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This manuscript offers a robust comparative analysis of six CO₂ emission inventories for China, 

integrating both local and global datasets. A key strength is its detailed assessment of spatial and 

temporal uncertainties, an often overlooked but policy-relevant aspect. The study contributes 

meaningfully by highlighting inventory discrepancies and emphasizing the importance of 

uncertainty assessments in emission reporting. However, I have the following specific comments 

that require clarification and revision before the manuscript can be considered for publication. 

General comments 

The manuscript is clearly written and well structured, with a logical flow that facilitates 

understanding of the main objectives and findings. 

 

1. However, it is not entirely clear whether the emission inventories selected for analysis are 

the only relevant options available, or what criteria guided their selection. Since the 

manuscript references other inventories that were ultimately not included in the comparison, 

it would strengthen the study to provide a clearer rationale for the choices made. 

 

Response: We sincerely thank the reviewer for this valuable comment regarding the selection 

criteria of the emission inventories. In this study, we aimed to ensure both temporal completeness 

and spatial representativeness when selecting inventories. The six inventories included 

(ODIAC2023, EDGAR2024, MEIC-global-CO2 v1.0, CAMS-GLOB-ANT v6.2, GEMS v1.0, and 

CEADs) provide continuous time-series covering most of the period from 2000 to 2023 (at least 

from 2000 to 2019 in GEMS) and have explicit coverage over mainland China. These inventories 

are also internationally recognized and widely cited in peer-reviewed studies (Li et al., 2017; Han et 

al., 2020; Liu et al., 2024; Zheng et al., 2025). Besides, they are freely available from official websites.  

Other inventories mentioned in the text, such as CHRED, were not included because their datasets 

are not directly accessible. Although the CHRED dataset has been partially integrated into the IPPU 

accounting platform (https://www.cityghg.com/toCauses?id=4), the platform only provides data for 

four discrete years (2005, 2010, 2015, and 2020), leaving substantial temporal gaps that prevent a 

consistent time-series analysis.  

In this revision, we also added the national total CO₂ emissions reported by the Chinese government 

in the National Greenhouse Gas Inventory (NGHGI) submitted to the UNFCCC (from documents 

China. 2024 Biennial Transparency Report (BTR). BTR1, and China. Biennial Update Report 

(BUR). BUR 4, available at https://unfccc.int/reports). The NGHGI data are also temporally 

discontinuous, but provide 8 available years (2005, 2010, 2012, 2014, 2017, 2018, 2020, and 2021). 

The NGHGIs represent the officially reported values and therefore provide an independent 

benchmark to evaluate the consistency of the six bottom-up inventories. We have now clarified this 

rationale for the inventory selection in Section 2.  

 

 

 

https://www.cityghg.com/toCauses?id=4
https://unfccc.int/reports


Revision: 

(1) Section 2, paragraph 1: “To ensure both temporal completeness and spatial representativeness, 

the selected emission inventories must provide a continuous time-series covering most of the 2000-

2023 period (with at least 2000–2019 coverage in GEMS) and have explicit spatial coverage over 

mainland China. Six anthropogenic CO2 emission inventories, including five gridded inventories 

(ODIAC2023, EDGAR2024, MEIC-global-CO2 v1.0, CAMS v6.2, and GEMS v1.0) and one urban 

total emission inventory (CEADs), are applied to provide estimates of total emissions at the national, 

provincial, and city levels in China. As internationally recognized and widely used by previous 

studies (Li et al., 2017b; Han et al., 2020b; Liu et al., 2024; Zheng et al., 2025), these inventories 

are publicly available from official repositories.” 

(2) Section 2, paragraph 2: “In addition to these six datasets, the National Greenhouse Gas 

Inventory (NGHGI) submitted by the Chinese government to the United Nations Framework 

Convention on Climate Change (UNFCCC, available at: https://unfccc.int/reports) was also 

collected. The NGHGI provides the officially reported national total emissions and therefore serves 

as an independent benchmark for evaluating the reliability of the six inventories. As NGHGI covers 

only discrete years (2005, 2010, 2012, 2014, 2017, 2018, 2020, and 2021), it is not included in the 

continuous temporal analysis but is used solely for national-level comparison.” 

(3) Section 2, paragraph 3: “The specific information of the six selected inventories is presented in 

Section 2.1. …” 

 

References: 

Han, P., Zeng, N., Oda, T., Lin, X., Crippa, M., Guan, D., Janssens-Maenhout, G., Ma, X., Liu, Z., 

Shan, Y., Tao, S., Wang, H., Wang, R., Wu, L., Yun, X., Zhang, Q., Zhao, F., and Zheng, B.: 

Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories, 

Atmospheric Chemistry and Physics, 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, 

2020. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 

Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, 

B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration 

framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, 

https://doi.org/10.5194/acp-17-935-2017, 2017. 

Liu, H., Hu, C., Xiao, Q., Zhang, J., Sun, F., Shi, X., Chen, X., Yang, Y., and Xiao, W.: Analysis of 

anthropogenic CO2 emission uncertainty and influencing factors at city scale in Yangtze River Delta 

region: One of the world’s largest emission hotspots, Atmospheric Pollution Research, 15, 102281, 

https://doi.org/10.1016/j.apr.2024.102281, 2024. 

Zheng, L., Li, S., Hu, X., Zheng, F., Cai, K., Li, N., and Chen, Y.: Spatiotemporal comparative 

analysis of three carbon emission inventories in mainland China, Atmospheric Pollution Research, 

16, 102417, https://doi.org/10.1016/j.apr.2025.102417, 2025. 

 

  

https://unfccc.int/reports


2. The relevance of the topic is evident, especially in light of China’s pivotal role in global 

emissions and its commitments under the Paris Agreement. Still, the manuscript would benefit 

from a more explicit explanation of why comparing the latest versions of these inventories is 

particularly important. A clearer articulation of what distinguishes this study from previous 

work (beyond simply the version updates) would improve accessibility, especially for readers 

less familiar with the topic. 

 

Response: We thank the reviewer for this helpful comment. We have now revised the texts to more 

clearly state why using the latest inventory versions is essential and how this study differs from 

previous work. The latest versions incorporate updated activity data, emission factors, and spatial 

proxies, ensuring greater temporal completeness and accuracy. For example, ODIAC2023 

incorporates the latest national fossil-fuel CO2 estimates from the CDIAC team (AppState, Gilfillan 

et al. 2021, Hefner and Marland, 2023), covering the period 2000–2022 (available at: 

https://db.cger.nies.go.jp/dataset/ODIAC/readme/readme_2023_20240605.txt). EDGAR2024 

integrates updated activity data from IEA (2023) and FAO (2024), extends the time series of CO2 

emissions to 2023 through a new “Fast Track” approach (Guizzardi et al., 2024; Crippa et al., 2024), 

and employs enhanced spatial proxies such as the Global Energy Monitor power plant dataset 

(available at: https://edgar.jrc.ec.europa.eu/dataset_ghg2024). These improvements significantly 

enhance temporal completeness and spatial accuracy compared to earlier versions (e.g., EDGAR 

v8.0, ODIAC2022). 

We have also addressed our study’s distinct contributions compared with earlier analyses (Han et 

al., 2020; L. Zheng et al., 2025). This work (1) extends the temporal coverage to 2000–2023 and 

identifies three distinct emission phases reflecting policy and energy structure changes; (2) evaluates 

inconsistencies within CEADs and recommends using CEADs (sectors) for provincial analyses; (3) 

reveals sectoral spatial allocation differences—especially between EDGAR and MEIC in the 

transport sector; (4) quantifies scale-dependent uncertainties, showing that provincial uncertainty 

(CV) is 2-10 times higher than national uncertainty; and (5) shows that CEADs and MEIC yield 

consistent estimates across nine representative provinces. At the national scale, CAMS shows the 

smallest deviation from the NGHGI, while ODIAC agrees most closely with the six-inventory mean 

during the study period. These revisions have been added to the Section 1 to highlight the rationale 

for using the latest inversions and to the Section 4 to summarize the new insights and methodological 

contributions.  

 

Revision 

(1) Section 1, paragraph 4: “…Moreover, emission inventories are continuously updated to 

incorporate improved inputs (e.g., activity data, EFs, and refined methodology). Therefore, it is 

crucial to use the latest versions of the various inventories to capture these methodological updates 

and better understand the most recent patterns of China's anthropogenic CO2 emissions.” 

(2) Section 4, paragraph 5: “In summary, this study extends previous work by identifying a three-

phase trend in China’s anthropogenic CO2 emissions from 2000 to 2023 and quantifying the 

emission uncertainties (1σ) at both national and provincial levels. At the national level, CAMS 

shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with 

the multi-inventory mean over the study period. At the provincial level, the Chinese local inventories, 

CEADs and MEIC, provide the most consistent estimates for regional studies. Differences in spatial 

https://db.cger.nies.go.jp/dataset/ODIAC/readme/readme_2023_20240605.txt
https://edgar.jrc.ec.europa.eu/dataset_ghg2024


proxies significantly affect the spatial distribution of sectoral emissions, as shown by the contrasting 

transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use of CEADs 

for provincial analyses. Our results further underscore the importance of improving the consistency 

of regional inventories to provide a stronger scientific basis for China’s emission mitigation and 

carbon neutrality policies.” 

 

 

3. The discussion of differences between inventories and their associated uncertainties is 

engaging and informative. However, a clear take-home message is lacking, particularly 

regarding which inventories may be considered more reliable or fit for specific purposes. 

While it is understandable that definitive recommendations may be difficult, the current 

conclusions are limited, with the mainly strong guidance being to avoid the provincial CEADs 

inventory. Offering more concrete insights or practical recommendations, especially in the 

context of supporting policymaking, would significantly strengthen the manuscript. 

 

Response: We thank the reviewer for this constructive suggestion. We agree that identifying which 

inventories are more reliable is crucial. However, determining the accuracy of each inventory 

requires direct comparisons with independent observations (e.g., atmospheric CO2 measurements 

and inversion results), which is beyond the scope of this study. In this study, we focused on assessing 

the consistency among inventories and their deviations from independent references.  

To strengthen the conclusions, we have now included the National Greenhouse Gas Inventory 

(NGHGI) data submitted by the Chinese government to the UNFCCC for comparison at the national 

level. We have revised Figure 1 to include NGHGI data. We assessed the consistency of the six 

inventories (2000–2023) by calculating mean absolute difference (MAD) of each inventory relative 

to the NGHGI and the six-inventory mean. Our findings show that CAMS exhibits the greatest 

consistency with the NGHGI, while ODIAC agrees most closely with the six-inventory mean. 

At the provincial level, the uncertainties are 2-10 times higher than that at the national level. While 

these variations make it difficult to determine an absolute reference, our analysis (Section 3.2.2, 

paragraph 3) shows that CEADs and MEIC exhibit good agreement in nine representative provinces, 

particularly in Inner Mongolia, Shandong, Henan, Hubei, and Shanghai. We have revised Section 

3.1 and Section 4 accordingly to clearly incorporate these quantitative consistency assessments and 

provide clearer practical insights 

 

Revision: 

(1) Section 3.1, paragraph 2: “To further assess the consistency of the six inventories, we calculate 

the mean absolute difference (MAD), which is defined as the multi-year mean of annual absolute 

differences between each inventory and either the NGHGI or the six-inventory mean. Compared 

with NGHGI, the MADs range from 0.156 Gt year-1 (CAMS) to 0.835 Gt year-1 (MEIC). Against the 

six-inventory mean, the MADs range from 0.12 Gt year-1 (ODIAC) to 0.449 Gt year-1 (MEIC). 

EDGAR reports the highest emissions, which is about 0.370 Gt year-1 larger than the mean emission. 

MEIC shows the lowest emission levels, which is about 0.449 Gt year-1 less than the mean emission. 

Overall, CAMS exhibits the greatest consistency with the NGHGI, being at least 30% lower than 

that of the other inventories. In comparison, ODIAC agrees most closely with the six-inventory mean, 

with an MAD at least 58% lower than the others.” 



(2) Section 4, paragraph 1: “China’s annual anthropogenic CO₂ total emission increases from 

3.42 Gt in 2000 to 12.03 Gt in 2023. When compared with the officially reported NGHGI and the 

six-inventory mean, CAMS shows the smallest deviation from the NGHGI, while ODIAC agrees 

most closely with the multi-inventory mean. The six inventories display a broadly consistent 

emission trend, but their discrepancies among the inventories have widened from 0.41 Gt year-1 to 

1.63 Gt year-1, mainly due to the highest estimates reported from EDGAR and the lowest values 

estimated from MEIC, especially after 2012. …” 

(3) Section 4, paragraph 4: “…The pronouncedly higher emissions in the coastal megacities (e.g., 

Shanghai, Jiangsu, and Guangdong) by ODIAC and the abnormal increase in CAMS by 50-230% 

in Liaoning, Hubei, and Shanghai exacerbate this divergence. Despite these inconsistencies, CEADs 

and MEIC exhibit broadly consistent estimates across nine provinces, especially in Inner Mongolia, 

Shandong, Henan, Hubei, and Shanghai.” 

(4) Section 4, paragraph 5: “In summary, this study extends previous work by identifying a three-

phase trend in China’s anthropogenic CO₂ emissions from 2000 to 2023 and quantifying the 

emission uncertainties (1σ) at both national and provincial levels. At the national level, CAMS 

shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with 

the multi-inventory mean over the study period. At the provincial level, the Chinese local inventories, 

CEADs and MEIC, provide the most consistent estimates for regional studies. Differences in spatial 

proxies significantly affect the spatial distribution of sectoral emissions, as shown by the contrasting 

transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use of CEADs 

for provincial analyses. Our results further underscore the importance of improving the consistency 

of regional inventories to provide a stronger scientific basis for China’s emission mitigation and 

carbon neutrality policies.” 

 

Section 3.1, Figure 1: 

 

Figure 1. Annual anthropogenic CO2 emissions in mainland China from 2000 to 2023, as reported by six emission 

inventories: EDGAR, MEIC, CAMS, CEADs (up to 2021), ODIAC (up to 2022), and GEMS (up to 2019), and one 

government-reported data (NGHGI). Apart from ODIAC, all inventories provide national totals directly. We 

calculated China's emissions by summing the grid values within China for ODIAC. The shaded area indicates the 

standard deviation of the six inventories. It’s noteworthy that the inter-inventory mean and SD were calculated from 

the above mentioned six inventories. 



Specific Comments 

1. Line 35: To highlight China’s role in global emissions, please include the percentage of China’s 

anthropogenic emissions relative to global totals. 

 

Response: We appreciate the reviewer’s suggestion. According to the Global Carbon Project 

(GCP, 2024), China accounted for about 32% of global anthropogenic CO₂ emissions in 2023. We 

have added this information in Introduction section to better emphasize China’s role in global 

emissions. 

 

Revision: 

Section 1, paragraph 1: “…China, which is responsible for about 80% of East Asia’s 

anthropogenic CO2 emissions (Xia et al., 2025) and about 32% of global CO2 emissions according 

to the Global Carbon Project (GCP, 2024; available at: https://globalcarbonbudget.org/), has 

committed to reaching peak emissions by 2030 and carbon neutrality by 2060. …” 

 

 

2. Line 44: The CAMS inventory should be included in this overview for completeness. 

 

Response: We appreciate the reviewer’s suggestion. The CAMS inventory has now been included 

in the revised manuscript. 

