 2020b; Zheng et al., 2025), we extend the temporal coverage to 2000-2023. enabling a more

current and consistent assessment of recent emission trends, inter-inventory discrepancies, and scale-dependent uncertainties

across China.

2 Data and methods

To ensure both temporal completeness and spatial representativeness, the selected emission inventories must provide a

continuous time-series covering most of the 2000-2023 period (with at least 2000-2019 coverage in GEMS) and have explicit
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spatial coverage over mainland China. Six anthropogenic CO, emission inventories, including five gridded inventories

(ODIAC2023, EDGAR2024, MEIC-global-CO; v1.0, CAMS v6.2, and GEMS v1.0) and one urban total emission inventory

(CEAD:s), are applied to provide estimates of total emissions at the national, provincial, and city levels in China. As

internationally recognized and widely used by previous studies (Li et al., 2017b; Han et al., 2020b; Liu et al., 2024; Zheng et

al., 2025), these inventories are publicly available from official repositories.

In addition to these six datasets, the National Greenhouse Gas Inventory (NGHGI) submitted by the Chinese government to

the United Nations Framework Convention on Climate Change (UNFCCC, available at: https://unfccc.int/reports) was also

collected. The NGHGI provides the officially reported national total emissions and therefore serves as an independent

benchmark for evaluating the reliability of the six inventories. As NGHGI covers only discrete years (2005, 2010, 2012, 2014

2017, 2018, 2020, and 2021), it is not included in the continuous temporal analysis but is used solely for national-level

comparison.

The specific information of tthe six selectedhese inventories is presented in Section 2.1. Table 1 lists the temporal and spatial
resolution, data version, and principal downscaling proxies of those inventories. All five gridded inventories were standardized

to a common 0.1° x 0.1° coordinate system and a common unit of ton CO, km™ year™! (Section 2.2).
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110 Table 1. Specification of emission inventory statistics.

ODIAC EDGAR MEIC CAMS GEMS CEADs
Version ODIAC2023 EDGAR2024  v1.0 v6.2 v1.0 NA
Domain Global Global Global Global Global China
Temporal 2000-2022 1970-2023 1970-2023 2000-2026  1700-2019 1997-2021
coverage
Time Monthly or Monthly or Monthly or Monthly or Monthly or Annual
resolution annual annual annual annual annually
Activity CDIAC, BP IEA CESY, IEA. EDGAR, NBS, [EA CESY., NBS
data BP CAMS-
GLOB-
Ship
Emission IPCC IPCC CEADs EDGAR Literature, on-site
factors national on-site measurements
submissions measuremen
in UNFCCC ts
IPCC
Point CARMA CARMA CPED EDGAR WRI NA
source
Line source NA OpenStreetMa CDRM EDGAR NA NA
P and
OpenRailway
Map
Area source  Nightlight data Population Population Population  Population NA
density and density and density density,
nightlight data  land use nightlight
data and
vegetation
density
Spatial lkmx1km, 1°x1°  0.1°x0.1° 0.1°x0.1° 0.1°x0.1° 0.1°x0.1° NA
resolution




115

120

Unit of ton C cell! ton CO; km? ton CO; cell! kg CO, m? g CO; km? NA

gridded month! year’! year™! s! year’!

emissions

Emission Global Global and Global, Global and Global and National,

estimates national national and National national provincial and
provincial city

Year 2024 2024 2024 2023 2024 2017

published

Data source

https://db.cger.ni

https://edgar.jr

http://meicmo

https://ecca

https://gems.

https://www.cea

es.go.jp/dataset/O c.ec.europa.eu del.org.cn/?pa d.sedoo.fi/ pku.edu.cn/d ds.net.cn/data/
DIAC/DL odiac  /dataset ghg?  ge id=2341 #/metadata/ ata/database  (last—aceess—19
2023.html  ¢ast 024#pl (ast (ast—aeeess: 479  (ast (ast—aeceess: Apri2025)

References  Oda and Janssens- R. Xu et al Soulic etal Wang et al J. Xu et al
Maksyutov Maenhout et al  (2024) (2024); (2013) (2024); Y. Guan
(2011); Oda et al (2019) et al (2021b);
(2018) Shan et al (2020,

2018)

*All datasets were last accessed on 19 April 2025.

2.1 Emission inventories

ODIAC is a global grid-based CO: inventory that provides monthly emissions at a high spatial resolution of 1 km x 1 km.
Total emissions are derived from the Carbon Dioxide Information Analysis Center (CDIAC), which compiles CO, estimates
from fossil fuel combustion, cement production, and gas flaring using United Nations energy statistics (Andres et al., 2016;
Oda et al., 2018, 2019). These national totals are then spatially allocated for point sources using the CARMA power plant
database and for area sources using satellite-based nightlight data. ODIAC does not explicitly map line sources such as road
traffic. Although streetlights have been proposed as a proxy for such sources (Oda and Maksyutov, 2011), this approach may
over-allocate emissions in brightly lit urban areas relative to rural or low-light regions due to the complexity of actual traffic
distribution (Wang et al., 2013). We use ODIAC2023, which covers the years from 2000 to 2022.

EDGAR is developed by the Joint Research Centre (JRC) and the Netherlands Environmental Assessment Agency. It combines

national energy balance data from the International Energy Agency (IEA) with sector-specific activity data from sources such

as BP plc_(formerly the British Petroleum company p.l.c.), the United States Geological Survey (USGS), the World Steel
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Association, the Global Gas Flaring Reduction Partnership (GGFR), the National Oceanic and Atmospheric Administration
(NOAA), and the International Fertilizer Association (IFA). Emissions are calculated using IPCC default EFs and spatially
disaggregated using CARMA (point source), OpenStreetMap (line source), and population density and nighttime lights (arca
sources)_(Janssens-Maenhout et al., 2019). We use EDGAR2024, which provides annual and monthly data from 1970 to 2023
at a spatial resolution of 0.1° x 0.1°.

