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Abstract.

The optical properties of atmospheric hydrometeors are a crucial component of any forward operator. These forward

operators are essential data assimilation, and atmospheric model evaluations. Recent advances in microphysical modelling,

such as Lagrangian super-particle models with habit prediction for ice particles, allow for the continuous evolution of particle

properties in contrast to fixed hydrometer classes with fixed properties. This increasing complexity demands scattering databases5

capable of handling a wide range of particle properties.

The discrete dipole approximation (DDA) is one of the most accurate and widely used methods for computing the scattering

properties of irregular ice particles. However, its high computational cost typically limits either the diversity of particle shapes

or the range of environmental parameters (e.g., frequency, temperature) represented in existing databases, constraining their

applicability to models with highly variable microphysics.10

In this study, we present a new DDA-based database of optical properties at 5.6, 9.6, 35.6, and 94 GHz, specifically designed

to accommodate the broad range of ice crystal morphologies predicted by habit-evolving schemes. The database contains 2,627

individual ice crystals, including dendrites, plates, and columns, as well as 450 aggregates with varying degrees of riming and

crystal types. The data are organized in three levels: Level 0 provides raw scattering matrices at individual orientations for

a full range of scattering angles; level 1a summarizes Mueller and amplitude matrix elements relevant for radar applications15

(at forward and backward scattering angles); and level 1b offers lookup tables of scattering properties that are relevant for

polarimetric radars assuming azimuthally random orientations of the particles. These data allow for flexible treatment of the

canting angle of the particles. The lookup tables are directly accessible via the McRadar simulator and can also be interfaced

with other forward operators.

The new database allows for a more consistent and realistic treatment of evolving ice particle properties in atmospheric20

models, improving the interpretation of radar observations and model-observation integration.
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1 Introduction

The ice phase in clouds plays a crucial role in numerical weather prediction and climate modelling, as approximately 75% of precipitation

reaching the ground forms via ice-phase processes (Heymsfield et al., 2018). However, significant knowledge gaps remain regarding ice

microphysical processes, leading to substantial uncertainties in their parametrizations within models (Morrison et al., 2020). Forward

models operating in the microwave region are essential for the development of retrieval techniques, both for active and passive microwave30

observations, and for the assimilation of satellite data into models (Geer et al., 2018). A key component of such forward models is the

availability of comprehensive databases of particle optical properties (Maahn et al., 2020).

Estimating the optical properties of ice particles is a challenging task. In the microwave region, accurately characterizing these properties

requires detailed knowledge of the particles’ microphysical characteristics, including size, mass, density, shape, internal structure, and

composition. The complex structures of ice particles can be modelled using physical snow growth models that simulate depositional growth,35

aggregation, and riming, such as the aggregation model introduced by Leinonen and Moisseev (2015) and later extended by Karrer et al.

(2020). Once the particle shape is determined, its optical properties must be computed using numerical methods. A widely used technique

for calculating the polarimetric radar signatures of ice particles is the T-matrix method, which approximates ice particles as spheroids with a

homogeneous mass distribution (Mishchenko et al., 1996). This allows for a flexible treatment of mass, size, aspect ratio and density, which

is convenient when trying to represent various shapes of (ice) particles. However, real snowflakes typically exhibit highly inhomogeneous40

internal mass distributions that strongly influence their scattering characteristics (Sorensen, 2001). As a result, T-matrix methods often

underestimate polarimetric signals for complex particles such as aggregates (e.g., Petty and Huang, 2010; Schrom and Kumjian, 2018;

Kneifel et al., 2020).

The Discrete Dipole Approximation (DDA) (Draine and Flatau, 1994) has become one of the most widely used and sufficiently accurate

methods for calculating the scattering properties of irregularly shaped particles. DDA discretizes the particle onto a grid of dipoles and45

can accommodate arbitrary shapes. It has been extensively validated (Yurkin and Hoekstra, 2007), but its high computational cost, scaling

approximately with O(nlog(n)), where n is the number of dipoles, remains a significant limitation. During the last decade, increased

computational power has facilitated the development of DDA databases. Many of these databases (Liu, 2008; Kuo et al., 2016) assume

randomly oriented ice particles, which limits their applicability to polarimetric radar observations. More recent efforts, such as Lu et al.

(2016) and Brath et al. (2020), have provided scattering properties across a range of orientations. For example, the Lu et al. (2016) database50

includes over 1,000 ice particles, ranging from single crystals to aggregates and graupel, at X-, Ku-, Ka-, and W-band frequencies. Brath

et al. (2020) focused on a smaller number of particles but extended the frequency range, supporting applications up to the sub-mm region.

In-situ observations (Bailey and Hallett, 2009) and laboratory studies (Pruppacher and Klett, 1997) revealed a wide variety of shapes that

ice particles can grow into by initial depositional growth. The shape is mainly determined by the temperature and super-saturation of the

environment in which the particles grow. The shape of ice crystals influences the particles’ fall velocity, the growth rate by deposition, as55

well as subsequent collisional processes such as riming and aggregation. Those changes in size, shape, density, and orientation also impact

the particles’ interaction with radiation, which is the reason for distinct radar signatures of ice particles in different regions of the cloud. In

most bulk microphysical schemes this variety of microphysical properties is typically represented by only a few fixed ice categories (e.g.,
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ice, snow, graupel). The Predicted Particle Properties (P3) scheme (Morrison et al., 2025) overcomes this limitation by employing a single

ice category in which the physical properties are predicted directly from environmental conditions. While in the P3 scheme, the particle60

shape is still fixed, the morphological evolution of ice crystals is predicted by habit prediction schemes (Welss et al., 2024; Jensen et al.,

2017; Jensen and Harrington, 2015; Harrington et al., 2013) (see Section 5.1). Due to high computation costs, habit prediction schemes have

been mainly applied in experimental models such as Lagrangian super-particle models (Shima et al., 2009), however, Jensen et al. (2017)

have introduced the bulk microphysics scheme ISHMAEL which predicts the evolution of ice properties, including the aspect ratio of the

particles. An example of a recent Lagrangian super-particle model with ice habit prediction included is the McSnow model (Brdar and Seifert,65

2018; Welss et al., 2024). A major advantage of Lagrangian models is the possibility to trace the particle history and morphological change

caused by microphysical processes. Such models are considered to be important tools to derive improved microphysical parametrizations

for bulk schemes (Morrison et al., 2020). In order to evaluate such new modelling approaches, for example, with radar observations,

scattering databases are needed that consistently cover the wide range of ice particle properties predicted by the model. A database with

a wide variety (mass, aspect ratio, size) of spheroids with homogeneous ice-air mixture would be consistent with the assumptions in habit70

prediction schemes, but the non-homogeneous mass distribution in real ice particles impacts their scattering properties (Sorensen, 2001;

Kneifel et al., 2020). The true in-cloud geometries of ice particles is vast and remains unknown, thus creating large uncertainties when

generating “representative” snow particles for forward simulations.

These uncertainties were investigated by Schrom and Kumjian (2019). They developed a probabilistic forward operator that maps

microphysical model output to radar observations using both DDA-derived scattering properties and equivalent spheroidal approximations.75

Their method involved statistically fitting equivalent spheroids to match the backscatter cross-section at horizontal polarization (σh) and the

differential reflectivity (ZDR) of complex crystals. This mapping enabled the quantification of uncertainties arising from dendritic branching;

for example, a standard deviation of ±0.5 dB in ZDR at X-band was reported.

Even greater uncertainties are expected for snow aggregates, which consist of multiple ice crystals with varied shapes and orientations. Ori

et al. (2021) demonstrated the potential bias introduced when using a single representative aggregate for a given size or mass by comparing80

single-particle DDA results to ensemble averages.

Both Schrom and Kumjian (2019) and Ori et al. (2021) emphasize the need for a scattering database that supports forward simulation of

complex microphysical model output, while minimizing errors associated with spheroidal approximations or limited particle shape diversity.

In this study, we present a new DDA-based scattering database that addresses this need. The database includes the scattering properties of

3,077 ice particles at C- (5.6 GHz), X- (9.6 GHz), Ka- (35.6 GHz), and W-band (94 GHz) frequencies. Scattering properties are provided for85

elevation angles from -90◦ to 90◦ in 5◦ steps and azimuth angles from 0◦ to 360◦ in 22.5◦ steps. The database includes 2,627 ice crystals,

encompassing dendrites, plates, and needles, as well as 450 aggregates with varying crystal types and degrees of riming.