 

Revision: 

Section 1, paragraph 2: “…Global gridded products provide consistent, worldwide estimates with 

high spatial resolution (1 km or 0.1°), such as the Open-Data Inventory for Anthropogenic Carbon 

Dioxide (ODIAC) (Oda et al., 2018; Oda and Maksyutov, 2011), the Emissions Database for Global 

Atmospheric Research (EDGAR) (Janssens-Maenhout et al., 2019), the Global Emission Modeling 

System (GEMS) (Wang et al., 2013), and the Copernicus Atmosphere Monitoring Service (CAMS-

GLOB-ANT, hereafter referred to as CAMS, Soulie et al., 2024). …” 

 

3. Line 48: Are there specific reasons for not including CHRED in the analysis? Please clarify. 

 

Response: We thank the reviewer for this comment. Our primary selection criteria required 

inventories to provide a continuous time-series covering most of the 2000-2023 to ensure temporal 

completeness. The publicly accessible CHRED dataset (available at: https://www.cityghg.com 

/toCauses?id=4) only provides data for four discrete years (2005, 2010, 2015, and 2020), which 

leaves substantial temporal gaps that prevent a consistent time-series analysis. We have added our 

selection criteria in the revised manuscript. 

 

Revision: 

Section 2, paragraph 1: “To ensure both temporal completeness and spatial representativeness, the 

selected emission inventories must provide a continuous time-series covering most of the 2000-2023 

period (with at least 2000–2019 coverage in GEMS) and have explicit spatial coverage over 

mainland China. Six anthropogenic CO2 emission inventories, …” 

https://globalcarbonbudget.org/
https://www.cityghg.com/toCauses?id=4
https://www.cityghg.com/toCauses?id=4


4. Line 80: Consider introducing the CAMS inventory definition earlier in this section 

alongside the others, for consistency. 

 

Response: We appreciate this suggestion regarding the CAMS inventory definition. The CAMS 

definition has been introduced earlier in the revised manuscript to enhance consistency, as suggested 

in a previous review comment (Specific Comment 2). The CAMS-GLOB-ANT definition, including 

the abbreviation (CAMS), is now presented in Section 1, Paragraph 2. 

 

 

5. Line 80: MEIC is initially described (line 47) as a China-specific inventory, but here it is 

treated as a global inventory. This inconsistency may confuse readers, particularly since line 

116 clarifies that the global version of MEIC is used. Please harmonize these descriptions. 

 

Response: We thank the reviewer for pointing out this potential confusion regarding the MEIC 

inventory. We acknowledge that the distinction between MEIC's China-specific and global products 

was not sufficiently clarified. The MEIC team produces two distinct CO2 emission products: a 

China-specific version (MEIC-China-CO2) and a global version (MEIC-Global-CO2). We selected 

the MEIC-Global-CO2 product v1.0 based on its two primary advantages: it offers a higher spatial 

resolution (0.1°×0.1°) compared to the then-latest MEIC-China-CO2 v1.4 (0.25°×0.25°), and its 

temporal coverage extends closer to the most recent years (1970–2023 vs 1970–2020). Importantly, 

while this product is globally scoped, the emissions calculation within the Chinese region retains 

the accuracy of a local inventory by using Chinese local energy statistics (from the China Energy 

Statistics Yearbook, CESY)) and emission factors (from the China Emission Accounts and Datasets, 

CEADs). We have revised content in Section 2.1, paragraph 3 to harmonize these descriptions and 

clarify that the global version was selected based on its superior technical specifications (spatial 

resolution and temporal coverage). 

 

Revision: 

Section 2.1, paragraph 3: “…MEIC uses the transportation network data from the China Digital 

Road Network Map (CDRM) to constrain the distribution of vehicle activity as well as population 

density, GDP, and land use for other sectors (Li et al., 2017a; Xu et al., 2024b). In this study, we 

use the latest MEIC-Global-CO2 product (v1.0), which provides higher spatial resolution (0.1° × 

0.1°) and longer temporal coverage (1970-2023) than the MEIC-China-CO2 product (v1.4; 0.25° 

× 0.25°, up to 2020). It’s noteworthy that although MEIC-Global-CO2 is a global product, its 

emissions calculations for China continue to rely on local energy statistics (CESY) and emission 

factors (CEADs), ensuring consistency with domestic data while improving spatiotemporal details.” 



6. Line 122: The mention of the number of species covered by CAMS is not relevant here, as 

the analysis focuses on a single species. Also, this level of detail is not provided for the other 

inventories. 

 

Response: We thank the reviewer for this helpful comment. The description of the number of 

species covered by CAMS has been removed to maintain consistency with the level of detail 

provided for the other inventories. 

 

 

7. Line 198: Do you have any hypotheses as to why GEMS diverges from the trends observed 

in other inventories, especially in the residential and commercial sectors? 

 

Response: We thank the reviewer for this insightful question. We have further investigated the 

GEMS inventory and consulted with the dataset developers. The residential emissions provided by 

GEMS are considered more reliable, because the national residential emission survey for the Second 

National Pollution Source Census was conducted by the GEMS team. Even prior to the census, 

GEMS team had carried out a comprehensive, representative national survey. These surveys 

suggested that publicly available statistical sources (such as IEA and FAO) have underestimated the 

rapid transition of China’s residential energy mix (Tao et al., 2018), which likely led to 

overestimated residential emissions in other inventories. We have revised the manuscript 

accordingly to clarify this point. 

 

Revision: 

Section 3.1, paragraph 5: “…while a reverse pattern was observed in GEMS. The residential 

emissions provided by GEMS are considered more reliable, as the national residential emission 

survey for the Second National Pollution Source Census was conducted by the GEMS team. Data 

from their surveys indicate that the publicly available statistical sources (such as the IEA and the 

Food and Agriculture Organization of the United Nations, FAO) have underestimated the rapid 

transition of China’s residential energy mix (Tao et al., 2018), leading to likely overestimated 

residential emissions in other inventories. The changes in the size of sectoral CO2 emissions indicate 

the changes in China's energy structure and economic growth, highlighting the importance of 

incorporating locally based surveys for residential emissions to improve the accuracy of bottom-up 

inventories.” 

 

Reference: 

Tao, S., Ru, M. Y., Du, W., Zhu, X., Zhong, Q. R., Li, B. G., Shen, G. F., Pan, X. L., Meng, W. J., 

Chen, Y. L., Shen, H. Z., Lin, N., Su, S., Zhuo, S. J., Huang, T. B., Xu, Y., Yun, X., Liu, J. F., Wang, 

X. L., Liu, W. X., Cheng, H. F., and Zhu, D. Q.: Quantifying the rural residential energy transition 

in China from 1992 to 2012 through a representative national survey, Nat Energy, 3, 567–573, 

https://doi.org/10.1038/s41560-018-0158-4, 2018. 

 

 

 

 



8. Table 1: Time Resolution (GEMS column): Please change "Annually" to "Annual" to align 

with the other entries. 

 

Response: The term “Annually” in the GEMS column of Table 1 has been corrected to “Annual” 

in the revised manuscript. 

 

 

9. Table 1: Data Source row: Since the "last accessed" date is the same for all inventories, 

consider moving this note to a table footnote (e.g., marked with an asterisk) to streamline the 

table. 

 

Response: The “last accessed” date has been moved to a table footnote to improve readability and 

streamline the presentation in Table 1. 

 

 

10. Figure 3: The growth in electricity and heat production in CAMS appears to stabilize, 

unlike in other inventories where growth continues. Given CAMS is based on EDGAR, a 

similar trend would be expected. Could this discrepancy be linked to the use of CAMS-Tempo 

profiles? 

 

Response: We thank the reviewer for this insightful comment. The stabilization of CO2 emissions 

in CAMS arises from its extrapolation approach. Specifically, CAMS uses EDGAR as the base 

dataset and applies growth factors (q) from the Community Emissions Data System (CEDS) to 

extend emissions beyond the final EDGAR year (Soulie et al. (2024)). Projected emissions follow 

exponential growth with base q. Because q values fluctuate around 1 (0.9-1.05), the extrapolated 

emissions exhibit minimal variation, resulting in nearly linear and stable trends. As shown in figure 

below (from CAMS official website), we think the CAMS-GLOB-ANT v6.2 used in this study 

builds on EDGAR v7 (up to 2021) and extrapolates emissions to 2026, showing similar post-2021 

stabilization. This stabilization accounts for the flat trend in electricity and heat production in CAMS 

during 2021–2023. Moreover, the CAMS-GLOB-TEMPO profiles are only used to temporally 

disaggregate the annual CAMS-GLOB-ANT emissions into monthly values, not for extrapolation. 

We have clarified this in the revised Data and Methods section. 

 

Revision: 

Section 2.1, paragraph 4: “CAMS is a global inventory developed as part of the Copernicus 

Atmosphere Monitoring Service project. It builds on EDGAR and integrates several complementary 

datasets, including the Community Emissions Data System (CEDS) for the extrapolation of the 

emissions up to the current year, the CAMS-GLOB-TEMPO for monthly variability, and the CAMS-

GLOB-SHIP for ship emissions. …” 

 



 

Time series of global anthropogenic CO2 emissions from EDGAR v7 and CAMS-GLOB-ANT v6.2 during 2000-

2026 (source: https://eccad.sedoo.fr/#/data). 

 

Reference: 

Soulie, A., Granier, C., Darras, S., Zilbermann, N., Doumbia, T., Guevara, M., Jalkanen, J.-P., Keita, 

S., Liousse, C., Crippa, M., Guizzardi, D., Hoesly, R., and Smith, S. J.: Global anthropogenic 

emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service simulations of 

air quality forecasts and reanalyses, Earth Syst. Sci. Data, 16, 2261–2279, 

https://doi.org/10.5194/essd-16-2261-2024, 2024. 

 

 

11. Line 212: It is unclear why MEIC is used as a benchmark for comparison. Please add a 

brief explanation of this choice. 

 

Response: We thank the reviewer for this valuable comment. Among the five gridded inventories 

(ODIAC, EDGAR, MEIC, CAMS, and GEMS) used in this study, both MEIC and GEMS are 

constructed using statistical data from the Chinese government and official departments. 

Specifically, the energy consumption data in MEIC and GEMS are derived from the China Energy 

Statistical Yearbook (CESY) and the National Bureau of Statistics of China (NBS), respectively. 

Given that GEMS is a newly released dataset (2025) and MEIC has been developed and validated 

for more than a decade, we selected MEIC as the benchmark for comparison. MEIC is widely 

recognized and used when studying anthropogenic emissions in China. For example, it has been 

integrated into the MIX inventory as the Chinese component of the Asian anthropogenic emissions 

(Li et al., 2017) and was used to develop high-resolution (1 km × 1 km) emission maps for 2013 

(Zheng et al., 2021). Previous studies have also shown that simulations based on MEIC are more 

consistent with observations than those using EDGAR or ODIAC in Beijing (Che et al., 2022) and 

perform better in Xianghe and Xinlong (Yang et al., 2025). We have revised our manuscript for 

clarifying the rationality of the benchmark choice. 

https://eccad.sedoo.fr/#/data


 

Revision: 

Section 3.2.1, paragraph 3: “To assess spatial consistency, we compared ODIAC, EDGAR, CAMS, 

and GEMS with MEIC as a benchmark (Fig. 5). MEIC was chosen because it is compiled using 

local statistics and has been widely applied and validated in previous studies (Li et al., 2017b; Zheng 

et al., 2021; Che et al., 2022; Yang et al., 2025), making it a reasonable reference for comparison. …” 

 

References: 

Che, K., Cai, Z., Liu, Y., Wu, L., Yang, D., Chen, Y., Meng, X., Zhou, M., Wang, J., Yao, L., and 

Wang, P.: Lagrangian inversion of anthropogenic CO 2 emissions from Beijing using differential 

column measurements, Environ. Res. Lett., 17, 075001, https://doi.org/10.1088/1748-9326/ac7477, 

2022. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 

Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, 

B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration 

framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, 

https://doi.org/10.5194/acp-17-935-2017, 2017. 

Yang, H., Wu, K., Wang, T., Wang, P., and Zhou, M.: Atmospheric anthropogenic CO2 variations 

observed by tower in-situ measurements and simulated by the STILT model in the Beijing megacity 

region, Atmospheric Research, 325, 108258, https://doi.org/10.1016/j.atmosres.2025.108258, 2025. 

Zheng, B., Cheng, J., Geng, G., Wang, X., Li, M., Shi, Q., Qi, J., Lei, Y., Zhang, Q., and He, K.: 

Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air 

quality modeling, Science Bulletin, 66, 612–620, https://doi.org/10.1016/j.scib.2020.12.008, 2021. 

 

 

12. Figure 5c: What accounts for the squared patches in this figure? A brief explanation in the 

caption or main text would help readers interpret the results. 

 

Response: We appreciate the reviewer’s careful observation. The squared patches visible in Fig. 5c 

mainly occur in Xinjiang, Qinghai, Gansu, and Inner Mongolia. To verify their origin, we extracted 

CAMS emissions for these provinces, as shown in the figure below. The result shows that the 

squared patterns are inherent to the CAMS dataset itself. When analyzing spatial differences, only 

grid cells with valid values in both CAMS and MEIC were considered. Therefore, the spatial 

distribution of CAMS – MEIC in Fig. 5c directly reflects the pattern of CAMS emissions. 



 
CAMS emission distribution in selected provinces (Xinjiang, Qinghai, Gansu, and Inner Mongolia). 

 

 

13. Figures 4 & 5: In Figure 4, MEIC shows notable emissions over western China (green 

shading), while ODIAC does not. This difference should manifest as strong negative values 

(blue) in Figure 5, yet much of this area appears blank, which I assume represents NaN 

values. Did you apply any filtering? Please clarify. 

 

Response: We thank the reviewer for this valuable comment. A spatial filter was applied before 

calculating the differences. Specifically, only grid cells with valid emission values in both 

inventories were retained for the difference maps. Grid cells containing NaN values in either dataset 

were excluded to ensure consistent comparison. As a result, areas where ODIAC has NaN values, 

such as parts of western China, appear blank in Fig. 5, even though MEIC reports valid emissions 

there. 

 

 

14. Line 241: For clarity, please consider rephrasing this sentence, here is a suggestion: 

"Across the spatial domain, EDGAR generally reports lower emissions than MEIC, with 

negative differences prevailing throughout the region." 

 

Response: The sentence has been revised as recommended to improve clarity. 

 

Revision: 

Section 3.2.1, paragraph 4: “Across the spatial domain, EDGAR generally reports lower emissions 

than MEIC, with negative differences prevailing throughout the region (Fig. 5b). …” 

 

 



15. Line 287: Could the discrepancy in Shanxi be attributed to a specific sector? A sectoral 

analysis, as presented in the previous section, would be valuable here. 

 

Response: We thank the reviewer for this insightful comment. We examined CO2 emissions from 

CEADs (sectors) and CEADs (provinces) for Shanxi and found that the large discrepancy mainly 

arises from differences in raw coal–related emissions, which is the dominant contributor to total 

emissions (Wei, 2022). As shown in the figure below, CO2 emissions from raw coal in CEADs 

(provinces) are on average 664.71 Mt year-1 higher than those in CEADs (sectors), leading to an 

overall mean difference of 512.18 Mt year-1 between the two datasets. We have included this figure 

in the supplementary material and revised the manuscript to clarify the source of the discrepancy in 

Shanxi’s CEADs emissions. 

 

Revision: 

Section 3.3.1, paragraph 1: “…In contrast, the CEADs (sectors) closely matches the other five 

independent inventories (ODIAC, EDGAR, MEIC, CAMS and GEMS), with its mean emissions 

deviating by no more than 3.84 Mt year-1 from the average of the five inventories. The large 

discrepancy between CEADs (provinces) and CEADs (sectors) mainly originates from the much 

higher raw coal–related emissions in CEADs (provinces) (Fig. S3), as coal is the dominant 

contributor to total emissions (Wei, 2022).” 

 

 

Section 7, Figure S3: 

 

Figure S3. Comparison of total CO2 emissions and raw coal–related CO2 emissions in Shanxi from CEADs 

(sectors) and CEADs (provinces) during 2000–2020. Solid lines represent total emissions, while dashed lines 

indicate emissions from raw coal combustion. 

