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Abstract21

Yield prediction is crucial for national food security and the formulation of trade policies. Most deep22

learning (DL) models rely on normalization methods to process input data, aiming to enhance the stability of23

model training and accelerate convergence speed. However, the importance of data preprocessing (i.e., input data24

normalization) in DL-based yield prediction is underemphasized. Furthermore, conventional methods fail to25

address distortions in feature scaling caused by extreme values, such as abnormally high precipitation, leading to26

increased prediction errors. In this study, we proposed a Sequential Midrange Normalization (SMN) method and27

integrated it with the newly designed Agricultural-CNN-LSTM-Attention (AgroCLA) model, collectively28

termed the SMN-AgroCLA framework, to improve rice yield prediction accuracy under extreme weather29

conditions. To validate the efficacy of the SMN, we compared it with four other commonly used normalization30

methods and conducted yield prediction experiments across six different DL models, by using Moderate31

Resolution Imaging Spectroradiometer, Global Precipitation Measurement and other multi-source remote32

sensing data of the Eastern China from 2008-2017. The results shown that SMN method consistently33

outperformed superior yield prediction performance even in years affected by extreme meteorological disasters34

(e.g., 2015), achieving an R ² of 0.815, which was 17.3% higher than the next best method, ZSN (Z-Score35

Normalization). Based on SMN, the accuracy and generalization of all models were optimized, with the36

AgroCLA achieved the highest accuracy (with R²=0.841). Additionally, the model's performance peaked around37

the flowering stage (around mid-August, R²=0.859), which is two months ahead of the harvest season. This38

study demonstrates the critical role of data normalization in deep learning-based yield prediction and offers a39

practical solution to mitigate the threat of increasing extreme meteorological disasters to food security.40
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1. Introduction42

Using remote sensing (RS) technology to reliably predict crop yields is crucial for assisting policymakers in43

managing local food supply effectively, regulating timely imports and exports of grains, and achieving food44

security. Additionally, climate change and extreme weather events poses a significant threat to the reliable45

prediction of crop yields (Ben-Ari et al., 2018; Rattis et al., 2021). China, one of the most disaster-prone46

countries in the world, with a wide variety of disasters, extensive geographical distribution, and high frequency47

of occurrence, has suffered severe crop yields losses (Wakatsuki et al., 2023). Seasonal assessment of crop48

yields provides more insightful evaluations of their responses to environmental stressors (Guan et al., 2017).49

Currently, crop yield prediction methods are primarily based on two types: crop growth models and50

statistical regression (Wang et al., 2023). Due to the numerous parameters and high accuracy requirements,51

crop growth models often lack sufficient parameters for regional-scale or global crop prediction. Statistical52

regression-based methods (linear and nonlinear) do not require a large number of input parameters, making them53

more suitable for large-scale crop yield prediction. Given the complexity of agricultural ecosystems, researchers54

often employ nonlinear models to monitor crop growth and predict single yields, such as Support Vector55

Regression (SVR) and Random Forest (RF) (Li et al., 2009; Fortin et al., 2011). Deep learning (DL) models56

excel in extracting and integrating features across multiple scales and levels of abstraction, and effectively distill57

complex features into higher-level representations, enhancing their ability to capture intricate patterns within the58

data and showing significant potential in using RS data for crop yield prediction (Zhang et al., 2016a;59

Reichstein et al., 2019). CNN models are well-suited for handling spatial autocorrelation in RS images, while60

RNN models have an advantage in analyzing temporal changes in RS data (You et al., 2017; Cai et al., 2019).61

The Long Short Term Memory (LSTM) neural networks, which use memory units with gating capabilities62
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compared to ordinary RNNs, enhance the network's long-term memory capability and are therefore widely used63

in handling time series data (Jiang et al., 2020; Schwalbert et al., 2020).64

In recent years, studies have progressively shifted from singular neural network architectures to more65

intricate models derived from improved versions of earlier architectures (Xiong et al. 2024; Guo et al., 2024).66

Tian et al. (2021) proposed an attention mechanism-based LSTM (LSTM neural network with an attention67

mechanism, ALSTM) model, which had six layers, namely one input layer, one LSTM layer, one attention68

mechanism layer, two dropout layers, and one output layer, for winter wheat yield prediction in the Guanzhong69

Plain of Shaanxi. Jeong et al. (2022) predicted paddy rice (Oryza sativa L.) yield at the county and pixel levels70

in the Korean Peninsula using RS techniques. They investigated the influence of different model structural71

combinations (1D-CNN and LSTM) on yield prediction.72

The aforementioned study enhanced yield prediction accuracy by comparing DL models with traditional73

machine learning models or different DL architectures. However, the accuracy does not solely depend on the74

model structure; it is also typically influenced by input data (such as source, quality, scale, selection of key75

variables) (Zhang et al., 2016a). Data normalization is a crucial step in DL tasks as it contributes to enhancing76

the efficiency of model training and testing and assists in mitigating the risk of model overfitting (Ioffe et al.,77

2015; Ba et al., 2016). Chu et al. (2020) developed an end-to-end model for predicting rice yield, where data78

normalization techniques played a crucial role during the model's preprocessing stage. They discussed various79

normalization methods like mean normalization and Z-score normalization, and elaborately explained why the80

Min-Max normalization was ultimately chosen, primarily based on its simplicity and efficiency in ensuring all81

numerical variables are on the same scale.82

However, the traditional fixed normalization method might not be suitable for all scenarios, especially when83
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the data distribution might change (Passalis et al., 2019). In general, the accuracy improvement brought by the84

input data normalization method in DL yield prediction tasks is seldom discussed in depth, and its errors mainly85

originate from the following three aspects: (1) Information loss error. Normalization methods typically map the86

original data to a specific numerical range, which may lead to the loss of some information; (2) Outlier handling.87

Some normalization methods are sensitive to outliers in the data used to calculate the data’s mean and variance,88

affecting the performance of the model; (3) Hyperparameter selection. Some methods, such as Min-Max89

normalization, require manually selected hyperparameters (e.g., minimum and maximum values), and improper90

selection can lead to inaccurate scaling and reduced prediction accuracy (Yang et al., 2020; Bischl et al.,91

2023).92

To address the feature scaling distortion caused by extreme values (such as abnormally high precipitation)93

in common normalization methods and to improve the accuracy and robustness of rice yield prediction. This94

study designed the SMN method during the data preprocessing phase to monitor the relative change95

characteristics of actual values of various factors with high quality, combined with newly designed96

Agricultural-CNN-LSTM-Attention (AgroCLA) model, collectively termed SMN-AgroCLA framework for97

county-level rice yield prediction in eastern China. Our specific objectives are:98

(1) To focus on the importance of data pre-processing in the DL applications for yield prediction and to99

meticulously design comparative experiment of various data normalization and input methods;100

(2) Developed a novel rice prediction model (AgroCLA) and compared its performance with five widely101

used models in the field of rice yield prediction.102

(3) Exploring the interpretability of the SMN and AgroCLA model from typical actual disaster events and103

feature importance analysis, respectively.104
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2.Materials105