The forward and backward scattering properties at all elevations and azimuth directions of all particles are freely available1. Additionally,

we provide averages of azimuthally random orientations for each particle to enable flexible canting-angle assumptions in forward operators2.

In this study, we also introduce a forward operator (Section 4.1) that maps microphysical particle properties into radar observables. Unlike90

Schrom and Kumjian (2019), our approach uses ensemble-averaged scattering properties, derived by averaging over a number of nearest

neighbours in microphysical property space. Finally, we present two application examples that illustrate the strengths of this new database.

1see https://doi.org/10.57970/cgtek-fen7
2see https://doi.org/10.5281/zenodo.16792943
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2 Ice Particle Properties

The habit of ice crystals varies depending on the ambient temperature and supersaturation (Libbrecht, 2017). Recent advancements in bin and

Lagrangian particle microphysical models, including those with habit prediction capabilities, have created a demand for scattering databases95

that allow consistent forward simulation of model output. It is well known that the internal structure of ice particles is essential for scattering

in the microwave regime (e.g. Kneifel et al., 2020; Ori et al., 2021; Brath et al., 2020). Realistically shaped ice particles can be simulated using

so called aggregation models (Leinonen and Moisseev, 2015; Leinonen and Szyrmer, 2015; Westbrook et al., 2004a, b). The aggregation

model introduced in Leinonen and Moisseev (2015) and Leinonen and Szyrmer (2015) constructs three-dimensional representations of

aggregate snowflakes by combining crystals of predefined shapes such as hexagonal columns, plates and dendrites. The aggregation model100

is conceptional similar to work provided by Westbrook et al. (2004a, b). The same aggregation model has been used in various studies,

for example as the input into complex scattering calculations (Leinonen et al., 2018; Ori et al., 2021; Maherndl et al., 2023), to investigate

the geometry of rimed ice particles (Seifert et al., 2019), to evaluate parametrizations of ice and snow in models (Karrer et al., 2020; Ori

et al., 2020), to create retrieval methods based on in-situ and radar observations (Maherndl et al., 2025; Leinonen et al., 2021) and to

generate 3D-printed snowflakes for laboratory studies (Köbschall et al., 2023) . In this study, we have used the aggregation model to develop105

a comprehensive scattering database containing 3,077 ice particles, including 2,627 ice crystals and 450 aggregates. While the aggregate

shapes were taken from previous studies (Ori et al., 2021; Karrer et al., 2020), the ice crystal shapes were specifically created for this

database.

2.1 Ice Crystals

In the dendritic growth layer (corresponding to temperatures between −20◦C and −10◦C), supersaturation levels significantly influence110

the degree of branching in plate-like crystals, resulting in a wide variety of morphologies (Bailey and Hallett, 2004, 2009; Lohmann et al.,

2016; Takahashi, 2014; Libbrecht, 2017). Takahashi (2014) categorized these forms as sector, broad-branch, stellar, dendritic, and fern-like

structures. This high degree of complexity of the internal structure of dendritic ice crystals cannot be explicitly described in habit prediction

schemes such as the one implemented in Welss et al. (2024). The habit prediction schemes therefore describe ice crystals as porous spheroids,

whose aspect ratio and density is varied by the habit prediction. A detailed description is given in Section 5.1. While the description of ice115

crystals as spheroids gives reasonably well results when comparing the aspect ratio, mass and maximum dimension (Dmax) to laboratory

studies (Welss et al., 2024), it is well known that the internal structure of ice particles is essential for scattering in the microwave regime (e.g.

Kneifel et al., 2020; Ori et al., 2021; Brath et al., 2020). In order to forward simulate the output of models using habit prediction schemes, a

large variety of ice crystal shapes has to be used, in order to match the predicted aspect ratios, densities, masses, and Dmax.

To capture the morphological diversity of dendritic ice crystals, we therefore employed the Reiter-algorithm (Reiter, 2005) as implemented120

in the aggregation model. The Reiter algorithm is a two-dimensional cellular automaton defined on a hexagonal lattice. Each grid cell

represents vapour, boundary, or ice and contains a scalar supersaturation value. The evolution of the crystal proceeds in discrete time steps

consisting of a diffusion step and an attachment (growth) step. In the diffusion step, supersaturation is redistributed between neighbouring

cells using a weighted average controlled by the parameter α, which specifies the relative strength of diffusion. Higher values of α lead

to faster smoothing of the supersaturation field, resulting in more open, dendritic structures, while smaller values promote more compact125

shapes.

Boundary cells, those adjacent to ice, can accumulate mass from the surrounding supersaturation field. The rate of this accumulation

is governed by β, which sets how quickly vapour condenses onto the growing crystal edges. Once the accumulated mass of a boundary
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cell exceeds a threshold determined by γ, the cell is converted into ice. The parameter γ therefore controls the overall growth rate and the

sharpness of branching features: smaller γ values allow rapid conversion to ice and more finely branched structures, whereas larger γ values130

promote slower, smoother growth. When β = 0 and γ > 0, plates are formed, and regardless of β, at high γ, plates, or broad branched stellar

forms are produced. For levels of low γ and β, dendritic growth happens, while for larger values of β, stellar forms appear. Figure 3 in Reiter

(2005) shows an overview of the effect of γ and β on the form of the crystal.

Iterating the diffusion and attachment rules yields crystal patterns that exhibit hexagonal symmetry, dendritic branching, and sector

structures consistent with natural snow crystals. Despite its conceptual simplicity, the Reiter algorithm captures the principal morphological135

characteristics of atmospheric ice particles.

We used the Reiter algorithm to generate a large variety of dendritic shapes. Specifically, we set α= 1 and varied β between 0.2 and 0.7

and γ between 0.0001 and 0.006. Dmax ranged from 10 µm to 7 mm. Figure 1 presents a subset of the resulting ice crystal shapes.

The variety in aspect ratios generated by the Reiter algorithm alone is not enough to cover the entire aspect ratio space predicted by the

habit prediction. In extreme cases, a particle can change growth regime from e.g., the columnar growth regime assumed at temperatures140

colder than −22◦ C into the plate-like growth regime at temperatures between −20 and −10◦ C. Bailey and Hallett (2004) have shown that

when such a regime change happens, the particle is likely to decrease its aspect ratio towards unity, effectively generating a "thick" column.

To capture these particles, we adapted the aggregation model from Leinonen and Moisseev (2015) to allow the generation of ice crystals

with adjustable aspect ratios at fixed Dmax. This was done by effectively stacking dendritic particles of the same shape on top of each other,

increasing the aspect ratio towards unity. In total, we generated 1,850 dendritic ice crystals.145

At smaller sizes or under low supersaturation conditions, solid plates are more likely to form. To represent this regime, we generated 625

plate crystals with varying sizes, masses, and aspect ratios with the aggregation model and our adaptation to allow more flexible aspect ratios.

In the temperature range between −10◦C and −5◦C, ice crystals tend to grow into columnar shapes (Bailey and Hallett, 2009). Accordingly,

we used the aggregation model to generate 125 columnar crystals, again varying size, mass, and aspect ratio. A description of the plates and

columns is given in Figure 1 of Leinonen and Moisseev (2015).150

The resulting mass–size and aspect ratio–size relationships for all 2,600 ice crystals are illustrated in Figure 2.

For the preceding scattering calculations, the particles are projected onto a regular Cartesian grid. In order to capture even small details of

the particle shape, we chose a grid resolution dependent on Dmax such that gridres =Dmax · 2.5 · 10−2.

2.2 Aggregates

Similarly to ice crystals, the microphysical properties of aggregates vary largely depending on the ice crystals which generated the aggregate155

and stochastic parameters determined during the collision process, such as the angle between the colliding partners, or the contact point (e.g.