 



Reference: 

Wei, C.: Historical trend and drivers of China’s CO2 emissions from 2000 to 2020, Environ Dev 

Sustain, 1–20, https://doi.org/10.1007/s10668-022-02811-8, 2022. 

 

 

16. Line 290: Could you comment on the provincial comparison of the two CEADs estimates 

beyond Shanxi? Do any provinces show consistent agreement between the two datasets, and 

are these primarily low-emission regions? A colored map showing the differences between the 

two CEADs estimates by province could be a useful addition 

 

Response: We thank the reviewer for this constructive suggestion. We generated a provincial 

heatmap showing the differences between CEADs (provinces) and CEADs (sectors). The provinces 

are sorted by provincial total emissions in descending order (Fig. S2). The results show that Shanxi 

is a clear outlier, with differences exceeding 900 Mt CO2 year-1 after 2012, while differences in other 

provinces remain within 400 Mt year-1. Beyond Shanxi, the discrepancies are spatially 

heterogeneous and do not directly correspond to total provincial emissions. For instance, 

Guangdong (ranked fourth in total emissions) shows relatively small differences (<100 Mt year-1), 

whereas some mid-ranked provinces, such as Shaanxi (14th among 30 provinces), exhibit 

differences greater than 100 Mt year⁻¹ in more than half of the years. Large differences (>100 Mt 

year-1) are mostly concentrated in provinces with higher total emissions, with few exceptions (e.g., 

Xinjiang in 2021). Provinces with lower total emissions generally show smaller discrepancies (<50 

Mt year-1), except for Xinjiang, Guizhou, and Ningxia. Overall, although the spatial pattern is 

heterogeneous, there is a general tendency for differences to decrease with provincial emission 

magnitude. We have added this provincial heatmap to the supplementary material and revised the 

manuscript accordingly.  

 

Revision: 

Section 3.3.1, paragraph 1: “CEADs provides two forms of CO2 emission estimates for provinces: 

the “province” series (referred to as CEADs (provinces)), which provides total emissions directly 

for each province, and the “sectors” series (referred to as CEADs (sectors)), which compiles fuel- 

and sector-specific emissions before summing them to the provincial totals. Significant 

discrepancies are observed between these two estimates in some provinces, with Shanxi emerging 

as a pronounced outlier. After 2012, the difference in Shanxi exceeds 900 Mt year-1, whereas in other 

provinces it remains below 400 Mt year-1 (Fig. S2). To investigate this divergence, we compare both 

CEADs estimates with other inventories in Shanxi (Fig. 7a). The results indicate that CEADs 

(provinces) exceeds CEADs (sectors) after 2008, …” 

  



Section 7, Figure S2: 

 

Figure S2. Heatmap of the annual CO₂ emission differences between CEADs (province) and CEADs (sector) for 

30 Chinese provinces provided by CEADs during 2000–2021. Provinces are ordered by total emissions from 

highest to lowest. 

 

  



RC2 

The paper compares six CO₂ emission inventories for China from 2000 to 2023, including global 

inventories (ODIAC, EDGAR, GEMS) and China-specific ones (MEIC, CHRED, CEADs). It 

highlights large differences between inventories, especially EDGAR vs. MEIC, and differences in 

spatial distributions. This is important because China has ambitious carbon reduction goals, so 

accurate quantification of CO2 emissions is essential for policy and climate modelling. The paper 

fits within the journal’s scope as it addresses atmospheric emissions and their uncertainties. 

Limitations of this review: I am not an expert in CO₂ emissions inventories and the relevant literature, 

so my comments focus on interpretation, clarity, and presentation rather than technical accuracy of 

methods. 

Major comments 

The paper is well-structured, the argument is easy to follow, and the language is clear. However, the 

following aspects would need to be addressed before publication. 

 

1. Clarify the novelty of the study 

It is unclear how this work differs from previous studies. Is the novelty in using updated versions of 

inventories, applying new harmonisation methods, or drawing new conclusions? Please add a short 

paragraph in the introduction explicitly stating what is new compared to other studies mentioned 

(e.g., Han et al., 2020a; Liu et al., 2015; L. Zheng et al., 2025). 

 

Response: We appreciate the reviewer’s valuable comment. To highlight the novelty of our work, 

we have added a paragraph in the Introduction and a more detailed paragraph in the Conclusion 

explicitly outlining the main advancements compared with previous studies. Specifically, this study 

(1) extends the temporal coverage to 2000–2023 and identifies three distinct emission phases 

reflecting changes in energy policy and structure; (2) evaluates internal inconsistencies within 

CEADs and recommends using CEADs (sectors) for provincial analyses; (3) reveals significant 

sectoral spatial allocation differences, particularly between EDGAR and MEIC in the transport 

sector; (4) quantifies scale-dependent uncertainties, showing that provincial uncertainty (CV) is two 

to ten times higher than national uncertainty; and (5) demonstrates that CEADs and MEIC yield 

consistent estimates across nine representative provinces. At the national scale, CAMS exhibits the 

smallest deviation from the National Greenhouse Gas Inventory (NGHGI), while ODIAC aligns 

most closely with the six-inventory mean during the study period. These clarifications have been 

added to Section 1 to highlight the study’s novelty and rationale for using the latest inventory 

versions, and to Section 4 to summarize the new insights contributions. 

 

Revision: 

(1) Section 1, paragraph 5: “To this aim, this study conducts a comprehensive analysis of the 

spatiotemporal variation of China’s anthropogenic CO₂ emissions and investigates the differences 

among six widely used emission inventories at their latest versions: the global inventories ODIAC, 

EDGAR, MEIC, GEMS, CAMS, and the China-specific inventory CEADs. The data and methods 

are presented in Section 2. We report our results in Section 3 and conclude the paper in Section 4. 



Compared with previous studies (Han et al., 2020b; Zheng et al., 2025), we extend the temporal 

coverage to 2000-2023, enabling a more current and consistent assessment of recent emission trends, 

inter-inventory discrepancies, and scale-dependent uncertainties across China. ”  

(2) Section 4, paragraph 5: “In summary, this study extends previous work by identifying a three-

phase trend in China’s anthropogenic CO₂ emissions from 2000 to 2023 and quantifying the 

emission uncertainties (1σ) at both national and provincial levels. At the national level, CAMS 

shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with 

the multi-inventory mean over the study period. At the provincial level, the Chinese local inventories, 

CEADs and MEIC, provide the most consistent estimates for regional studies. Differences in spatial 

proxies significantly affect the spatial distribution of sectoral emissions, as shown by the contrasting 

transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use of CEADs 

for provincial analyses. Our results further underscore the importance of improving the consistency 

of regional inventories to provide a stronger scientific basis for China’s emission mitigation and 

carbon neutrality policies.” 

 

 

2. Recommendations for users 

The conclusion clearly summarises findings but could be strengthened by adding actionable 

guidance. Readers would benefit from answers to the following questions: 

• Which inventories are most reliable for specific applications? 

• What are the main uncertainties that remain? 

• How can inventory producers improve the next inventory versions? 

A summary table of findings and recommendations could make this section more impactful. 

 

Response: We thank the reviewer for these constructive suggestions. Providing practical 

recommendations would strengthen the manuscript, and we have revised the text to improve clarity 

for readers. 

(1) Consistency assessment at national and provincial levels 

We agree that identifying which inventories are more reliable is crucial. However, determining the 

absolute accuracy of each inventory requires direct comparison with independent observations (e.g., 

atmospheric CO2 measurements together with an inversion model), which is beyond the scope of 

this study. Therefore, in this study, we mainly assessed the internal consistency of the six inventories 

and their deviations from independent references. Specifically, we included the National 

Greenhouse Gas Inventory (NGHGI) reported by the Chinese government to the UNFCCC for 

national-level comparison. Our results show that CAMS exhibits the greatest consistency with the 

NGHGI, while ODIAC aligns most closely with the six-inventory mean. At the provincial level, 

uncertainties are 2-10 times higher than at the national scale. Although absolute references remain 

uncertain, CEADs and MEIC demonstrate strong agreement across nine representative provinces, 

particularly in Inner Mongolia, Shandong, Henan, Hubei, and Shanghai. 

(2) Main source of uncertainties  

Different downscale methods and spatial proxies might be the primary source of uncertainties across 

inventories. This is quantitatively supported by our finding that the uncertainties at provincial level 

are two to ten times higher than at the national level. Furthermore, our analysis shows that 

differences in spatial proxies significantly affect the spatial distribution of sectoral emissions, as 



shown by the contrasting transport emission patterns in EDGAR and MEIC.  

(3) Recommendations to improve inventory reliability  

To enhance the reliability of future inventory versions, we recommend enhanced cross-validation 

with national statistics and transparent documentation of proxy methodologies. In addition, 

expanding ground-based and satellite observations would enable comprehensive independent 

validation. CO2 flux measurements can be directly compared with bottom-up estimates, while 

atmospheric CO2 mole fractions measurements, when integrated with inversion model, yield top-

down emission estimates. These top-down results can then be systematically compared with bottom-

up inventories to identify discrepancies across regional and national scales. 

 

Revision: 

(1) Section 3.1, paragraph 2: “To further assess the consistency of the six inventories, we calculate 

the mean absolute difference (MAD), which is defined as the multi-year mean of annual absolute 

differences between each inventory and either the NGHGI or the six-inventory mean. Compared 

with NGHGI, the MADs range from 0.156 Gt year-1 (CAMS) to 0.835 Gt year-1 (MEIC). Against the 

six-inventory mean, the MADs range from 0.12 Gt year-1 (ODIAC) to 0.449 Gt year-1 (MEIC). 

EDGAR reports the highest emissions, which is about 0.370 Gt year-1 larger than the mean emission. 

MEIC shows the lowest emission levels, which is about 0.449 Gt year-1 less than the mean emission. 

Overall, CAMS exhibits the greatest consistency with the NGHGI, being at least 30% lower than 

that of the other inventories. In comparison, ODIAC agrees most closely with the six-inventory mean, 

with an MAD at least 58% lower than the others.” 

(2) Section 4, paragraph 1: “China’s annual anthropogenic CO₂ total emission increases from 

3.42 Gt in 2000 to 12.03 Gt in 2023. When compared with the officially reported NGHGI and the 

six-inventory mean, CAMS shows the smallest deviation from the NGHGI, while ODIAC agrees 

most closely with the multi-inventory mean. The six inventories display a broadly consistent 

emission trend, but their discrepancies among the inventories have widened from 0.41 Gt year-1 to 

1.63 Gt year-1, …” 

(3) Section 4, paragraph 4: “…The pronouncedly higher emissions in the coastal megacities (e.g., 

Shanghai, Jiangsu, and Guangdong) by ODIAC and the abnormal increase in CAMS by 50-230% 

in Liaoning, Hubei, and Shanghai exacerbate this divergence. Despite these inconsistencies, CEADs 

and MEIC exhibit broadly consistent estimates across nine provinces, especially in Inner Mongolia, 

Shandong, Henan, Hubei, and Shanghai.” 

(4) Section 4, paragraph 5: “In summary, this study extends previous work by identifying a three-

phase trend in China’s anthropogenic CO₂ emissions from 2000 to 2023 and quantifying the 

emission uncertainties (1σ) at both national and provincial levels. At the national level, CAMS 

shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with 

the multi-inventory mean over the study period. At the provincial level, the Chinese local inventories, 

CEADs and MEIC, provide the most consistent estimates for regional studies. Differences in spatial 

proxies significantly affect the spatial distribution of sectoral emissions, as shown by the contrasting 

transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use of CEADs 

for provincial analyses. Our results further underscore the importance of improving the consistency 

of regional inventories to provide a stronger scientific basis for China’s emission mitigation and 

carbon neutrality policies.” 

(5) Section 4, paragraph 6: “Overall, reliable emissions quantification requires scale-appropriate 



inventories (e.g., the sectoral CEADs emissions versus the province-based CEADs emissions), 

improved spatial proxies (e.g., CPED vs. CARMA), and ensemble approaches to mitigate biases, 

especially in the carbon-intensive eastern regions. It should be noted that this study lacks an 

observational benchmark to assess these inventories. Future efforts should incorporate direct flux 

measurements or top-down emissions derived from inversion modeling, in combination with CO2 

mole fraction observations, to compare and constrain bottom-up inventories at both regional and 

national scales.” 

 

Section 3.1, Figure 1: 

 

Figure 1. Annual anthropogenic CO2 emissions in mainland China from 2000 to 2023, as reported by six emission 

inventories: EDGAR, MEIC, CAMS, CEADs (up to 2021), ODIAC (up to 2022), and GEMS (up to 2019), and one 

government-reported data (NGHGI). Apart from ODIAC, all inventories provide national totals directly. We 

calculated China's emissions by summing the grid values within China for ODIAC. The shaded area indicates the 

standard deviation of the six inventories. It’s noteworthy that the inter-inventory mean and SD were calculated from 

the above mentioned six inventories. 

 

 

3. Comparison to observations 

The study compares inventories against each other. Without observational benchmarks, it is difficult 

to assess which inventory is closer to reality. Could you explain why observational comparisons 

were not included? If data limitations prevented this, could you state them explicitly and discuss 

implications for interpreting results? 

 

Response: We appreciate the reviewer’s insightful comment. We fully agree that observational 

benchmarks are essential for evaluating the accuracy of emission inventories. However, such 

comparisons were not included in this study due to data limitations. Direct CO2 flux measurements, 

such as those from eddy covariance or mass balance, are spatially sparse and only represent local 

scales. Consequently, they are unsuitable for evaluating national or provincial emission totals. In 

addition, fluxes derived from atmospheric inversion model together with CO2 mole fraction 



measurements can provide valuable top-down constraints but are also strongly affected by available 

data and model uncertainty. Therefore, incorporating these datasets would not provide consistent 

national-scale evaluation between 2000-2023. 

Our study focuses on assessing the internal consistency among inventories and their deviations from 

independent references (i.e., the National Greenhouse Gas Inventory, NGHGI). We acknowledge 

that the absence of an observational benchmark limits the ability to identify which inventory is 

closer to reality. Future work should integrate direct flux observations and top-down emissions from 

inversion modeling to independently evaluate and constrain bottom-up inventories at both regional 

and national scales. We have added a clarification in Section 4, paragraph 6 to address this point.  

 

Revision: 

Section 4, paragraph 6: “Overall, reliable emissions quantification requires scale-appropriate 

inventories (e.g., the sectoral CEADs emissions versus the province-based CEADs emissions), 

improved spatial proxies (e.g., CPED vs. CARMA), and ensemble approaches to mitigate biases, 

especially in the carbon-intensive eastern regions. It should be noted that this study lacks an 

observational benchmark to assess these inventories. Future efforts should incorporate direct flux 

measurements or top-down emissions derived from inversion modeling, in combination with CO2 

mole fraction observations, to compare and constrain bottom-up inventories at both regional and 

national scales.” 

 

Specific comments 

1. Line 80: MEIC is described as China-specific but later implied to be global. Could you 

clarify? 

 

Response: We thank the reviewer for pointing out this potential confusion regarding the MEIC 

inventory. We acknowledge that the distinction between MEIC's China-specific and global products 

was not sufficiently clarified. The MEIC team produces two distinct CO2 emission products: a 

China-specific version (MEIC-China-CO2) and a global version (MEIC-Global-CO2). We selected 

the MEIC-Global-CO2 product v1.0 based on its two primary advantages: it offers a higher spatial 

resolution (0.1°×0.1°) compared to the then-latest MEIC-China-CO2 v1.4 (0.25°×0.25°), and its 

temporal coverage extends closer to the most recent years (1970–2023 vs 1970–2020). Importantly, 

while this product is globally scoped, the emissions calculation within the Chinese region retains 

the accuracy of a local inventory by using Chinese local energy statistics (from the China Energy 

Statistics Yearbook, CESY)) and emission factors (from the China Emission Accounts and Datasets, 

CEADs). We have revised content in Section 2.1, paragraph 3 to harmonize these descriptions and 

clarify that the global version was selected based on its superior technical specifications (spatial 

resolution and temporal coverage). 

