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Abstract. Accurate quantification of anthropogenic CO2 emissions is crucial for mitigating climate change and verifying 

emission reduction policies. This study conducts a comparative analysis of China’s anthropogenic CO2 emissions for the period 

between 2000 and 2023 based on six widely used bottom-up inventories at their latest version (ODIAC2023, EDGAR2024, 

MEIC-global-CO2 v1.0, CAMS-GLOB-ANT v6.2, GEMS v1.0, and CEADs). The national total CO2 emissions increase from 

3.43 (3.21–3.63) Gt year-1 in 2000 to 12.03 (11.35–12.98) Gt year-1 in 2023, with three growth periods: rapid growth (2000–20 

20132, 0.56±0.0135 Gt year-1), near-stagnation (20132–2016, -0.071±0.02245 Gt year-1), and renewed growth (2016–2023, 

0.30±0.016 Gt year-1). Emissions are dominated by the electricity and heat production, and the industry and construction (78% 

of total emissions), with the former replacing the latter as the largest source after 2017. EDGAR consistently reports the highest 

national CO2 emissions, while MEIC provides the lowest, contributing to the large deviations after 2012. EDGAR and MEIC 

report different spatial distributions of the transport sector. EDGAR concentrates emissions along major roads and MEIC 25 

distributes them more diffusely. Extreme outliers (>105 ton CO2 km-2 year-1, against an average of 102 ton CO2 km-2 year-1) in 

these inventories arise from discrepancies in point source data in the Carbon Monitoring for Action (CARMA) versus the 

China Power Emissions Database (CPED). Overall, the uncertainty of total national anthropogenic CO2 emissions is within 5% 

(1σ), and the uncertainties are about 10–50% (1σ) at the provincial level. 
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1 Introduction 30 

The global mean temperature in 2024 was 1.5℃ above pre-industrial levels, making it the warmest year in the 175-year record 

of observations (WMO, 2025). This increases the urgency of achieving the Paris Agreement’s goal of limiting global warming 

to a maximum of 1.5℃ (Schleussner et al., 2016). Atmospheric carbon dioxide (CO2) is the dominant greenhouse gas (IPCC, 

2017), and its concentration (430.5 ppm in May 2025) is now 1.5 times higher than pre-industrial levels (280 ppm), mainly 

due to anthropogenic activities (WMO 2024; Etheridge et al., 1996). China, which is responsible for about 80% of East Asia’s 35 

anthropogenic CO2 emissions (Xia et al., 2025) and about 32% of global CO2 emissions according to the Global Carbon Project 

(GCP, 2024; available at: https://globalcarbonbudget.org/), has committed to reaching peak emissions by 2030 and carbon 

neutrality by 2060. Besides, China’s energy structure is also undergoing an obvious transition driven by policies such as the 

renewable portfolio standards (RPS) and the clean air policy, which promote cleaner energy and industrial upgrades. The share 

of renewables in total power generation increased from 16.6% in 2000 to 28.2% in 2020, although fossil fuels still dominate 40 

and overcapacity issues remain (Zhao et al., 2022). Under this ongoing energy transitionTo achieve these targets, accurate 

quantification of anthropogenic CO2 emissions and understanding the uncertainties in emissions inventories are needed to 

guide emission reduction policies toward the dual-carbon goals (Li et al., 2017a).  

A variety of bottom-up emission inventories have been developed to quantify anthropogenic CO2 emissions based on activity 

data and emission factors (EFs). The gridded inventories apply spatial proxies to allocate emissions across grid cells (Han et 45 

al., 2020a), including point sources (e.g., power plants), line sources (e.g., road networks), and area sources (e.g., population 

density, gross domestic product (GDP), nighttime lights). Global gridded products provide consistent, worldwide estimates 

with high spatial resolution (1 km or 0.1°), such as the Open-Data Inventory for Anthropogenic Carbon Dioxide (ODIAC) 

(Oda et al., 2018; Oda and Maksyutov, 2011), the Emissions Database for Global Atmospheric Research (EDGAR) (Janssens-

Maenhout et al., 2019), and the Global Emission Modeling System (GEMS) (Wang et al., 2013), and the Copernicus 50 

Atmosphere Monitoring Service (CAMS-GLOB-ANT, hereafter referred to as CAMS, Soulie et al., 2024). China-specific 

inventories use provincial energy statistics and locally optimized EFs to account for national and subnational CO2 emissions, 

such as the Multi-resolution Emission Inventory for China (MEIC) (R. Xu et al., 2024; Li et al., 2017a; B. Zheng et al., 2018), 

the China High Resolution Emission Database (CHRED) (Cai et al., 2018) and the China Emission Accounts and Datasets 

(CEADs) (J. Xu et al., 2024; Y. Guan et al., 2021; Shan et al., 2018, 2020). 55 

Despite the different allocation methods and underlying data, the uncertainties in the overall magnitudes and trends of CO2 

emissions between the global inventories are within 10% at the global scale (Oda et al., 2019; Han et al., 2020a; R. Xu et al., 

2024). However, at the national scale, the uncertainties can reach 40-100% (Peylin et al., 2013) and can be even larger at the 

regional and city scales, e.g., 300% in the Beijing-Tianjin-Hebei area (Han et al., 2020b). The uncertainties between the 

different inventories are caused by three factors. First, different official statistics can lead to large emission gaps (D. Guan et 60 

al., 2012; Hong et al., 2017). Previous studies have shown significant discrepancies in energy consumption from different 

official statistics in China. Provincial-level data tend to align more closely with satellite observations than national-level 

https://globalcarbonbudget.org/
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statistics (Akimoto et al., 2006; D. Guan et al., 2012; Zhao et al., 2012). Second, the EF is another key element that causes the 

differences. The IPCC-based EFs used by ODIAC and EDGAR may not correctly reflect the specific fuel quality and 

combustion technologies in China (e.g., the EF for raw coal in CEADs and ODIAC is 0.499 and 0.746, respectively) (Han et 65 

al., 2020a). Third, spatial proxies determine how emissions are distributed across grid cells. For example, relying on outdated 

point-source databases such as the Carbon Monitoring for Action (CARMA) (the last update was on 28 November, 2012) may 

incorrectly distribute emissions in urban areas and introduce extrapolation errors (Han et al., 2020a; Wang et al., 2013; M. Liu 

et al., 2013), while more comprehensive power plant inventories such as the China Power Emissions Database (CPED) provide 

better spatial accuracy (Li et al., 2017b; F. Liu et al., 2015).  70 

Previous studies have demonstrated large discrepancies among anthropogenic CO2 emission inventories in China and 

investigated the possible reasons. Han et al (2020a) compared nine global and regional inventories for China and found that 

differences in activity data and EFs can lead to significant uncertainties in emission estimates, with the maximum difference 

in 2012 reaching up to 33.8%. L. Zheng et al (2025) conducted a cross-scale comparison of EDGAR, MEIC, and CEADs and 

showed that coarse aggregation reduces the impact of outlier emission values, and leads to stronger agreement between 75 

inventories at a resolution of 3° × 3° compared to 0.25° × 0.25°. At the city level, Liu et al (2024) found that the relative 

standard deviations between six inventories are more than 50%, with uncertainties showing a strong logarithmic dependence 

on proxy variables such as population density and nightlight data. In recent years, China has announced a series of policy 

measures aimed at reducing carbon emissions, alongside changes in factory technology and energy structure. These 

developments underscore the urgent need for accurate and timely quantification of anthropogenic CO₂ emissions. Moreover, 80 

emission inventories are continuously updated to incorporate improved inputs (e.g., activity data, EFs, and refined 

methodology). Therefore, it is crucial to use the latest versions of the various inventories to capture these methodological 

updates and better understand the most recent patternschanges ofin China's anthropogenic CO2 emissions. 