Locatelli and Hobbs, 1974; Mitchell et al., 1996; Westbrook et al., 2004b). Therefore, we have randomly selected 450 aggregates of plates,

dendrites, mixtures of dendrites and columns (mix2) with a riming equivalent liquid water content (see Leinonen and Moisseev (2015))

between 0 and 1kg m−2 from the snow library of snowScatt (Ori et al., 2021). The resulting database comprises 175 rimed particles, 106

mixtures of columns and dendrites, 105 dendrite aggregates, and 63 plate aggregates. A subset of their shapes in presented in Figure 3, the160

microphysical properties of all aggregates are shown in Fig. 4.
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Figure 1. Examples of dendritic ice crystal shapes from the scattering database. The first row shows dendrites with a Dmax of 100 µm, the

second row with 500 µm, the third row with 1 mm and the last row with 5 mm.
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Figure 2. Ice particle mass (a) and aspect ratio (b) as a function of the maximum dimension (Dmax). Orange asterisks denote columnar, blue

dots denote plate-like particles. For comparison, the relationships of the Pruppacher and Klett (1997), plate (P1a), dendrite (P1e) and needle

(N1e) are shown.

3 Radar scattering properties

3.1 Discrete Dipole Approximation

After determining the particle shapes, their scattering properties must be computed. The discrete dipole approximation (DDA) is a widely

used method for calculating the scattering of arbitrarily shaped particles by solving the volume integral equation form of Maxwell’s equations165

for a discretized representation of each particle. Originally developed by Purcell and Pennypacker (1973), the method replaces the particle

with an array of polarizable dipoles. The interactions among these dipoles and with the incident electromagnetic field yield a system of linear

equations, the solutions of which give the dipole polarizations and thus allows to compute the scattered electromagnetic field.

Since its initial development, increases in computational power and the availability of efficient public implementations such as ADDA

(Yurkin and Hoekstra, 2011) and DDSCAT (Draine and Flatau, 2013) have made the DDA a popular choice for modelling particles of170

arbitrary shape and composition. The accuracy of the DDA is considered to be limited by two sources of error, namely the shape error and

the discretization error which are both dependent on the dipole size (Yurkin et al., 2006). These two sources of error refer to the accuracy

at which a certain shape can be approximated by a set of cubic voxels and how well those same cubic volumes can represent the spatially

varying electromagnetic field. A commonly used criterion for the latter is to guarantee that the parameter |m|kd < 0.05, where m is the

refractive index, k the wavenumber, and d is the dipole spacing (Tyynelä et al., 2009; Leinonen and Moisseev, 2015; Zubko et al., 2010;175

Yurkin and Hoekstra, 2007). At W-Band (94 GHz, the largest frequency in this database) this implies a dipole spacing below 14 µm; our

largest dipole spacing of 10 µm satisfies this requirement.

The shape error is particularly critical for strongly asymmetric shapes, such as thin plates, whose thickness may span only a single layer of

dipoles or heavily-branched dendrites with even finer internal structures. For this reason, we adopt a variable dipole spacing that depends on

7



2

-1

1

[m
m]
0

0

[m
m

]

0

1

-1 -2

-0.5
11

0

[m
m]

0.5 0[m
m

]

0.5

0
-1-0.5

-10

10

-5

10

0

[m
m

]

0 0

[m
m]

5

-10-10

4

-2

42

0

2[m
m

]

0

[m
m]0

2

-2 -2
-4-4

-5

5

4

0

[m
m

]

0 2

[m
m]0

-2-5 -4

5

-4

5

-2

5

0

0[m
m

] [m
m]

0

2
4

-5-5

-0.5

2

0

1

0.5

[m
m]

[m
m

]

00

-1
-2

-2

54

0

2

[m
m]

[m
m

]

00

2

-2
-5

-5

5 10

0

0[m
m

] [m
m]0-5

5

-10 -10

-1

1
1

0

[m
m

] [m
m]

0 0
-1

1

-1

-2

4
22

0

[m
m]
0[m

m
]

0
-2

2

-2 -4

-5

4 5
2

[m
m]

[m
m

]

0 0

0

-2
-5-4

5

Figure 3. Examples of aggregates available in the scattering database. Shown are dendrite aggregates (top row), plate aggregates (second

row), aggregates consisting of a mixtures of dendrites and columns (mix2) (third row) and rimed mix2 aggregates (fourth row).
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Figure 4. Aggregate mass (a) and cross-sectional area (b) as function of Dmax. For comparison, the relationships of Mitchell (1996) for

aggregates of side planes (M96 sideplane), aggregates of side planes, columns and bullets (M96 mixS3) as well as the relationships of

Locatelli and Hobbs (1974) for aggregates of unrimed radiating assemblages of dendrites (LH74 dendrite), aggregates of unrimed radiating

assemblages of plates, side planes, bullets and columns (LH74 mixed) and aggregates of unrimed side planes (LH74 sideplanes) are shown.

Note: area-size relationships are only available for the Mitchell et al. (1996) aggregates.

particle size. Some studies (Yurkin et al., 2006; Ori and Kneifel, 2018), adopted specific investigation techniques to analyse these two error180

sources by varying the dipole resolution. Since this resolution is size-dependent in our database a comprehensive application of this approach

to all shapes would be particularly effort-taking. Instead, we limited our analysis on two random dendritic particles from our database and

reduced the spacing by factors of two and four. The resulting changes in the computed scattering properties were only 0.12–0.2%, depending

on polarization and wavelength, indicating that the discretization is sufficient.

We would like to emphasize that uncertainties arising from DDA discretization are likely negligible compared with the much larger185

uncertainties associated with selecting appropriate particle shapes, as the true in-cloud geometries are unknown. We attempt to mitigate these

uncertainties by simulating a wide variety of particles, but the error inherent in choosing any particular shape remains unknown and cannot

currently be constrained by in-situ observations.

The full ADDA setup used for the simulations can be inferred from the shared analysis codebase and has been derived from the

experience gained in our research group regarding the calculation of the scattering properties of complex shaped frozen and partially melted190

hydrometeors (Ori et al., 2014; Ori and Kneifel, 2018; Ori et al., 2021). In particular Ori and Kneifel (2018) provides an overview of the

performance of various combinations of ADDA configurations for such scattering targets. In particular we used Lattice Dispersion Relation

(LDR) and Filtered Coupled Dipoles (FCD) respectively for polarization formulation and interaction term.
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3.2 Reference frames

We first define two fundamental reference frames, namely the radar reference frame (RRF), and the particle reference frame (PRF). The RRF195

(often called laboratory reference frame) can be considered as the most general one, it is fixed with a hypothetical ground-based radar, the

z-axis goes along the vertical with respect to the radar location, while the orientation of the horizontal xy-axes is arbitrary. The radar reference

frame defines the coordinates of the propagation direction of the radar beam and its polarization planes (Fig. 5a). The propagation direction

of the radar beam is defined by the radar elevation angle el and azimuth az. The vertical polarization plane spans the beam propagation

direction and the z-axis, while the horizontal polarization plane is orthogonal to the vertical and also contains the beam propagation vector.200

x

z

y
z´

x´

y´az

a) RADAR REFERENCE FRAME

el

(RRF)

b) PARTICLE REFERENCE FRAME (PRF)

^

^

^

Figure 5. Panel a, Schematic representation of the Radar Reference Frame (RRF in blue) and the rotation of the Particle Reference Frame

(PRF in red) with respect to the RRF employing the three Euler angles (α̂, β̂ and γ̂). Panel b, Detail of the unrotated PRF and the polar

coordinates (θ,ϕ) that define any unit vector in the PRF. The red dots represent the set of sampling directions used in section 3.5 to describe

the particle scattering in all possible orientations. The figure of the PRF and relative rotations with respect to the RRF is adapted from the

ADDA User Manual.

The PRF is fixed with the snow particle, and is assumed to correspond to the particle axes of inertia with the shortest inertia axis aligned

with the z-axis of the PRF. The transformation from PRF to RRF is performed by means of 3 Euler rotations (angles α̂, β̂, and γ̂) that

follow the commonly used zyz-convention (Fig. 5b). With respect to the PRF, the propagation direction of any vector is defined by the polar

coordinates θ and ϕ.
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The polarimetric scattering properties of a complex-shaped snowflake in the RRF would in general depend on all 5 angles (el, az, α̂, β̂,205

γ̂). Note that a rotation of the angles az of the RRF and α̂ of the PRF act on axes that are parallel, which implies that only the difference

az− α̂ is relevant for the definition of the overall geometry. By assuming az = 0 the dependence on the angle az can be dropped without

loss of information.