 

Revision: 

Section 2.1, paragraph 3: “…MEIC uses the transportation network data from the China Digital 

Road Network Map (CDRM) to constrain the distribution of vehicle activity as well as population 

density, GDP, and land use for other sectors (Li et al., 2017a; Xu et al., 2024b). In this study, we 

use the latest MEIC-Global-CO2 product (v1.0), which provides higher spatial resolution (0.1° × 



0.1°) and longer temporal coverage (1970-2023) than the MEIC-China-CO2 product (v1.4; 0.25° 

× 0.25°, up to 2020). It’s noteworthy that although MEIC-Global-CO2 is a global product, its 

emissions calculations for China continue to rely on local energy statistics (CESY) and emission 

factors (CEADs), ensuring consistency with domestic data while improving spatiotemporal details.” 

 

 

2. Line 88: You mention standardising inventories to a common grid. Could this process 

introduce uncertainties? If so, could you quantify or acknowledge them? 

 

Response: We appreciate the reviewer’s comment. The standardization to a common grid introduces 

negligible additional uncertainty in this study. National and provincial totals are not affected, as they 

were derived either directly from the original inventory products or by spatially masking and 

summing emissions on their native grids. 

For the gridded comparison, we adopted the MEIC grid as the spatial reference. For ODIAC, 

originally provided at a 1 km × 1 km resolution, emissions were spatially aggregated by summing 

all sub-grid values within each 0.1° × 0.1° cell to match the reference resolution. This aggregation 

preserves the total emissions without introducing interpolation-related errors. For EDGAR, CAMS, 

GEMS, and MEIC, all of which have the same resolution (0.1° × 0.1°) and identical latitude–

longitude extents, we applied a nearest-neighbour method to ensure exact grid alignment. This 

approach maintains the original emission magnitudes and prevents artificial spatial gradients. 

Therefore, the regridding and aggregation procedures do not substantially affect either the spatial 

distribution or the total emissions, and the associated uncertainties are considered negligible. 

 

 

3. Line 174: Each growth phase is described with justification based on context, except from 

the third phase. Could you explain why emissions increase again after 2016? 

 

Response: We thank the reviewer for this valuable suggestion. We have added an explanation for 

the renewed increase in CO2 emissions after 2016. According to Zhang et al. (2020), the rebound 

was mainly driven by renewed infrastructure investment and the recovery of industrial activity after 

2016. These developments substantially increased electricity demand, which was largely met by 

coal-fired power generation. As a result, fossil fuel consumption rose again, and the mitigation effect 

of the cleaner energy mix weakened compared with the 2012–2015 period. These points have been 

incorporated into the revised Results and Conclusion sections. 

 

Revision:  

(1) Section 3.1, paragraph 3: “…From 2016 to 2023, all inventories show increased CO2 emissions 

again, with a slower rate (0.30±0.016 Gt year-1) compared to the first phase. This rebound could 

be attributed to the expansion of infrastructure investment and the recovery of coal-based power 

generation, as the mitigation effect of the cleaner energy mix weakened after 2016 (Zhang et al., 

2020).” 

(2) Section 4, paragraph 2: “…, and a renewed growth of 0.30±0.016 Gt year⁻¹ (2016–2023), 

mainly related to infrastructure-driven energy demand and coal use recovery following 2016. …” 

 



Reference: 

Zhang, Y., Zheng, X., Cai, W., Liu, Y., Luo, H., Guo, K., Bu, C., Li, J., and Wang, C.: Key drivers 

of the rebound trend of China’s CO2 emissions, Environ. Res. Lett., 15, 104049, 

https://doi.org/10.1088/1748-9326/aba1bf, 2020. 

 

4. Line 215: You explain spatial gaps in ODIAC and explain that they could be due to the 

inventory relying on night lightning. However, you do not mention other inventories. For 

example, are the spatial gaps in CAMS likely to be caused by similar reasons? 

 

Response: We thank the reviewer for this insightful comment. We have examined the sectoral 

emissions of CAMS and found that the spatial gaps over western China mainly arise from the lack 

of aviation emissions. Specifically, CAMS includes only three transportation subsectors—Off-road 

transportation, Road transportation, and Ships—but does not account for aircraft emissions. To 

verify this, we compared the spatial distributions of transportation emissions among EDGAR, 

CAMS, MEIC, and GEMS (ODIAC does not provide sectoral data). As shown in the figure below, 

EDGAR, MEIC, and GEMS all display distinct emission patterns following major flight corridors 

over western China, while CAMS shows only the road transport pattern. This confirms that the 

absence of aviation emissions in CAMS explains the spatial gaps observed in that region. We have 

revised the content in Section 3.2.1, paragraph 1 to explain the spatial gap in CAMS. 

 

Revision: 

Section 3.2.1, paragraph 1: “…, while regions with limited nighttime lighting, including both 

sparsely populated areas and areas with high population but limited lighting, such as Western 

Sichuan, Inner Mongolia, and Xinjiang, are not captured. By contrast, the spatial gaps over western 

China in CAMS (Fig. 4d) mainly arise from the lack of aviation emissions. CAMS accounts for 

transport emissions from road, off-road, and ships but omits aviation. As shown in Figure S1, 

EDGAR, MEIC, and GEMS capture distinct emission bands along major flight corridors over 

western China, whereas CAMS only shows the road transport pattern, explaining the missing 

emissions over western China.” 

  



Section 7, Figure S1: 

 

Figure S1. Spatial distribution of CO2 emissions from transport sector in 2019 across four inventories (EDGAR, 

CAMS, MEIC, and GEMS). 

 

 

5. Figure 4: Why was 2019 chosen as the base year? Would spatial patterns differ significantly 

in other years? 

 

Response: We thank the reviewer for the comment. As mentioned in Section 3.2.1, 2019 was chosen 

as the reference year because it is the most recent year for which all five gridded inventories 

(ODIAC, EDGAR, MEIC, CAMS, and GEMS) provide spatially explicit emission data. Moreover, 

2019 represents a typical pre-pandemic year, unaffected by the COVID-19 lockdowns in 2020-2021  

2019 is free from exceptional events such as the COVID-19 lockdowns, making it a representative 

baseline for comparison. 

Although our manuscript focuses on 2019 due to space limitations, we also conducted preliminary 

analyses for the third emission phase (2016-2023). As illustrated in the GIF below, the spatial 

patterns of inter-inventory differences remain generally consistent over time, although the overall 

magnitude of emissions varying. The only notable exception occurs in the EDGAR–MEIC 

comparison, where differences in southwestern China shift from obvious positive to negative during 

2016–2017. After 2017, the EDGAR–MEIC spatial differences stabilize, and other inventories 

relative to MEIC show minimal spatial variation throughout 2016–2023. 

 



 
Temporal evolution of spatial differences in CO₂ emissions between MEIC and other inventories (ODIAC, EDGAR, 

CAMS, and GEMS) during 2016–2023. 

 

 

6. Figure 5: Inventories are compared to MEIC as a baseline. Could you comment on the 

existing uncertainties relating to MEIC, and what this means for the results? 

 

Response: We thank the reviewer for this valuable comment. We acknowledge that MEIC itself is 

subject to uncertainties, mainly arising from the underlying activity data, emission factors, and 

spatial proxy selection. However, MEIC remains one of the most recognized and used when 

studying anthropogenic emissions in China. For example, it has been integrated into the MIX 

inventory as the Chinese component of the Asian anthropogenic emissions (Li et al., 2017) and was 

used to develop high-resolution (1 km × 1 km) emission maps for 2013 (Zheng et al., 2021). 

Previous studies have also shown that simulations based on MEIC are more consistent with 

observations than those using EDGAR or ODIAC in Beijing (Che et al., 2022) and perform better 

in Xianghe and Xinlong (Yang et al., 2025). Therefore, we think MEIC can serve as a reasonable 

benchmark for spatial comparison. Nevertheless, the uncertainties in MEIC imply that our spatial 

difference maps (Fig. 5) reflect relative differences among inventories rather than absolute errors. 

We have added this clarification to the revised manuscript. 

 

Revision: 

Section 3.2.1, paragraph 3: “To assess spatial consistency, we compared ODIAC, EDGAR, CAMS, 

and GEMS with MEIC as a benchmark (Fig. 5). MEIC was chosen because it is compiled using 

local statistics and has been widely applied and validated in previous studies (Li et al., 2017b; Zheng 

et al., 2021; Che et al., 2022; Yang et al., 2025), making it a reasonable reference for comparison. …” 

 

 



References: 

Che, K., Cai, Z., Liu, Y., Wu, L., Yang, D., Chen, Y., Meng, X., Zhou, M., Wang, J., Yao, L., and 

Wang, P.: Lagrangian inversion of anthropogenic CO 2 emissions from Beijing using differential 

column measurements, Environ. Res. Lett., 17, 075001, https://doi.org/10.1088/1748-9326/ac7477, 

2022. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 

Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, 

B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration 

framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, 

https://doi.org/10.5194/acp-17-935-2017, 2017. 

Yang, H., Wu, K., Wang, T., Wang, P., and Zhou, M.: Atmospheric anthropogenic CO2 variations 

observed by tower in-situ measurements and simulated by the STILT model in the Beijing megacity 

region, Atmospheric Research, 325, 108258, https://doi.org/10.1016/j.atmosres.2025.108258, 2025. 

Zheng, B., Cheng, J., Geng, G., Wang, X., Li, M., Shi, Q., Qi, J., Lei, Y., Zhang, Q., and He, K.: 

Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air 

quality modeling, Science Bulletin, 66, 612–620, https://doi.org/10.1016/j.scib.2020.12.008, 2021. 

 

 

7. Lines 235–240: Inventory users would benefit from specific interpretation for all inventories. 

For example, why does ODIAC allocate more emissions to areas? Is it related to night lighting 

again? Why is the CAMS pattern opposite to ODIAC? 

 

Response: We thank the reviewer for this valuable comment. The emission hotspots in ODIAC are 

more concentrated in regions with intense nighttime lighting because ODIAC uses satellite 

nightlight data as area source proxy for fossil fuel emissions. It’s also important to clarify that the 

opposite spatial patterns between CAMS and ODIAC refer to the spatial differences relative to 

MEIC (i.e., inventory minus MEIC), rather than their direct emission distributions. The 

discrepancies mainly arise from different spatial allocation methods adopted by each inventory. 

ODIAC allocates fossil fuel emissions based on satellite nightlight as area source, leading to higher 

emissions in coastal and urbanized regions where nightlight signals are strong. In contrast, CAMS 

dose not rely on nightlight data. It builds upon EDGAR and CAMS-GLOB-Ship for its spatial 

distribution, which may tend to assign relatively more emissions to inland regions. Consequently, 

when compared with MEIC, ODIAC shows higher emissions along the eastern coast, while CAMS 

displays higher values over several inland provinces, producing opposite spatial difference patterns. 

 

  



8. Lines 241- 248: You explain that EDGAR has very large extremes in 0.14% of grid cells, 

likely due to EDGAR allocating emissions aggressively to point sources (and using outdated 

CARMA). The presence of such large extremes, which strongly influence averages, raises 

questions about the robustness of EDGAR as an inventory. Should this be a concern for users? 

Could you clarify how using MEIC as a baseline may influence this result? 

 

Response: We thank the reviewer for highlighting this important point regarding the relatively 

extreme values observed in the EDGAR inventory and their implications. At present, we don’t have 

independent observations to evaluate whether these extreme values are accurate. Based on our 

analysis, these extremes most likely originate from the sector industry and construction, due to 

EDGAR’s use of point-source information from CARMA, which may not accurately capture the 

spatial distribution and emission magnitudes of power plants in China.  

Given the presence elative extreme values, we suggest that users exercise caution when using 

EDGAR to study the spatial distribution of emissions from the sector industry and construction or 

power plants in China. Specifically, users should compare EDGAR with multiple inventories, 

conducting cross-inventory analyses to ensure robust interpretations of spatial patterns. 

Regarding the use of MEIC as a baseline, it is reasonable for China-focused studies because it is 

compiled using Chinese statistical data and has been widely applied and validated in previous 

studies (Li et al., 2017; Zheng et al., 2021; Che et al., 2022; Yang et al., 2025). MEIC provides a 

locally informed reference that allows identification of relative differences between EDGAR and 

locally detailed inventories. 

We have emphasized these points in the Conclusion and Discussion section of the manuscript, 

explicitly recommending that future analyses account for the relatively extreme values in EDGAR 

and validate results using multiple inventories wherever possible. 

 

Revision: 

Section 4, paragraph 3: “…The ODIAC nightlight proxy distributes more emissions in urban areas 

and fewer emissions in the western regions. EDGAR, which is based on the CARMA database, 

concentrated power plant emissions on fewer grids, resulting in extreme anomalies where the 

difference (EDGAR-MEIC) exceeds 105 ton CO2 km-2 year-1. These high-value grids underscore the 

importance of cross-inventory comparisons when using EDGAR to analyze the spatial distribution 

of industry sector or power plant emissions in China. In contrast, MEIC uses the more detailed 

CPED and distributes similar total CO2 emissions…” 

 

References: 

Che, K., Cai, Z., Liu, Y., Wu, L., Yang, D., Chen, Y., Meng, X., Zhou, M., Wang, J., Yao, L., and 

Wang, P.: Lagrangian inversion of anthropogenic CO 2 emissions from Beijing using differential 

column measurements, Environ. Res. Lett., 17, 075001, https://doi.org/10.1088/1748-9326/ac7477, 

2022. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 

Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, 

B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration 

framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, 

https://doi.org/10.5194/acp-17-935-2017, 2017. 



Yang, H., Wu, K., Wang, T., Wang, P., and Zhou, M.: Atmospheric anthropogenic CO2 variations 

observed by tower in-situ measurements and simulated by the STILT model in the Beijing megacity 

region, Atmospheric Research, 325, 108258, https://doi.org/10.1016/j.atmosres.2025.108258, 2025. 

Zheng, B., Cheng, J., Geng, G., Wang, X., Li, M., Shi, Q., Qi, J., Lei, Y., Zhang, Q., and He, K.: 

Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air 

quality modeling, Science Bulletin, 66, 612–620, https://doi.org/10.1016/j.scib.2020.12.008, 2021. 

 

 

9. Line 299: You find large difference between CEADS (provinces) and CEADS (sectors) for 

Shanxi. You conclude that sector-level estimates should be prioritised, as the sum of all 

provinces estimates do no match the national estimates. Could you comment on why province-

level estimates are so uncertain, and different from sectors estimates?  

 

Response: We thank the reviewer for this insightful comment. We examined CO2 emissions from 

CEADs (sectors) and CEADs (provinces) for Shanxi and found that the large discrepancy mainly 

originates from raw coal-related emissions, which is the dominant contributor to total emissions 

(Wei, 2022). As shown in the figure below, CO2 emissions from raw coal in CEADs (provinces) are 

on average 665 Mt year-1 higher than those in CEADs (sectors), resulting in an overall mean 

difference of 512 Mt year-1 between the two datasets. This indicates that inconsistencies in fuel-

specific accounting, particularly for raw coal, are a key contributor to the provincial-level 

uncertainty. The detailed comparison has been added to the Supplementary Material, and we have 

clarified this in the revised manuscript. 