To this aim, this study conducts a comprehensive analysis of the spatiotemporal variation of China’s anthropogenic CO₂ 

emissions and investigates the differences among six widely used emission inventories at their latest versions: the global 85 

inventories ODIAC, EDGAR, MEIC, GEMS, and the global anthropogenic emissions for the Copernicus Atmosphere 

Monitoring Service (CAMS-GLOB-ANT, hereafter referred to as CAMS), and the China-specific inventory CEADs. The data 

and methods are presented in Section 2. We report our results in Section 3 and conclude the paper in Section 4. Compared 

with previous studies (Han et al., 2020b; Zheng et al., 2025), we extend the temporal coverage to 2000-2023, enabling a more 

current and consistent assessment of recent emission trends, inter-inventory discrepancies, and scale-dependent uncertainties 90 

across China.  

2 Data and methods 

To ensure both temporal completeness and spatial representativeness, the selected emission inventories must provide a 

continuous time-series covering most of the 2000-2023 period (with at least 2000–2019 coverage in GEMS) and have explicit 
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spatial coverage over mainland China. Six anthropogenic CO2 emission inventories, including five gridded inventories 95 

(ODIAC2023, EDGAR2024, MEIC-global-CO2 v1.0, CAMS v6.2, and GEMS v1.0) and one urban total emission inventory 

(CEADs), are applied to provide estimates of total emissions at the national, provincial, and city levels in China. As 

internationally recognized and widely used by previous studies (Li et al., 2017b; Han et al., 2020b; Liu et al., 2024; Zheng et 

al., 2025), these inventories are publicly available from official repositories.  

In addition to these six datasets, the National Greenhouse Gas Inventory (NGHGI) submitted by the Chinese government to 100 

the United Nations Framework Convention on Climate Change (UNFCCC, available at: https://unfccc.int/reports) was also 

collected. The NGHGI provides the officially reported national total emissions and therefore serves as an independent 

benchmark for evaluating the reliability of the six inventories. As NGHGI covers only discrete years (2005, 2010, 2012, 2014, 

2017, 2018, 2020, and 2021), it is not included in the continuous temporal analysis but is used solely for national-level 

comparison. 105 

The specific information of tthe six selectedhese inventories is presented in Section 2.1. Table 1 lists the temporal and spatial 

resolution, data version, and principal downscaling proxies of those inventories. All five gridded inventories were standardized 

to a common 0.1° × 0.1° coordinate system and a common unit of ton CO2 km-2 year-1 (Section 2.2). 

  

https://unfccc.int/reports
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Table 1. Specification of emission inventory statistics. 110 

 ODIAC EDGAR MEIC CAMS GEMS CEADs 

Version ODIAC2023 EDGAR2024 v1.0 v6.2 v1.0 NA 

Domain Global Global Global Global Global China 

Temporal 

coverage 

2000-2022 1970-2023 1970-2023 2000-2026 1700-2019 1997-2021 

Time 

resolution 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annually 

Annual 

Activity 

data 

CDIAC, BP IEA CESY, IEA, 

BP 

EDGAR, 

CAMS-

GLOB-

Ship 

NBS, IEA CESY, NBS 

Emission 

factors 

IPCC IPCC CEADs, 

national 

submissions 

in UNFCCC, 

IPCC 

EDGAR Literature, 

on-site 

measuremen

ts 

on-site 

measurements 

Point 

source 

CARMA CARMA CPED EDGAR WRI NA 

Line source NA OpenStreetMa

p and 

OpenRailway

Map 

CDRM EDGAR NA NA 

Area source Nightlight data Population 

density and 

nightlight data 

Population 

density and 

land use 

Population 

density 

Population 

density, 

nightlight 

data and 

vegetation 

density 

NA 

Spatial 

resolution 

1km×1km, 1°×1° 0.1°×0.1° 0.1°×0.1° 0.1°×0.1° 0.1°×0.1° NA 
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Unit of 

gridded 

emissions 

ton C cell-1 

month-1 

ton CO2 km-2 

year-1 

ton CO2 cell-1 

year-1 

kg CO2 m-2 

s-1 

g CO2 km-2 

year-1 

NA 

Emission 

estimates 

Global Global and 

national 

Global, 

national and 

provincial 

Global and 

National 

Global and 

national 

National, 

provincial and 

city 

Year 

published 

2024 2024 2024 2023 2024 2017 

Data source https://db.cger.ni

es.go.jp/dataset/O

DIAC/DL_odiac

2023.html (last 

access: 19 April 

2025) 

https://edgar.jr

c.ec.europa.eu

/dataset_ghg2

024#p1 (last 

access: 19 

April 2025) 

http://meicmo

del.org.cn/?pa

ge_id=2341 

(last access: 

19 April 2025) 

https://ecca

d.sedoo.fr/

#/metadata/

479 (last 

access: 19 

April 2025) 

https://gems.

pku.edu.cn/d

ata/database 

(last access: 

19 April 

2025) 

https://www.cea

ds.net.cn/data/ 

(last access: 19 

April 2025) 

References Oda and 

Maksyutov 

(2011); Oda et al 

(2018) 

Janssens-

Maenhout et al 

(2019) 

R. Xu et al 

(2024) 

Soulie et al 

(2024);  

Wang et al 

(2013) 

J. Xu et al 

(2024); Y. Guan 

et al (2021b); 

Shan et al (2020, 

2018) 

*All datasets were last accessed on 19 April 2025. 

2.1 Emission inventories 

ODIAC is a global grid-based CO₂ inventory that provides monthly emissions at a high spatial resolution of 1 km × 1 km. 

Total emissions are derived from the Carbon Dioxide Information Analysis Center (CDIAC), which compiles CO2 estimates 

from fossil fuel combustion, cement production, and gas flaring using United Nations energy statistics (Andres et al., 2016; 115 

Oda et al., 2018, 2019). These national totals are then spatially allocated for point sources using the CARMA power plant 

database and for area sources using satellite-based nightlight data. ODIAC does not explicitly map line sources such as road 

traffic. Although streetlights have been proposed as a proxy for such sources (Oda and Maksyutov, 2011), this approach may 

over-allocate emissions in brightly lit urban areas relative to rural or low-light regions due to the complexity of actual traffic 

distribution (Wang et al., 2013). We use ODIAC2023, which covers the years from 2000 to 2022. 120 