3.3 Single-scattering particle properties

At a given particle orientation, the incident electromagnetic field Ei can be related to the scattered (far-) field Es via the amplitude scattering210

matrix (Mishchenko et al., 2002):Es
∥

Es
⊥

=
exp(ikr)

r

S1 S4

S3 S2

Ei
∥

Ei
⊥

 (1)

the subscripts ∥ and ⊥ indicate parallel and perpendicular orientations with respect to the scattering plane, i=
√
−1, k = 2π/λ is the

wavenumber, r is the distance between the scatterer and the observation point, and S1,...,4 are the complex elements of the amplitude

matrix. Please note that the ADDA code outputs a slightly different definition of the amplitude matrix that includes a −ik factor in the215

denominator. The amplitude matrix can be converted to the Mueller matrix Z, which relates the Stokes vector of the incoming and scattered

fields (Mishchenko et al., 2002):
Isca

Qsca

Usca

Vsca

=
1

r2


Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44




Iin

Qin

Uin

Vin

 (2)

where Z11,...,44 are the real elements of the Mueller matrix. The Stokes vector consists of the elements I, Q, U and V. I describes the total

intensity of the incoming/scattered field, Q and U which describe the linear polarization, in case of Q the preference of horizontal versus220

vertical polarization, and in case of U the preference of ±45° polarization. V describes the circular polarization. In contrast to the Amplitude

matrix, the Mueller matrix contains only information about the intensity of the scattered wave, not the absolute phase. The Amplitude matrix

can be converted into the Mueller matrix following well established formulas. Both matrices were calculated with the ADDA version 1.4.0

and are available in the scattering database at C- (5.6 GHz), X- (9.6 GHz), Ka- (35.6 GHz) and W- (94.0 GHz) band as well as for el between

0° and 180° in 5° steps and az between 0° to 337.5° in 22.5° steps for every scattering direction. Such a coarse azimuthal sampling is225

sufficient because the scattering properties are later averaged over azimuth (see Section 3.4). An azimuthal resolution as coarse as 45° yields

identical azimuthally averaged scattering properties. The scattering properties were calculated at a temperature of 270 K, using the refractive

index model described in Mätzler (2006), Chapter 5 for ice.

The full set of formulas to calculate the Z11,...,44 elements from the amplitude matrix can be found in Mishchenko et al. (2002) and in the

code we shared. For convenience we report here the equations for the four elements that are relevant for the radar quantities we calculate in230

McRadar

Z11 =
1

2
(|S1|2 + |S4|2 + |S3|2 + |S2|2) (3)

Z12 =
1

2
(|S1|2 − |S4|2 + |S3|2 − |S2|2) (4)
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Z21 =−Re(S1 ·S∗
4 +S2 ·S∗

3 ) (5)

Z22 =−Im(S1 ·S∗
4 −S2 ·S∗

3 ) (6)

where the asterix apex denotes the complex conjugate while Im(var),Re(var) the imaginary and real parts of the variable var respectively.

After deriving the amplitude and mueller scattering matrices using the Mishchenko et al. (2002) definition, typical radar parameters can240

be calculated as follows (Mishchenko et al., 2000):

– Radar reflectivity factor at horizontal polarization

Zehh =
2λ4

π4|K|2
(
Z11|180° +Z22|180° +Z12|180° +Z21|180°

)
(7)

– Radar reflectivity factor at vertical polarization

Zevv =
2λ4

π4|K|2
(
Z11|180° +Z22|180° −Z12|180° −Z21|180°

)
(8)245

– Extinction cross-section at horizontal and vertical polarization:

cext,hh =
4πIm

(
S2|0°

)
k

; cext,vv =
4πIm

(
S1|0°

)
k

(9)

– Specific differential phase shift:

KDP=
180λ

(
Re(S2|0°)−Re(S1|0°)

)
π

(10)

where λ is the wavelength, |K|2 the dielectric factor and the subscript 0°,180° refers to the scattering direction, with 0° being forward and250

180° backward.

3.4 Orientation averaging

Radar polarimetric quantities are sensitive to the shape and orientation of the particles. The steady-state falling orientation of a complex-

shaped particle, such as a snowflake, is determined by the complex equilibrium of gravitational and aerodynamic forces. The problem of

finding the fall attitude of a snowflake is further complicated by the fact that such a stationary orientation might not even exist (i.e., snowflakes255

can continuously tumble and spin (McCorquodale and Westbrook, 2021)), furthermore, hydrometeors typically fall in an environment that is

itself non-stationary and turbulent.

The attitude of a snowflake during its fall can be described by the probability distribution of the three Euler angles that define its orientation

with respect to the default fall configuration. For this study, the default orientation is defined as aligning the longest axis of inertia horizontally

(i.e. this corresponds to the Euler angle β̂ = 0). The distributions of Euler angles defining the particle orientations are commonly defined by260

fα̂(α̂), fβ̂(β̂), fγ̂(γ̂), but please beware that it is not always possible to factorize the probability distribution of the particle orientation on

the product of the individual distribution of the three Euler angles. The average value of a quantity S(α̂, β̂, γ̂) that depends on the orientation

of the particle can be calculated as Brath et al. (2020)

⟨S⟩α̂,β̂,γ̂ =

2π∫
0

π∫
0

2π∫
0

S(α̂, β̂, γ̂)fα̂(α̂)fβ̂(β̂)sin(β̂)fγ̂(γ̂) dα̂ dβ̂ dγ̂ (11)
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A radar observes a vast population of hydrometeors whose orientation in space can be defined by angular distributions. They also sense265

those particles over a certain amount of time, during which particles change their orientation through, i.e. tumbling and spinning movements.

For this reason we are not interested in the scattering properties of a single oriented particle. Rather, we are interested in orientation-

averaged scattering properties of the particles population. This can be represented as an ensemble of multiple particles oriented differently

but otherwise identical. It is widely accepted that the α̂ and γ̂ angles follow a uniform distribution (Mishchenko and Yurkin, 2017). Averaging

over the distributions of α̂ and γ̂ leads to the representation of polarimetric scattering properties that follow the so-called azimuthally random270

orientation (ARO) assumption (Brath et al., 2020). Under these conditions, the polarimetric scattering properties of snowflakes depend on

only two angles, namely the radar elevation angle el and the particle canting angle β̂.

SARO(el, β̂) =

2π∫
0

2π∫
0

SRRF(el, α̂, β̂, γ̂)

4π2
dα̂ dγ̂ (12)

3.5 Sampling discrete scattering orientations

In the previous section, we explained how it is possible to leverage the assumption that hydrometeors have no preferential orientation in275

the azimuth to reduce the dimensionality of the polarimetric scattering data structure. However, to compute Eq. 12 one would still need

to perform a sufficient number of scattering calculations on individual sets of elevation angles and particle orientations (el, α̂, β̂, γ̂). This

is a considerable computational effort, thus, following previous studies (Brath et al., 2020; Lu et al., 2016) we reduce the dimensionality

of the problem by realizing that any scattering problem in the RRF (identified by the five angles el, az, α̂, β̂, γ̂) can be represented by

a corresponding scattering in the PRF, provided that one can operate a proper transformation between the two reference frames. In the280

PRF any scattering problem is identified simply by the two polar coordinates (θ0,ϕ0) that define the propagation direction of the incoming

electromagnetic wave in the PRF. Mathematically (el,az, α̂, β̂, γ̂)⇒ (θ0,ϕ0).

The transformation matrices ρ and ρ−1 that allow one to convert the amplitude matrices from the PRF to the RRF are provided by Mishchenko

(2000) and depend on the polar coordinates of the direction of the incoming and scattered beams as well as the three Euler angles that

define the orientation of the scatterer. Here, we drop the dependency on the scattered directions for the sake of simplicity, since, for radar285

applications, the only two relevant scattering directions are the forward and backward ones. Mathematically, one can write

SRRF(el,az, α̂, β̂, γ̂) = ρT (el,az, α̂, β̂, γ̂)SPRF(θ0,ϕ0)ρ(el,az, α̂, β̂, γ̂) (13)

Thus, we perform individual scattering calculations in the PRF with a regular (θ0,ϕ0) grid. The polar angle θ0 ranges from -90° to 90°

with increments of 5° while the azimuth angle ϕ0 ranges from 0 to 360° with increments of 22.5°. The set of directions used is represented

as red dots in Fig. 5b. This approach is less efficient than other strategies to sample points over a unitary sphere (such as the icosahedral290

sampling strategy of Brath et al. (2020)), because it would allow for an increased density of sampling points close to the poles. However, it

is fundamentally simple and has the advantage of integrating perfectly over azimuths in the case of non-tumbling (β̂ = 0) particles.