MEIC is developed by Tsinghua University to estimate global and regional CO, emissions, with a particular focus on China.
Emissions are estimated by integrating activity data from multiple international and local statistics, with 72% of global CO,
emissions estimated based on information from individual countries in 2021. In China, the energy statistics data is obtained
from the provincial-level database: China Energy Statistics Yearbook (CESY). Point emissions are allocated using the China
coal-fired Power plant Emissions Database (CPED), which includes more than 7600 generating units—approximately 1300
additional small power plants more than CARMA—and has been validated using satellite imagery. MEIC uses the
transportation network data from the China Digital Road Network Map (CDRM) to constrain the distribution of vehicle activity

as well as population density, GDP, and land use for other sectors (Li et al., 2017a; Xu et al., 2024b). In this study, we use the

latest MEIC-Global-CO; product (v1.0), which provides higher spatial resolution (0.1° x 0.1°) and longer temporal coverage
(1970-2023) than the MEIC-China-CO; product (v1.4; 0.25° x 0.25°, up to 2020). It’s noteworthy that although MEIC-Global-

CO, is a global product, its emissions calculations for China continue to rely on local energy statistics (CESY) and emission

factors (CEADs), ensuring consistency with domestic data while improving spatiotemporal detailsWe-use-the MEIC-global-

CO,-productvl-0—the latest version-with-a-spatial resolution-of 01°_coverine the periodfrom1970-to-2023 at monthly-and

CAMS is a global inventory developed as part of the Copernicus Atmosphere Monitoring Service project. It builds on EDGAR
and integrates several complementary datasets, including the Community Emissions Data System (CEDS) for the extrapolation
of the emissions up to the current year, the CAMS-GLOB-TEMPO for monthly variabilitytempeoral-emission-profiles, and the
CAMS-GLOB-SHIP for ship emissions. CAMS provides monthly emissions -6f36-compounds{GHGs-and- majorairpotutants)
across 17 emission sectors (e.g., transportation, electricity generation, industry, etc.) at a resolution of 0.1° x 0.1° (Soulie et

al., 2024). The version used in this study is CAMS-GLOB-ANT v6.2, which covers the period from 2000 to 2026.

GEMS is a global CO; inventory that is developed as a successor to Peking University CO, (PKU). It updates the EFs based
on the latest literature and on-site measurements, and refines the technology splits in sectors such as road transport. The energy
statistics come from the National Bureau of Statistics (NBS) for China and from sub-national datasets for many developed and
developing countries. For countries lacking sub-national fuel consumption data, national-level statistics from IEA are used.
Emissions are classified into seven sectors (power generation, industry, residential and commercial emissions, transportation,
agriculture, and natural emissions) or six fuel/activity types (coal, oil, gas, waste, biomass, and industrial processes). The
spatial allocation uses World Resources Institute (WRI) for point sources and combines vegetation density, population density,

and nighttime lights for the remaining emissions (Wang et al., 2013). We use GEMS v1.0, which covers the period 1700-2021
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with a spatial resolution of 0.1°. However, the version available at the time of our analysis only included data up to 2019,
which is therefore the endpoint used throughout our study.

CEADs provides annual CO» emissions at national, provincial, and city scales. The national and provincial emissions are based
on CESY and NBS, respectively. In addition to total CO, emissions, CEADs provides an energy inventory, a CO, emission
inventory for industrial processes, and EFs. CEADs uses locally optimized EFs derived from extensive sample
measurements—such as 602 coal samples and over 4000 coal mines for coal EFs—which are considered more representative
of China’s actual fuel characteristics than the IPCC-based default values (Shan et al., 2018, 2020; J. Xu et al., 2024; Y. Guan
et al., 2021). In this study, we use the national and provincial CEADs datasets from 2000 to 2021.

2.2 Data preprocessing

To extract the data, we first used a mask with national boundaries (https://cloudcenter.tianditu.gov.cn/administrativeDivision)

to extract the emissions within mainland China for the five global grid-based inventories (ODIAC, EDGAR, MEIC, CAMS,
and GEMS). To enable consistent comparison between inventories, all gridded datasets were processed to a uniform spatial
resolution of 0.1° x 0.1°, with emission units standardized to ton CO, km year™!. Unit conversions accounted for original
formats and required area normalization for datasets with grid-cell-based values (e.g., ODIAC: ton C cell”! month™!, MEIC:
ton CO; cell! year™!). A stoichiometric factor (44/12) was applied to convert carbon to CO, where necessary (e.g., ODIAC).
Spatial resampling was performed to align with the MEIC coordinate system, using nearest-neighbor interpolation or area-
weighted aggregation depending on the original resolution. National totals were taken directly from original reports, except
for ODIAC, which was summed from gridded data. At the provincial level, emissions were taken directly from the MEIC and
CEADs data, while for the other datasets, estimates for the provinces were calculated using spatial zonal statistics based on

standardized administrative boundary masks (https://cloudcenter.tianditu.gov.cn/administrativeDivision).

3 Results
3.1 National total CO2 emissions

The six bottom-up inventories show a significant increase in total national CO» emissions from 2000 to 2023 (GEMS to 2019,
CEADs to 2021, ODIAC to 2022), with average emissions increasing from 3.43 Gt year! in 2000 to 12.03 Gt year™! in 2023
(Fig. 1). The differences between the emission inventories become more pronounced after 2012 and diverge in recent years,
with the emission range (maximum-minimum difference) and the standard deviation (SD) increasing from 0.41 and 0.14 Gt
year! in 2000 to 1.63 and 0.58 Gt year! in 2023. Before 2012, both metrics are relatively stable and low (range < 0.82 Gt year”
I, SD < 0.30 Gt year!). After 2013, however, the range is above 1.03 Gt year'! and peaked at 1.64 Gt year'! in 2021, mainly
due to EDGAR reporting the highest emissions versus MEIC reporting the lowest emissions.