EDGAR is developed by the Joint Research Centre (JRC) and the Netherlands Environmental Assessment Agency. It combines 

national energy balance data from the International Energy Agency (IEA) with sector-specific activity data from sources such 

as BP plc (formerly the British Petroleum company p.l.c.), the United States Geological Survey (USGS), the World Steel 

https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2023.html
https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2023.html
https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2023.html
https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2023.html
https://edgar.jrc.ec.europa.eu/dataset_ghg2024#p1
https://edgar.jrc.ec.europa.eu/dataset_ghg2024#p1
https://edgar.jrc.ec.europa.eu/dataset_ghg2024#p1
https://edgar.jrc.ec.europa.eu/dataset_ghg2024#p1
http://meicmodel.org.cn/?page_id=2341
http://meicmodel.org.cn/?page_id=2341
http://meicmodel.org.cn/?page_id=2341
https://eccad.sedoo.fr/#/metadata/479
https://eccad.sedoo.fr/#/metadata/479
https://eccad.sedoo.fr/#/metadata/479
https://eccad.sedoo.fr/#/metadata/479
https://gems.pku.edu.cn/data/database
https://gems.pku.edu.cn/data/database
https://gems.pku.edu.cn/data/database
https://www.ceads.net.cn/data/
https://www.ceads.net.cn/data/
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Association, the Global Gas Flaring Reduction Partnership (GGFR), the National Oceanic and Atmospheric Administration 

(NOAA), and the International Fertilizer Association (IFA). Emissions are calculated using IPCC default EFs and spatially 125 

disaggregated using CARMA (point source), OpenStreetMap (line source), and population density and nighttime lights (area 

sources) (Janssens-Maenhout et al., 2019). We use EDGAR2024, which provides annual and monthly data from 1970 to 2023 

at a spatial resolution of 0.1° × 0.1°. 

MEIC is developed by Tsinghua University to estimate global and regional CO2 emissions, with a particular focus on China. 

Emissions are estimated by integrating activity data from multiple international and local statistics, with 72% of global CO2 130 

emissions estimated based on information from individual countries in 2021. In China, the energy statistics data is obtained 

from the provincial-level database: China Energy Statistics Yearbook (CESY). Point emissions are allocated using the China 

coal-fired Power plant Emissions Database (CPED), which includes more than 7600 generating units—approximately 1300 

additional small power plants more than CARMA—and has been validated using satellite imagery. MEIC uses the 

transportation network data from the China Digital Road Network Map (CDRM) to constrain the distribution of vehicle activity 135 

as well as population density, GDP, and land use for other sectors (Li et al., 2017a; Xu et al., 2024b). In this study, we use the 

latest MEIC-Global-CO2 product (v1.0), which provides higher spatial resolution (0.1° × 0.1°) and longer temporal coverage 

(1970-2023) than the MEIC-China-CO2 product (v1.4; 0.25° × 0.25°, up to 2020). It’s noteworthy that although MEIC-Global-

CO2 is a global product, its emissions calculations for China continue to rely on local energy statistics (CESY) and emission 

factors (CEADs), ensuring consistency with domestic data while improving spatiotemporal detailsWe use the MEIC-global-140 

CO2 product v1.0, the latest version with a spatial resolution of 0.1°, covering the period from 1970 to 2023 at monthly and 

annual resolutions. 

CAMS is a global inventory developed as part of the Copernicus Atmosphere Monitoring Service project. It builds on EDGAR 

and integrates several complementary datasets, including the Community Emissions Data System (CEDS) for the extrapolation 

of the emissions up to the current year, the CAMS-GLOB-TEMPO for monthly variabilitytemporal emission profiles, and the 145 

CAMS-GLOB-SHIP for ship emissions. CAMS provides monthly emissions  of 36 compounds (GHGs and major air pollutants) 

across 17 emission sectors (e.g., transportation, electricity generation, industry, etc.) at a resolution of 0.1° × 0.1° (Soulie et 

al., 2024). The version used in this study is CAMS-GLOB-ANT v6.2, which covers the period from 2000 to 2026. 

GEMS is a global CO2 inventory that is developed as a successor to Peking University CO2 (PKU). It updates the EFs based 

on the latest literature and on-site measurements, and refines the technology splits in sectors such as road transport. The energy 150 

statistics come from the National Bureau of Statistics (NBS) for China and from sub-national datasets for many developed and 

developing countries. For countries lacking sub-national fuel consumption data, national-level statistics from IEA are used. 

Emissions are classified into seven sectors (power generation, industry, residential and commercial emissions, transportation, 

agriculture, and natural emissions) or six fuel/activity types (coal, oil, gas, waste, biomass, and industrial processes). The 

spatial allocation uses World Resources Institute (WRI) for point sources and combines vegetation density, population density, 155 

and nighttime lights for the remaining emissions (Wang et al., 2013). We use GEMS v1.0, which covers the period 1700–2021 
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with a spatial resolution of 0.1°. However, the version available at the time of our analysis only included data up to 2019, 

which is therefore the endpoint used throughout our study. 

CEADs provides annual CO2 emissions at national, provincial, and city scales. The national and provincial emissions are based 

on CESY and NBS, respectively. In addition to total CO2 emissions, CEADs provides an energy inventory, a CO2 emission 160 

inventory for industrial processes, and EFs. CEADs uses locally optimized EFs derived from extensive sample 

measurements—such as 602 coal samples and over 4000 coal mines for coal EFs—which are considered more representative 

of China’s actual fuel characteristics than the IPCC-based default values (Shan et al., 2018, 2020; J. Xu et al., 2024; Y. Guan 

et al., 2021). In this study, we use the national and provincial CEADs datasets from 2000 to 2021. 

2.2 Data preprocessing 165 

To extract the data, we first used a mask with national boundaries (https://cloudcenter.tianditu.gov.cn/administrativeDivision) 

to extract the emissions within mainland China for the five global grid-based inventories (ODIAC, EDGAR, MEIC, CAMS, 

and GEMS). To enable consistent comparison between inventories, all gridded datasets were processed to a uniform spatial 

resolution of 0.1° × 0.1°, with emission units standardized to ton CO2 km-2 year-1. Unit conversions accounted for original 

formats and required area normalization for datasets with grid-cell-based values (e.g., ODIAC: ton C cell-1 month-1, MEIC: 170 

ton CO2 cell-1 year-1). A stoichiometric factor (44/12) was applied to convert carbon to CO2 where necessary (e.g., ODIAC). 

Spatial resampling was performed to align with the MEIC coordinate system, using nearest-neighbor interpolation or area-

weighted aggregation depending on the original resolution. National totals were taken directly from original reports, except 

for ODIAC, which was summed from gridded data. At the provincial level, emissions were taken directly from the MEIC and 

CEADs data, while for the other datasets, estimates for the provinces were calculated using spatial zonal statistics based on 175 

standardized administrative boundary masks (https://cloudcenter.tianditu.gov.cn/administrativeDivision). 