The azimuth averaging of Eq. 12 is then performed numerically by sampling the database of individual scattering directions using a

nearest-neighbour approach, hence (el,az, α̂, β̂, γ̂)⇒ (θNN
0 ,ϕNN

0 ). The transformation of Eq. 13 is then applied to the sampled matrix

before executing the quadrature rule which is equivalent to perform the following integral295

SARO(el, β̂) =

2π∫
0

2π∫
0

ρT (el,az, α̂, β̂, γ̂)SPRF(θNN
0 ,ϕNN

0 )ρ(el,az, α̂, β̂, γ̂)

4π2
dα̂ dγ̂ (14)
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3.6 Radar variables derived from the database

At an elevation angle of 30° and β̂=0°, Ze, ZDR, and KDP at 9.6 GHz (X-band), 35.6 GHz (Ka-band), and 94 GHz (W-band) for all particles

in the database are shown in Fig. 6. A notable feature is that small ice crystals in the database can exhibit negative ZDR values, which is

counter-intuitive since the particles are horizontally aligned with their largest dimension. For particles with an aspect ratio different from300

unity, one would generally expect a positive ZDR.

The particles showing negative ZDR are dendritic crystals with aspect ratios close to unity (0.7-0.9). Based solely on aspect ratio, their

ZDR should be positive. However, the internal mass distribution is asymmetric: the vertical dimension has a higher mass density than the

horizontal dimension (see examples in Fig. 1). When the aspect ratio is near unity, this density difference becomes significant, resulting in a

higher vertical Ze and thus a negative ZDR. This effect is not observed for solid plates with similar size and aspect ratio because their mass305

distribution is nearly uniform along the vertical and horizontal axes, making aspect ratio the dominant factor for ZDR.

Comparing Ze, ZDR, and KDP at W-Band of the ice crystals in this database with those in Lu et al. (2016) (see their Fig. 4 and Fig. C1

in von Terzi et al. (2022)), we find similar features. Ice crystals with masses exceeding 10−8 kg, corresponding to a maximum dimension of

approximately 3 mm (see Fig. A1), enter the non-Rayleigh scattering regime, producing a ZDR peak of 12 dB and a flattening of Ze. This

behaviour is consistent with Lu et al. (2016), where dendritic crystals reach a maximum W-band ZDR of 9 dB at Dmax=3 mm. Likewise,310

KDP in our database aligns with Lu et al. (2016), reaching 0.2 mm° km−1 at Dmax=8 mm when normalized by wavelength (Fig.A1).

Aggregates in our database show some differences from those in Lu et al. (2016). At X-band, aggregates reach a maximum Ze of 27 dBz

at a mass of 10−4 kg (corresponding to Dmax≈3.5 cm), whereas in Lu et al. (2016), the maximum Ze for Dmax≈3 cm is only 9.5 dBz. This

higher reflectivity in our dataset is primarily due to rimed aggregates. Unrimed aggregates in our database reach only 5 dBz at Dmax≈3.5 cm,

comparable to Lu et al. (2016).315

The transition of aggregates into the Mie-regime occurs at slightly higher masses in our dataset: around 5× 10−8 kg at W-band, with a

pronounced flattening at 5× 10−7 kg (Dmax≈2–3 mm). In contrast, Lu et al. (2016) reports the transition at 5× 10−9 kg. As noted in Lu

et al. (2016), their aggregates enter the non-Rayleigh scattering regime earlier than those in Leinonen and Moisseev (2015), likely due to

structural differences. Our aggregates consist primarily of plates, dendrites, or a mixture of dendrites and columns, whereas the Lu et al.

(2016) aggregates are more akin to aggregates of needles.320

ZDR values of aggregates are similar between the two databases: at W-band, most aggregates exhibit ZDR between 2–3 dB. Only high-

density rimed aggregates in our dataset reach up to 5.5 dB. KDP also remains in a comparable range to Lu et al. (2016).

4 Database Setup

The scattering database is organized into three hierarchical levels, each corresponding to a different stage of post-processing. Due to the large

size, the level 0 data is available upon request.325

Level 0 contains the raw output from the ADDA code, including the full amplitude and Mueller matrices for each particle, along with log

files documenting the ADDA simulation settings and diagnostics.

In Level 1a these outputs are processed by summarizing the amplitude and Mueller matrix entries into NetCDF files for each particle type

across all elevation and azimuth angles and frequencies.

level 1b further condenses the data into two lookup tables (LUTs), one for monomers and one for aggregates. These LUTs represent the330

azimuthally random orientational averages of all particles and serve as the input for the radar forward simulator, McRadar.
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Figure 6. Single-particle backscattering cross sections at horizontal polarizations multiplied by λ4/(π5 ·K2) (equivalent to the single particle

reflectivity) (first column), ZDR (second column), and KDP in dependency of the particle mass plotted for all particles in the database at 30°

radar elevation averaged over all azimuth orientations at β̂ = 0°. The first row shows the scattering properties of all ice crystals at 9.6GHz

(blue), 35.6GHz (orange) and 94GHz (green). The dots indicate plate-like crystals and the stars columnar crystals. The second row shows

the scattering properties of all aggregates at 9.6, 35.6 and 94 GHz. The dots indicate aggregates of plates, the stars aggregates of dendrites,

the trident mix2 aggregates, and the plus sign rimed aggregates.

4.1 Radar Simulator McRadar

McRadar is a flexible radar forward simulator designed to interface directly with the level 1b LUTs and forward simulate microphysical

model output into radar observables while maintaining consistency in physical properties. Similar to existing forward operators such as the

Cloud-resolving model Radar SIMulator CR-SIM (Oue et al., 2020), McRadar calculates the Doppler spectrum, specific differential phase335

shift (KDP), and attenuation based on the microphysical inputs. Instrument-specific noise can be added to the Doppler spectra, and spectral

broadening effects due to turbulence, finite beamwidth, and wind shear are optionally included following Doviak and Zrnic (1993).

McRadar also allows the user to specify particle canting angle distributions (e.g., wobbling), enabling more realistic simulations. From

the Doppler spectra, standard radar moments, including equivalent reflectivity (Ze), mean Doppler velocity, differential reflectivity (ZDR),

KDP, and linear depolarization ratio (LDR), are derived.340

Allowing the ice particle to grow via deposition, during which the shape of the particle evolves using a habit prediction (Welss et al.,

2024), results in a multitude of particle shapes, and therefore a large variability of particle size, mass, and aspect ratio for which scattering

properties need to be found. To find the scattering properties of a particle that best fits with its microphysical properties (i.e., mass, size, and

aspect ratio) to the model-predicted particle, McRadar performs a nearest-neighbour selection or regression on the level 1b LUTs, depending
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on user preference. This is implemented using the scikit-learn Python library, which supports efficient neighbour search algorithms.345

By default, McRadar uses neighbours-based regression, where the output is a weighted average of the n nearest neighbours based on inverse

distance to the query point. This supervised learning approach follows the methodology described by Roweis et al. (2004), and more details

can be found in the official documentation: https://scikit-learn.org/1.5/modules/neighbors.html.

For monomers, the scattering properties are retrieved using the nearest match in mass, Dmax, and aspect ratio in logarithmic space. For

aggregates, the nearest match is found based on mass and Dmax in logarithmic space.350

4.1.1 Evaluation of the Nearest Neighbour Lookup

To evaluate the accuracy of the nearest-neighbour selection method, we performed a cross-validation test by randomly removing individual

data points from the database. For 1,000 such points, we used the nearest-neighbour method to estimate the Mueller and amplitude matrix

entries, which were then compared against the true values.

We specifically evaluated the backscattering cross sections at horizontal and vertical polarization (cbck,hh and cbck,vv), ZDR, and KDP355

at 94 GHz and 30° elevation, using different values of n (number of neighbours). As shown in Figure 7, the retrieved values exhibit a high

correlation with the true values and no evident bias. Among the radar variables, ZDR shows the largest scatter.

Table 1 presents a statistical summary of the validation. Correlation coefficients for all matrix entries and radar variables range from 0.8 to

0.98, indicating high retrieval fidelity. Notably, cbck,vv has the lowest correlation, while cbck,hh shows the highest. The variability in ZDR is

likely a result of the lower correlation in cbck,vv . Appendix B shows the corresponding tables for the radar relevant Mueller and Amplitude360

matrix entries.