2.1 Study area and yield records106

107

Fig. 1. Paddy rice distribution map in study area.108

Anhui, Jiangsu, and Hubei Provinces are located in eastern China (29°- 36°N, 108°- 122°E), with a109

combined area of approximately 405,000 square kilometers, spanning the Yangtze River Delta and the Huaihe110

River Basin (Xiao et al., 2002; Fig. 1). The topography is predominantly characterized by plains, with the111

majority of the area having an elevation of 50 meters or lower. This region falls within the subtropical monsoon112

climate zone, receiving abundant solar radiation and ample rainfall, which makes it highly suitable for crop113

cultivation. Major crops grown in three provinces include paddy rice, winter wheat (Triticum aestivum L.), and114

winter rapeseed (Brassica napus L.). In the rice cultivation process, rice seeds are sown in dry soil and allowed115

to grow until they develop 2-4 leaves. Subsequently, rice seedlings are transplanted into irrigated fields and116

receive continuous watering. Typically, rice transplanting occurs in June, heading takes place from mid-August117

to mid-September, and grain harvesting occurs from early to mid-October to early November (Liu et al., 2019).118
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The census yields (unit: kg/ha) at the county level from 2008 to 2017 were obtained from the Agricultural119

Yearbook of the provinces and county level statistics bureaus (http://www.stats.gov.cn). Yield records were120

available for 73 districts in Jiangsu Province, 78 in Anhui Province, and 79 in Hubei Province. The growth stage121

data of field observations was downloaded from the China Meteorological Data Service Centre (CMDSC,122

http://data.cma.cn/). To enhance the training efficiency of the model, we utilized the Min-Max method to123

process the yield data, DEM, Lat and Lon. It is worth noting that from August to October, when crops mature,124

the East Asian Summer Monsoon retreats southward. Droughts and floods happen easily in this season and have125

caused serious economic losses and environmental damage (Wang et al., 2019). The alternating occurrence of126

extreme climatic events such as droughts and waterlogging in the study area is highly representative (Guo et al.,127

2016). Moreover, this study covers a long research period, providing diversified remote sensing input data,128

which effectively tests the model's applicability and robustness under various disaster scenarios.129

2.2 Data description and preprocessing130

For the model development and validation, ten variables were extracted from seven data sources. A131

summary of the input features is shown in Table 1, and the details of each extracted variable are given below.132

Three products of the Moderate Resolution Imaging Spectroradiometer (MODIS, Collection 6) were used in this133

study, including the daily Land Surface Temperature (LST) products (MO[Y]D11A1), the 8-day composite134

surface reflectance products (MO[Y]D09A1), and 8-day composite gross primary production products135

(MOD17A2HGF).136

All environmental and remote sensing variables used in this study were collected from 2003 to 2019, except137

for solar radiation, which was available from 2003 to 2018. This extended time span ensures a comprehensive138

capture of interannual climatic and vegetation variability. However, the selection of specific study years was139

https://doi.org/10.5194/egusphere-2025-3901
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



8

determined based on the availability and completeness of county-level rice yield data. Therefore, while the140

predictor variables span a longer period, the actual modeling and evaluation were conducted only for the years141

with reliable and continuous yield records.142

Table 1143

Primary data sources and relevant information.144

Variable Abbreviation Data name
Temporal

resolution

Spatial

resolution
Source

Precipitation P GPM 3IMERGDF 1-day 0.1°
NASA-GES

DISC DAAC 1

Soil

Moisture
SM

Daily all-weather surface

soil moisture data set
1-day 1000 m TPDC 2

Air

Temperature
AT MO[Y]D11A1 LST 1-day 1000 m

NASA-LAADS

DAAC 3

Solar

Radiation
SR

China Meteorological

Forcing Dataset
1-day 0.1° TPDC

Vegetation

Index
EVI2 MO[Y]D09A1 reflectance 8-day 500 m

NASA-LAADS

DAAC

Gross Primary

Productivity
GPP

MOD17A2HGF gross

primary productivity
8-day 500 m

NASA-LAADS

DAAC

DEM/

Longitude/

Latitude

DEM/Lon/

Lat
Digital Elevation Model -- 90 m SRTM 4

Yield Y Statistical data year County level
Agricultural

Yearbook

Rice Mask -- Rice distribution map year 500 m Liu et al. 2020

NASA-GES DISC DAAC 1: NASAGoddard Earth Sciences Data and Information Services Center Distributed Active Archive Center145

TPDC 2: National Tibetan Plateau Third Pole Environment Data Center146

NASA-LAADS DAAC 3: NASA Land Atmosphere Near real-time Capability for EOS Data Active Archive Center147

SRTM 4: Shuttle Radar Topography Mission148
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2.2.1. Precipitation149

The Global Precipitation Measurement (GPM) program is a collaborative effort initiated by the National150

Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace Exploration151

Agency (JAXA). Building upon the successful experience and achievements of the Tropical Rainfall Measuring152

Mission (TRMM), GPM not only improves traditional precipitation retrieval algorithms but also provides more153

accurate calibration references for multi-satellite joint precipitation retrieval using the GPM Microwave Imager154

(GMI) and the Dual-frequency Precipitation Radar (DPR) sensors. The Version 06 IMERG Final Run daily155

datasets with 0.1° spatial resolution from 2003 to 2017 were used in this study, which were obtained from the156

NASA archive (https://gpm.nasa.gov/data-access/downloads/gpm).157

2.2.2. Soil Moisture158

The "Daily all-weather surface soil moisture dataset with 1 km resolution in China (2003-2019)" was159

utilized to obtain soil moisture information (Song et al., 2022; Song et al., 2021). This dataset, originating160

from previous research study conducted by the authors' laboratory, can be freely accessed and downloaded from161

the National Tibetan Plateau Third Pole Environment Data Center (TPDC). The dataset incorporates data from162

the AMSR-E and AMSR-2 passive microwave radiometers, covering all on-orbit times between 2003 and 2019.163

It also combines MODIS optical reflectance data (MCD43A4) and daily thermal infrared land surface164

temperature data (MYD21A1 LST). Surface Soil Moisture (SSM) at a 36 km resolution is retrieved and165

downscaled based on the 36 km brightness temperature data from the two radiometers.166

2.2.3. Solar Radiation167
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The research utilized solar radiation data derived from the Downward Solar or Shortwave Radiation (SR)168

data product, which originates from the "China Meteorological Forcing Dataset (CMFD)" (He et al., 2020;169

Yang et al., 2010) and were obtained from the National Tibetan Plateau Data Center (Download link:170

http://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/). This dataset is created171

by blending conventional meteorological observations from the China Meteorological Administration with172

background fields from existing international sources, including the Princeton University's Global Land Surface173

Model Data, GLDAS data, GEWEX-SRB (Global Energy and Water Exchanges-Surface Radiation Budget)174

radiation data and TRMM precipitation data. The dataset accuracy falls between the meteorological bureau175

observational data and satellite RS data, and it has been demonstrated to be superior to the accuracy of176

pre-existing international reanalysis data. The formula for calculating solar radiation (SR) is as follows:177