3 Results 

3.1 National total CO2 emissions 

The six bottom-up inventories show a significant increase in total national CO2 emissions from 2000 to 2023 (GEMS to 2019, 

CEADs to 2021, ODIAC to 2022), with average emissions increasing from 3.43 Gt year-1 in 2000 to 12.03 Gt year-1 in 2023 180 

(Fig. 1). The differences between the emission inventories become more pronounced after 2012 and diverge in recent years, 

with the emission range (maximum-minimum difference) and the standard deviation (SD) increasing from 0.41 and 0.14 Gt 

year-1 in 2000 to 1.63 and 0.58 Gt year-1 in 2023. Before 2012, both metrics are relatively stable and low (range < 0.82 Gt year-

1, SD < 0.30 Gt year-1). After 2013, however, the range is above 1.03 Gt year-1 and peaked at 1.64 Gt year-1 in 2021, mainly 

due to EDGAR reporting the highest emissions versus MEIC reporting the lowest emissions.  185 

To further assess the consistency of the six inventories, we calculate the mean absolute difference (MAD), which is defined as 

the multi-year mean of annual absolute differences between each inventory and either the NGHGI or the six-inventory mean. 

https://cloudcenter.tianditu.gov.cn/administrativeDivision
https://cloudcenter.tianditu.gov.cn/administrativeDivision
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Compared with NGHGI, the MADs range from 0.156 Gt year-1 (CAMS) to 0.835 Gt year-1 (MEIC). Against the six-inventory 

mean, the MADs range from 0.12 Gt year-1 (ODIAC) to 0.449 Gt year-1 (MEIC). EDGAR reports the highest emissions, which 

is about 0.370 Gt year-1 larger than the mean emission. MEIC shows the lowest emission levels, which is about 0.449 Gt year-190 

1 less than the mean emission. Overall, CAMS exhibits the greatest consistency with the NGHGI, being at least 30% lower 

than that of the other inventories. In comparison, ODIAC agrees most closely with the six-inventory mean, with an MAD at 

least 58% lower than the others. 

 



10 

 

 195 

 
Figure 1. Annual anthropogenic CO2 emissions in mainland China from 2000 to 2023, as reported by six emission inventories: EDGAR, 

MEIC, CAMS, CEADs (up to 2021), ODIAC (up to 2022), and GEMS (up to 2019), and one government-reported data (NGHGI). Apart 

from ODIAC, all inventories provide national totals directly. We calculated China's emissions by summing the grid values within China for 
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ODIAC. The shaded area indicates the standard deviation of the six inventories. It’s noteworthy that the inter-inventory mean and SD were 200 
calculated from the above mentioned six inventories. 

The increase in CO2 emissions shows three different phases (Fig. 1, Table 2). The first phase (2000–20132) shows the most 

rapid growth, with an average growth rate of 0.56 ± 0.0135 Gt year⁻¹, driven by industrialization, urbanization, and rising 

energy demand. In contrast, emissions become relatively stable from 20132 to 2016, with all inventories showing a slight 

decline (−0.07 ± 0.022 Gt year⁻¹ on average). This short-term stagnation is mainly influenced by the under the influence of 205 

adjustment of energy structure and industrial upgrades implemented as part of under China’s 12th Five-Year Plan, and the 

implementation of air clean policy since 2013 (Han et al., 2020b; Shi et al., 2022; Zheng et al., 2025). , resulting in an average 

annual increase rate of 0.01 ± 0.045  Gt year-1 and slightly negative rates in MEIC (−0.04 ± 0.02  Gt year⁻¹), CEADs 

(−0.09 ± 0.057 Gt year⁻¹), and ODIAC (−0.001 ± 0.035 Gt year⁻¹). From 2016 to 2023, all inventories show increased CO2 

emissions again, with a slower rate (0.30 ± 0.016 Gt year-1) compared to the first phase. This rebound could be attributed to 210 

the expansion of infrastructure investment and the recovery of coal-based power generation, as the mitigation effect of the 

cleaner energy mix weakened after 2016 (Zhang et al., 2020). 

 

 

 215 

Table 2. Linear regression statistics (correlation coefficient (R) and slope with its uncertainty) between CO2 emissions and year for all six 

inventories and their average. 

  
Average 

emissions 
EDGAR MEIC CAMS  CEADs ODIAC GEMS 

2000-

2013

2 

Slope 0.56 0.58 0.535 0.567 0.57 0.534 0.56 

Uncertainty 

of slope 
0.0135 0.0146 0.016 0.0156 0.0179 0.0134 0.0124 

R 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 

2013

2-

2016 

Slope -0.071 -0.010 -0.064 -0.010.05 -0.109 -0.060 -0.09 

Uncertainty 

of slope 
0.02245 0.03466 0.0290 0.03543 0.01457 0.01635 0.05765 

R -0.910.07 -0.260.65 -0.8175 -0.2359 -0.990.67 -0.9302 -0.7409 

2016-

2023 

Slope 0.30 0.34 0.26 0.25 0.34 0.30 0.15 

Uncertainty 

of slope 
0.016 0.024 0.023 0.024 0.027 0.024 0.022 

R 0.99*** 0.98*** 0.98*** 0.97*** 0.99*** 0.98*** 0.98* 

Note: *, **, *** denote P<0.05, P<0.01, P<0.001 respectively. 
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In response to the Paris Agreement’s requirement of a global stocktake every five years starting in 2023 220 

(https://unfccc.int/sites/default/files/ 

paris_agreement_english_.pdf), we analyze China’s emissions variation every five years (Fig. 2), using 20032 as the baseline 

year corresponding to the first global stocktake (Fig. 2). The highest growth is recorded in the period from 20032 to 20087 (> 

0.527 Gt year-1) and 20087-20132 (> 0.4551 Gt year-1), followed by a stable period in the years from 20132 to 20187, in which 

the CEADs even records a slight decline (-0.01 Gt year-1). Growth then resumed in 20187-20232 and 2022-2023, averaging 225 

0.210 Gt year-1 and 0.24 Gt year-1, respectively.  

 

https://unfccc.int/sites/default/files/paris_agreement_english_.pdf
https://unfccc.int/sites/default/files/paris_agreement_english_.pdf


13 

 

 

 
Figure 2. Average annual CO₂ emission growth rate during the five-year periods. 230 
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We use four major emission sectors defined by MEIC: electricity and heat production, industry and construction, residential 

and commercial, and transport (Table S1). To ensure comparability, we reclassify the sectoral CO2 emissions in the other 

inventories according to this framework (Table S2). The sectoral CO2 emissions show that the electricity and heat production 

sector and the industry and construction sector dominate emissions and together account for over 78% of total emissions (Fig. 235 

3). Prior to 2016, emissions from the industry and construction exceeded emissions from the electricity and heat production. 

However, since 20132, the sector of industry and construction has become stable and even declined in some inventories (MEIC, 

CEADs, and GEMS), while the sector of electricity and heat production shows a steady upward trend after 2017. As a result, 

the electricity and heat production became the largest emitting sector in most inventories after 2017 (CEADs: 2016, MEIC and 

GEMS: 2017, EDGAR: 2018). In addition, residential and commercial emissions as well as the transport sector, show similar 240 

trends in most inventories (except GEMS). In most inventories (e.g., EDGAR, MEIC, CAMS, and CEADs), emissions from 

the residential and commercial sector gradually exceeded those from the transport sector after 2016, while a reverse pattern 

was observed in GEMS. The residential emissions provided by GEMS are considered more reliable, as the national residential 

emission survey for the Second National Pollution Source Census was conducted by the GEMS team. Data from their surveys 

indicate that the publicly available statistical sources (such as the IEA and the Food and Agriculture Organization of the United 245 

Nations, FAO) have underestimated the rapid transition of China’s residential energy mix (Tao et al., 2018), leading to likely 

overestimated residential emissions in other inventories. The changes in the size of sectoral CO2 emissions indicate the changes 

in China's energy structure and economic growth, highlighting the importance of incorporating locally based surveys for 

residential emissions to improve the accuracy of bottom-up inventories. 

 250 
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Figure 3. Anthropogenic CO2 emissions by sector—electricity and heat production, industries and construction, residential and commercial, 

and transport—for the period 2000–2023, as reported by EDGAR (a), MEIC (b), CAMS (c), CEADs (d), and GEMS (e). Although CEADs 

provides both national- and provincial-level sectoral data, the national-level version is used here for consistency with other inventories. 