To further assess the consistency of the six inventories, we calculate the mean absolute difference (MAD), which is defined as

the multi-year mean of annual absolute differences between each inventory and either the NGHGI or the six-inventory mean.

8
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Compared with NGHGI, the MADs range from 0.156 Gt year' (CAMS) to 0.835 Gt year' (MEIC). Against the six-inventory
mean, the MADs range from 0.12 Gt year' (ODIAC) to 0.449 Gt year' (MEIC). EDGAR reports the highest emissions, which

is about 0.370 Gt year™! larger than the mean emission. MEIC shows the lowest emission levels, which is about 0.449 Gt year

! less than the mean emission. Overall, CAMS exhibits the greatest consistency with the NGHGI, being at least 30% lower

than that of the other inventories. In comparison, ODIAC agrees most closely with the six-inventory mean, with an MAD at

least 58% lower than the others.
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Figure 1. Annual anthropogenic CO2 emissions in mainland China from 2000 to 2023, as reported by six emission inventories: EDGAR,
MEIC, CAMS, CEADs (up to 2021), ODIAC (up to 2022), and GEMS (up to 2019), and one government-reported data (NGHGI). Apart
from ODIAC, all inventories provide national totals directly. We calculated China's emissions by summing the grid values within China for
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ODIAC. The shaded area indicates the standard deviation of the six inventories. It’s noteworthy that the inter-inventory mean and SD were
calculated from the above mentioned six inventories.

The increase in CO, emissions shows three different phases (Fig. 1, Table 2). The first phase (2000-20132) shows the most
rapid growth, with an average growth rate of 0.56 + 0.0135 Gt year™!, driven by industrialization, urbanization, and rising
energy demand. In contrast, emissions become relatively stable from 20132 to 2016, with all inventories showing a slight
decline (—0.07 + 0.022_Gt year! on average). This short-term stagnation is mainly influenced by the underthe-influence-of
adjustment of energy structure and industrial upgrades—implemented-aspart-of under China’s 12th Five-Year Plan, and the
implementation of air clean policy since 2013 (Han et al., 2020b; Shi et al., 2022; Zheng et al., 2025). ;resulting-in-an-average
—0-094+0-057-Gt-year ), and ODIAC(—0-0014+0-035-Gtyear)-From 2016 to 2023, all inventories show increased CO,

emissions again, with a slower rate (0.30 + 0.016 Gt year'") compared to the first phase. This rebound could be attributed to

the expansion of infrastructure investment and the recovery of coal-based power generation, as the mitigation effect of the

cleaner energy mix weakened after 2016 (Zhang et al., 2020).

Table 2. Linear regression statistics (correlation coefficient (R) and slope with its uncertainty) between CO2 emissions and year for all six
inventories and their average.

Average
o EDGAR MEIC CAMS CEADs ODIAC  GEMS
emissions
Slope 0.56 0.58 0.535 0.567 0.57 0.534 0.56
2000- )
Uncertainty
2013 0.0135 0.0146 0.016 0.0156 0.0179 0.0134 0.0124
5 of slope
R 0.99%** 0.99%%*  (.99%**  (.99***  (.99%**  (99¥**k  (.99¥**
5013 Slope -0.07+ -0.016 -0.064 -0.010-95 -0.169 -0.066 -0.09
~ Uncertainty
2- 0.02245 0.03466  0.0296 0.03543  0.01457  0.01635  0.05765
2016 of slope

-0.916:67  -0.260-65 -0.8175  -0.2359 -0.9960-67 -0.9302  -0.7469
Slope 0.30 0.34 0.26 0.25 0.34 0.30 0.15
2016-  Uncertainty
2023  ofslope
R 0.99%** 0.98%**  (.98***  (.97*¥*  (.99%**  (98***  (.98*

0.016 0.024 0.023 0.024 0.027 0.024 0.022

Note: *, ** *** denote P<0.05, P<0.01, P<0.001 respectively.

11



220 In response to the Paris Agreement’s requirement of a global stocktake every five years starting in 2023

(https://unfccc.int/sites/default/files/

paris_agreement_english .pdf), we analyze China’s emissions variation every five years(Eig—2), using 20032 as the baseline

year corresponding to the first global stocktake (Fig. 2). The highest growth is recorded in the period from 20032 to 20087 (>
0.527 Gtyear") and 20087-20132 (> 0.4551 Gt year™!), followed by a stable period in the years from 20132 to 20187, in which
225 the CEADs even records a slight decline (-0.01 Gt year!). Growth then resumed in 20187-20232-and-2022-2023, averaging

0.210 Gt year-and-0-24-Gtyear*;respectively.

12


https://unfccc.int/sites/default/files/paris_agreement_english_.pdf
https://unfccc.int/sites/default/files/paris_agreement_english_.pdf

0.7

EDGAR B CEADs
EE MEIC ODIAC
~ 060 | EEE CAMS B GEMS
II‘-
EH
Sosto |
ON .
@]
2
z04f |
£
=
e n_a
o“ et
@]
=
H
02} |
-
=
L
&
Soatb |
-
«
0.0
2002-2007 2007-2012 2012-2017 2017-2022 2022-2023
Stage
EDGAR N CEADs
0.61 B MEIC ODIAC
~ ) B CAMS . GEMS
‘_I;-l
3
205 | -
=)
]
g0|4' - -
£
E
So3b | -
o
o
=
So2l | :
]
2
119
]
Soar | -
-
0.0
2003-2008 2008-2013 2013-2018 2018-2023