�� = ���� × 24 × 3600
1000

(1)178

where �� represents the daily solar radiation in units of MJ/(m2•day), and sard denotes the obtained downward179

shortwave radiation value from the product.180

2.2.4. Air Temperature181

The spatiotemporally comprehensive air temperature dataset for the study area was derived from the182

author's previous research (Dou et al., 2020) and calculated using MODIS Land Surface Temperature (LST)183

products. After mosaicking and clip, we extracted 4 sub-datasets (LST_Day_1km, QC_Day, LST_Night_1km,184

QC_Night) and selected good quality pixels whose QC value equals zero. Then we used LST data, digital185

elevation model (DEM), the two-band Enhanced Vegetation Index (EVI2), latitude and longitude data to predict186

daily mean air temperatures based on RF model. For reconstructing predicted air temperature, we adopted the187
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cloud gap-filling method referred to as a typical spatiotemporal data fusion (STDF) (Song et al., 2019). It was188

built using clear-sky predicted air temperature of spatially neighboring pixels observed at proximal dates, with189

concurrent EVI2 and DEM also employed as additional data inputs.190

2.2.5. The two-band Enhanced Vegetation Index191

The spatiotemporally comprehensive vegetation index dataset for the study area originated from the author's192

previous research (Liu et al., 2020). The 500m 8-day composite surface reflectance products (MOD09A1 and193

MYD09A1) of Terra and Aqua satellite from 2003 to 2019 were downloaded from NASA’s Level 1 and194

Atmosphere Archive and Distribution System (LAADS) (https://ladsweb.nascom.nasa.gov/index.html).195

With the data processing method combination of EVI2_BLUE_MYO, the procedures mainly included image196

mosaicking, sub-setting, two-band Enhanced Vegetation Index (EVI2) calculation, data quality labelling, cloudy197

pixel removal, interpolation of vegetation index images, image stacking, and Savitzky-Golay smoothing. The198

two-band Enhanced Vegetation Index (EVI2) (Jiang et al., 2008) was computed as follows (Eq. (2)):199

���2 = 2.5 × �858−�654
�858+2.4×�654+1

(2)200

where �654 and �858 represent the reflectance of b1 and b2 respectively, of the MOD09A1 and MYD09A1201

products.202

2.2.6. Gross Primary Productivity203

The MOD17A2HGF images from 2001–2017 were downloaded from the NASA Land Processes204

Distributed Active Archive Center (https://lpdaac.usgs.gov/dataset_discovery/modis/). It is a standard205

satellite product with a spatial resolution of 500 m and a temporal resolution of 8 days and calculated based on206

the biome-biogeochemical cycles (BIOME-BGC) model which uses light use efficiency (LUE) (Coops et al.,207
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2009). The LUE-based GPP model uses the relationships among solar radiation, vegetation types, and LUE. And208

the year-end gap-filling method is used to solve the problem of missing data caused by cloud and rain pollution209

(Zhao et al., 2005).210

2.2.7. DEM, Longitude and Latitude211

A Digital Elevation Model (DEM) is a digital representation of the morphology of the Earth's surface. The212

DEM data utilized in this study were sourced from the Shuttle Radar Topography Mission (SRTM), a213

collaborative effort between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S.214

Department of Defense. Specifically, version 4.1 of the SRTM DEM data with a spatial resolution of 90 meters215

was employed (Reuter et al., 2007). This version has been improved by the International Center for Tropical216

Agriculture (Centre International Pour Agriculture Tropical, CIAT) through the application of new217

interpolation algorithms to enhance the previously available data. The data can be downloaded from the SRTM218

90m DEM Digital Elevation Database website (http://srtm.csi.cgiar.org/). Additionally, latitude (Lat) and219

longitude (Lon) information for the study area was extracted from this dataset.220

2.2.8. Rice map221

The distribution of rice from 2003 to 2017 was obtained by the author's previous research results with a222

resolution of 500m (Liu et al., 2020). Both maps are based on decision tree classification named PhenoRice223

algorithm which combined with the phenology information of crops and with accuracies greater than 90%. The224

algorithm, considering the cropping systems of the study area, is capable of extracting extensive rice area225

distribution, sowing dates, and flowering dates across various environmental conditions by analyzing the226
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temporal profile of individual pixels. Further details regarding the PhenoRice algorithm can be found in previous227

studies (Boschetti et al., 2017; Busetto et al., 2019).228

We resampled the different spatial resolutions of the input variables (except Yield) at a resolution of 1km229

for our reference using the nearest-neighbor interpolation method. All the sequential variables were collected or230

aggregated to an 8-day interval with a total of 46 periods for every year. And the rice map of each year was used231

to delete the non-rice pixels of all input variable images. All of data preprocessing were implemented using the232

Python v.3.7 programming language.233
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3.Experimental setups and methodology234

After data preprocessing was completed, the 8-day 1-km datasets of precipitation (P), soil moisture (SM),235

solar radiation (SR), air temperature (AT), the two-band Enhanced Vegetation Index (EVI2), and gross primary236

productivity (GPP) covering the entire study area from 2008 to 2017 were obtained.237

3.1 Experimental setup238

239

Fig. 2. Flowchart of SMN based AgroCLA rice yield prediction framework (SMN-AgroCLA).240
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Differences in normalization methods lead to variations in data quality, while different data collection times241

leads to variations in data scale. To evaluate the influence of normalization methods on rice yield prediction242

accuracy, our specific experimental designs are shown in Fig. 2: (1) Five different data normalization methods:243

Z-Score Normalization (ZSN), Mean Normalization (MN), Min-Max Normalization (MMN), Condition Indices244

Normalization (CIN), and the newly proposed Sequential Midrange Normalization (SMN), were used to process245

input data from Jiangsu and Anhui Provinces. Five types of data were individually fed into six different DL246

models including CNN (Nevavuori et al., 2019), LSTM (Jiang et al., 2020), SSTNN (Qiao et al., 2021),247

ALSTM (Tian et al., 2021), DDCN (Xiong et al., 2024) and the proposed AgroCLA, to evaluate the248

differences in accuracy arising from different normalization methods in yield prediction study in Section 4.1. (2)249

Seven distinct phenological stage data combinations were designed (Fig. 3), including 16-19 (sowing/seedling),250

16-23 (from sowing to the end of tillering), 16-27 (from sowing to the end of booting), 16-32 (from sowing to251

the end of flowering), 16-39 (from sowing to the end of maturity), 1-46 (full-year data), and GPs (average of five252

growth periods), and separately input into six different DL models to evaluate the accuracy difference due to253

different data collection times in Section 4.2. (3) To validate the robustness of SMN-AgroCLA which is254

integrated by selected SMN method and AgroCLA model, we adhered to the "training-validation-testing"255

strategy and conducted generalization test in Section 4.3 and feature importance analysis in Section 4.4.256