ODIAC does not provide sectoral CO2 emissions. 255 

3.2 Spatial distribution at national scale 

3.2.1 Total CO2 emissions  

Since all five inventories (ODIAC, EDGAR, MEIC, CAMS, and GEMS) contain spatially explicit emission estimates for 2019, 

which is the latest year covered in GEMS version used in this study, we chose 2019 as the reference year for comparing the 

spatial patterns (Fig. 4) and the differences between the inventories using MEIC as a baseline (Fig. 5). As expected, the highest 260 

emissions are concentrated in Eastern China—especially in the North China Plain (NCP), the Beijing-Tianjin-Hebei (BTH), 

the Yangtze River Delta (YRD) and the Pearl River Delta (PRD)—as hotspots of anthropogenic CO2 emissions due to high 

population density and industrial activity (Fig. 4a-e). ODIAC shows the most intense emissions in the eastern regions, but has 

large spatial gaps in the west, as it relies on nighttime lighting that does not capture emissions in poorly lit areas (Fig. 4a). This 

approach tends to over-allocate emissions to brightly lit urban areas, while regions with limited nighttime lighting, including 265 
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both sparsely populated areas and areas with high population but limited lighting, such as Western Sichuan, Inner Mongolia, 

and Xinjiang, are not captured. By contrast, the spatial gaps over western China in CAMS (Fig. 4d) mainly arise from the lack 

of aviation emissions. CAMS accounts for transport emissions from road, off-road, and ships but omits aviation. As shown in 

Figure S1, EDGAR, MEIC, and GEMS capture distinct emission bands along major flight corridors over western China, 

whereas CAMS only shows the road transport pattern, explaining the missing emissions over western China. 270 

 

 

Figure 4. Spatial distribution of CO₂ emissions in 2019 at a resolution of 0.1° from ODIAC (a), EDGAR (b), MEIC (c), CAMS (d), and 

GEMS (e), together with the mean (f) and standard deviation (SD) (g) of the emission inventories. Sub-graph (h) shows the scatter plot 

illustrating the correlation between the grid-level mean emissions and the standard deviation. 275 
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Figure 5. Spatial distribution of CO2 emission differences in 2019 between MEIC and each of the other inventories: (a) ODIAC minus 

MEIC, (b) EDGAR minus MEIC, (c) CAMS minus MEIC, and (d) GEMS minus MEIC. 280 

The SD between the five inventories (Fig. 4g) is strongly correlated with the mean of the emissions (Fig. 4f), with a slope of 

0.93 and a correlation coefficient (R) of 0.95 between log-transformed estimates (Fig. 4h). This indicates that emission 

uncertainties are highly correlated with emission levels, and that higher uncertainties coincide with higher emissions in 

economic and industrial regions such as NCP, BTH, YRD, and PRD. 

To assess spatial consistency, we compared ODIAC, EDGAR, CAMS, and GEMS with MEIC as a benchmark (Fig. 5). MEIC 285 

was chosen because it is compiled using local statistics and has been widely applied and validated in previous studies (Li et 

al., 2017b; Zheng et al., 2021; Che et al., 2022; Yang et al., 2025), making it a reasonable reference for comparison. Compared 

to MEIC, ODIAC allocates more emissions in most coastal areas and northeastern provinces (e.g., Shandong, YRD, BTH, 

PRD, and Northeast China), but distributes lower CO2 emissions in the southwest region (e.g., Guizhou, Chongqing), where 

population density is relatively high but satellite nightlight signals are weak (Fig. 5a). CAMS shows an opposite pattern, 290 

reporting lower emissions in most coastal and northeastern areas, but slightly higher values in parts of Jiangsu and Guangdong 

(Fig. 5c). GEMS shows slightly lower emissions in remote western areas (e.g., Xinjiang, Tibet, western Inner Mongolia) and 

relatively higher values in eastern provinces (Fig. 5d).  

Across the spatial domain, EDGAR generally reports lower emissions than MEIC, with negative differences prevailing 

throughout the regionIn space, EDGAR shows widespread lower emissions compared to MEIC, with negative differences 295 

dominating the spatial pattern (Fig. 5b). Positive differences, which are mainly concentrated along road distribution, are much 

rarer (only 39% of the number of negative difference grids). Despite this pattern, EDGAR yields a higher average grid-cell 
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difference from MEIC (110.60 ton CO2 km-2 year-1) than GEMS (43.12 ton CO2 km-2 year-1), and is only moderately lower 

than ODIAC (171.22 ton CO2 km-2 year-1) and CAMS (168.80 ton CO2 km-2 year-1). This suggests that although the positive 

differences between EDGAR and MEIC are spatially limited, they might be large in magnitude, potentially linking to emission 300 

hotspots such as highways or industrial clusters. We explore this further in Section 3.2.2. 

3.2.2 Sectoral CO2 emissions in EDGAR  

To explain the higher average grid-cell emissions of EDGAR (110.60 ton CO2 km-2 year-1 higher than MEIC in 2019) despite 

predominantly negative spatial differences, we analyze the discrepancies at the grid level (Fig. 6a). The cumulative sum of 

positive emission differences exceeds that of the negative ones when the absolute differences exceed 105 ton CO2 km-2 year-1. 305 

Although these extremes accounted for only 0.14% of the total grids, their cumulative magnitude (1.97×108 ton CO2 km-2 year-

1) is 1.91 times the absolute sum of all remaining grids (≤ 105 ton CO2 km-2 year-1, totaling -1.03×108 ton CO2 km-2 year-1). 

This confirms that the positive average grid-cell difference of EDGAR is caused by a small number of grids with extremely 

high emissions (>105 ton CO2 km-2 year-1). 

 310 

 

Figure 6. (a) Cumulative distribution of gridded emission differences (ton CO₂ km-2 year-1) between EDGAR and MEIC inventories. The 

cumulative sum for negative differences (blue line) is calculated using their absolute magnitudes and plotted against the corresponding 

positive values on the x-axis (i.e., 100 represents -100). The spatial distributions of the differences are shown in (b) EDGAR emissions 

without transport minus MEIC total emissions and (c) EDGAR transport emissions minus MEIC transport emissions. 315 

 

Spatially, most of the grids with positive emission differences are shown along major road networks (Fig. 5b). When the 

EDGAR’s transport sector is removed (Fig. 6b), the proportion of positive grids reduces drastically from 28.55% to 9.40%, 

confirming that the EDGAR's road transport emissions produce spatially extensive positive differences. However, the number 

of extreme positive emission differences (>105 ton CO2 km-2 year-1) remains unchanged after removing transport, suggesting 320 

that these extreme differences originate from non-transport sectors. A sectoral breakdown confirms that industry and 

construction contribute the most to the overall differences (1.16 Gt year-1), followed by electricity and heat production (0.56 

Gt year-1), while residential and commercial (–0.28 Gt year-1), and transport (–0.06 Gt year-1) play a smaller role. Given these 

magnitudes, we conclude that the extremely high emitters—though few in number—are most likely from localized industrial 
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and power generation activities, where EDGAR may allocate emissions more aggressively to point sources than MEIC. This 325 

divergence may stem from EDGAR’s use of the CARMA power plant database, while MEIC uses CPED. Although CARMA 

and CPED report similar total emissions (2% difference), CPED contains approximately 1300 more small power plants (F. Liu 

et al., 2015; Han et al., 2020a). CARMA’s sparser coverage concentrates emissions at fewer locations, thus producing 

EDGAR’s extreme positive grid anomalies. 