Because the reconstruction errors are random and unbiased, they do not accumulate in forward simulations where radar variables are

obtained by considering hundreds to thousands of particles.

5 Application examples

This database has two key advantages: First, it allows for consistent forward simulation of the radar signatures of frozen particles with365

strongly varying microphysical properties. Second, the large number of particles likely reduces a bias introduced by considering a single

particle to be representative of all particles with a certain size or mass. As shown in Fig. 6, especially the polarimetric scattering properties

for one particle with a specific mass can span several orders of magnitude. Choosing a single particle per mass/size to represent all particles

close to that mass/size proves difficult and might cause a significant bias, as was also shown in Ori et al. (2021). We want to illustrate these

two advantages with two application examples which are presented in the following sections.370

Both examples use the Lagrangian Monte-Carlo particle model McSnow (Brdar and Seifert, 2018). In contrast to frequently used bulk

schemes, where only one or two moments of the particle size distribution are predicted, McSnow predicts the evolution of particle properties

in a multidimensional phase space. The predicted particle properties include mass, density, aspect ratio, number of monomers per aggregate,

or rime mass. The properties are predicted for so-called super-particles, which evolve through depositional growth, aggregation, riming,

secondary ice production, melting, and warm-rain processes such as drop breakup (Brdar and Seifert, 2018; Bringi et al., 2020).375

5.1 Simulated radar quantities of single growing ice crystals

Showing the flexibility of the DDA database in terms of large variability of particle properties is done by forward simulating the trajectories

(or growth histories) of ice crystals that are sedimenting towards the ground while growing through deposition. The habit of ice crystals
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Figure 7. Result of the validation of the nearest neighbour selection from the scattering database. Shown are scatter plots of the true values

and calculated values at 94GHz and 30° elevation. The first row shows the entries of the Mueller matrix, the second row of the Amplitude

matrix, the third row of the calculated reflectivity at horizontal and vertical polarization, ZDR, and KDP.

strongly depends on the ambient temperature and super-saturation (i.e. Bailey and Hallett, 2009). Recently, a habit prediction has been

implemented in McSnow (Welss et al., 2024). The habit of an ice crystal can be described by its aspect ratio ϕ. In McSnow, ϕ is defined as380

the ratio of the c to the a-axis ϕ= c
a

, where the a-axis is the maximum dimension of the basal face, and the c-axis is the maximum dimension

of the prism face. The change of ϕ can be calculated with

dc

da
= dϕ=

αc(T )

αa(T )
ϕ= Γ(T )ϕ (15)

with the deposition coefficients of axis c (αc) and axis a (αa) and the temperature (T) dependent inherent growth function Γ. Γ has been

determined by different studies through comparison with observational data as well as laboratory experiments (i.e. Welss et al., 2024; Chen385

and Lamb, 1994). The change of mass due to depositional growth can then be calculated with the well-known mass growth equation (i.e.
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n 1 5 10 20 50

cbck,hh [mm6m−3]

mean error 9.60× 10−4 9.25× 10−4 1.06× 10−3 1.24× 10−3 1.45× 10−3

median error 3.99× 10−10 2.50× 10−10 3.40× 10−10 3.13× 10−10 4.77× 10−10

correlation coefficient 0.94 0.91 0.90 0.87 0.84

bias 1.97× 10−4 2.58× 10−4 3.36× 10−4 3.72× 10−4 4.14× 10−4

cbck,vv [mm6m−3]

mean error 6.91× 10−4 6.26× 10−4 7.38× 10−4 7.58× 10−4 8.28× 10−4

median error 2.06× 10−10 1.11× 10−10 8.39× 10−11 1.28× 10−10 1.63× 10−10

correlation coefficient 0.84 0.84 0.79 0.79 0.77

bias 7.09× 10−5 8.57× 10−5 9.57× 10−5 1.02× 10−4 1.16× 10−4

ZDR [ dB]

mean error 0.35 0.43 0.52 0.59 0.72

median error 0.11 0.16 0.21 0.26 0.36

correlation coefficient 0.94 0.93 0.91 0.90 0.88

bias −0.25 −0.84 −1.20 −1.20 −1.13

KDP [°km−1]

mean error 2.18× 10−4 2.40× 10−4 2.72× 10−4 3.23× 10−4 3.84× 10−4

median error 7.31× 10−8 6.28× 10−8 8.47× 10−8 1.05× 10−7 1.63× 10−7

correlation coefficient 0.97 0.97 0.97 0.96 0.96

bias −8.91× 10−7 1.80× 10−6 3.37× 10−6 4.52× 10−6 6.44× 10−6

Table 1. The mean error, median error, standard deviation of the error as well as the correlation and bias between the true backscattering

cross sections at horizontal and vertical polarization, the true ZDR, the true KDP and the calculated backscattering cross sections, ZDR and

KDP.

Lohmann et al., 2016, Chapter 7)

dm

dt
= 4πCDvf̄

Si − 1

F i
k +F i

d

(16)

with the mass of the particle m, the water vapour diffusivity Dv , ambient saturation ratio with respect to ice Si, particle ventilation coefficient

f̄ . F i
k, describes the latent heat release due to sublimation and the diffusion of heat away from the ice particle, and F i

d describes the diffusion390

of water vapour towards the ice particle. They are expressed as

F i
k =

(
Ls

RvT
− 1

)
; F i

d =
RvT

Dves,i(T )
(17)

With Ls the latent heat of sublimation, T the ambient temperature, Rv the gas constant of water vapour and es,i(T ) the saturation vapour

pressure above ice at the temperature T .

The change of ϕ is taken into account through the capacity C (with subscript p for plate-like particles, c for columnar particles):395

Cp =
αϵp

sin−1(ϵp)
; Cc =

cϵc
ln(1+ ϵc)ϕ

(18)

with ϵp =
√

1−ϕ2 and ϵc =
√

1−ϕ−2.

An additional variable necessary to determine the habit of an ice crystal is its overall density. This density is, for example, reduced from

solid ice density through branching of dendrites at temperatures close to −15°C or hollowing of columns at temperatures between −5 and
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−10°C. In McSnow, the volume enveloping ice crystals is simulated as a spheroid, which does not allow to simulate branching or hollowing400

directly. Instead, the density of the spheroid is adapted by amplifying the increase of the ice volume V relative to the mass m.

dV

dt
=

1

ρdepo

dm

dt
(19)

The deposition density ρdepo depends on the ambient temperature and is proportional to ρiΓ(T ) for plate-like particles and ρiΓ(T )
−1 for

columnar particles with ice density ρi. For further details about the habit prediction, the reader is referred to Welss et al. (2024).

For this application, the modified inherent growth function (IGF2) from Welss et al. (2024) has been used. While McSnow is a Lagrangian405

Monte-Carlo particle model, designed to simulate populations of particles, it is also possible to simulate the evolution of single ice particles

due to various microphysical processes, in this case depositional growth and sedimentation. Keeping the ambient super-saturation with

respect to ice constant at 5%, setting the temperature at the ground to 0°C and assuming a constant lapse rate of 6 K km−1, 5 particles were

simulated starting at different heights (temperatures). The particles were initialized with a diameter of 10 µm and an aspect ratio of unity.

During the simulation, the particles grow by deposition as predicted by the habit prediction while sedimenting through different temperature410

regimes towards the ground. No interactions between the particles have been assumed.

Depending on the temperature at which a particle was initialized, the physical properties vary significantly (see Fig. 8). The particles

that started at temperatures colder than -22°C are growing columnar (with an aspect ratio larger than 1), while the particles initialized at

temperatures warmer than -22°C grow plate-like (with an aspect ratio smaller than 1). The particle that was initialized at -15°C experiences

the strongest depositional growth, reaching a maximum dimension (Dmax) of 3.5 mm and an aspect ratio of 0.0015, consistent with laboratory415

studies (Pruppacher and Klett, 1997). The density of this particle is significantly reduced, reaching a minimum of 390 kg m−3. This indicates

significant branching, as is expected by the predominantly dendritic growth at -15°C. The smallest mass and Dmax is reached by the particle

nucleated at -10°C. This particle initially grows plate-like, but is sedimenting out of the plate growth region into the columnar growth region

at temperatures warmer than -10°C. Therefore, the particle only slowly increases its mass and Dmax while at the same time increasing its

aspect ratio toward unity.420

This large variability of ice microphysical properties produced by the McSnow simulation highlights the need for a scattering database

consisting of ice particles with a similar variability. For the database in this study, we therefore generated specific ice crystals that can

provide this large variability in ice microphysical properties. The corresponding forward simulations using the nearest-neighbour regression

with n= 10 to access the DDA LUTs, are shown in the second and third row of Fig. 8.