 

Revision: 

Section 3.3.1, paragraph 1: “…In contrast, the CEADs (sectors) closely matches the other five 

independent inventories (ODIAC, EDGAR, MEIC, CAMS and GEMS), with its mean emissions 

deviating by no more than 3.84 Mt year-1 from the average of the five inventories. The large 

discrepancy between CEADs (provinces) and CEADs (sectors) mainly originates from the much 

higher raw coal–related emissions in CEADs (provinces) (Fig. S3), as coal is the dominant 

contributor to total emissions (Wei, 2022).” 

  



Section 7, Figure S3: 

 

Figure S3. Comparison of total CO2 emissions and raw coal–related CO2 emissions in Shanxi from CEADs 

(sectors) and CEADs (provinces) during 2000–2020. Solid lines represent total emissions, while dashed lines 

indicate emissions from raw coal combustion. 

 

Reference: 

Wei, C.: Historical trend and drivers of China’s CO2 emissions from 2000 to 2020, Environ Dev 

Sustain, 1–20, https://doi.org/10.1007/s10668-022-02811-8, 2022. 

 

 

10. Section 3.3.2: In this section, you analyse timeseries for nine specific provinces, chosen 

based on a classification. This section currently reads as a descriptive list without a clear 

narrative or takeaway. Could you clarify the aim e.g., to illustrate provincial heterogeneity 

between inventories. 

 

Response: Thank you for this comment. The criteria for selecting the nine representative provinces 

and research objectives in Section 3.2.2 may not have been clearly stated. The main purpose of this 

analysis was to investigate how inventory consistency and discrepancies vary between provinces 

with higher total emissions and those with high inter-inventory uncertainty over the 2000–2023 

period. 

To identify these representative provinces, we ranked all provinces each year in descending order 

by (1) their six-inventory mean CO₂ emissions and (2) their six-inventory standard deviation (SD). 

Each province therefore obtained an annual rank in both metrics for each year (2000–2023). The 

cumulative rank score was then calculated as the sum of annual ranks across all years, representing 

the long-term magnitude or variability of emissions. Provinces with the smallest cumulative rank 

scores in each category were selected as representative provinces (Table 3). This approach highlights 



provinces that consistently contribute the most to national totals and those that exhibit the largest 

inventory discrepancies throughout the study period. To improve clarity, we have revised Section 

3.2.2 to more explicitly describe the purpose of this analysis and the selection procedure, as shown 

below. 

 

Revision: 

Section 3.3.2, paragraph 1: “The mean and SD of the provincial CO2 emissions from 2000 to 2023 

are shown in Figure S4. To investigate how inter-inventory consistency and discrepancies vary 

across provinces with high emissions or uncertainties, we select a subset of representative provinces 

for a detailed comparison. Representative provinces are identified using the SD and the mean 

emissions between the six emission inventories, calculated for the period 2000-2023. Each year, all 

provinces are ranked in descending order based on these two metrics. The cumulative scores are 

calculated by summing the annual ranks over the entire 24-year period (2000-2023), reflecting each 

province’s long-term ranking in terms of emission magnitude or SD. A lower cumulative score 

indicates higher mean emissions or emission uncertainties (SD). The top six provinces in each 

category are selected, resulting in a list of nine representative provinces” 

 

 

11. Line 361: You state that results are opposite to Han et al. (2020b). Could you give more 

details about these differences? Why do different versions of inventories give such different 

results? What does this mean for inventory users? 

 

Response: We thank the reviewer for this insightful question. The opposite results relative to Han 

et al. (2020b) mainly arise from differences in the inventory versions used. Han et al. (2020b) 

employed EDGAR v4.3.2 and MEIC v1.3, while our study uses the most recent versions, EDGAR 

2024 and MEIC-Global-CO2 v1.0. To examine this discrepancy, we compared the national totals of 

these four datasets, as shown in the figure below. The two EDGAR versions show nearly identical 

emission trends between 2000 and 2012, with EDGAR 2024 being only slightly higher (0.00085 Gt 

year-1). In contrast, MEIC v1.3 reports substantially higher national emissions (by about 1.43 Gt 

year-1) than MEIC-Global-CO2 v1.0 during 2008–2017, and its estimates are close to those of 

EDGAR 2024 (difference of 0.30 Gt year-1). 

These findings indicate that the divergence primarily results from the updated MEIC version, which 

yields lower national totals than its earlier release. However, the MEIC database does not provide 

detailed documentation on version updates, limiting our ability to trace the exact methodological 

changes. This underscores the importance for inventory users to carefully consider version 

differences when conducting trend analyses or cross-inventory comparisons. 

 

Revision: 

Section 4, paragraph 1: “China’s annual anthropogenic CO₂ total emission increases from 3.42 Gt 

in 2000 to 12.03 Gt in 2023. When compared with the officially reported NGHGI and the six-

inventory mean, CAMS shows the smallest deviation from the NGHGI, while ODIAC agrees most 

closely with the multi-inventory mean. The six inventories display a broadly consistent emission 

trend, but their discrepancies among the inventories have widened from 0.41 Gt year-1 to 1.63 Gt 

year-1, mainly due to the highest estimates reported from EDGAR and the lowest values estimated 



from MEIC, especially after 2012. Our results are consistent with Zheng et al. (2025) but opposite 

to Han et al. (2020b), demonstrating the differences in emission versions (Our study: EDGAR2024, 

MEIC-global-CO2 v1.0; Zheng: EDGAR v7.0, MEIC-China-CO2 v1.4; Han: EDGAR v4.3.2, MEIC-

China-CO2 v1.3). A comparison between these versions (Fig. S6) shows that the divergence mainly 

arises from a downward revision in the latest MEIC dataset, which reports about 1.43 Gt year-1 

lower emissions on average over 2008–2017. In contrast, EDGAR’s national totals remained nearly 

unchanged across versions, with differences within 0.001 Gt year-1 during 2000-2012. These results 

highlight the significant impact of inventory version updates on comparative emission analyses.” 

 

Section 7, Figure S6: 

 

Figure S6. Comparison of national CO2 emissions from different versions of the EDGAR and MEIC inventories. 

The older versions (EDGAR v4.3.2 and MEIC-China-CO2 v1.3) used in Han et al. (2020b) are compared with the 

updated versions (EDGAR 2024 and MEIC-Global-CO2 v1.0) used in this study. 

 

 

12. Line 388: “Ensemble approaches” please define how this method would be used and 

explain why they would help mitigate biases 

 

Response: We thank the reviewer for this insightful comment. The term ensemble approaches in 

this study refers to statistical and model-based frameworks that integrate multiple emission 

inventories and auxiliary datasets (e.g., energy statistics, spatial proxies, and inversion-based flux 

estimates) to produce a consensus estimate and quantify uncertainty. Such approaches can take 

various forms, including weighted averaging, Bayesian inversion, or ensemble learning in machine 

learning. By combining independent datasets with different methodological assumptions and spatial 

representations, ensemble techniques reduce the influence of biases or errors present in any single 

inventory and provide more robust emission estimates. 



RC3 

General comments: 

This manuscript analyzes and compares six bottom-up inventories and assesses their uncertainty. 

This work compares different inventories from international and domestic teams, and it will be 

useful to the global stocktake and accurately assess China’s CO2 emissions. The topic is interesting 

and meaningful, but many statements and explanations in the manuscripts are not rigorous enough. 

I suggest more modifications and improvements before acceptance. 

Special comments: 

1. Is it reasonable to use the mean and SD to assess the uncertainty of these emission 

inventories? 

 

Response: We appreciate the reviewer’s valuable question. Using the mean and standard deviation 

(SD) to assess inter-inventory variability is statistically reasonable and consistent with previous 

studies (Han et al., 2020; Li et al., 2017). Besides, the coefficient of variation (CV), calculated as 

SD/mean, is employed here to quantify uncertainties at both national and provincial scales. This 

metric has also been used in previous studies to assess the accuracy of emission-related activity data 

(Zhao et al., 2011) and determine CO2 mole fraction variations (Christian, 2018). Compared with 

SD alone, CV more effectively reflects the relative magnitude of variability with respect to the mean 

value. 

 

References: 

Christian, E.: Evaluation of Anthropogenic Carbon Dioxide (CO2) Concentrations along River 

Nworie, Imo State, Nigeria, Environment Pollution and Climate Change, 

https://doi.org/10.4172/2573-458X.1000159, 2018. 

Han, P., Zeng, N., Oda, T., Lin, X., Crippa, M., Guan, D., Janssens-Maenhout, G., Ma, X., Liu, Z., 

Shan, Y., Tao, S., Wang, H., Wang, R., Wu, L., Yun, X., Zhang, Q., Zhao, F., and Zheng, B.: 

Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories, 

Atmospheric Chemistry and Physics, 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, 

2020. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 

Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, 

B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration 

framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, 

https://doi.org/10.5194/acp-17-935-2017, 2017. 

Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a 

bottom-up emission inventory of anthropogenic atmospheric pollutants in China, Atmospheric 

Chemistry and Physics, 11, 2295–2308, https://doi.org/10.5194/acp-11-2295-2011, 2011. 

 



2. Activity data and emission factors are the two important factors that influence the emission 

inventory. I also suggest adding this important information to Table 1, although point, line, 

and area source proxies are listed. 

 

Response: We thank the reviewer for this helpful suggestion. We agree that including information 

on activity data and emission factors is essential for understanding the basis of each inventory. 

Accordingly, we have added this information to Table 1, as shown below, to clearly indicate the data 

sources used by each inventory. 

 

Table 1. Specification of emission inventory statistics. 

 ODIAC EDGAR MEIC CAMS GEMS CEADs 

Version ODIAC2023 EDGAR2024 v1.0 v6.2 v1.0 NA 

Domain Global Global Global Global Global China 

Temporal 

coverage 

2000-2022 1970-2023 1970-2023 2000-2026 1700-2019 1997-2021 

Time 

resolution 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annual 

Monthly or 

annual 

Annual 

Activity 

data 

CDIAC, BP IEA CESY, IEA, 

BP 

EDGAR, 

CAMS-

GLOB-

Ship 

NBS, IEA CESY, NBS 

Emission 

factors 

IPCC IPCC CEADs, 

national 

submissions 

in UNFCCC, 

IPCC 

EDGAR Literature, 

on-site 

measureme

nts 

on-site 

measurements 

 

 

3. The Chinese government also reports national greenhouse gas emissions to the UNFCCC. I 

think it is better to compare the national CO2 emissions between government-reported data 

and the six bottom-up inventory data mentioned in this study. 

 

Response: We thank the reviewer for this helpful suggestion. We have now included the National 

Greenhouse Gas Inventory (NGHGI) data submitted by the Chinese government to the UNFCCC 

for national-level comparison. Figure 1 has been revised to incorporate the NGHGI data. To assess 

the consistency of the six inventories (2000–2023), we calculated the mean absolute difference 

(MAD) of each inventory relative to both the NGHGI and the six-inventory mean. The results show 

that CAMS exhibits the greatest consistency with the NGHGI, while ODIAC agrees most closely 

with the six-inventory mean. These additions help provide an independent benchmark for evaluating 

the overall agreement of the inventories at the national scale. 

 

 

 

 



Revision: 

(1) Section 2, paragraph 2: “In addition to these six datasets, the National Greenhouse Gas 

Inventory (NGHGI) submitted by the Chinese government to the United Nations Framework 

Convention on Climate Change (UNFCCC, available at: https://unfccc.int/reports) was also 

collected. The NGHGI provides the officially reported national total emissions and therefore serves 

as an independent benchmark for evaluating the reliability of the six inventories. As NGHGI covers 

only discrete years (2005, 2010, 2012, 2014, 2017, 2018, 2020, and 2021), it is not included in the 

continuous temporal analysis but is used solely for national-level comparison.” 

(2) Section 3.1, paragraph 2: “To further assess the consistency of the six inventories, we calculate 

the mean absolute difference (MAD), which is defined as the multi-year mean of annual absolute 

differences between each inventory and either the NGHGI or the six-inventory mean. Compared 

with NGHGI, the MADs range from 0.156 Gt year-1 (CAMS) to 0.835 Gt year-1 (MEIC). Against the 

six-inventory mean, the MADs range from 0.12 Gt year-1 (ODIAC) to 0.449 Gt year-1 (MEIC). 

EDGAR reports the highest emissions, which is about 0.370 Gt year-1 larger than the mean emission. 

MEIC shows the lowest emission levels, which is about 0.449 Gt year-1 less than the mean emission. 

Overall, CAMS exhibits the greatest consistency with the NGHGI, being at least 30% lower than 

that of the other inventories. In comparison, ODIAC agrees most closely with the six-inventory mean, 

with an MAD at least 58% lower than the others.” 

(3) Section 4, paragraph 1: “China’s annual anthropogenic CO₂ total emission increases from 

3.42 Gt in 2000 to 12.03 Gt in 2023. When compared with the officially reported NGHGI and the 

six-inventory mean, CAMS shows the smallest deviation from the NGHGI, while ODIAC agrees 

most closely with the multi-inventory mean. The six inventories display a broadly consistent 

emission trend, but their discrepancies among the inventories have widened from 0.41 Gt year-1 to 

1.63 Gt year-1, …” 

(4) Section 4, paragraph 4: “…The pronouncedly higher emissions in the coastal megacities (e.g., 

Shanghai, Jiangsu, and Guangdong) by ODIAC and the abnormal increase in CAMS by 50-230% 

in Liaoning, Hubei, and Shanghai exacerbate this divergence. Despite these inconsistencies, CEADs 

and MEIC exhibit broadly consistent estimates across nine provinces, especially in Inner Mongolia, 

Shandong, Henan, Hubei, and Shanghai.” 

  

https://unfccc.int/reports


Section 3.1, Figure 1: 

 

Figure 1. Annual anthropogenic CO2 emissions in mainland China from 2000 to 2023, as reported by six emission 

inventories: EDGAR, MEIC, CAMS, CEADs (up to 2021), ODIAC (up to 2022), and GEMS (up to 2019), and one 

government-reported data (NGHGI). Apart from ODIAC, all inventories provide national totals directly. We 

calculated China's emissions by summing the grid values within China for ODIAC. The shaded area indicates the 

standard deviation of the six inventories. It’s noteworthy that the inter-inventory mean and SD were calculated from 

the above mentioned six inventories. 

 

 

4. Line 168-174. Many studies report that China’s emissions peaked in 2013 or 2014, so the 

first phase is better set as 2000-2013 or 2014. Also, the second phase is mainly due to the air 

control policy, besides the adjustment of energy and industrial structure. 

 

Response: We thank the reviewer for this valuable comment. It’s important to identify the 

corresponding year of China’s emissions peak. Accordingly, we have adjusted the phase division in 

our analysis to set the first phase as 2000–2013 and the second phase as 2013–2016. We also 

acknowledge that the emission stabilization during the second phase is influenced not only by 

energy structure adjustments and industrial upgrading under China’s 12th Five-Year Plan, but also 

by the implementation of air clean policy since 2013 (Han et al., 2020b; Shi et al., 2022; Zheng et al., 

2025). The corresponding text and linear regression statistics in the first and second emission phase 

has been revised for clarity. 