257

Fig. 3. Introduction to the rice growth period in the study area.258
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To evaluate the performances of different models, four metrics including coefficient of determination (R²),259

absolute relative error (ARE), root mean squared error (RMSE), and mean absolute relative error (MARE) were260

selected and were calculated as follows:261

�2 = 1 − �=1
� ��−��� 2�

�=1
� ��−�� 2�

(3)262

��� = ��−���
��

× 100% (4)263

���� = �=1
� ���−�� 2�

�
(5)264

���� = 1
� �=1

� ��−�� �
��

� (6)265

where �� and �� � respectively represent the actual reference value and predicted value of pixel �, �� denotes the266

average value of the measured samples, and � indicates the sample scale.267

3.2 Data normalization method268

To reduce errors caused by different units and improve the training efficiency of the model (Ma et al.,269

2021; Patro and Sahu, 2015), each input value was normalized. We chose ZSN, MN, MMN, CIN, and SMN270

to compare differences in accuracy caused by variations in data quality in the yield prediction study.271

3.2.1. Z-Score Normalization272

Z-Score Normalization (Curtis et al., 2012), commonly employed in DL models for feature scaling,273

standardizes the input features to have a mean of zero and a standard deviation of one. This method formulated274

as follows (Eq. (7)):275

����,�,� = ��,�,�−���� ��
��

, � ∈ (�, ��, ��, ��, ���2, ���) (7)276

https://doi.org/10.5194/egusphere-2025-3901
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



17

where ��,�,� is the pixel current value of the feature � , ���� �� and �� represent the mean and standard277

deviation of all pixels over time and space of the feature �. ����,�,� change from -1 to 1, and the value of 0 is278

set as the threshold to monitor the anomalous change. When ����,�,� equals 0, ��,�,� equals ���� �� , which279

is defined as �����������. Take precipitation as an example, during a drought event, the ����,�,� is less than 0,280

it means that the current state of the pixel (��,�,�) is less than ����������� (���� �� ), and vice versa.281

3.2.2. Mean Normalization282

Mean Normalization (D’haene et al., 2012), commonly used in DL tasks to improve model training,283

transforms input features by subtracting the mean and dividing by the data range, thereby centering the values284

around zero. This normalization typically maps the data to the range [−1, 1], facilitating faster and more stable285

convergence in neural networks. The mathematical formulation is given in Eq. (8):286

���,�,� = ��,�,�−���� ��
��� �� −��� ��

, � ∈ (�, ��, ��, ��, ���2, ���) (8)287

where ��,�,� is the pixel current value of the feature � , ���� �� , ��� �� , and ��� �� are the mean,288

minimum, and maximum value of all pixels over time and space of the feature �. When ���,�,� equals 0, ��,�,�289

equals ���� �� , which is defined as ����������.290

3.2.3. Min-Max Normalization291

Min-Max Normalization (Chu and Yu, 2020), widely used in DL-based yield prediction, linearly scales292

input features to the range [0, 1]. The transformation is defined as follows (Eq. (9)):293

����,�,� = ��,�,�−��� ��
��� �� −��� ��

, � ∈ (�, ��, ��, ��, ���2, ���, ���, ���, ���) (9)294
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where ��,�,� is the pixel current value of the feature �, ���(��) and ��� �� are the minimum and maximum295

value of all pixels over time and space of the feature � . The value of 0.5 is set as the threshold to monitor the296

anomalous change. When ����,�,� equals 0.5, ����������� equals ��� �� + ��� �� /2.297

3.2.4. Condition Indices Normalization298

The Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI), and Vegetation Condition299

Index (VCI) are widely used in meteorology and remote sensing applications (Kogan, 1995a; Kogan, 1995b;300

Zhang and Jia, 2013; Wei et al., 2021). These indices are commonly derived using the Condition Indices301

Normalization (CIN) method, as formulated in Eq. (10):302

����,�,� = ��,�,�−��� ��,�
��� ��,� −��� ��,�

, � ∈ �, ��, ��, ��, ���2, ��� (10)303

where ��,�,� is the pixel current value, ��� ��,� and ��� ��,� represent the maximum and minimum value304

recorded for this pixel over time of the feature �. ����,�,� change from 0 to 1, and the value of 0.5 is set as the305

threshold to monitor the anomalous change. When ����,�,� equals 0.5, the ����������� equals ��� ��,� +306

��� ��,� /2 (Ghaleb et al., 2015; Zhang et al., 2019; Wei et al., 2020).307

3.2.5. Sequential Midrange Normalization308

The Sequential Midrange Normalization (SMN) method is derived by optimizing Normalized Indices which309

are proposed in our previous study (Liu et al., 2021) and used to monitor changes in precipitation (Normalized310

Precipitation Index, NPI), soil moisture (Normalized Soil Moisture Index, NSMI), and crop growth status311

(Normalized Vegetation Index, NVI). etc. They are defined as (Eq. (11)):312

����,�,� = ��,�,�−���,�
´

��,�,�+���,�
´ , � ∈ P, SM, SR, AT,EVI2, GPP (11)313
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where ��,�,� is the pixel current value, the ���,�
´ equals the mean value from 40% percentile to 70% percentile of314

the target pixel (as shown in Fig. 4) over study time based on their precipitation (or soil moisture or vegetation315

index, etc.) values. ����,�,� change from -1 to 1, and the value of 0 is set as the threshold to monitor the316

anomalous change. When ����,�,� equals 0, ��,�,� equals ���,�
´ , which is defined as �����������.317

For DL model training, the ZSN, MN, MMN, or CIN methods are usually used to reduce errors caused by318

different units and improve the training efficiency. However, due to uncertainties in data collection quality or the319

data normalization method, the data used as inputs to the model often cannot accurately reflect the true state of320

the paddy rice growth environment, resulting in the model’s low yield prediction accuracy. For illustration, we321

consider precipitation as an example (Fig. 4). Assume that the precipitation range (True value) is between 0 and322

10, where 0 means no precipitation, 10 means the maximum precipitation recorded in the history of all regions,323

and 5 is the normal precipitation in an ordinary semiarid and semi-humid region. Pixel 1 represents normal324

pixels that show no extreme drought or extraordinary rainstorm event occurring, or places where both have325

occurred with similar severity in all monitoring years; Pixel 2 represents only severe drought events that326

occurred in a certain year; Pixel 3 represents only severe humid events that occurred (such as a sudden increase327

in precipitation, sudden irrigation, dry land becoming paddy field, etc.).328
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When using multiyear RS data to predict crop yield, the purpose of the input data normalization is to333

compare current state with a standard value ( �����������/����������/�����������/�����������/334