Stage

230  Figure 2. Average annual CO: emission growth rate during the five-year periods.

13



235

240

245

250

We use four major emission sectors defined by MEIC: electricity and heat production, industry and construction, residential
and commercial, and transport (Table S1). To ensure comparability, we reclassify the sectoral CO; emissions in the other
inventories according to this framework (Table S2). The sectoral CO, emissions show that the electricity and heat production
sector and the industry and construction sector dominate emissions and together account for over 78% of total emissions (Fig.
3). Prior to 2016, emissions from the industry and construction exceeded emissions from the electricity and heat production.
However, since 20132, the sector of industry and construction has become stable and even declined in some inventories (MEIC,
CEADs, and GEMS), while the sector of electricity and heat production shows a steady upward trend after 2017. As a result,
the electricity and heat production became the largest emitting sector in most inventories after 2017 (CEADs: 2016, MEIC and
GEMS: 2017, EDGAR: 2018). In addition, residential and commercial emissions as well as the transport sector, show similar
trends in most inventories (except GEMS). In most inventories (e.g., EDGAR, MEIC, CAMS, and CEADs), emissions from
the residential and commercial sector gradually exceeded those from the transport sector after 2016, while a reverse pattern

was observed in GEMS. The residential emissions provided by GEMS are considered more reliable, as the national residential

emission survey for the Second National Pollution Source Census was conducted by the GEMS team. Data from their surveys

indicate that the publicly available statistical sources (such as the IEA and the Food and Agriculture Organization of the United

Nations, FAO) have underestimated the rapid transition of China’s residential energy mix (Tao et al., 2018), leading to likely

overestimated residential emissions in other inventories. The changes in the size of sectoral CO, emissions indicate the changes

in China's energy structure and economic growth, highlighting the importance of incorporating locally based surveys for

residential emissions to improve the accuracy of bottom-up inventories-
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Figure 3. Anthropogenic CO2 emissions by sector—electricity and heat production, industries and construction, residential and commercial,
and transport—for the period 2000-2023, as reported by EDGAR (a), MEIC (b), CAMS (c), CEADs (d), and GEMS (e). Although CEADs
provides both national- and provincial-level sectoral data, the national-level version is used here for consistency with other inventories.
ODIAC does not provide sectoral CO2 emissions.

3.2 Spatial distribution at national scale
3.2.1 Total CO2 emissions

Since all five inventories (ODIAC, EDGAR, MEIC, CAMS, and GEMS) contain spatially explicit emission estimates for 2019,
which is the latest year covered in GEMS version used in this study, we chose 2019 as the reference year for comparing the
spatial patterns (Fig. 4) and the differences between the inventories using MEIC as a baseline (Fig. 5). As expected, the highest
emissions are concentrated in Eastern China—especially in the North China Plain (NCP), the Beijing-Tianjin-Hebei (BTH),
the Yangtze River Delta (YRD) and the Pearl River Delta (PRD)—as hotspots of anthropogenic CO, emissions due to high
population density and industrial activity (Fig. 4a-e). ODIAC shows the most intense emissions in the eastern regions, but has
large spatial gaps in the west, as it relies on nighttime lighting that does not capture emissions in poorly lit areas (Fig. 4a). This

approach tends to over-allocate emissions to brightly lit urban areas, while regions with limited nighttime lighting, including
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both sparsely populated areas and areas with high population but limited lighting, such as Western Sichuan, Inner Mongolia,

and Xinjiang, are not captured. By contrast, the spatial gaps over western China in CAMS (Fig. 4d) mainly arise from the lack

of aviation emissions. CAMS accounts for transport emissions from road, off-road, and ships but omits aviation. As shown in

Figure S1, EDGAR, MEIC, and GEMS capture distinct emission bands along major flight corridors over western China,

270 whereas CAMS only shows the road transport pattern, explaining the missing emissions over western China.
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Figure 4. Spatial distribution of CO: emissions in 2019 at a resolution of 0.1° from ODIAC (a), EDGAR (b), MEIC (c), CAMS (d), and

GEMS (e), together with the mean (f) and standard deviation (SD) (g) of the emission inventories. Sub-graph (h) shows the scatter plot
275  illustrating the correlation between the grid-level mean emissions and the standard deviation.
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Figure 5. Spatial distribution of CO; emission differences in 2019 between MEIC and each of the other inventories: (a) ODIAC minus
MEIC, (b) EDGAR minus MEIC, (¢) CAMS minus MEIC, and (d) GEMS minus MEIC.

The SD between the five inventories (Fig. 4g) is strongly correlated with the mean of the emissions (Fig. 4f), with a slope of
0.93 and a correlation coefficient (R) of 0.95 between log-transformed estimates (Fig. 4h). This indicates that emission
uncertainties are highly correlated with emission levels, and that higher uncertainties coincide with higher emissions in
economic and industrial regions such as NCP, BTH, YRD, and PRD.

To assess spatial consistency, we compared ODIAC, EDGAR, CAMS, and GEMS with MEIC as a benchmark (Fig. 5). MEIC

was chosen because it is compiled using local statistics and has been widely applied and validated in previous studies (Li et

al., 2017b; Zheng et al., 2021; Che et al., 2022; Yang et al., 2025), making it a reasonable reference for comparison. Compared

to MEIC, ODIAC allocates more emissions in most coastal areas and northeastern provinces (e.g., Shandong, YRD, BTH,
PRD, and Northeast China), but distributes lower CO, emissions in the southwest region (e.g., Guizhou, Chongqing), where
population density is relatively high but satellite nightlight signals are weak (Fig. 5a). CAMS shows an opposite pattern,
reporting lower emissions in most coastal and northeastern areas, but slightly higher values in parts of Jiangsu and Guangdong
(Fig. 5c). GEMS shows slightly lower emissions in remote western areas (e.g., Xinjiang, Tibet, western Inner Mongolia) and
relatively higher values in eastern provinces (Fig. 5d).