 

Revision: 

(1) Abstract: “…The national total CO2 emissions increase from 3.43 (3.21–3.63) Gt year-1 in 2000 

to 12.03 (11.35–12.98) Gt year-1 in 2023, with three growth periods: rapid growth (2000–2013, 

0.56±0.013 Gt year-1), near-stagnation (2013–2016, -0.07±0.022 Gt year-1), …” 

(2) Section 3.1, paragraph 3: “The increase in CO2 emissions shows three different phases (Fig. 1, 

Table 2). The first phase (2000–2013) shows the most rapid growth, with an average growth rate of 

0.56 ± 0.013 Gt year⁻¹, driven by industrialization, urbanization, and rising energy demand. In 



contrast, emissions become relatively stable from 2013 to 2016, with all inventories showing a slight 

decline (−0.07 ± 0.022 Gt year⁻¹ on average). This short-term stagnation is mainly influenced by 

the adjustment of energy structure and industrial upgrades under China’s 12th Five-Year Plan, and 

the implementation of air clean policy since 2013 (Han et al., 2020b; Shi et al., 2022; Zheng et al., 

2025). …” 

(3) Section 4, paragraph 2: “The six inventories in this study agree on three emission phases: a 

rapid increase of 0.56 ± 0.013  Gt year⁻¹ (2000–2013), a near-stagnation phase of −0.07 ±

0.022 Gt year⁻¹ under the 12th Five-Year Plan and air clean policy (2013–2016), …” 

 

 

5. Line 180-185. Although the global stocktake is held every five years, the stocktake assesses 

the achievement of NDCs of each country. Also, the baseline year of the Chinese 2020 and 2030 

carbon reduction targets is 2005. I suggest the authors rewrite these sentences. 

 

Response: We thank the reviewer for this insightful suggestion. According to the Paris Agreement 

(Article 14; UNFCCC, 2015), the first global stocktake is scheduled for 2023, followed by 

subsequent assessments every five years. In light of this, we revised the text to clarify that our five-

year interval analysis is designed to correspond with the global stocktake cycle rather than the 

Nationally Determined Contributions (NDC) baseline year of 2005. Accordingly, we use 2003 as 

the starting point for the first five-year assessment period and have rewritten the sentences to reflect 

this rationale. 

 

 

Revision: 

Section 3.1, paragraph 4: “In response to the Paris Agreement’s requirement of a global stocktake 

every five years starting in 2023 

(https://unfccc.int/sites/default/files/paris_agreement_english_.pdf), we analyze China’s emissions 

variation every five years, using 2003 as the baseline year corresponding to the first global 

stocktake (Fig. 2). The highest growth is recorded in the period from 2003 to 2008 (> 0.52 Gt year-

1) and 2008-2013 (> 0.45 Gt year-1), followed by a stable period in the years from 2013 to 2018, in 

which the CEADs even records a slight decline (-0.01 Gt year-1). Growth then resumed in 2018-

2023, averaging 0.21 Gt year-1.” 

  

https://unfccc.int/sites/default/files/paris_agreement_english_.pdf
https://unfccc.int/sites/default/files/paris_agreement_english_.pdf


Section 3.1, paragraph 4: 

 

Figure 2. Average annual CO₂ emission growth rate during the five-year periods. 

 

 

6. Figure 4. Point and line sources of CAMS originated from EDGAR (Table 1). Why is the 

line source information lost in Figure 4d, especially in western China? Furthermore, the 

map of means (Figure 4f), most of the line and area information was lost. 

 

Response: We thank the reviewer for this valuable comment. We have carefully examined the 

sectoral emissions of CAMS and found that the spatial gaps over western China are not due to 

missing line or point source data but rather to the absence of aviation emissions. Specifically, CAMS 

includes only three transportation subsectors—Off-road transportation, Road transportation, and 

Ships—but does not account for aircraft emissions. To verify this, we compared the spatial 

distributions of transportation emissions among EDGAR, CAMS, MEIC, and GEMS (ODIAC does 

not provide sectoral data). As shown in Figure S1 below, EDGAR, MEIC, and GEMS all display 

distinct emission patterns along major flight corridors over western China, while CAMS only shows 

road transport patterns. This confirms that the absence of aviation emissions in CAMS leads to the 

spatial gaps observed in that region. We have added this explanation to Section 3.2.1 to enhance 

clarity and integrity of our research. 

Regarding the mean emission map (Fig. 4f), only grid cells with valid values in all inventories were 

included in the averaging. Therefore, regions appearing blank correspond mainly to areas where 

ODIAC lacks valid data, rather than to missing spatial information in the other inventories. 

 

 

 



Revision: 

Section 3.2.1, paragraph 1: “…, while regions with limited nighttime lighting, including both 

sparsely populated areas and areas with high population but limited lighting, such as Western 

Sichuan, Inner Mongolia, and Xinjiang, are not captured. By contrast, the spatial gaps over western 

China in CAMS (Fig. 4d) mainly arise from the lack of aviation emissions. CAMS accounts for 

transport emissions from road, off-road, and ships but omits aviation. As shown in Figure S1, 

EDGAR, MEIC, and GEMS capture distinct emission bands along major flight corridors over 

western China, whereas CAMS only shows the road transport pattern, explaining the missing 

emissions over western China.” 

 

Section 7, Figure S1: 

 

Figure S1. Spatial distribution of CO2 emissions from transport sector in 2019 across four inventories (EDGAR, 

CAMS, MEIC, and GEMS). 

 

 

7. Figure 5c. Why are there some squares with high values in the west and northeast China? 

 

Response: We thank the reviewer for this insightful comment. As noted above, we only analyzed 

grid cells with valid values in both inventories. The squared patches visible in Fig. 5c mainly occur 

in Xinjiang, Qinghai, Gansu, and Inner Mongolia. To verify their origin, we extracted CAMS 

emissions for these provinces, as shown in the figure below. The results indicate that these squared 

patterns originate from the CAMS dataset itself. 



 

CAMS emission distribution in selected provinces (Xinjiang, Qinghai, Gansu, and Inner Mongolia). 

 

 

8. Figure 7. Why is the CEADs province data nearly ten times higher than other inventories 

in Shanxi Province? 

 

Response: We thank the reviewer for this insightful comment. We examined CO2 emissions from 

CEADs (sectors) and CEADs (provinces) for Shanxi and found that the large discrepancy mainly 

arises from differences in raw coal–related emissions, which is the dominant contributor to total 

emissions (Wei, 2022). As shown in the figure below, CO2 emissions from raw coal in CEADs 

(provinces) are on average 664.71 Mt year-1 higher than those in CEADs (sectors), leading to an 

overall mean difference of 512.18 Mt year-1 between the two datasets. We have included this figure 

in the supplementary material and revised the manuscript to clarify the source of the discrepancy in 

Shanxi’s CEADs emissions. 

 

Revision: 

(1) Section 3.3.1, paragraph 1: “…In contrast, the CEADs (sectors) closely matches the other five 

independent inventories (ODIAC, EDGAR, MEIC, CAMS and GEMS), with its mean emissions 

deviating by no more than 3.84 Mt year-1 from the average of the five inventories. The large 

discrepancy between CEADs (provinces) and CEADs (sectors) mainly originates from the much 

higher raw coal–related emissions in CEADs (provinces) (Fig. S3), as coal is the dominant 

contributor to total emissions (Wei, 2022).” 

 

  



Section 7, Figure S3: 

 

Figure S3. Comparison of total CO2 emissions and raw coal–related CO2 emissions in Shanxi from CEADs 

(sectors) and CEADs (provinces) during 2000–2020. Solid lines represent total emissions, while dashed lines 

indicate emissions from raw coal combustion. 

 

Reference: 

Wei, C.: Historical trend and drivers of China’s CO2 emissions from 2000 to 2020, Environ Dev 

Sustain, 1–20, https://doi.org/10.1007/s10668-022-02811-8, 2022. 

 

 

9. Figure 8. EAGAR and MEIC are the highest and lowest inventories for national 

CO2 emissions, but these values varied at the provincial level. What are the key factors that 

affected these results? For example, CAMS had the highest values in Liaoning, Hubei 

provinces and Shanghai but the lowest in Hebei and Shandong provinces. 

 

Response: We appreciate the reviewer’s insightful question regarding the provincial variations 

among inventories. The inconsistency between EDGAR and MEIC at the national and provincial 

scales likely arises from their different downscaling methods. Differences in spatial proxies can 

significantly affect the spatial distribution of sectoral emissions, as illustrated by the contrasting 

transport emission patterns in EDGAR and MEIC (Section 3.2.2). 

Although CAMS uses EDGAR emission data as its primary foundation, it also incorporates 

additional spatial proxies like CAMS-GLOB-Ship for sectoral allocation (Soulie et al., 2024). 

Consequently, CAMS may assign relatively higher emissions to provinces like Liaoning, Hubei, 

and Shanghai, while allocating lower values to Hebei and Shandong, depending on how industrial, 

transport, and energy-use proxies are spatially represented. Therefore, while inventories may show 

consistent national totals, differences in spatial proxy selection and downscaling methods can lead 

to noticeable discrepancies at the provincial scale. 



Reference: 

Soulie, A., Granier, C., Darras, S., Zilbermann, N., Doumbia, T., Guevara, M., Jalkanen, J.-P., Keita, 

S., Liousse, C., Crippa, M., Guizzardi, D., Hoesly, R., and Smith, S. J.: Global anthropogenic 

emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service simulations of 

air quality forecasts and reanalyses, Earth Syst. Sci. Data, 16, 2261–2279, 

https://doi.org/10.5194/essd-16-2261-2024, 2024. 

 

 

10. Figures S1&S2, Why do SD and CV for Hubei and Guangdong decrease sharply in 2023? 

 

Response: Thank you for your attention on this detail. We carefully rechecked the original 

provincial emission data and confirmed that there are no calculation or processing errors. The sharp 

decrease in the CV of Hubei and Guangdong in 2023 mainly results from the reduced number of 

available inventories. Specifically, by 2023, only three inventories—EDGAR, MEIC, and CAMS—

provided data, whereas ODIAC, CEADs, and GEMS had ended earlier (GEMS in 2019, CEADs in 

2021, and ODIAC in 2022). 

As shown in Figures 8c and 8e, ODIAC consistently reported the highest emissions in Guangdong 

and the lowest in Hubei. The absence of ODIAC in 2023 therefore reduces the spread among 

inventories, leading to markedly lower SD and CV values in these two provinces. To illustrate this 

data-coverage effect, we have added shading in Figure S5 to indicate the years after 2019, when the 

number of available inventories began to decline. 

 

Revision: 

Section 7, Figure S5: 

 

Figure S5. Coefficient of variation (CV) of emissions at national level and for nine typical provinces during 2000-

2023. The shaded area represents the period after 2019, when the number of available emission inventories began 

to decrease (GEMS ended in 2019, CEADs in 2021, and ODIAC in 2022). 



11. Table 1. Why can CAMS report the data in 2026 when it was published in 2023? 

 

Response: We appreciate the reviewer’s insightful comment. According to Soulie et al. (2024), 

CAMS uses EDGAR data as its primary input and applies the Community Emissions Data System 

(CEDS) to extrapolate emissions to recent years. In our analysis, CAMS v6.2 is based on EDGAR 

v7 (up to 2021) and extends the emissions estimates up to 2026. We have updated the Data and 

Methods section to clarify this point. 

 

Revision: 

Section 2.1, paragraph 4: “CAMS is a global inventory developed as part of the Copernicus 

Atmosphere Monitoring Service project. It builds on EDGAR and integrates several complementary 

datasets, including the Community Emissions Data System (CEDS) for the extrapolation of the 

emissions up to the current year, the CAMS-GLOB-TEMPO for monthly variability, and the CAMS-

GLOB-SHIP for ship emissions. …” 

 

Reference: 

Soulie, A., Granier, C., Darras, S., Zilbermann, N., Doumbia, T., Guevara, M., Jalkanen, J.-P., Keita, 

S., Liousse, C., Crippa, M., Guizzardi, D., Hoesly, R., and Smith, S. J.: Global anthropogenic 

emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service simulations of 

air quality forecasts and reanalyses, Earth Syst. Sci. Data, 16, 2261–2279, 

https://doi.org/10.5194/essd-16-2261-2024, 2024. 

 

 

12. Line 104. What does “BP plc” mean? 

 

Response: We thank the reviewer for the question. “BP plc” refers to BP p.l.c., formerly known as 

British Petroleum. The company later adopted the abbreviation “BP” as its official name. It is a 

global energy company that publishes the BP Statistical Review of World Energy, which provides 

widely used energy activity data. This information has been added to the revised manuscript. 

 

Revision: 

Section 2.1, paragraph 1: “…such as BP plc (formerly the British Petroleum company p.l.c.), the 

United States Geological Survey (USGS), …” 

RC4 

The manuscript by Yang et al. (2025) addresses an important issue in carbon emission reporting, 

namely the comparison of six different bottom-up inventories using China as a case study. Accurate 

quantification of CO₂ emissions is critical for developing effective mitigation policies. The authors’ 

approach of including three global inventories and three local inventories makes the comparison 

meaningful and comprehensive. The manuscript is clearly written and was enjoyable to read. I have 

the following specific comments that require clarification before the manuscript can be considered 

for publication 



Specific Comments: 

Introduction section  

 

I found the introduction engaging, but a few aspects could be elaborated further: 

 

1. Please clarify why China was selected as the case study. Is it solely because China is the 

world’s second largest emitter of CO₂, or also because it provides a unique combination of 

global and local inventories suitable for comparison? Additionally, given that many similar 

studies have already been conducted for China, does this choice facilitate comparison with 

existing literature? Please specify.  

 

Response: We thank the reviewer for this thoughtful question regarding the selection of China as 

our case study. China was chosen for both scientific and practical reasons. Scientifically, China 

accounts for approximately 80% of East Asia’s anthropogenic CO2 emissions (Xia et al., 2025) and 

about 32% of global emissions according to the Global Carbon Project (GCP, 2024; available at 

https://globalcarbonbudget.org/). Practically, China has pledged to peak its CO₂ emissions by 2030 

or earlier and to reduce CO₂ intensity by 60–65% relative to 2005 levels (SCIO, The State Council 

Information Office of China; available at http://www.scio.gov.cn/). Accurate quantification of 

China’s emissions is therefore critical for understanding its carbon budget and for supporting 

national mitigation policies. 

Second, China was selected because its energy structure is undergoing an obvious transition to 

achieve the dual-carbon targets. This transformation is being driven by policies such as the 

renewable portfolio standards (RPS) and the clean air policy, which have promoted the adjustment 

of energy structure and industrial upgrades. The share of renewable energy in China’s total power 

generation increased from 16.6% in 2000 to 28.2% in 2020, reflecting steady progress toward 

cleaner energy sources. However, fossil fuels still dominate the mix, and issues such as overcapacity 

in energy supply remain (Zhao et al., 2022). Therefore, assessing anthropogenic CO₂ emissions 

under this transitional energy structure is crucial for evaluating the effectiveness of China’s 

mitigation efforts. 

Furthermore, although many previous studies have analyzed China’s CO₂ emissions, our work 

extends the temporal coverage (2000–2023) beyond earlier analyses (e.g., Han et al., 2000–2016; 

Zheng et al., 2006–2021) by incorporating the latest versions of six major inventories. This design 

enables both temporal and methodological comparison with prior research, refining the 

understanding of inter-inventory discrepancies and uncertainties. For example, our analysis 

identifies three distinct emission phases, quantifies national and provincial uncertainties (1σ), and 

shows that EDGAR estimates the highest national emissions and MEIC the lowest, differing from 

the near-agreement reported by Han et al. (2020b). Collectively, these advances allow a more robust 

evaluation of how inventory methodologies and consistency have evolved over time. 

We have revised the Introduction to emphasize the significance and rationale for studying China's 

emissions. 

 

 

 

https://globalcarbonbudget.org/
http://www.scio.gov.cn/


Revision: 

Section 1, paragraph 1: “China, which is responsible for about 80% of East Asia’s anthropogenic 

CO2 emissions (Xia et al., 2025) and about 32% of global CO2 emissions according to the Global 

Carbon Project (GCP, 2024; available at: https://globalcarbonbudget.org/), has committed to 

reaching peak emissions by 2030 and carbon neutrality by 2060. Besides, China’s energy structure 

is also undergoing an obvious transition driven by policies such as the renewable portfolio 

standards (RPS) and the clean air policy, which promote cleaner energy and industrial upgrades. 