����������� ) assessing the degree of drought (deficit) or moisture (excess). Therefore, this standard value335

needs to be typical and can represent the normal level of the pixel over a long period of time. Because the336

extreme values are added to the calculation of standard value of MN, MMN, or CIN, they cannot represent well337

the real normal level of the pixels (Fig. 4(b3, b4, b5, c3, c4, c5)). These extreme values are often caused by the338

occurrence of unusually extreme flood (Fig. 4(b1)) or drought (Fig. 4(c1)) events. In addition, during ZSN, MN,339

and MMN calculation, the detailed information and outliers of the original data may be clipped or scaled,340

thereby damaging the integrity of the data. Especially when incorporating all pixel values over time and space in341

our study, the details of the original data are severely scaled. SMN was devoid of the aforementioned limitations342

inherent to these indices, enabling it to effectively monitor the relative changes in the true values of pixels in343

both arid and humid regions (as illustrated in the fourth column of Fig. 4). This was attributed to the following344

two reasons: (1) Accurate outliers handling. SMN was not sensitive to outlier in the data which often affect the345

mean and variance of the data, thus impairing the accuracy performance of the model; (2) Appropriate346

hyperparameter selection. The computation method of ����������� can represent pixel's consistent normative347

state over prolonged durations.348

Based on the 8-day 1-km resolution datasets of P, SM, SR, T, EVI2, GPP, we calculated the six features for349

all rice-growing counties in the study area from 2008 to 2017 using ZSN, MN, MMN, CIN, and SMN. For the350

independent variables DEM, Lon, and Lat, which each have only one set of data, we replicated them 10 times351

across 46 instances to match the spatiotemporal resolution of the other variables and applied only the MMN352

method. From an initial set of approximately 120 rice-growing counties, we selected 83 that had consistently353
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cultivated rice for 10 consecutive years and had no missing data (Among them, there are 52 counties in Hubei354

Province and Jiangsu Province, and 31 counties in Anhui Province). Before inputting the data of each year into355

the model, we implemented a duplication procedure to augment the dataset, serving the purpose of data356

augmentation. We divided the data into training, validation, and testing sets by year, as detailed in Section357

4.1.1.358

3.3 The structure of the developed new model359

The model AgroCLA (Agro-CNN-LSTM-A) consists of three main components (Fig. 5): (a) Convolutional360

Neural Network, (b) Long Short-Term Memory, and (c) Attention Mechanism. This model has seven hierarchical361

layers, which include: an input layer, a 1D CNN layer, two LSTM layers, an attention mechanism layer, a fully362

connected layer, and an output layer. The input layer receives multiple feature sequences �1, �2⋯�� . These363

features include: P, SM, SR, AT, EVI2, GPP, DEM, Lon, and Lat, for each of the 46 instances annually. The364

output layer is responsible for predicting rice yield.365

Similar to local feature extraction techniques in signal processing, the CNN can capture local temporal366

dependencies and pattern features in time series data. This characteristic is particularly effective in capturing367

short-term trends and seasonal changes (Tiao et al., 1981; Turner et al., 1999; Heaton et al., 2016).368

Although traditional time series analysis often relies on intricate feature engineering, such as selecting369

appropriate lagged variables and decomposing trends, CNN can automatically extract key features from raw data,370

significantly reducing the complexity of manual feature engineering. Additionally, CNN can be combined with371

other DL network structures, such as RNN, LSTM, and Gated Recurrent Unit (GRU). Compared to ALSTM, our372

model enhances its capability in feature extraction and sequence modeling. 1D CNN excels at extracting local373
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features from sequential data, such as short-term patterns and local trends, while LSTM is adept at capturing374

long-term dependencies within the sequence. By integrating both architectures, the model can simultaneously375

leverage local feature representations and long-range dependencies, enabling a more comprehensive376

understanding of the data's characteristics. (Jeong et al., 2022). The attention mechanism layer can generate377

different attention values based on the output of the LSTM to reflect the importance of feature vectors during the378

rice growth phase for yield (Tian et al., 2021; Liu et al., 2022a).379

380

Fig. 5. Overall structure of the AgroCLAmodel for county-level rice yield prediction.381

To ensure the reproducibility of our experiments, our development and experimental environments are as382

follows: The operating system is Windows 11; the programming language environment is Python 3.9; the DL383

framework is PyTorch 2.0.1. Other libraries and tools include Numpy 1.25.1, matplotlib 3.3.4, scikit-learn 1.1.1,384

pandas 2.0.3, and so on. We employed a Grid Search strategy (Breiman et al., 1985) to systematically explore385

the parameter space ensuring the identification of the optimal model configuration, and identified the optimal386

parameters: the number of units in the hidden layer is 128; there are two layers in the LSTM; the batch size is387

512; the learning rate is 0.00001; the momentum is 0.9; the L2 regularization coefficient is 0.001; and the chosen388

optimizer is Adam (Table S1).389
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4.Experiment result and discussion390

4.1. Performance comparison of normalization method391

4.1.1 The result of different normalization method392

To evaluate the influence of normalization methods on rice yield prediction accuracy, we compared the393

performance of ZSN, MN, MMN, CIN, and SMN, and used data from 2008 to 2014 as the training set, 2015 and394

2016 as the validation set. and 2017 as the test set. The five different datasets were fed into six models: CNN,395

LSTM, SSTNN, ALSTM, DDCN, and AgroCLA to calculate the yield prediction accuracy. Fig. 6(a) and (b)396

display the R² results computed for the validation (rice yield prediction accuracy) and test datasets (temporal397

generalization test), respectively. As shown in Fig. 6, different normalization methods have significantly398

different effects on the accuracy improvement of the model. Among them, the SMN method performed the best399

when applied to all six models, with an average R² of 0.733 on the test set. The ZSN was suboptimal, with an400

average test R² of 0.655. The MMN input obtained the lowest test R² of 0.557 (Table S2 and S3). Compared to401

traditional MMN and MN, the average test R2 of SMN increased by 0.176 and 0.170, respectively, with the402

designed AgroCLAmodel achieving the highest accuracy (with R²=0.841).403
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404

Fig. 6. The Raw Data (RD), Z-Score Normalization (ZSN), Mean Normalization (MN), Min-Max Normalization405

(MMN), Condition Indices Normalization (CIN), and Sequential Midrange Normalization (SMN) prediction406

performance of six models in which (a) represented the R² of validation dataset and (b) represented the R² of test407

dataset. The A in model name represented the Attention layers in deep learning.408

This discrepancy arose from the variations in input data quality caused by different data normalization409

methodologies (Singh et al., 2020). The criteria for normalization method selection necessitated its ability to410

reflect the relative changes in the true values of pixels across varied regions, whether those values represented411

precipitation, soil moisture, or vegetation conditions, etc. ZSN, MN, and MMN methods, during the computation,412

normalized the input data across both time and space. Such a computational approach tended to overlook crops413

cultivated across diverse regions, which may have had distinct requirements due to differences in topography,414

crop variety, and other factors.415

4.1.2 The interpretability of SMN416

Using a real case study, in mid-June to mid-July 2014, precipitation in December was also much lower than417

in previous years. However, from early August to mid-September 2014, Jiangsu and Anhui Province experienced418

continuous rainy days (Yin et al., 2020), with the average precipitation being 60% higher than usual for the419
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same period in normal years. This period included several heavy rainfalls, sometimes accompanied by typhoons,420

resulting in field waterlogging and crop damage (Hu et al., 2021). Five normalization methods, ZSN, MN,421