Across the spatial domain, EDGAR generally reports lower emissions than MEIC, with negative differences prevailing

throughout the regionis

deminating-the spatial-pattern (Fig. 5b). Positive differences, which are mainly concentrated along road distribution, are much
rarer (only 39% of the number of negative difference grids). Despite this pattern, EDGAR yields a higher average grid-cell

17



300

305

310

315

320

difference from MEIC (110.60 ton CO, km™ year!) than GEMS (43.12 ton CO, km? year™"), and is only moderately lower
than ODIAC (171.22 ton CO, km™ year") and CAMS (168.80 ton CO, km™ year™). This suggests that although the positive
differences between EDGAR and MEIC are spatially limited, they might be large in magnitude, potentially linking to emission

hotspots such as highways or industrial clusters. We explore this further in Section 3.2.2.

3.2.2 Sectoral CO: emissions in EDGAR

To explain the higher average grid-cell emissions of EDGAR (110.60 ton CO, km™ year™! higher than MEIC in 2019) despite
predominantly negative spatial differences, we analyze the discrepancies at the grid level (Fig. 6a). The cumulative sum of
positive emission differences exceeds that of the negative ones when the absolute differences exceed 10° ton CO, km™ year™.
Although these extremes accounted for only 0.14% of the total grids, their cumulative magnitude (1.97x10% ton CO, km™ year’
1) is 1.91 times the absolute sum of all remaining grids (< 10° ton CO, km™ year, totaling -1.03x10% ton CO, km? year™).
This confirms that the positive average grid-cell difference of EDGAR is caused by a small number of grids with extremely

high emissions (>10° ton CO; km? year™).
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Figure 6. (a) Cumulative distribution of gridded emission differences (ton CO: km-2 year-1) between EDGAR and MEIC inventories. The
cumulative sum for negative differences (blue line) is calculated using their absolute magnitudes and plotted against the corresponding
positive values on the x-axis (i.e., 100 represents -100). The spatial distributions of the differences are shown in (b) EDGAR emissions
without transport minus MEIC total emissions and (¢) EDGAR transport emissions minus MEIC transport emissions.

Spatially, most of the grids with positive emission differences are shown along major road networks (Fig. 5b). When the
EDGAR’s transport sector is removed (Fig. 6b), the proportion of positive grids reduces drastically from 28.55% to 9.40%,
confirming that the EDGAR's road transport emissions produce spatially extensive positive differences. However, the number
of extreme positive emission differences (>10° ton CO, km? year'') remains unchanged after removing transport, suggesting
that these extreme differences originate from non-transport sectors. A sectoral breakdown confirms that industry and
construction contribute the most to the overall differences (1.16 Gt year™), followed by electricity and heat production (0.56
Gt year!), while residential and commercial (-0.28 Gt year™"), and transport (-0.06 Gt year™') play a smaller role. Given these

magnitudes, we conclude that the extremely high emitters—though few in number—are most likely from localized industrial
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and power generation activities, where EDGAR may allocate emissions more aggressively to point sources than MEIC. This
divergence may stem from EDGAR’s use of the CARMA power plant database, while MEIC uses CPED. Although CARMA
and CPED report similar total emissions (2% difference), CPED contains approximately 1300 more small power plants (F. Liu
et al., 2015; Han et al., 2020a). CARMA’s sparser coverage concentrates emissions at fewer locations, thus producing
EDGAR’s extreme positive grid anomalies.

Despite the small total transport discrepancy (< 0.06 Gt year!) between EDGAR and MEIC, their spatial patterns differ
significantly (Fig. 6¢). EDGAR concentrates transport emissions along major road networks, while MEIC distributes them
more diffusely across China, which links to the different spatial allocation methods of EDGAR and MEIC. Notably, including
transport emissions reduces the proportion of positive emission differences from 46.38% (non-transport only) to 28.55% (total
difference). This indicates that the transport sectors of EDGAR and MEIC play a key role in the spatial pattern of positive

emission differences, even though their total emissions are comparable.
3.3 CO: emission estimates at provincial level

3.3.1 Provincial estimates in CEADs

CEAD:s provides two forms of CO, emission estimates for provinces: the “province” series (referred to as CEADs (provinces)),
which provides total emissions directly for each province, and the “sectors” series (referred to as CEADs (sectors)), which

compiles fuel- and sector-specific emissions before summing them to the provincial totals. Significant discrepancies are

observed between these two estimates in some provinces, with Shanxi emerging as a pronounced outlier. After 2012, the

difference in Shanxi exceeds 900 Mt year'!, whereas in other provinces it remains below 400 Mt year”' (Fig. S2). To investigate

this divergence

we compare both CEADs estimates with other inventories in Shanxi (Fig. 7a). The results indicate that CEADs (provinces)

exceeds CEADs (sectors) after 2008, with the discrepancy growing from 167.03 Mt year™! in 2008 to 1167.73 Mt year in
2021. In contrast, the CEADs (sectors) closely matches the other five independent inventories (ODIAC, EDGAR, MEIC,
CAMS and GEMS), with its mean emissions deviating by no more than 3.84 Mt year™!' from the average of the five inventories.

The large discrepancy between CEADs (provinces) and CEADs (sectors) mainly originates from the much higher raw coal—

related emissions in CEADs (provinces) (Fig. S3), as coal is the dominant contributor to total emissions (Wei, 2022).
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Figure 7. (a) Anthropogenic CO, emissions in Shanxi Province from six inventories: EDGAR, MEIC, CAMS, CEADs, ODIAC, and GEMS.
CEADs provides two types of provincial-level estimates: reported provincial-level totals ("CEADs (provinces)") and aggregated sectoral
emissions ("CEADs (sectors)"). Emissions from other inventories were derived by spatial aggregation of raster data. (b) Comparison between
total national emissions from CEADs and the sum of provincial level emissions from CEADs (sectors) and CEADs (nation).