The share of renewables in total power generation increased from 16.6% in 2000 to 28.2% in 2020, 

although fossil fuels still dominate and overcapacity issues remain (Zhao et al., 2022). Under this 

ongoing energy transition, accurate quantification of anthropogenic CO2 emissions and 

understanding the uncertainties in emissions inventories are needed to guide emission reduction 

policies toward the dual-carbon goals (Li et al., 2017a). ” 

References: 

Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, 

Q., and He, K.: Anthropogenic emission inventories in China: a review, National Science Review, 

4, 834–866, https://doi.org/10.1093/nsr/nwx150, 2017. 

Xia, L., Liu, R., Fan, W., and Ren, C.: Emerging carbon dioxide hotspots in East Asia identified by 

a top-down inventory, Commun Earth Environ, 6, 1–13, https://doi.org/10.1038/s43247-024-01991-

7, 2025. 

Zhao, F., Bai, F., Liu, X., and Liu, Z.: A Review on Renewable Energy Transition under China’s 

Carbon Neutrality Target, Sustainability, 14, 15006, https://doi.org/10.3390/su142215006, 2022. 

 

 

2. The authors have summarized previous studies from China that compared a few inventories. 

What is the novelty of the present work? Is the use of updated versions of inventories the only 

advancement, or are there other new aspects? Please state this explicitly. 

 

Response: We thank the reviewer for this important question regarding the novelty of our study. 

Beyond the use of updated inventory versions, our work introduces several key advancements. 

Specifically, it (1) extends the temporal coverage to 2000–2023, identifying three distinct emission 

phases linked to China’s evolving energy policy and industrial structure; (2) evaluates the internal 

consistency of CEADs data and recommends prioritizing CEADs (sectors) for provincial analyses; 

(3) reveals notable sectoral spatial allocation discrepancies, particularly between EDGAR and 

MEIC in the transport sector; and (4) quantifies scale-dependent uncertainties, showing that 

provincial uncertainties are two to ten times higher than at national level. We have added a short 

paragraph in the Introduction and a more detailed paragraph in the Conclusion explicitly outlining 

the main advancements compared with previous studies. 

 

Revision: 

(1) Section 1, paragraph 5: “To this aim, this study conducts a comprehensive analysis of the 

spatiotemporal variation of China’s anthropogenic CO₂ emissions and investigates the differences 

among six widely used emission inventories at their latest versions: the global inventories ODIAC, 

https://globalcarbonbudget.org/


EDGAR, MEIC, GEMS, CAMS, and the China-specific inventory CEADs. The data and methods 

are presented in Section 2. We report our results in Section 3 and conclude the paper in Section 4. 

Compared with previous studies (Han et al., 2020b; Zheng et al., 2025), we extend the temporal 

coverage to 2000-2023, enabling a more current and consistent assessment of recent emission trends, 

inter-inventory discrepancies, and scale-dependent uncertainties across China. ” 

(2) Section 4, paragraph 5: “In summary, this study extends previous work by identifying a three-

phase trend in China’s anthropogenic CO2 emissions from 2000 to 2023 and quantifying the 

emission uncertainties (1σ) at both national and provincial levels. At the national level, CAMS 

shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with 

the multi-inventory mean over the study period. At the provincial level, the Chinese local inventories, 

CEADs and MEIC, provide the most consistent estimates for regional studies. Differences in spatial 

proxies significantly affect the spatial distribution of sectoral emissions, as shown by the contrasting 

transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use of CEADs 

for provincial analyses. Our results further underscore the importance of improving the consistency 

of regional inventories to provide a stronger scientific basis for China’s emission mitigation and 

carbon neutrality policies.” 

 

Result Section  

 

Section 3.1  

The authors state that differences among the emission inventories become more pronounced after 

2012 and continue to diverge in recent years. However, the manuscript does not provide an 

explanation for this trend. It would greatly benefit the reader if the authors elaborated on the possible 

reasons for this divergence—for example, changes in activity data sources, revisions in statistical 

reporting, or methodological updates within specific inventories. Such context is essential to help 

readers better understand the evolution of Chinese emissions estimates over time.  

 

Response: We thank the reviewer for this constructive comment. As noted in Section 3.1, the post-

2012 divergence among inventories is mainly driven by EDGAR reporting the highest emissions 

and MEIC the lowest. We further investigated the possible reasons for this behavior by comparing 

the versions used in our study (EDGAR 2024 and MEIC-Global-CO₂ v1.0) with those used by Han 

et al. (2020b) (EDGAR v4.3.2 and MEIC v1.3). Our analysis shows that EDGAR’s national totals 

remain almost unchanged between the two versions, whereas MEIC-Global-CO2 v1.0 reports 

significantly lower emissions than MEIC v1.3 (by about 1.43 Gt year⁻¹ on average over 2008–2017).  

Consequently, the increased inter-inventory divergence after 2013 primarily originates from the 

downward revision in the latest MEIC dataset. Since the MEIC team does not provide detailed 

documentation on version-specific updates publicly, we can only infer that this reduction may reflect 

changes in energy statistics, emission factors, and data processing procedures introduced in the latest 

MEIC product. We have clarified this explanation in the revised manuscript to help readers better 

interpret the divergence among inventories after 2012. 

 

Revision: 

Section 4, paragraph 1: “China’s annual anthropogenic CO₂ total emission increases from 3.42 Gt 

in 2000 to 12.03 Gt in 2023. When compared with the officially reported NGHGI and the six-



inventory mean, CAMS shows the smallest deviation from the NGHGI, while ODIAC agrees most 

closely with the multi-inventory mean. The six inventories display a broadly consistent emission 

trend, but their discrepancies among the inventories have widened from 0.41 Gt year-1 to 1.63 Gt 

year-1, mainly due to the highest estimates reported from EDGAR and the lowest values estimated 

from MEIC, especially after 2012. Our results are consistent with Zheng et al. (2025) but opposite 

to Han et al. (2020b), demonstrating the differences in emission versions (Our study: EDGAR2024, 

MEIC-global-CO2 v1.0; Zheng: EDGAR v7.0, MEIC-China-CO2 v1.4; Han: EDGAR v4.3.2, MEIC-

China-CO2 v1.3). A comparison between these versions (Fig. S6) shows that the divergence mainly 

arises from a downward revision in the latest MEIC dataset, which reports about 1.43 Gt year-1 

lower emissions on average over 2008–2017. In contrast, EDGAR’s national totals remained nearly 

unchanged across versions, with differences within 0.001 Gt year-1 during 2000-2012. These results 

highlight the significant impact of inventory version updates on comparative emission analyses.” 

 

Section 7, Figure S6:  

 

Figure S6. Comparison of national CO2 emissions from different versions of the EDGAR and MEIC inventories. 

The older versions (EDGAR v4.3.2 and MEIC-China-CO2 v1.3) used in Han et al. (2020b) are compared with the 

updated versions (EDGAR 2024 and MEIC-Global-CO2 v1.0) used in this study. 

 

Conclusion section  

 

The conclusion could be strengthened by addressing the following points:  

 

1. What is the main take-home message from this study?  

 

Response: Thanks for the comment. The key findings can be summarized as follows: (1) China’s 

anthropogenic CO₂ emissions from 2000–2023 exhibit three distinct growth phases driven by 



changes in energy policy and structure; (2) CEADs (sectors) provides more consistent estimates 

than CEADs (provinces) at both provincial level and national level; (3) large spatial discrepancies 

among inventories originate mainly from different downscaling proxies and spatial allocation 

approaches, as illustrated by the contrasting spatial pattern between EDGAR and MEIC, and the 

inter-inventory discrepancies at the provincial level; (4) provincial level uncertainties are 

substantially higher (2-10 times) than national ones (5) CEADs and MEIC yield consistent estimates 

across nine representative provinces. At the national scale, CAMS shows the smallest deviation 

from the National Greenhouse Gas Inventory (NGHGI), while ODIAC aligns most closely with the 

six-inventory mean during the study period. These clarifications have been added to Section 4 to 

summarize the new insights contributions. 

 

 

Revision: 

Section 4, paragraph 5: “In summary, this study extends previous work by identifying a three-phase 

trend in China’s anthropogenic CO₂ emissions from 2000 to 2023 and quantifying the emission 

uncertainties (1σ) at both national and provincial levels. At the national level, CAMS shows the 

closest agreement with the government-reported NGHGI, while ODIAC aligns best with the multi-

inventory mean over the study period. At the provincial level, the Chinese local inventories, CEADs 

and MEIC, provide the most consistent estimates for regional studies. Differences in spatial proxies 

significantly affect the spatial distribution of sectoral emissions, as shown by the contrasting 

transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use of CEADs 

for provincial analyses. Our results further underscore the importance of improving the consistency 

of regional inventories to provide a stronger scientific basis for China’s emission mitigation and 

carbon neutrality policies.” 

 

 

2. Which inventory performs better overall for China?  

3. Are certain inventories more reliable in high-emission regions versus low-emission regions?  

 

Response to Comments 2 and 3: We thank the reviewer for these constructive questions regarding 

the relative reliability and regional performance of different inventories. Determining which 

inventory performs best requires evaluation against independent observation-based datasets (e.g., 

atmospheric CO₂ measurements and inversion results), which is beyond the scope of this study. 

Instead, our analysis focuses on assessing internal consistency among inventories and their 

deviations from available references. 

To strengthen the conclusions, we have now included the National Greenhouse Gas Inventory 

(NGHGI) submitted by the Chinese government to the UNFCCC as a national benchmark. Figure 

1 has been updated accordingly. Consistency was assessed by calculating the mean absolute 

difference (MAD) of each inventory relative to both the NGHGI and the six-inventory mean. The 

results indicate that CAMS shows the best agreement with the NGHGI, while ODIAC aligns most 

closely with the six-inventory mean throughout 2000–2023. 

At the provincial level, uncertainties are two to ten times larger than those at the national scale, 

making it difficult to identify a single “best” inventory. Nonetheless, our analysis (Section 3.2.2) 

shows that CEADs and MEIC exhibit strong agreement across nine representative provinces, 



particularly in Inner Mongolia, Shandong, Henan, Hubei, and Shanghai. These findings have been 

incorporated into Sections 3.1 and 4 to provide clearer, quantitative insights into inventory reliability 

across different spatial scales and emission intensities. 

 

Revision: 

(1) Section 3.1, paragraph 2: “To further assess the consistency of the six inventories, we calculate 

the mean absolute difference (MAD), which is defined as the multi-year mean of annual absolute 

differences between each inventory and either the NGHGI or the six-inventory mean. Compared 

with NGHGI, the MADs range from 0.156 Gt year-1 (CAMS) to 0.835 Gt year-1 (MEIC). Against the 

six-inventory mean, the MADs range from 0.12 Gt year-1 (ODIAC) to 0.449 Gt year-1 (MEIC). 

EDGAR reports the highest emissions, which is about 0.370 Gt year-1 larger than the mean emission. 

MEIC shows the lowest emission levels, which is about 0.449 Gt year-1 less than the mean emission. 

Overall, CAMS exhibits the greatest consistency with the NGHGI, being at least 30% lower than 

that of the other inventories. In comparison, ODIAC agrees most closely with the six-inventory mean, 

with an MAD at least 58% lower than the others.” 

(2) Section 4, paragraph 1: “China’s annual anthropogenic CO₂ total emission increases from 

3.42 Gt in 2000 to 12.03 Gt in 2023. When compared with the officially reported NGHGI and the 

six-inventory mean, CAMS shows the smallest deviation from the NGHGI, while ODIAC agrees 

most closely with the multi-inventory mean. The six inventories display a broadly consistent 

emission trend, but their discrepancies among the inventories have widened from 0.41 Gt year-1 to 

1.63 Gt year-1, …” 

(3) Section 4, paragraph 4: “…The pronouncedly higher emissions in the coastal megacities (e.g., 

Shanghai, Jiangsu, and Guangdong) by ODIAC and the abnormal increase in CAMS by 50-230% 

in Liaoning, Hubei, and Shanghai exacerbate this divergence. Despite these inconsistencies, CEADs 

and MEIC exhibit broadly consistent estimates across nine provinces, especially in Inner Mongolia, 

Shandong, Henan, Hubei, and Shanghai.” 

(4) Section 4, paragraph 5: “In summary, this study extends previous work by identifying a three-

phase trend in China’s anthropogenic CO₂ emissions from 2000 to 2023 and quantifying the 

emission uncertainties (1σ) at both national and provincial levels. At the national level, CAMS 

shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with 

the multi-inventory mean over the study period. At the provincial level, the Chinese local inventories, 

CEADs and MEIC, provide the most consistent estimates for regional studies. Differences in spatial 

proxies significantly affect the spatial distribution of sectoral emissions, as shown by the contrasting 

transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use of CEADs 

for provincial analyses. Our results further underscore the importance of improving the consistency 

of regional inventories to provide a stronger scientific basis for China’s emission mitigation and 

carbon neutrality policies.” 

  



Section 3.1, Figure 1: 

 

Figure 1. Annual anthropogenic CO2 emissions in mainland China from 2000 to 2023, as reported by six emission 

inventories: EDGAR, MEIC, CAMS, CEADs (up to 2021), ODIAC (up to 2022), and GEMS (up to 2019), and one 

government-reported data (NGHGI). Apart from ODIAC, all inventories provide national totals directly. We 

calculated China's emissions by summing the grid values within China for ODIAC. The shaded area indicates the 

standard deviation of the six inventories. It’s noteworthy that the inter-inventory mean and SD were calculated from 

the above mentioned six inventories. 

 

 

Currently, these questions remain unanswered. I think including these aspects will be helpful 

for readers, providing them with clearer guidance and enhancing the practical value of the 

study.  

 

Recommendation: This manuscript has the merit and it presents valuable data. However, it requires 

above minor revisions to be addressed before considered for the publication in Atmospheric 

Chemistry and Physics journal. 

 

RC5 

The manuscript by Yang et al. 2025 provides a comparative analysis of China’s anthropogenic CO2 

emissions over the period 2000–2023, based on six widely used bottom-up inventories. The topic is 

highly relevant given the importance of accurate CO2 accounting for climate change mitigation and 

policy verification. The dataset selection is comprehensive, and the study offers valuable insights 

into temporal trends, sectoral contributions, and spatial differences across inventories. Overall, the 

manuscript is well written and scientifically sound. 



Comments: 

1. Although comparing multiple inventories is valuable, similar studies have been conducted 

for China in the past. The authors should make it clearer what distinguishes this work. Does 

the novelty lie mainly in the inclusion of the most recent versions of the inventories? Or is it 

the extension to 2023 and more detailed assessment? 

 

Response: We appreciate the reviewer’s valuable comment. To clarify the novelty of our work, we 

have added a short paragraph in the Introduction and a more detailed paragraph in the Conclusion 

explicitly outlining the main advancements compared with previous studies. Specifically, this study 

(1) extends the temporal coverage to 2000–2023 and identifies three distinct emission phases 

reflecting changes in energy policy and structure; (2) evaluates internal inconsistencies within 

CEADs and recommends using CEADs (sectors) for provincial analyses; (3) reveals significant 

sectoral spatial allocation differences, particularly between EDGAR and MEIC in the transport 

sector; (4) quantifies scale-dependent uncertainties, showing that provincial uncertainty (CV) is two 

to ten times higher than national uncertainty; and (5) demonstrates that CEADs and MEIC yield 

consistent estimates across nine representative provinces. At the national scale, CAMS exhibits the 

smallest deviation from the National Greenhouse Gas Inventory (NGHGI), while ODIAC aligns 

most closely with the six-inventory mean during the study period. These clarifications have been 

added to Section 1 to highlight the study’s novelty and rationale for using the latest inventory 

versions, and to Section 4 to summarize the new insights contributions. 