Despite the small total transport discrepancy (< 0.06 Gt year-1) between EDGAR and MEIC, their spatial patterns differ 330 

significantly (Fig. 6c). EDGAR concentrates transport emissions along major road networks, while MEIC distributes them 

more diffusely across China, which links to the different spatial allocation methods of EDGAR and MEIC. Notably, including 

transport emissions reduces the proportion of positive emission differences from 46.38% (non-transport only) to 28.55% (total 

difference). This indicates that the transport sectors of EDGAR and MEIC play a key role in the spatial pattern of positive 

emission differences, even though their total emissions are comparable.  335 

3.3 CO2 emission estimates at provincial level 

3.3.1 Provincial estimates in CEADs 

CEADs provides two forms of CO2 emission estimates for provinces: the “province” series (referred to as CEADs (provinces)), 

which provides total emissions directly for each province, and the “sectors” series (referred to as CEADs (sectors)), which 

compiles fuel- and sector-specific emissions before summing them to the provincial totals. Significant discrepancies are 340 

observed between these two estimates in some provinces, with Shanxi emerging as a pronounced outlier. After 2012, the 

difference in Shanxi exceeds 900 Mt year-1, whereas in other provinces it remains below 400 Mt year-1 (Fig. S2). To investigate 

this divergenceHowever, in some provinces, particularly Shanxi, these two estimates differ significantly (Fig. 7a). In Shanxi, 

we compare both CEADs estimates with other inventories in Shanxi (Fig. 7a). The results indicate that CEADs (provinces) 

exceeds CEADs (sectors) after 2008, with the discrepancy growing from 167.03 Mt year-1 in 2008 to 1167.73 Mt year-1 in 345 

2021. In contrast, the CEADs (sectors) closely matches the other five independent inventories (ODIAC, EDGAR, MEIC, 

CAMS and GEMS), with its mean emissions deviating by no more than 3.84 Mt year-1 from the average of the five inventories. 

The large discrepancy between CEADs (provinces) and CEADs (sectors) mainly originates from the much higher raw coal–

related emissions in CEADs (provinces) (Fig. S3), as coal is the dominant contributor to total emissions (Wei, 2022). 

 350 
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Figure 7. (a) Anthropogenic CO₂ emissions in Shanxi Province from six inventories: EDGAR, MEIC, CAMS, CEADs, ODIAC, and GEMS. 

CEADs provides two types of provincial-level estimates: reported provincial-level totals ("CEADs (provinces)") and aggregated sectoral 

emissions ("CEADs (sectors)"). Emissions from other inventories were derived by spatial aggregation of raster data. (b) Comparison between 355 
total national emissions from CEADs and the sum of provincial level emissions from CEADs (sectors) and CEADs (nation). 

 

At the national level, we assess both provincial datasets by aggregating their values across all provinces and comparing the 

results with the national total reported by CEADs (Fig. 7b). When the CEADs (sectors) are summed, the reconstructed national 

CO2 emissions match the national CEADs values almost perfectly, showing a mean annual deviation of only 0.01 Gt year-1 360 

over the period 2000-2021. In contrast, the aggregated CEADs (provinces) reports significantly higher national totals and 

exceeds the national CEADs emissions by an average of 0.85 Gt year-1. These comparisons demonstrate that the sector-based 

CEADs provides consistent provincial totals that are in line with both the independent inventories and the national compilation 

of CEADs. We therefore recommend using the CEADs (sectors) for all analyses at the national and provincial levels. 

3.3.2 Comparison of emission inventories in typical provinces  365 

The mean and SD of the provincial CO2 emissions from 2000 to 2023 are shown in Figure S41. To investigate how inter-

inventory consistency and discrepancies vary across provinces with high emissions or uncertaintiesthe causes of the 

discrepancies in the inventories, we select a subset of representative provinces for a detailed comparison. Representative 

provinces are identified using the SD and the mean emissions between the six emission inventories, calculated for the period 

2000-2023. Each year, all provinces are ranked in descending order based on these two metrics., Theand cumulative scores 370 

are calculated by summing the annual ranks over the entire 24-year period (2000-2023), reflecting each province’s long-term 

ranking in terms of emission magnitude or SD. A lower cumulative score indicates higher mean emissions or emission 

uncertainties (SD). The top six provinces in each category are selected, resulting in a list of nine representative provinces 

(some provinces repeat in the ranking of the two metrics): Inner Mongolia, Liaoning, Hebei, Shandong, Henan, Hubei, 

Shanghai, Jiangsu, and Guangdong (Table 3). In the third emissions phase (2016–2023), each of the six provinces with the 375 
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highest emissions contributes more than 5.4 % of total national emissions, and together they account for almost 40 % of China’s 

emissions. To investigate the emission patterns and cross-inventory agreement, we examine the CO₂ emissions of these nine 

representative provinces (Fig. 8). 

 

Table 3. The top six provincial-level regions with the highest cumulative CO₂ emissions and the highest SD among the inventories (2000–380 
2023), and CO2 emission percentage of the top six provinces with the highest emissions from 2016 to 2023. 

Top six provinces by 

mean emissions 

Cumulative 

rank score 

CO2 emission 

fractions (2016-

2023) 

Top six provinces 

by SD 

Cumulative 

rank score 

Shandong 24 8.43% Hubei 67 

Jiangsu 53 7.48% Hebei 69 

Hebei 72 6.37% Guangdong 106 

Guangdong 112 5.71% Liaoning 114 

Henan 115 5.41% Shandong 120 

Inner Mongolia 148 6.15% Shanghai 136 

Note: Cumulative rank score refers to the sum of a province’s annual rank (from highest to lowest) in terms of mean emissions or inter-

inventory standard deviation (SD) 
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 385 
Figure 8. Anthropogenic CO2 emissions from 2000 to 2023 for nine typical provinces: Hebei (a), Shandong (b), Guangdong (c), Liaoning 

(d), Hubei (e), Shanghai (f), Inner Mongolia (g), Henan (h), and Jiangsu (i). These provinces are selected based on either the highest average 

emissions or the highest SD among the inventories. 

Among the provinces with higher emissions, Hebei, Shandong, and Guangdong rank at the top in terms of both mean emissions 

and SD (Table 3). In Hebei (Fig. 8a), CAMS and ODIAC report emissions averaging 416 Mt year-1, which is 32% less than 390 

the other four inventories (618 Mt year-1), thereby contributing significantly to the SD. In Shandong (Fig. 8b), all inventories 

show increased emissions, but EDGAR (873 Mt year-1 on average) reports emissions over 30% higher than the others (670 Mt 

year-1), resulting in a pronounced dispersion. Guangdong (Fig. 8c) shows a pronounced ODIAC bias, with an average of 663 

Mt year-1, over 53% higher than the average of the other five inventories (433 Mt year-1). It is noteworthy that ODIAC 

significantly distributes more emissions in Jiangsu, Shanghai and Guangdong—especially in the latter two provinces. This 395 

suggests that the downscaling approach in ODIAC may overweight emissions in dense urban agglomeration (or city cluster). 