At the national level, we assess both provincial datasets by aggregating their values across all provinces and comparing the
results with the national total reported by CEADs (Fig. 7b). When the CEADs (sectors) are summed, the reconstructed national
CO; emissions match the national CEADs values almost perfectly, showing a mean annual deviation of only 0.01 Gt year™!
over the period 2000-2021. In contrast, the aggregated CEADs (provinces) reports significantly higher national totals and
exceeds the national CEADs emissions by an average of 0.85 Gt year™'. These comparisons demonstrate that the sector-based
CEADs provides consistent provincial totals that are in line with both the independent inventories and the national compilation

of CEADs. We therefore recommend using the CEADs (sectors) for all analyses at the national and provincial levels.

3.3.2 Comparison of emission inventories in typical provinces

The mean and SD of the provincial CO, emissions from 2000 to 2023 are shown in Figure S4+. To investigate how inter-
inventory consistency and discrepancies vary across provinces with high emissions or uncertaintiesthe—causes—ofthe
diserepaneies—in-the—inventories, we select a subset of representative provinces for a detailed comparison. Representative

provinces are identified using the SD and the mean emissions between the six emission inventories, calculated for the period

2000-2023. Each year, all provinces are ranked in descending order based on these two metrics.; Theand cumulative scores

are calculated by summing the annual ranks over the entire 24-year period (2000-2023), reflecting each province’s long-term

ranking in terms of emission magnitude or SD. A lower cumulative score indicates higher mean emissions or emission

uncertainties (SD). The top six provinces in each category are selected, resulting in a list of nine representative provinces

(some provinces repeat in the ranking of the two metrics): Inner Mongolia, Liaoning, Hebei, Shandong, Henan, Hubei,

Shanghai, Jiangsu, and Guangdong (Table 3). In the third emissions phase (2016-2023), each of the six provinces with the
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highest emissions contributes more than 5.4 % of total national emissions, and together they account for almost 40 % of China’s

emissions. To investigate the emission patterns and cross-inventory agreement, we examine the CO2 emissions of these nine

representative provinces (Fig. 8).

Table 3. The top six provincial-level regions with the highest cumulative CO- emissions and the highest SD among the inventories (2000—
2023), and CO2 emission percentage of the top six provinces with the highest emissions from 2016 to 2023.

Top six provinces by Cumulative  CO; emission Top six provinces Cumulative

mean emissions rank score fractions (2016- by SD rank score
2023)

Shandong 24 8.43% Hubei 67

Jiangsu 53 7.48% Hebei 69

Hebei 72 6.37% Guangdong 106

Guangdong 112 5.71% Liaoning 114

Henan 115 5.41% Shandong 120

Inner Mongolia 148 6.15% Shanghai 136

Note: Cumulative rank score refers to the sum of a province’s annual rank (from highest to lowest) in terms of mean emissions or inter-

inventory standard deviation (SD)
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Figure 8. Anthropogenic CO2 emissions from 2000 to 2023 for nine typical provinces: Hebei (a), Shandong (b), Guangdong (c), Liaoning
(d), Hubei (e), Shanghai (f), Inner Mongolia (g), Henan (h), and Jiangsu (i). These provinces are selected based on either the highest average
emissions or the highest SD among the inventories.

Among the provinces with higher emissions, Hebei, Shandong, and Guangdong rank at the top in terms of both mean emissions
and SD (Table 3). In Hebei (Fig. 8a), CAMS and ODIAC report emissions averaging 416 Mt year™', which is 32% less than
the other four inventories (618 Mt year™"), thereby contributing significantly to the SD. In Shandong (Fig. 8b), all inventories
show increased emissions, but EDGAR (873 Mt year™! on average) reports emissions over 30% higher than the others (670 Mt
year™!), resulting in a pronounced dispersion. Guangdong (Fig. 8c) shows a pronounced ODIAC bias, with an average of 663
Mt year’!, over 53% higher than the average of the other five inventories (433 Mt year™). It is noteworthy that ODIAC
significantly distributes more emissions in Jiangsu, Shanghai and Guangdong—especially in the latter two provinces. This
suggests that the downscaling approach in ODIAC may overweight emissions in dense urban agglomeration (or city cluster).
Liaoning, Hubei, and Shanghai (Fig. 8d-f) are selected due to their larger inter-inventory SD. In these provinces, CAMS
exceeds the mean of the five inventories by 50-90% in Liaoning, 60-110% in Hubei, and 50-230% in Shanghai, which increases

the dispersion. In Hubei, the high SD is also due to persistent dispersion across all six inventories (Fig. 8¢). CAMS consistently
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provides the highest estimates, while ODIAC provides the lowest, making Hubei the province with the highest SD, despite
average CO, emissions being only moderate.

Inner Mongolia, Henan, and Jiangsu (Fig. 8g-1) are selected for their high emissions rather than their extreme dispersion. Inner
Mongolia followed the national three-stage growth pattern, with MEIC and CEADs—both China-tailored inventories—
matching within 11 Mt year™! and even outperforming other inventories after 2016 (Fig. 8g). In Henan, domestic inventories
(MEIC and CEADs) show two distinct phases: growth until 20132, followed by a decline, while the other global-based
inventories (except GEMS) slowly increase after 2016 (Fig. 8h). In Jiangsu, all inventories show a two-phase trend, with rapid
growth before 20132 and relative stabilization thereafter. After 20132, ODIAC and EDGAR report the highest emissions in
Jiangsu, while MEIC shows the lowest trend (Fig. 8j). In the nine provinces, CEADs and MEIC estimates are largely consistent,
especially in Inner Mongolia, Shandong, Henan, Hubei, and Shanghai.