The most interesting scattering properties are expected from particles nucleated within the dendritic growth zone (between -10 and -425

20°C). Those particles experience the strongest depositional growth, and reduce their density through branching. While growth effects such

as branching can be seen in a reduction of ZDR, e.g. at -14.2°C for the particle nucleated at -15°C, also differences at different frequencies

can be observed. While at X-Band, ZDR of the particle nucleated at -15°C only slightly increases towards warmer temperatures, at W-Band

a strong peak at -8°C is observed, where a ZDR of 14.5 dB is reached. Looking at the single particle scattering properties in Figure 6, it is

evident that particles with a mass between 10−8 and 10−6 kg are producing large ZDR at W-Band. This mass corresponds to approximately430

a Dmax of 3 mm, which is close to the wavelength of W-band, causing non-Rayleigh scattering effects. While both ZeH and ZeV are in the

non-Rayleigh regime (ZeH and ZeV are not increasing as fast at W-Band as at X-Band), ZeV is affected stronger than ZeH, causing the large

increase in ZDR.

In-situ observations sometimes reveal particles which must have grown in multiple growth regimes (Bailey and Hallett, 2009). For

example, capped-columns are observed when an ice crystal initially grows columnar, then sediments into the plate-like growth regime435

and develops plates on both ends of the column. In this simulation, the particle nucleated at -25°C could potentially develop as a capped
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Figure 8. First row: Microphysical properties of single ice crystals nucleated at different temperatures and growing by deposition using the

habit prediction (Welss et al., 2024) while sedimenting towards the ground. Shown are the evolution of the maximum dimension Dmax (a),

mass (b), aspect ratio (c) and density ρ (d) with ambient temperature. The second row shows the corresponding radar forward simulations for

each particle at 9.6 GHz (X-Band) and 30° elevation. Shown are the backscattering cross section at horizontal (e) and vertical (f) polarizations

multiplied by λ4/(π5 ·K2) (equivalent to the single particle reflectivity), the single particle ZDR (g), and the single particle KDP (h). The

third row shows the same radar forward simulations at 94 GHz (W-Band) and 30° elevation.

column in nature. In the model, these kinds of particles are, however, not represented. Only the change in aspect ratio and density of the

particle can be captured. The transition from the columnar to the plate-like growth regime causes a reduction of the aspect ratio towards unity.

While the addition of capped-columns is in principle possible, we have decided not to include these particles in the scattering database, as

this introduces the need to include the growth history of the ice particle in the forward simulations. Rather, in the database, we have generated440

plates, dendrites, and columns with aspect ratios close to unity. In Bailey and Hallett (2009), it has also been shown in a laboratory study,
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that when a column transitions into the plate-like growth regime, under certain circumstances it can also just reduce its aspect ratio rather

than producing a plate at each end, which might justify our approach.

5.2 Simulated radar signatures of idealized 1D McSnow simulation

Because forward simulations rely on a finite set of particle geometries, they are inevitably affected by sampling variability, i.e., uncertainty445

and potentially biases arising from the limited number of shapes used to represent the full natural population. The Lu et al. (2016) database

includes 1000 particles, a significantly larger number of particles as compared to the Brath et al. (2020) database, thus allowing for more

variability in particle properties. However, this variability is still not large enough to cover the variability of ice particle properties in McSnow

simulations, especially the aspect ratios lack in variability compared to our database (see Figure C1). Compared to our database, the Lu et al.

(2016) database contains approximately 1/3 particles, thus still potentially introducing a bias by not considering enough particles. The impact450

is likely two-fold: first, by using a smaller number of particles, the microphysical properties (mass, Dmax, aspect ratio) of the simulated

particle might not be matched well enough, and second, considering a smaller number increases the statistical noise introduced by picking a

random particle.

To investigate potential biases arising from particle representation, we performed an idealized one-dimensional simulation using McSnow.

McSnow is particularly well-suited for this purpose, as it explicitly simulates the microphysical evolution of individual particles. For this455

case study, we adopt the same atmospheric setup as in Section 5.1: a surface temperature of 0°C, a lapse rate of 6 K km−1, and a constant

relative humidity with respect to ice of 105%. Ice particles are initialized in a nucleation layer spanning 2–6 km altitude, corresponding to

temperatures from –10°C to –30°C. In this layer, we assume a constant nucleation rate of 0.375 particles s−1m−3, leading to a maximum

concentration of 2000 particles m−3 at -15°C.

During the simulation, ice particles may grow by deposition and aggregation. Since we use the temperature-dependent sticking efficiency460

from Connolly et al. (2012), aggregation becomes an important growth mechanism only at temperatures warmer than -20°C. In the current

McSnow setup, aggregates follow predefined mass–size and area–size relationships; here, we assume aggregates composed of side planes,

columns, and bullet rosettes as described in Mitchell et al. (1996).

For our reference radar forward simulation, we use all particles of our database, and n= 10 nearest neighbours to estimate the scattering

properties of each simulated super-particle. To show the benefit of our database, which uses approximately 3 times more particles as the Lu465

et al. (2016) database, we then randomly downsampled our database to contain only 1/3 of particles. Assuming a homogeneous coverage

in the microphysical space, in order to have a similar look-up radius we reduced the number of nearest neighbours considered for the look-

up to n= 3. We then forward simulated the McSnow output. In total, we performed the random downsampling and subsequent forward

simulations 100 times.

5.2.1 Microphysical evolution470

The idealized McSnow simulation (Figure 9) exhibits radar signatures commonly observed in the field, as reported for example by von Terzi

et al. (2022) and references therein. A continuous increase in Ze toward the ground, accompanied by a rise in the dual-wavelength ratio

(DWR), is a strong indicator of intensifying aggregation. Also in the Doppler spectra, aggregation leads to a rapidly increasing spectral Ze at

a temperature close to -15°C. The aggregation of fast-falling columnar ice crystals leads to a lower fall velocity of the resulting aggregates

with larger reflectivities. A second mode in the spectrum in this temperature region can be explained by nucleation of ice particles, which475

grow into dendrites that have low fall velocities due to their large cross-sectional area. Together, these processes cause the prominent dip in

the mean Doppler velocity (MDV) close to -15°C.
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Figure 9. Forward simulation of the 1D McSnow simulation. Shown are in the first row: Ze and MDV at Ka-Band (a), DWRKaW and DWRXKa

(b) and the spectral Ze from Ka-Band (c), all at 90° elevation. The second row contains the forward simulated polarimetric variables at 30°

elevation and W-Band: KDP (d), ZDR and sZDRmax (e) and spectral ZDR (d).

The dendritic ice crystals also produce characteristic polarimetric signatures. KDP begins to increase slightly at around -30°C, followed

by a strong increase at -18°C, reaching a maximum of 0.55 ° km−1 in the dendritic growth layer at -15°C. Also at -18°C, sZDRmax begins

to increase, reaching values up to 5 dB at -15°C. Below this layer, toward the ground, all polarimetric variables decrease slightly, reflecting480

the aggregation of the largest dendritic ice crystals.

5.2.2 Investigating the impact of smaller number of particles in the scattering database

Using a finite number of particle geometries in the forward simulations inevitably introduces statistical sampling noise. Since our database

contains the largest number of ice particles (approximately three times larger than the Lu et al. (2016) database), we are able to quantify this

sampling uncertainty.485
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Figure 10. Variability of scattering properties if only 1/3 of particles from the database is used to forward simulate the McSnow simulation.

Shown are Ze (a), MDV (b), DWRKaW (c), ZDR (d), KDP (e) and sZDRmax (f). The black line indicates the original simulation, where the

entire database was used.

The impact of reduced sample size depends strongly on the radar variable, shown in Figure 10. For Ze and MDV, sampling noise is

surprisingly small: the resulting distributions remain narrow, and the differences relative to the full-database simulation are minor. This

indicates that these bulk variables are relatively insensitive to the precise set of particle shapes used.

In contrast, for the dual-wavelength ratio (DWR), the spread increases significantly toward warmer temperatures; depending on the random

subset, simulated DWR values range from roughly 2 to 8 dB, demonstrating that this variable is highly sensitive to the morphological diversity490

of the particles. This behaviour further underlines the work previously done by (e.g. Mason et al., 2019), who have shown that DWRKaW and

DWRXKa significantly vary with the particles internal structure.