MMN, CIN, and SMN, were applied to the original precipitation data (Fig. 7). Compared to the actual situation,422

the precipitation represented by the ZSN, MMN and CIN methods was significantly lower than the actual423

precipitation, they failed to detect the excessive precipitation events in August to September. MN could relatively424

reflect the occurrence of drought and precipitation events. However, it maintained a relatively stable value425

throughout all time periods leading to an inability to accurately reflect the severity of disasters, thereby reducing426

the accuracy of yield prediction.427

428

Fig. 7. Comparison of ability to reflect reality with different normalization methods. The average rice pixel429

values calculated by the ZSN, MN, MMN, CIN, and SMN methods based on the original precipitation data of430

Jiangsu Province from May 2014 to December 2014, which were updated every eight days and color-coded431

differently. 0.5 is the threshold of MMN/CIN, whereas the other indices use 0.432

Moreover, due to the unreasonable calculation methods of MMN and CIN, the occurrence of this extreme433

precipitation event resulted in a sustained severe overestimation of drought. In regions where both droughts and434

floods incidents manifest with similar severity, CIN offered reliable accuracy in monitoring. However, regardless435
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of the actual occurrence of extreme events, every pixel invariably exhibited values of 0 and 1 (Fig. 4(c5))436

symbolizing extreme drought and flood scenarios, a representation that often diverges from reality. The MMN437

and CIN calculation method fall short in reflecting the genuine relative variations in meteorological conditions438

faced by crops in different regions. This misrepresentation of normal conditions ultimately reduces the accuracy439

of crop yield predictions (Liu et al., 2021).440

441

Fig. 8. Performance of different normalization methods during extreme precipitation events (a) Statistical442

frequency of events with an average precipitation greater than 5mm for 5-8 consecutive cycles (each cycle is 8443

days) from 2012 to 2017. (b) Comparison of model performance using different normalization methods in444

normal years/disaster-affected years.445

In contrast, the SMN was devoid of the aforementioned limitations inherent to these indices. This was446

attributed to the computation method of SMN, which can effectively monitor the relative changes in the true447

values of pixels in both arid and humid regions (as illustrated in Section 3.2.5). The inclusion of SMN, due to448

its superior ability to portray the authentic variations of meteorological factors across diverse regions, not only449

bolstered the integrity of the model's input data but also enhanced the precision of yield predictions and450
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reinforced the model's generalization. These are why SMN was still able to achieve an accurate rice yield451

prediction during the super El Niño events of 2015-2016 (Fig. 8(b) with yellow color).452

The super El Niño events occurred in 2015-2016, which enhanced monsoon activity, thereby triggering453

persistent precipitation in southern China (Fig. 8(a)) and South America (Guo et al., 2016; Wang et al.,454

2019). When using different normalization methods combined with the AgroCLA model to predict rice yields455

during extreme precipitation years, except the SMN method, the prediction accuracy of all normalization456

methods showed a sharp decline (Fig. 8(b)). The persistent precipitation during 2015-2016 caused deviations in457

the characterization of precipitation data by other normalization methods, whereas the SMN method did not458

encounter this issue. This is because the SMN method can monitor the relative changes of actual values of459

various factors with high quality (Fig. 4) and accurately characterize whether flooding/drought events occur460

(Fig. 7), enabling the SMN method to maintain high prediction accuracy even under extreme climate scenarios.461

The R² values of the SMN method in 2015 and 2016 were 0.815 and 0.822, respectively, which were 17.3% and462

14.6% higher than those of the second-best ZSN method (R² = 0.642 and R² = 0.676).463

4.2. Validation of model robustness at different data collection times464

4.2.1 The result of different data collection times465

During the actual growth process of rice, the data volume of various variables accumulated over time.466

Starting from early May when rice sowing commenced in our study area (Fig. 3), we evaluated the model's467

predictive performance as it varied over time. We designed five growth stage data combinations: 16-19, 16-23,468

16-27, 16-32, 16-39, combined with 1-46, and GPs, yielding a total of seven different data input scales. Based on469
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the SMN selected in Section 4.1, we used data from 2008 to 2014 as the training set, data from 2015 and 2016470

as the validation set, and data from 2017 as the test set.471

472

Fig. 9. The average R2 and standard deviation changes in model (a) accuracy validation and (b) temporal473

generalization testing under different combinations of input data across various growth periods. The 16-19 is474

from sowing to seedling, 16-23 is from sowing to the end of tillering, 16-27 is from sowing to the end of booting,475

16-32 is from sowing to the end of flowering, 16-39 is from sowing to the end of maturity, 1-46 represents the476

data for a whole year, and GPs is the average of five growth periods.477

The study findings indicated that the AgroCLA model (with test R² ranging from 0.775 to 0.859)478

substantially outperformed other models (with test R² ranging from 0.548 to 0.825) (as shown in Table S4-S5).479

Moreover, the performance of all models was at its lowest during the early growth stages of rice, as depicted in480

Fig. 9(b). As rice progressed through its active growth phase and the amount of information increased, the481

predictive accuracy of the model gradually improved (Sheng et al., 2022). The model exhibited optimal482

performance around mid-August during the heading and flowering stage, achieving a test R² value of 0.859,483

which is two months ahead of the harvest season. This could be attributed to the fact that, in the early growing484
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season, the correlation between RS and weather features with rice yield was relatively weak, resulting in subpar485

performance across all methods (Johnson, 2014).486

Notably, as rice entered the later stages of growth, there was a decrease in yield prediction accuracy, which487

was because changes in vegetation indices were highly correlated with crop chlorophyll content. During the488

reproductive growth stage of rice, as the leaves turn from green to yellow, the vegetation indices cannot489

accurately reflect changes in rice yield (Liu et al., 2022b). Additionally, research by Gu et al., (2022) has490

confirmed that the vegetation index during the heading/flowering stage has higher accuracy in predicting rice491

yield in the later stages. After the flowering stages, the model's performance became stable. Compared to the492

other five methods, the developed AgroCLA model exhibited the best performance, achieving a validation R² of493

0.914 and a testing R² of 0.859.494

4.2.2 The interpretability of AgroCLA495

Upon further analysis of all the study findings, the AgroCLA model exhibited the most outstanding overall496

performance. This was attributable to CNN's capability to effectively extract local features from time series data,497

while LSTM captured long-range temporal dependencies. The fusion of these two facilitated the model's aptitude498

to discern intricate patterns within time sequences. The attention mechanism permitted the model to place499

heightened emphasis on more pivotal time steps when making predictions. For instance, in certain forecasting500

tasks, recent observations are often more important than earlier ones (Shen et al., 2023). By employing the501

attention mechanism, the model can autonomously learn these weights, thereby focusing more on inputs that are502

paramount for prediction. To demonstrate the reliability of the attention mechanism, we visualized the attention503

weights of the AgroCLAmodel when predicting rice yield (Fig. 10).504
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505