 

Revision: 

(1) Section 1, paragraph 4: “Moreover, emission inventories are continuously updated to 

incorporate improved inputs (e.g., activity data, EFs, and refined methodology). Therefore, it is 

crucial to use the latest versions of the various inventories to capture these methodological updates 

and better understand the most recent patterns of China's anthropogenic CO2 emissions.” 

(2) Section 1, paragraph 5: “…Compared with previous studies (Han et al., 2020b; Zheng et al., 

2025), we extend the temporal coverage to 2000-2023, enabling a more current and consistent 

assessment of recent emission trends, inter-inventory discrepancies, and scale-dependent 

uncertainties across China. ” 

(3) Section 4, paragraph 5: “In summary, this study extends previous work by identifying a three-

phase trend in China’s anthropogenic CO₂ emissions from 2000 to 2023 and quantifying the 

emission uncertainties (1σ) at both national and provincial levels. At the national level, CAMS 

shows the closest agreement with the government-reported NGHGI, while ODIAC aligns best with 

the multi-inventory mean over the study period. At the provincial level, the Chinese local inventories, 

CEADs and MEIC, provide the most consistent estimates for regional studies. Differences in spatial 

proxies significantly affect the spatial distribution of sectoral emissions, as shown by the contrasting 

transport emission patterns in EDGAR and MEIC. We also clarify the appropriate use of CEADs 

for provincial analyses. Our results further underscore the importance of improving the consistency 

of regional inventories to provide a stronger scientific basis for China’s emission mitigation and 

carbon neutrality policies.” 

 

 



2. The conclusion is very long and contains many technical details. The authors discuss 

discrepancies between the inventories and ultimately recommend one, the CEADs for sectoral 

data, but what is the direct impact of this on emissions control in China? The text could end 

with a strong recommendation to improve regional inventories aimed at supporting mitigation 

policies. 

 

Response: We thank the reviewer for this valuable suggestion. We agree that highlighting the policy 

relevance of our findings would strengthen the conclusion. While our study focuses on technical 

consistency across inventories, the results have clear implications for emissions management in 

China. We have therefore revised the conclusion to emphasize that improving the accuracy and 

consistency of regional inventories is essential for tracking progress toward China’s dual carbon 

targets and for supporting evidence-based mitigation policies. Furthermore, to ensure the reliability 

of inventories, we suggest expanding both ground-based and satellite observations to enable 

comprehensive independent validation. Specifically, CO2 flux measurements can be directly 

compared with bottom-up estimates, while atmospheric CO2 mole fraction measurements, when 

integrated with inversion models, yield top-down emission estimates. These top-down results can 

then be systematically compared with the bottom-up inventories to identify the discrepancies across 

regional and national scales. We have revised Section 4 to clarify this point.  

 

Revision: 

(1) Section 4, paragraph 5: “…Our results further underscore the importance of improving the 

consistency of regional inventories to provide a stronger scientific basis for China’s emission 

mitigation and carbon neutrality policies.” 

(2) Section 4, paragraph 6: “Overall, reliable emissions quantification requires scale-appropriate 

inventories (e.g., the sectoral CEADs emissions versus the province-based CEADs emissions), 

improved spatial proxies (e.g., CPED vs. CARMA), and ensemble approaches to mitigate biases, 

especially in the carbon-intensive eastern regions. It should be noted that this study lacks an 

observational benchmark to assess these inventories. Future efforts should incorporate direct flux 

measurements or top-down emissions derived from inversion modeling, in combination with CO2 

mole fraction observations, to compare and constrain bottom-up inventories at both regional and 

national scales.” 

Specific comments: 

1. Line 183: What is the reason for this stable period between 2012 and 2017? 

 

Response: We thank the reviewer for the question.  It is worth noting that China’s CO2 emissions 

are estimated to have peaked around 2013 according to previous studies, which is why we defined 

2000–2013 as the first phase and 2013–2016 as the second in our analysis. The 2013–2016 period 

represents a short-term stabilization of emissions mainly driven by the adjustment of China’s energy 

structure and industrial upgrades under the 12th Five-Year Plan, together with the implementation 

of national air pollution control policies since 2013 (Han et al., 2020b; Shi et al., 2022; Zheng et al., 

2025). The corresponding text and linear regression statistics in the first and second emission phase 

has been revised for clarity. 

 



Revision: 

(1) Abstract: “…The national total CO2 emissions increase from 3.43 (3.21–3.63) Gt year-1 in 2000 

to 12.03 (11.35–12.98) Gt year-1 in 2023, with three growth periods: rapid growth (2000–2013, 

0.56±0.013 Gt year-1), near-stagnation (2013–2016, -0.07±0.022 Gt year-1), …” 

(2) Section 3.1, paragraph 3: “The increase in CO2 emissions shows three different phases (Fig. 1, 

Table 2). The first phase (2000–2013) shows the most rapid growth, with an average growth rate of 

0.56 ± 0.013 Gt year⁻¹, driven by industrialization, urbanization, and rising energy demand. In 

contrast, emissions become relatively stable from 2013 to 2016, with all inventories showing a slight 

decline (−0.07 ± 0.022 Gt year⁻¹ on average). This short-term stagnation is mainly influenced by 

the adjustment of energy structure and industrial upgrades under China’s 12th Five-Year Plan, and 

the implementation of air clean policy since 2013 (Han et al., 2020b; Shi et al., 2022; Zheng et al., 

2025). …” 

(3) Section 4, paragraph 2: “The six inventories in this study agree on three emission phases: a 

rapid increase of 0.56 ± 0.013  Gt year⁻¹ (2000–2013), a near-stagnation phase of −0.07 ±

0.022 Gt year⁻¹ under the 12th Five-Year Plan and air clean policy (2013–2016), …” 

 

References: 

Han, P., Zeng, N., Oda, T., Lin, X., Crippa, M., Guan, D., Janssens-Maenhout, G., Ma, X., Liu, Z., 

Shan, Y., Tao, S., Wang, H., Wang, R., Wu, L., Yun, X., Zhang, Q., Zhao, F., and Zheng, B.: 

Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories, 

Atmospheric Chemistry and Physics, 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, 

2020. 

Shi, Q., Zheng, B., Zheng, Y., Tong, D., Liu, Y., Ma, H., Hong, C., Geng, G., Guan, D., He, K., and 

Zhang, Q.: Co-benefits of CO2 emission reduction from China’s clean air actions between 2013-

2020, Nat Commun, 13, 5061, https://doi.org/10.1038/s41467-022-32656-8, 2022. 

Zheng, L., Li, S., Hu, X., Zheng, F., Cai, K., Li, N., and Chen, Y.: Spatiotemporal comparative 

analysis of three carbon emission inventories in mainland China, Atmospheric Pollution Research, 

16, 102417, https://doi.org/10.1016/j.apr.2025.102417, 2025. 

 

 

2. Figure 2: Why are the results presented as a five-year average? The CEAD values for the period 

between 2012 and 2017 are occasionally negative. What factors could explain this phenomenon? 

 

Response: We thank the reviewer for the question. The results in Figure 2 are presented as five-year 

averages to align with the global stocktake cycle defined by the Paris Agreement, which requires a 

comprehensive assessment every five years starting in 2023 (UNFCCC, 2015). Accordingly, we 

have adjusted the baseline year from 2002 to 2003, corresponding to the first global stocktake period. 

This revision is shown below. 

Regarding the slightly negative CEADs growth rate during 2013–2018, this reflects a minor decline 

in CEADs emissions over that interval (from 10.14 Gt in 2013 to 9.77 Gt in 2018), consistent with 

the national emission stagnation driven by industrial restructuring under China’s 12th Five-Year 

Plan and clean air policy. The five-year emission growth shown in Figure 2 is calculated as the 

https://unfccc.int/sites/default/files/paris_agreement_english_.pdf


difference between the final and initial year divided by five, which naturally yields a small negative 

value for CEADs in this period. 

 

Revision: 

Section 3.1, paragraph 4: “In response to the Paris Agreement’s requirement of a global stocktake 

every five years starting in 2023 

(https://unfccc.int/sites/default/files/paris_agreement_english_.pdf), we analyze China’s emissions 

variation every five years, using 2003 as the baseline year corresponding to the first global 

stocktake (Fig. 2). The highest growth is recorded in the period from 2003 to 2008 (> 0.52 Gt year-

1) and 2008-2013 (> 0.45 Gt year-1), followed by a stable period in the years from 2013 to 2018, in 

which the CEADs even records a slight decline (-0.01 Gt year-1). Growth then resumed in 2018-

2023, averaging 0.21 Gt year-1.” 

 

Section 3.1, Figure 2: 

 

Figure 2. Average annual CO₂ emission growth rate during the five-year periods. 

 

 

3. Figure 3: has not been cited within the main text 

 

Response: Thank you for pointing out the citation issue for Figure 3. We have carefully checked 

our manuscript and confirmed that this figure is cited in Section 3.1, paragraph 5. The sentence 

reads: “…The sectoral CO2 emissions show that the electricity and heat production sector and the 

industry and construction sector dominate emissions and together account for over 78% of total 

emissions (Fig. 3). …”. 

 

 

4. Line 211: Why was the year 2019 chosen as the reference year for comparing spatial patterns in 

Figure 4? Could this choice be clarified?  

 

https://unfccc.int/sites/default/files/paris_agreement_english_.pdf


Response: We thank the reviewer for the comment. As mentioned in Section 3.2.1, 2019 was chosen 

as the reference year because it is the most recent year for which all five gridded inventories 

(ODIAC, EDGAR, MEIC, CAMS, and GEMS) provide spatially explicit emission data. Moreover, 

2019 represents a typical pre-pandemic year, unaffected by the COVID-19 lockdowns in 2020-2021  

2019 is free from exceptional events such as the COVID-19 lockdowns, making it a representative 

baseline for comparison. 

Although our manuscript focuses on 2019 due to space limitations, we also conducted preliminary 

analyses for the third emission phase (2016-2023). As illustrated in the GIF below, the spatial 

patterns of inter-inventory differences remain generally consistent over time, although the overall 

magnitude of emissions varying. The only notable exception occurs in the EDGAR–MEIC 

comparison, where differences in southwestern China shift from obvious positive to negative during 

2016–2017. After 2017, the EDGAR–MEIC spatial differences stabilize, and other inventories 

relative to MEIC show minimal spatial variation throughout 2016–2023. 

 

 
Temporal evolution of spatial differences in CO₂ emissions between MEIC and other inventories (ODIAC, EDGAR, 

CAMS, and GEMS) during 2016–2023. 

 

 

5. Line 234: Could the authors clarify why the MEIC inventory was chosen as the benchmark for 

Figure 5?  

 

Response: We thank the reviewer for this valuable comment. Among the five gridded inventories 

(ODIAC, EDGAR, MEIC, CAMS, and GEMS) used in this study, both MEIC and GEMS are 

constructed using Chinese statistical data. Specifically, the energy consumption data in MEIC and 

GEMS are derived from the China Energy Statistical Yearbook (CESY) and the National Bureau of 

Statistics of China (NBS), respectively. Given that GEMS is a newly released dataset (2025) and 

MEIC has been developed and validated for more than a decade, we selected MEIC as the 

benchmark for comparison. MEIC is widely recognized and used when studying anthropogenic 

emissions in China. For example, it has been integrated into the MIX inventory as the Chinese 

component of the Asian anthropogenic emissions (Li et al., 2017) and was used to develop high-

resolution (1 km × 1 km) emission maps for 2013 (Zheng et al., 2021). Previous studies have also 



shown that simulations based on MEIC are more consistent with observations than those using 

EDGAR or ODIAC in Beijing (Che et al., 2022) and perform better in Xianghe and Xinlong (Yang 

et al., 2025). We have revised our manuscript for clarifying the rationality of the benchmark choice. 

 

Revision: 

Section 3.2.1, paragraph 3: “To assess spatial consistency, we compared ODIAC, EDGAR, CAMS, 

and GEMS with MEIC as a benchmark (Fig. 5). MEIC was chosen because it is compiled using 

local statistics and has been widely applied and validated in previous studies (Li et al., 2017b; Zheng 

et al., 2021; Che et al., 2022; Yang et al., 2025), making it a reasonable reference for comparison. …” 

 

References: 

Che, K., Cai, Z., Liu, Y., Wu, L., Yang, D., Chen, Y., Meng, X., Zhou, M., Wang, J., Yao, L., and 

Wang, P.: Lagrangian inversion of anthropogenic CO 2 emissions from Beijing using differential 

column measurements, Environ. Res. Lett., 17, 075001, https://doi.org/10.1088/1748-9326/ac7477, 

2022. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 

Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, 

B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration 

framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, 

https://doi.org/10.5194/acp-17-935-2017, 2017. 

Yang, H., Wu, K., Wang, T., Wang, P., and Zhou, M.: Atmospheric anthropogenic CO2 variations 

observed by tower in-situ measurements and simulated by the STILT model in the Beijing megacity 

region, Atmospheric Research, 325, 108258, https://doi.org/10.1016/j.atmosres.2025.108258, 2025. 

Zheng, B., Cheng, J., Geng, G., Wang, X., Li, M., Shi, Q., Qi, J., Lei, Y., Zhang, Q., and He, K.: 

Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air 

quality modeling, Science Bulletin, 66, 612–620, https://doi.org/10.1016/j.scib.2020.12.008, 2021. 

 

 

6. Figure 7: Could the authors clarify whether the pattern observed for Shanxi Province is unique 

to this province or if it occurs in other regions as well? 

 

Response: We appreciate the reviewer's careful attention on the pattern observed in Shanxi Province. 

We generated a provincial heatmap showing the differences between CEADs (provinces) and 

CEADs (sectors). The provinces are sorted by provincial total emissions in descending order (Fig. 

S2). The results show that Shanxi is a clear outlier among all provinces, with differences exceeding 

900 Mt CO2 year-1 after 2012, while differences in other provinces remain within 400 Mt year-1. 

While other provinces show spatially heterogeneous discrepancies, no other region exhibits a pattern 

of this magnitude. This unique characteristic is why we chose to highlight Shanxi Province in our 

analysis. Beyond Shanxi, Large differences (>100 Mt year-1) are mostly concentrated in provinces 

with higher total emissions (top 15 in 30 provinces), with few exceptions (e.g., Xinjiang in 2021). 

Provinces with lower total emissions (bottom 15) generally show smaller discrepancies (<50 Mt 

year-1), except for Xinjiang, Guizhou, and Ningxia. Overall, although the spatial pattern is 



heterogeneous, there is a general tendency for differences to decrease with provincial emission 

magnitude. We have added this provincial heatmap to the supplementary material and revised the 

manuscript accordingly. 

 

Revision: 

Section 3.3.1, paragraph 1: “CEADs provides two forms of CO2 emission estimates for provinces: 

the “province” series (referred to as CEADs (provinces)), which provides total emissions directly 

for each province, and the “sectors” series (referred to as CEADs (sectors)), which compiles fuel- 

and sector-specific emissions before summing them to the provincial totals. Significant 

discrepancies are observed between these two estimates in some provinces, with Shanxi emerging 

as a pronounced outlier. After 2012, the difference in Shanxi exceeds 900 Mt year-1, whereas in other 

provinces it remains below 400 Mt year-1 (Fig. S2). To investigate this divergence, we compare both 

CEADs estimates with other inventories in Shanxi (Fig. 7a). The results indicate that CEADs 

(provinces) exceeds CEADs (sectors) after 2008, …” 

 

Section 7, Figure S2: 

 

Figure S2. Heatmap of the annual CO₂ emission differences between CEADs (province) and CEADs (sector) for 

30 Chinese provinces provided by CEADs during 2000–2021. Provinces are ordered by total emissions from 

highest to lowest. 

 

 