Liaoning, Hubei, and Shanghai (Fig. 8d-f) are selected due to their larger inter-inventory SD. In these provinces, CAMS 

exceeds the mean of the five inventories by 50-90% in Liaoning, 60-110% in Hubei, and 50-230% in Shanghai, which increases 

the dispersion. In Hubei, the high SD is also due to persistent dispersion across all six inventories (Fig. 8e). CAMS consistently 
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provides the highest estimates, while ODIAC provides the lowest, making Hubei the province with the highest SD, despite 400 

average CO2 emissions being only moderate. 

Inner Mongolia, Henan, and Jiangsu (Fig. 8g-i) are selected for their high emissions rather than their extreme dispersion. Inner 

Mongolia followed the national three-stage growth pattern, with MEIC and CEADs—both China-tailored inventories—

matching within 11 Mt year-1 and even outperforming other inventories after 2016 (Fig. 8g). In Henan, domestic inventories 

(MEIC and CEADs) show two distinct phases: growth until 20132, followed by a decline, while the other global-based 405 

inventories (except GEMS) slowly increase after 2016 (Fig. 8h). In Jiangsu, all inventories show a two-phase trend, with rapid 

growth before 20132 and relative stabilization thereafter. After 20132, ODIAC and EDGAR report the highest emissions in 

Jiangsu, while MEIC shows the lowest trend (Fig. 8j). In the nine provinces, CEADs and MEIC estimates are largely consistent, 

especially in Inner Mongolia, Shandong, Henan, Hubei, and Shanghai. 

Comparing the variability of emissions in the nine provinces and at the national level, the coefficient of variation (CV = 410 

SD/mean; Fig. S52) for total national emissions in China is the lowest and most stable for the period 2000-2023. In contrast, 

the time-averaged CV of the nine provinces with high emissions is at least 2.8 times higher than the national average (0.044). 

Liaoning, Hubei, and Shanghai, which show the largest SD between inventories, have even higher CVs, with values of 0.45, 

0.34, and 0.26, respectively. These values exceed the national CV by a factor of 5, while Shanghai's CV exceeds the national 

CV by a factor of 10. This contrast emphasizes that the uncertainties at the provincial level (10-50%) are larger than the 415 

deviations at the national level (<5%), which is due to systematic biases in certain inventories and their different downscaling 

methods. We suggest establishing more ground-based CO2 monitoring sites to verify and estimate anthropogenic CO2 

emissions in these provinces. 

4 Conclusions and discussion 

China’s annual anthropogenic CO₂ total emission increases from 3.42 Gt in 2000 to 12.03 Gt in 2023. When compared with 420 

the officially reported NGHGI and the six-inventory mean, CAMS shows the smallest deviation from the NGHGI, while 

ODIAC agrees most closely with the multi-inventory mean. The six inventories display a broadly consistent emission trend, 

but theirThe discrepancies among the inventories have widened from 0.41 Gt year-1 to 1.63 Gt year-1, which is mainly due to 

the highest estimates reported from EDGAR and the lowest values estimated from MEIC, especially after 2012. Our results 

are consistent with L. Zheng et al. (2025) but opposite to Han et al. (2020b), demonstrating the differences in emission versions 425 

(Our study: EDGAR2024, MEIC-global-CO2 v1.0; Zheng: EDGAR v7.0, MEIC-China-CO2 v1.4; Han: EDGAR v4.3.2, 

MEIC-China-CO2 v1.3). A comparison between these versions (Fig. S6) shows that the divergence mainly arises from a 

downward revision in the latest MEIC dataset, which reports about 1.43 Gt year-1 lower emissions on average over 2008–2017. 

In contrast, EDGAR’s national totals remained nearly unchanged across versions, with differences within 0.001 Gt year-1 

during 2000-2012. These results highlight the significant impact of inventory version updates on comparative emission 430 

analyses.   
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The six inventories in this study agree on three emission phases: a rapid increase of 0.56 ± 0.0135 Gt year⁻¹ (2000–20132), a 

near-stagnation phase of −0.071 ± 0.02245 Gt year⁻¹ under the 12th Five-Year Plan and air clean policy (20132–2016), and 

a renewed growth of 0.30 ± 0.016 Gt year⁻¹ (2016–2023), mainly related to infrastructure-driven energy demand and coal use 

recovery following 2016with recent increases highlighting the challenges in controlling anthropogenic CO2 emissions. In terms 435 

of emission sectors, emissions are dominated by electricity and heat production, industry and construction (together accounting 

for 78% of total emissions). The former source overtook the latter as the largest source after 2017, reflecting changes in China’s 

energy structure. 

In spatial terms, the higher emissions strongly corresponded with the higher uncertainty (reference 2019: R = 0.95, P< 0.01). 

Eastern regions, particularly the BTH, YRD, and PRD city clusters, had both the highest emissions and the largest SD. This 440 

pattern confirms the finding of Wang et al. (2013) that areas with high emission level have the largest uncertainties. Different 

allocation methods are the main reason for the spatial discrepancies between the inventories. The ODIAC nightlight proxy 

distributes more emissions in urban areas and fewer emissions in the western regions. EDGAR, which is based on the CARMA 

database, concentrated power plant emissions on fewer grids, resulting in extreme anomalies where the difference (EDGAR-

MEIC) exceeds 105 ton CO2 km-2 year-1. These high-value grids underscore the importance of cross-inventory comparisons 445 

when using EDGAR to analyze the spatial distribution of industry sector or power plant emissions in China. In contrast, MEIC 

uses the more detailed CPED and distributes similar total CO2 emissions (difference within 2% of CARMA) across a larger 

number of power plants (Liu et al., 2015). The overall spatial grid-based difference between EDGAR and MEIC is dominated 

by negative values (71.45% of grids), due to the different allocation methods for the transport sector. EDGAR allocates 

emissions along major roads, while MEIC uses a more diffuse distribution. Despite a minimal overall difference in the sector 450 

of transport (< 0.06 Gt), the spatial mismatch was substantial, with 70.37% of transport-related grid differences being negative, 

due to the different disaggregation methods: OpenStreetMap and OpenRailwayMap in EDGAR versus CDRM in MEIC. 

At the provincial level, CEADs data show critical inconsistencies: its provincial sectoral emissions are consistent with the 

multi-inventory means, but the provincial series reports lower emissions in Shanxi by more than 127% (approximately 500 Mt 

year-1). We therefore recommend sector-based CEADs for province-level analyses. The uncertainty in the province scale is 455 

significantly higher than the national scale. For example, the coefficient of variation (CV) of Shanghai (0.45) is ten times 

higher than the national CV (0.044). The pronouncedly higher emissions in the coastal megacities (e.g., Shanghai, Jiangsu, 

and Guangdong) by ODIAC and the abnormal increase in CAMS by 50-230% in Liaoning, Hubei, and Shanghai exacerbate 

this divergence. Despite these inconsistencies, CEADs and MEIC exhibit broadly consistent estimates across nine provinces, 

especially in Inner Mongolia, Shandong, Henan, Hubei, and Shanghai. 460 

In summary, this study extends previous work by identifying a three-phase trend in China’s anthropogenic CO₂ emissions from 

2000 to 2023 and quantifying the emission uncertainties (1σ) at both national and provincial levels. At the national level, 

CAMS shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with the multi-inventory 

mean over the study period. At the provincial level, the Chinese local inventories, CEADs and MEIC, provide the most 

consistent estimates for regional studies. Differences in spatial proxies significantly affect the spatial distribution of sectoral 465 
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emissions, as shown by the contrasting transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use 

of CEADs for provincial analyses. Our results further underscore the importance of improving the consistency of regional 

inventories to provide a stronger scientific basis for China’s emission mitigation and carbon neutrality policies. 