Fig. 10. The attention changes of AgroCLA model (a) in five different growth period combinations and (b) in506

each 8-day time step of which each growth period is color-coded differently. In (a), the red line represents the R²507

of the AgroCLA model, while the blue line represents the R² for the AgroCLA model without the add the508

attention mechanism.509

Compared to AgroCLA without attention (with validation average R² = 0.842), the model with the510

attention mechanism (with validation average R² = 0.867) Moreover, the accuracy trend closely mirrored the511

trend of average attention weight, with both peaking at the end of the flowering stage (Fig. 10(a)). Further512

analysis of the 8-day interval attention weights revealed two significant peaks at the end of the jointing stage513

and the end of the flowering stage. This indicated that the attention mechanism in AgroCLA assigned greater514

importance to data from the jointing and booting stage, as well as the flowering and grain filling stage during515

yield prediction (Fig. 10(b)). The results in Fig. 10 have shown that the incorporation of the attention516

mechanism further bolsters the model's predictive prowess and interpretability.517

4.3. Model generalization test518

4.3.1 Temporal generalization519
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Based on the highest-quality data normalization methods and optimal data collection times identified in520

Sections 4.1 and 4.2, all models were evaluated over six test years from 2012 to 2017 (Table 2). For each test521

year, data from all preceding years since 2008 were used for model training and validation. Specifically, data522

from the two years prior to the test year were designated as the validation dataset, while the remaining served as523

the training dataset. For instance, when predicting yields for the year 2016, we used data from 2008 to 2013 as524

the training set, data from 2014 and 2015 as the validation set, and data from 2016 as the test set. AgroCLA525

model consistently achieved the highest predictive accuracy and temporal generalization in all years.526

Table 2527

The R² for temporal generalization testing of models.528

Test Year CNN LSTM SSTNN ALSTM DDCN AgroCLA

2012 0.621 0.640 0.733 0.704 0.712 0.783

2013 0.663 0.699 0.789 0.753 0.761 0.799

2014 0.697 0.709 0.794 0.787 0.791 0.822

2015 0.674 0.722 0.796 0.779 0.798 0.816

2016 0.679 0.724 0.803 0.782 0.809 0.818

2017 0.684 0.731 0.825 0.794 0.812 0.859

Average 0.669 0.704 0.790 0.767 0.781 0.816
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529

Fig. 11. Scatter plots of statistical yields vs. predicted yields of AgroCLA in six testing years: (a) 2012; (b) 2013;530

(c) 2014; (d) 2015; (e) 2016; (f) 2017. The counties of Jiangsu Province and Anhui Province are represented by531

red and blue, respectively.532

The CNN model excelled in processing image data but exhibits reduced performance in multi-feature533

time-series tasks (Hao et al., 2024). While it can effectively extract local spatiotemporal patterns in such tasks,534

its performance diminished with longer and more complex sequences (Wibawa et al., 2022). Furthermore,535

manually defined convolutional window sizes may lead to loss of crucial information, especially when temporal536

dependencies exceed the convolution window size (Zhang et al., 2016). In contrast, the LSTM model can537

naturally handle sequences of arbitrary lengths through its recurrent structure, comprehensively evaluating each538

event in the time series and retaining memory of past events, thereby capturing long-term and complex temporal539

dependencies. The AgroCLA model can effectively combine the strengths of both models, capturing both local540

https://doi.org/10.5194/egusphere-2025-3901
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



34

and global information simultaneously. Incorporating attention mechanisms can assign higher weights to541

important information in the time series, thereby enhancing predictive accuracy. The multi-year average R² of542

AgroCLA model was 0.816, ranking first, and its temporal generalization ability was also the best (Fig. 11.). As543

shown in Table 3, it can be observed that, the AgroCLA model consistently exhibited commendable544

performance in the RMSE tests. The multi-year average RMSE is 559.6, the lowest among all tested models.545

Table 3546

The RMSE (kg/ha) for temporal generalization testing of models.547

Test Year CNN LSTM SSTNN ALSTM DDCN AgroCLA

2012 802.3 753.2 683.3 664.7 652.2 615.3

2013 778.6 722.5 631.8 659.8 655.6 615.3

2014 687.1 625.2 573.1 588.3 581.4 541.2

2015 676.4 588.6 565.9 593.3 579.1 574.6

2016 664.7 582.4 524.8 585.7 571.4 569.3

2017 588.4 574.9 470.3 545.7 508.5 442.1

Average 699.6 641.1 574.9 606.3 591.4 559.6

548

Fig. 12. The average absolute relative error maps of (a) CNN, (b) LSTM, (c)SSTNN, (d)ALSTM, (e) DDCN,549

and (f)AgroCLA from 2012 to 2017.550
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To further elucidate the temporal generalization of different models, we averaged the results from 2012 to551

2017 and presented the absolute relative error diagrams for each model (Fig. 12). The results revealed that552

AgroCLA had lower error distributions than the other models. Compared to Jiangsu Province, higher prediction553

errors were observed in Anhui Province across all methods. This can be attributed to the superior accuracy of554

rice distribution extraction results in Jiangsu Province compared to Anhui Province (Liu et al., 2020). In this555

study, we used previously developed rice distribution products as crop masks, aggregating multi-source data at556

the county level for all years. However, inaccuracies in crop area identification may have introduced noise into557

the training data. Additionally, the economic level of Jiangsu Province surpassed that of Anhui Province. A558

higher economic level suggests well-educated farmers, advanced agricultural techniques, and comprehensive559

irrigation systems. These factors contributed to Jiangsu Province achieving consistently high rice yields, leading560

to higher model accuracy and reduced prediction errors (Zhuo et al., 2022).561

To further demonstrate the consistency between statistical and predicted yields in 2017, we plotted the562

scatter diagrams for all methods in Fig. 13. The results showed that among the six models, AgroCLA once again563

achieved the best consistency (as shown in Fig. 13(f)), with the highest testing R² of 0.859 and the lowest564

RMSE and MARE values of 442.1 and 0.053, respectively. Compared with the ALSTM model (R² = 0.749),565

AgroCLA improved the yield prediction accuracy by approximately 0.11. The second-best model was SSTNN,566

with an R² of 0.825, followed by DDCN with an R² of 0.812. As demonstrated in previous studies, AgroCLA567

consistently exhibits superior temporal generalization and predictive stability.568
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569

Fig. 13. Scatter plots of statistical yields vs. predicted yields of (a) CNN, (b) LSTM, (c) SSTNN, (d) ALSTM, (e)570

DDCN, and (f) AgroCLA in 2017. The counties of Jiangsu Province and Anhui Province are represented by red571

and blue, respectively.572

4.3.2 Spatial generalization573

To validate the spatial generalization capability of the AgroCLA model, we conducted experiments in574

county-level regions of Hubei Province in 2017 (where the area of rice paddies ranges from 50 to 70,000575

hectares).576
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577

Fig. 14. The absolute relative error maps of temporal and spatial generalization testing in 2017.578