Comparing the variability of emissions in the nine provinces and at the national level, the coefficient of variation (CV =
SD/mean; Fig. S52) for total national emissions in China is the lowest and most stable for the period 2000-2023. In contrast,
the time-averaged CV of the nine provinces with high emissions is at least 2.8 times higher than the national average (0.044).
Liaoning, Hubei, and Shanghai, which show the largest SD between inventories, have even higher CVs, with values of 0.45,
0.34, and 0.26, respectively. These values exceed the national CV by a factor of 5, while Shanghai's CV exceeds the national
CV by a factor of 10. This contrast emphasizes that the uncertainties at the provincial level (10-50%) are larger than the
deviations at the national level (<5%), which is due to systematic biases in certain inventories and their different downscaling
methods. We suggest establishing more ground-based CO, monitoring sites to verify and estimate anthropogenic CO,

emissions in these provinces.

4 Conclusions and discussion

China’s annual anthropogenic CO: total emission increases from 3.42 Gt in 2000 to 12.03 Gt in 2023. When compared with

the officially reported NGHGI and the six-inventory mean, CAMS shows the smallest deviation from the NGHGI, while

ODIAC agrees most closely with the multi-inventory mean. The six inventories display a broadly consistent emission trend

but theirThe discrepancies among the inventories have widened from 0.41 Gt year to 1.63 Gt year™!, shich-is-mainly due to
the highest estimates reported from EDGAR and the lowest values estimated from MEIC, especially after 2012. Our results
are consistent with E-Zheng et al. (2025) but opposite to Han et al. (2020b), demonstrating the differences in emission versions
(Our study: EDGAR2024, MEIC-global-CO, v1.0; Zheng: EDGAR v7.0, MEIC-China-CO; v1.4; Han: EDGAR v4.3.2,

MEIC-China-CO; v1.3)._A comparison between these versions (Fig. S6) shows that the divergence mainly arises from a

downward revision in the latest MEIC dataset, which reports about 1.43 Gt year’! lower emissions on average over 2008—2017.

In contrast, EDGAR’s national totals remained nearly unchanged across versions, with differences within 0.001 Gt year™!

during 2000-2012. These results highlight the significant impact of inventory version updates on comparative emission

analyses.
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The six inventories in this study agree on three emission phases: a rapid increase of 0.56 + 0.0135 Gt year' (2000-20132), a
near-stagnation phase of —0.07%+ £ 0.02245 Gt year™' under the 12th Five-Year Plan and air clean policy (20132-2016), and

arenewed growth of 0.30 £+ 0.016 Gt year™' (2016-2023), mainly related to infrastructure-driven energy demand and coal use

recovery following 201 6with at-increases-hishlichting the challeneesin-con ine-anth cenic-COs-emissions. In terms

of emission sectors, emissions are dominated by electricity and heat production, industry and construction (together accounting
for 78% of total emissions). The former source overtook the latter as the largest source after 2017, reflecting changes in China’s
energy structure.

In spatial terms, the higher emissions strongly corresponded with the higher uncertainty (reference 2019: R = 0.95, P< 0.01).
Eastern regions, particularly the BTH, YRD, and PRD city clusters, had both the highest emissions and the largest SD. This
pattern confirms the finding of Wang et al. (2013) that areas with high emission level have the largest uncertainties. Different
allocation methods are the main reason for the spatial discrepancies between the inventories. The ODIAC nightlight proxy
distributes more emissions in urban areas and fewer emissions in the western regions. EDGAR, which is based on the CARMA
database, concentrated power plant emissions on fewer grids, resulting in extreme anomalies where the difference (EDGAR-

MEIC) exceeds 10° ton CO, km™ year™!. These high-value grids underscore the importance of cross-inventory comparisons

when using EDGAR to analyze the spatial distribution of industry sector or power plant emissions in China. In contrast, MEIC

uses the more detailed CPED and distributes similar total CO, emissions (difference within 2% of CARMA) across a larger
number of power plants (Liu et al., 2015). The overall spatial grid-based difference between EDGAR and MEIC is dominated
by negative values (71.45% of grids), due to the different allocation methods for the transport sector. EDGAR allocates
emissions along major roads, while MEIC uses a more diffuse distribution. Despite a minimal overall difference in the sector
of transport (< 0.06 Gt), the spatial mismatch was substantial, with 70.37% of transport-related grid differences being negative,
due to the different disaggregation methods: OpenStreetMap and OpenRailwayMap in EDGAR versus CDRM in MEIC.

At the provincial level, CEADs data show critical inconsistencies: its provincial sectoral emissions are consistent with the
multi-inventory means, but the provincial series reports lower emissions in Shanxi by more than 127% (approximately 500 Mt
year1). We therefore recommend sector-based CEADs for province-level analyses. The uncertainty in the province scale is
significantly higher than the national scale. For example, the coefficient of variation (CV) of Shanghai (0.45) is ten times
higher than the national CV (0.044). The pronouncedly higher emissions in the coastal megacities (e.g., Shanghai, Jiangsu,
and Guangdong) by ODIAC and the abnormal increase in CAMS by 50-230% in Liaoning, Hubei, and Shanghai exacerbate

this divergence. Despite these inconsistencies, CEADs and MEIC exhibit broadly consistent estimates across nine provinces,

especially in Inner Mongolia, Shandong, Henan, Hubei, and Shanghai.

In summary, this study extends previous work by identifying a three-phase trend in China’s anthropogenic CO. emissions from

2000 to 2023 and quantifying the emission uncertainties (1) at both national and provincial levels. At the national level

CAMS shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with the multi-inventory

mean over the study period. At the provincial level, the Chinese local inventories, CEADs and MEIC, provide the most

consistent estimates for regional studies. Differences in spatial proxies significantly affect the spatial distribution of sectoral
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emissions, as shown by the contrasting transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use

of CEADs for provincial analyses. Our results further underscore the importance of improving the consistency of regional

inventories to provide a stronger scientific basis for China’s emission mitigation and carbon neutrality policies.