Overall, reliable emissions quantification requires scale-appropriate inventories (e.g., the sectoral CEADs emissions versus 

the province-based CEADs emissions), improved spatial proxies (e.g., CPED vs. CARMA), and ensemble approaches to 470 

mitigate biases, especially in the carbon-intensive eastern regions. .   

To be noted,It should be noted that this study lacks an observational benchmark to assess these inventories. In the futureFuture 

efforts should incorporate, either direct flux measurements or top-down emissions derived fromby an inversion  modeling, 

togetherin combination with CO2 mole fraction observationscarbon measurements, are needed toto compare and 

constraincompare with these bottom-up inventories at both regional and national scales. 475 
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7 Supplementary materials 

Table S1. Definition of sub-sectors included in the four main sectors (electricity and heat production, industries and construction, transport, 

and residential and commercial) of the MEIC inventory. 

Sector in MEIC-global-CO2 Definition 

Electricity and heat production 

Power generation 

Heat (auto producer) 

Heat (public) 

Industries and construction 

Coal mines 

Oil and gas extraction 

Blast furnaces 

Gas works 

Gasification plants for biogases 

Coke ovens 

Patent fuel plants 

BKB/peat briquette plants 

Oil refineries 

Coal liquefaction plants 

Liquefaction (LNG) / regasification plants 

Gas-to-liquids (GTL) plants 

Own use in electricity, CHP and heat plants 

Charcoal production plants 

Non-specified transformation industries 

Iron and steel 

Non-ferrous metals 

Chemicals 

Pulp and paper 

Food and tobacco 

Cement 

Other non-metallic minerals 

Transport equipment 

Machinery 

Mining and quarrying 
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Wood products 

Construction 

Textile and leather 

Other non-specified industries 

Process emissions in cement industry 

Transport 

International aviation¹ 

Domestic aviation 

Rail 

International navigation¹ 

Domestic navigation 

Pipeline transport 

Other non-specified transport 

Agriculture and forestry 

Fishing 

Cars 

Light duty trucks 

Buses 

Heavy duty trucks 

Motorcycles 

Other fleet totals 

Residential and commercial 

Commercial and institutional 

Residential (rural) 

Residential (urban) 

Non-specified sectors 
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Table S2. Definition of sub-sectors in the four main sectors of EDGAR, CAMS, CEADs and GEMS. 

Emission inventory Sector Definition 

EDGAR 

Electricity and heat production 
Main Activity Electricity and Heat 

Production 

Industries and construction 

Petroleum Refining - Manufacture 

of Solid Fuels and Other Energy 

Industries 

Manufacturing Industries and 

Construction 

Solid Fuels 

Oil and Natural Gas 

Cement production 

Lime production 

Glass Production 

Other Process Uses of Carbonates 

Chemical Industry 

Metal Industry 

Non-Energy Products from Fuels 

and Solvent Use 

Liming 

Urea application 

Incineration and Open Burning of 

Waste 

Fossil fuel fires 

Transport 

Civil Aviation 

Road Transportation no 

resuspension 

Railways 

Water-borne Navigation 

Other Transportation 
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Residential and commercial 
Residential and other sectors 

Non-Specified 

CAMS 

Electricity and heat production Power generation 

Industries and construction 

Fugitives 

Industrial process 

Refineries 

Solid waste and waste water 

Solvents 

Transport 

Off Road transportation -China 

Road transportation 

Ships 

Residential and commercial 
Commercial 

Residential 

CEADs 

Electricity and heat production 
Production and Supply of Electric 

Power, Steam and Hot Water 

Industries and construction 

Coal Mining and Dressing 

Petroleum and Natural Gas 

Extraction 

Ferrous Metals Mining and 

Dressing 

Nonferrous Metals Mining and 

Dressing 

Nonmetal Minerals Mining and 

Dressing 

Other Minerals Mining and 

Dressing 

Logging and Transport of Wood 

and Bamboo 

Food Processing 

Food Production 



34 

 

Beverage Production 

Tobacco Processing 

Textile Industry 

Garments and Other Fiber Products 

Leather, Furs, Down and Related 

Products 

Timber Processing, Bamboo, Cane, 

Palm Fiber & Straw Products 

Furniture Manufacturing 

Papermaking and Paper Products 

Printing and Record Medium 

Reproduction 

Petroleum Processing and Coking 

Raw Chemical Materials and 

Chemical Products 

Medical and Pharmaceutical 

Products 

Chemical Fiber 

Rubber Products 

Plastic Products 

Nonmetal Mineral Products 

Smelting and Pressing of Ferrous 

Metals 

Smelting and Pressing of 

Nonferrous Metals 

Metal Products 

Ordinary Machinery 

Equipment for Special Purposes 

Transportation Equipment 

Electric Equipment and Machinery 
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Electronic and 

Telecommunications Equipment 

Instruments, Meters, Cultural and 

Office Machinery 

Other Manufacturing Industry 

Scrap and waste 

Production and Supply of Gas 

Production and Supply of Tap 

Water 

Construction 

Transport 

Farming, Forestry, Animal 

Husbandry, Fishery and Water 

Conservancy 

Transportation, Storage, Post and 

Telecommunication Services 

Residential and commercial 

Cultural, Educational and Sports 

Articles 

Wholesale, Retail Trade and 

Catering Services 

Others 

Urban 

Rural 

GEMS 

Electricity and heat production Power Generation 

Industries and construction 
Industrial Process 

Industrial Combustion 

Transport 
Transportation 

Agriculture 

Residential and commercial 
Commercial 

Residential Combustion 
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Figure S1. Spatial distribution of CO2 emissions from transport sector in 2019 across four inventories (EDGAR, CAMS, MEIC, and GEMS). 620 
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Figure S2. Heatmap of the annual CO₂ emission differences between CEADs (province) and CEADs (sector) for 30 Chinese provinces 

provided by CEADs during 2000–2021. Provinces are ordered by total emissions from highest to lowest. 
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Figure S3. Comparison of total CO2 emissions and raw coal–related CO2 emissions in Shanxi from CEADs (sectors) and CEADs (provinces) 

during 2000–2020. Solid lines represent total emissions, while dashed lines indicate emissions from raw coal combustion. 
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Figure S41. Heatmaps of provincial mean CO2 emissions (a) and SD (b) of six emission inventories for the period 2000 to 2023.  
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Figure S5. Coefficient of variation (CV) of emissions at national level and for nine typical provinces during 2000-2023. The shaded area 

represents the period after 2019, when the number of available emission inventories began to decrease (GEMS ended in 2019, CEADs in 

2021, and ODIAC in 2022). 640 
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Figure S2. Coefficient of variation (CV) of emissions at national level and for nine typical provinces. 
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Figure S6. Comparison of national CO2 emissions from different versions of the EDGAR and MEIC inventories. The older versions 645 
(EDGAR v4.3.2 and MEIC-China-CO2 v1.3) used in Han et al. (2020b) are compared with the updated versions (EDGAR 2024 and MEIC-

Global-CO2 v1.0) used in this study. 

 