As shown in Fig.14, we visualized the prediction accuracy for each county. Although 68.6% of the counties579

showed ARE below 20%, the ARE in some counties in Huangshi and Huanggang was greater than 40%. The580

larger errors observed in Huangshi and Huanggang were attributed to the relatively small rice cultivation areas in581

these cities. DL models rely on a large number of input features to learn spatial and temporal patterns. When the582

rice cultivation area in a county is relatively small, the proportion of effective agricultural features (such as EVI583

and GPP) in the remote sensing signals is low within each pixel. As a result, these signals are more susceptible to584

interference from non-agricultural land types (such as urban areas, forests, and water bodies), thereby585

exacerbating the mixed pixel effect. (Joshi et al., 2023).586
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Table 4587
The impact of the rice cultivation area on the model's spatial generalization in Hubei province.588

Area (ha) County Number Average ARE (%)

>50000 1 4.5

20000-50000 8 9.2

5000-20000 18 21.1

0-5000 24 23.3

Therefore, we compiled data on the rice cultivation area in each county of Hubei Province along with the589

corresponding spatial generalization testing ARE (Table 4). There was a positive correlation between the rice590

cultivation area and the average ARE of the models. Specifically, counties with the largest rice cultivation area591

(over 50,000 hectares) exhibited the lowest ARE, reaching 4.5%, while counties with smaller areas (0-5,000592

hectares) showed an average ARE of 23.3%. This trend indicated that as the area increased, the predictive593

accuracy of the model improved (Cao et al., 2025). These results indicated that the AgroCLA model showed594

strong spatial generalization.595

Table 5596

Comparison of different models’ efficiency in spatial generalization testing.597

Models
R² of Spatial

Generalization testing
Time Para

CNN 0.654 21.38s 106.8K

LSTM 0.469 38.29s 203.6K

SSTNN 0.802 45.52s 258.1K

ALSTM 0.672 46.73s 267.7K

DDCN 0.691 76.42s 548.8K

AgroCLA 0.833 48.19s 268.4K

As shown in Fig. 13. and Table 5, the AgroCLA model achieved the best temporal generalization598

(R²=0.859) and spatial generalization (R²=0.833). At the same time, it also performed well in terms of efficiency,599

with a runtime of 48.19 seconds and 268.4K parameters. In contrast, although other models had advantages in600

terms of runtime and parameter count, such as the CNN model which had the lowest parameter count (106.8K)601
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and the shortest runtime (21.38 seconds), it had lower accuracy with a temporal generalization R² of 0.684 and602

spatial generalization R² of 0.654. Despite its more complex structure and higher computational cost, the603

AgroCLA model's superior temporal and spatial generalization should not be overlooked.604

4.4. Feature importance analysis605

The Shapley Additive Explanations (SHAP) based global explanation suggests that the latitude, Gross606

Primary Productivity (GPP), longitude and the Two-Band Enhanced Vegetation Index (EVI2) (Huang et al.,607

2013) are the main features used to predict the rice yield by our AgroCLA model (Fig. 14(b)). Broadly, these608

nine factors can be categorized into three groups, ranked in decreasing order of feature importance as:609

geolocation-related, crop growth-related, and climate-related. Our study area was located on both sides of the610

Qinling-Huaihe line, which serves as the climatic boundary between northern and southern China. South of the611

Qinling-Huaihe line, the region was predominantly paddy fields, while north of the line, it was mainly dryland612

(Ge et al., 2024). Factors like latitude, longitude, and soil properties collectively depict the long-term613

environmental characteristics and information of an area. High-yielding regions are typically characterized by614

fertile soils, abundant water resources, well-educated farmers, advanced agricultural techniques, comprehensive615

irrigation systems, and favorable climatic conditions. These features can be holistically described through their616

spatial attributes, whereas climatic factors lack this property (Fowler et al., 2024).617
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618

Fig. 15. SHAP analysis for drivers of AgroCLA prediction. (a) The bee swarm plot of SHAP values for the local619

interpretation of each sample at the specific feature dimension. (b) The bar plot and pie chart of the averaged620

absolute SHAP values for the global interpretation of input feature importance.621

This aligns with existing research. For instance, Wang et al. (2020) demonstrated through spatial analysis622

that spatial factors not only influence the distribution of air temperature, solar radiation, and soil but also623

significantly influence crop growth stages. Additionally, the positive correlations of GPP and EVI2 with rice624

yield (Fig. 15(a)) are consistent with the findings of Zhang et al. (2016b) and Huang et al. (2021).625

Among meteorological factors, solar radiation is the most critical, followed by soil moisture, reaffirming626

findings from Liu et al. (2021). This is particularly relevant in the mid-lower Yangtze River plain, where627

prolonged rainy seasons make flooding more frequent than droughts. While short-term precipitation appears less628

critical due to modern irrigation systems, long-term precipitation patterns, particularly those influenced by El629

Niño events, remain pivotal for predicting rice yields (Stuecker et al., 2018). Therefore, in rice yield630

estimation, both short-term feature importance and long-term precipitation dynamics should be considered to631

capture their cumulative impact on crop growth and productivity (Fan et al., 2024).632

https://doi.org/10.5194/egusphere-2025-3901
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



41

5. Conclusion and future work633

A proper normalization method can mitigate distortions in feature scaling caused by extreme values, which634

is critical for improving the accuracy of rice yield prediction. In this study, we implemented five data635

normalization methods: ZSN, MN, MMN, CIN, and SMN, which were fed into six models (CNN, LSTM,636

SSTNN, ALSTM, DDCN, and AgroCLA) based on data from 2008 to 2017 in eastern China. The predicted rice637

yield accuracy of all models based on the SMN index (R²=0.733) surpassed that of traditional MMN (R²=0.557)638

and MN (R²=0.563) by average R² increases of 0.176 and 0.170, respectively. The SMN method significantly639

enhanced the quality of the input data, which in turn indirectly improved the model’s predictive accuracy and640

generalization performance. It effectively captures the relative changes in the actual values of multiple variables,641

ensuring stable feature representation under varying conditions. Among them, the AgroCLA model exhibited the642

highest accuracy, with an average R² of 0.841. Using seven data combinations corresponding to different growth643

stages, we found that model performance peaked during the heading and flowering stage, approximately two644

months before harvest. Additionally, all models were evaluated over the six test years from 2012 to 2017. Results645

showed the AgroCLA model consistently achieved superior accuracy and generalization in all years, with the646

best test set R2 reaching 0.859, and the lowest RMSE and MARE values being 442.1 and 0.053, respectively.647

The inclusion of the attention mechanism further enhanced the model's predictive capability and interpretability.648

Within our study area, geographical location exerted the most significant impact on yield prediction, followed by649

crop growth-related factors. Variations in crop mask accuracy and regional economic conditions amplified650

prediction uncertainties.651

Improvements in subsequent phases can be achieved by further exploring aspects such as data quality652

discrepancies, data resolution and model lightweighting. This study leveraged the outcomes of prior research to653
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obtain high-precision rice distribution data and high-quality input from various factors. This approach minimized654

the potential negative impacts on yield prediction accuracy caused by noise in remote sensing data, cloud655

contamination, and sensor errors, all of which can increase data uncertainty. Furthermore, the discrepancies656

arising from the singular use of RS data or meteorological data inputs, essentially the differences in data657

resolution, introduce another layer of uncertainty that warrants in-depth discussion.658
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