Overall, reliable emissions quantification requires scale-appropriate inventories (e.g., the sectoral CEADs emissions versus
the province-based CEADs emissions), improved spatial proxies (e.g., CPED vs. CARMA), and ensemble approaches to
mitigate biases, especially in the carbon-intensive eastern regions. -

Teo-benoted:It should be noted that this study lacks an observational benchmark to assess these inventories. In-the-futureFuture

efforts should incorporate—either direct flux measurements or top-down emissions derived fromby—an inversion -modeling
togetherin _combination with CO, mole fraction observationsearbon—measurements, are—needed—toto compare and
constraincempare-with-these bottom-up inventories at both regional and national scales.
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7 Supplementary materials

Table S1. Definition of sub-sectors included in the four main sectors (electricity and heat production, industries and construction, transport,
and residential and commercial) of the MEIC inventory.

Sector in MEIC-global-CO, Definition

Power generation
Electricity and heat production Heat (auto producer)

Heat (public)

Coal mines
Oil and gas extraction
Blast furnaces
Gas works
Gasification plants for biogases
Coke ovens
Patent fuel plants
BKB/peat briquette plants
Oil refineries
Coal liquefaction plants
Liquefaction (LNG) / regasification plants
Gas-to-liquids (GTL) plants
Industries and construction Own use in electricity, CHP and heat plants
Charcoal production plants
Non-specified transformation industries
Iron and steel
Non-ferrous metals
Chemicals
Pulp and paper
Food and tobacco
Cement
Other non-metallic minerals
Transport equipment
Machinery

Mining and quarrying
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Wood products

Construction

Textile and leather

Other non-specified industries

Process emissions in cement industry

Transport

International aviation'
Domestic aviation

Rail

International navigation'
Domestic navigation
Pipeline transport

Other non-specified transport
Agriculture and forestry
Fishing

Cars

Light duty trucks

Buses

Heavy duty trucks
Motorcycles

Other fleet totals

Residential and commercial

Commercial and institutional
Residential (rural)
Residential (urban)

Non-specified sectors
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Table S2. Definition of sub-sectors in the four main sectors of EDGAR, CAMS, CEADs and GEMS.

Emission inventory Sector Definition

o ) Main Activity Electricity and Heat
Electricity and heat production _
Production

Petroleum Refining - Manufacture
of Solid Fuels and Other Energy
Industries
Manufacturing  Industries  and
Construction
Solid Fuels
Oil and Natural Gas
Cement production
Lime production

Industries and construction Glass Production
Other Process Uses of Carbonates
Chemical Industry

EDGAR

Metal Industry
Non-Energy Products from Fuels
and Solvent Use
Liming
Urea application
Incineration and Open Burning of

Waste
Fossil fuel fires

Civil Aviation

Road Transportation no
resuspension

Transport '
Railways

Water-borne Navigation

Other Transportation
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o ] Residential and other sectors
Residential and commercial )
Non-Specified

Electricity and heat production Power generation

Fugitives
Industrial process
Industries and construction Refineries
Solid waste and waste water

CAMS Solvents

Off Road transportation -China
Transport Road transportation

Ships

o ) Commercial
Residential and commercial L
Residential

o ) Production and Supply of Electric
Electricity and heat production
Power, Steam and Hot Water

Coal Mining and Dressing
Petroleum and Natural Gas
Extraction
Ferrous Metals Mining and
Dressing
Nonferrous Metals Mining and

CEADs Dressing

Industries and construction Nonmetal Minerals Mining and

Dressing
Other Minerals Mining and
Dressing
Logging and Transport of Wood
and Bamboo
Food Processing

Food Production
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Beverage Production

Tobacco Processing

Textile Industry

Garments and Other Fiber Products
Leather, Furs, Down and Related
Products

Timber Processing, Bamboo, Cane,
Palm Fiber & Straw Products
Furniture Manufacturing
Papermaking and Paper Products
Printing and Record Medium
Reproduction

Petroleum Processing and Coking
Raw Chemical Materials and
Chemical Products

Medical and  Pharmaceutical
Products

Chemical Fiber

Rubber Products

Plastic Products

Nonmetal Mineral Products
Smelting and Pressing of Ferrous
Metals

Smelting and  Pressing  of
Nonferrous Metals

Metal Products

Ordinary Machinery

Equipment for Special Purposes
Transportation Equipment

Electric Equipment and Machinery
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Electronic and
Telecommunications Equipment
Instruments, Meters, Cultural and
Office Machinery

Other Manufacturing Industry
Scrap and waste

Production and Supply of Gas
Production and Supply of Tap
Water

Construction

Transport

Farming, Forestry, Animal
Husbandry, Fishery and Water
Conservancy

Transportation, Storage, Post and

Telecommunication Services

Residential and commercial

Cultural, Educational and Sports
Articles

Wholesale, Retail Trade and
Catering Services

Others

Urban

Rural

GEMS

Electricity and heat production

Power Generation

Industries and construction

Industrial Process

Industrial Combustion

Transport

Transportation

Agriculture

Residential and commercial

Commercial

Residential Combustion
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620 Figure S1. Spatial distribution of CO2 emissions from transport sector in 2019 across four inventories (EDGAR, CAMS, MEIC, and GEMS).
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Figure S41. Heatmaps of provincial mean CO2 emissions (a) and SD (b) of six emission inventories for the period 2000 to 2023.
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Figure S5. Coefficient of variation (CV) of emissions at national level and for nine typical provinces during 2000-2023. The shaded area
represents the period after 2019, when the number of available emission inventories began to decrease (GEMS ended in 2019, CEADs in
640 2021, and ODIAC in 2022).
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645 Figure S6. Comparison of national CO» emissions from different versions of the EDGAR and MEIC inventories. The older versions
(EDGAR v4.3.2 and MEIC-China-CO> v1.3) used in Han et al. (2020b) are compared with the updated versions (EDGAR 2024 and MEIC-
Global-CO2 v1.0) used in this study.
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