Variables that respond directly to particle asymmetry exhibit large variability under reduced sampling. ZDR varies by approximately

±1 dB relative to the reference simulation, and the spread in KDP grows with temperature, reaching its maximum near the melting layer,

where values between −0.1 and 1.2° km−1 are possible.495
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Overall, this experiment highlights that not all radar observables are equally affected by uncertainties in particle-shape sampling. While

bulk quantities (e.g., Ze, MDV) are comparatively robust, polarimetric and multi-frequency variables are highly sensitive to the underlying

particle geometry. Although our database is large, it cannot fully capture the true natural variability of snowflakes. Increasing the number

and diversity of simulated particle shapes would likely reduce sampling noise further and help determine whether these sensitivities converge

with larger ensembles.500

6 Summary and conclusions

New developments in microphysical models, such as Lagrangian particle models including a habit prediction for ice particles or the P3

scheme (Morrison et al., 2025), which continuously evolves the microphysical properties of ice particles, necessitate a scattering database

that can cope with largely varying microphysical properties. In this study, we have presented a new DDA scattering database consisting

of 2600 ice crystals, including a large variation of dendritic ice crystals, plates, columns, and needles, as well as 450 aggregates of plates,505

dendrites, mixed monomer habits, and various degrees of riming. The scattering properties of these particles at C-, X-, Ka-, and W-Band at

various elevation and azimuth angles, as well as orientationally averaged scattering properties, are available. The database is structured on

three levels. Level 0 comprises the raw ADDA output (including the Mueller and Amplitude matrices) for each wavelength, elevation, and

azimuth orientation. level 1a summarizes the for radar applications relevant Mueller and Amplitude matrix entries for each particle type in

netcdf files. level 1b consists of the averages of azimuthally random orientations of all particles summarized in LUTs. These LUTs can be510

accessed via the radar simulator McRadar, where radar Doppler spectra at horizontal and vertical polarization as well as KDP are simulated,

or interfaced to other forward operators.

In this study, we have demonstrated the two main advantages of this database: First, due to the large variety of realistic ice crystals

available, this database can be utilized to forward simulate complex model output, where the ice particle habit is predicted. This enables

us to study depositional growth signatures of ice crystals that could be expected, for example, in the dendritic growth layer. Second, using515

realistically shaped ice particles in forward simulations always poses the challenge of choosing the "correct" shape of ice particle. This shape

has a significant influence on the scattering properties and can thus cause a bias in forward simulations (Ori et al., 2021). This database

is based on a large number of ice particles (i.e. approximately three times more particles than the Lu et al. (2016) database), which likely

reduces the bias of choosing an arbitrary shape.

While the focus of the database thus far was placed on dendritic ice crystals, current developments in McSnow shift our focus to aggregate520

properties. Therefore, in the near future, the database will be expanded by the scattering properties of a large ensemble of aggregates.

Code and data availability. The paper presents the new DDA database, level 1a and level 1b, which are archived on zenodo under the

terms of the Creative Commons Attribution 4.0 Internationals licence (https://doi.org/10.5281/zenodo.16792943, von Terzi et al., 2025).

The level 0 data are also available under the Creative Commons Attribution 4.0 Internationals licence (https://doi.org/10.57970/cgtek-fen77,525

von Terzi, 2025). This study introduced the radar forward operator McSnow, which is released under the terms of the GNU Public License

version 3 and available at https://github.com/lterzi/McRadar. The exact version used in this publication is archived on zenodo (Leonie

von Terzi, 2025). All codes used to generate the ice crystals, calculate the scattering properties and produce the Figures can be found in

https://github.com/lterzi/DDA_database_gmd
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Appendix A: Scattering properties of all particles depending on Dmax530
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Figure A1. As Figure 6, but in dependency of the maximum dimension Dmax instead of mass. KDP is normalized with the wavelength to

allow an easier comparison with Figure C1 of von Terzi et al. (2022)

Figure A1 shows the scattering properties of all particles in the database at an elevation of 30° and particle canting angle β of 0°. This

figure allows a more direct comparison to other studies such as Lu et al. (2016) or von Terzi et al. (2022).

Appendix B: Uncertainty analysis of the selection from the Look-up tables

In this section, additional information about the evaluation of the nearest neighbour look-up (Section 4.1.1) is provided. Namely, the statistical

quantities (error, correlation coefficient and bias) of the Mueller matrix entries (Table B1) and the Amplitude matrix (Table B1) are provided.535
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nneighbours 5 10 20 50

Z11

mean error 2.13× 10−4 2.37× 10−4 2.46× 10−4 3.05× 10−4

median error 3.70× 10−11 5.79× 10−11 4.48× 10−11 5.54× 10−11

correlation coefficient 0.89 0.77 0.75 0.73

bias 2.02× 10−5 2.25× 10−5 2.41× 10−5 2.72× 10−5

Z12

mean error 1.08× 10−4 1.26× 10−4 1.40× 10−4 1.61× 10−4

median error 3.08× 10−11 3.71× 10−11 4.06× 10−110 6.11× 10−11

correlation coefficient 0.98 0.97 0.95 0.87

bias 7.95× 10−6 8.80× 10−6 9.35× 10−6 9.74× 10−6

Z21

mean error 1.08× 10−4 1.26× 10−4 1.40× 10−4 1.61× 10−4

median error 3.08× 10−11 3.71× 10−11 4.06× 10−11 6.11× 10−11

correlation coefficient 0.98 0.97 0.95 0.87

bias 7.95× 10−6 8.80× 10−6 9.35× 10−6 9.74× 10−6

Z22

mean error 2.13× 10−4 2.37× 10−4 2.46× 10−4 3.05× 10−4

median error 3.70× 10−11 5.79× 10−11 4.48× 10−11 5.54× 10−11

correlation coefficient 0.89 0.77 0.75 0.73

bias 2.02× 10−5 2.25× 10−5 2.41× 10−5 2.72× 10−5

Table B1. Same as Table 1 but for the entries of the Mueller Matrix relevant for radar applications
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nneighbours 5 10 20 50

Re(S11)

mean error 1.04× 10−3 1.23× 10−3 1.63× 10−3 2.37× 10−3

median error 1.63× 10−7 1.65× 10−7 1.56× 10−7 2.23× 10−7

correlation coefficient 0.99 0.98 0.97 0.94

bias 4.06× 10−4 5.20× 10−4 7.16× 10−4 9.76× 10−4

Re(S22)

mean error 1.91× 10−3 2.31× 10−3 2.99× 10−3 3.81× 10−3

median error 2.52× 10−7 3.82× 10−7 5.39× 10−7 6.32× 10−7

correlation coefficient 0.99 0.98 0.97 0.95

bias 7.31× 10−4 1.01× 10−3 1.26× 10−3 1.83× 10−3

Im(S11)

mean error 1.93× 10−4 2.05× 10−4 2.47× 10−4 3.62× 10−4

median error 5.47× 10−10 5.28× 10−10 4.57× 10−10 6.56× 10−10

correlation coefficient 0.94 0.93 0.91 0.86

bias 1.63× 10−5 1.92× 10−5 2.44× 10−5 2.95× 10−5

Im(S22)

mean error 4.29× 10−4 4.87× 10−4 6.23× 10−4 7.62× 10−4

median error 1.13× 10−9 1.74× 10−9 1.98× 10−9 2.85× 10−9

correlation coefficient 0.94 0.92 0.89 0.84

bias 4.39× 10−5 5.32× 10−5 6.08× 10−5 7.24× 10−5

Table B2. Same as Table 1 but for the entries of the Amplitude matrix relevant for radar applications

Appendix C: Microphysical properties of particles in the Lu et al. (2016) database

Figure C1 compares the microphysical properties (mass , Dmax and aspect ratio) of the Lu et al. (2016) database with the microphysical

properties simulated in McSnow (see Figure 9). While the Lu et al. (2016) database already provides a large set of ice crystals, it is not

enough to cover the large space of microphysical properties simulated with McSnow. In contrast, the database presented in this study is540

capable to span the large microphysical space provided by McSnow (second row of Figure C1).
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Figure C1. Comparing the microphysical properties of the Lu et al. (2016) database (first row) and our database (second row) with McSnow

(grey points).
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