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Abstract. We present SWEpy, a new Python GPU-accelerated open-source finite volume (FV) software designed to solve the

Saint-Venant system of shallow water equations (SWE) on unstructured triangular grids. SWEpy is designed for flexibility

and performance, considering a well-balanced, positivity-preserving, and higher-order central-upwind FV scheme, intended to

solve tsunami wave propagation, flooding, and dam-break scenarios, among others.

In this regard, we enhance the minimization of numerical diffusion, a phenomenon frequently found in this sort of FV5

schemes, by using a second-order WENO reconstruction operator as well as a third-order strong stability-preserving Runge-

Kutta time integrator. With this in mind, a modular software architecture is presented that can support a range of initial and

boundary conditions and source terms.

SWEpy’s performance, stability, and accuracy are verified using canonical benchmarks, including Synolakis’ conical island

and Bryson’s flow over a Gaussian bump, and further demonstrated in large-scale simulations of the 1959 Malpasset Dam10

failure and the Mw8.8 2010 Maule tsunami. SWEpy delivers high-resolution results on consumer-grade hardware, offering a

user-friendly platform for both research and operational forecasting.

1 Introduction

Accurate simulation of hazardous hydrological events, such as dam failures, tsunamis, and urban floods, plays a critical role in15

risk assessment, emergency planning, and the operation of early warning systems (Catalan et al., 2020; Fernández-Nóvoa et al.,

2024; Lin et al., 2015; Behrens et al., 2010; Harig et al., 2019). Over the years, several numerical tools have been developed for

these purposes, ranging from open-source models to commercial software (ANSYS, Inc., 2013; Jodhani et al., 2023), enabling

stakeholders to generate reliable data for evaluating community vulnerabilities. However, the increase of global challenges,

including rapid urbanization, climate change, and socio-economic uncertainties–particularly in developing regions (United20

Nations, 2019)–is imposing new demands on risk management frameworks. These evolving needs require advanced modeling
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tools that are not only accurate and efficient but also flexible, scalable, and accessible to diverse users in research, planning,

and operational contexts.

To better address these emerging challenges, open-source modeling tools are invaluable in advancing research and opera-

tional applications. They promote collaborative development, enabling diverse contributors to improve and adapt models while25

ensuring broad accessibility without commercial barriers. To illustrate the current landscape, we have compiled a representative

overview of freely available shallow water equation (SWE) solvers in Table 1, highlighting their key features, including numeri-

cal schemes, grid types, and parallelization capabilities. As shown, while many excel in specific domains such as rainfall-runoff

or flooding, there remains a gap in flexible solvers that combine unstructured triangular grids with high-order reconstructions

for improved accuracy in complex scenarios.30

These programs solve nonlinear SWEs, which have become the cornerstone of two-dimensional free-surface flow model-

ing across scales and applications (Delis and Nikolos, 2021). However, increasing demands for high spatial resolution and

real-time performance have driven some efforts toward simplified formulations (Courty et al., 2017) or machine-learning sur-

rogates (Kabir et al., 2020; Zhou et al., 2022; Shaeri Karimi et al., 2019) to mitigate computational costs—approaches that

may compromise physical accuracy (Fernández-Pato et al., 2018). A more robust strategy involves parallelization, leveraging35

high-performance computing on CPUs/GPUs (Caviedes-Voullième et al., 2023; Morales-Hernández et al., 2021), achieving

speedups of orders of magnitude. However, many of these solvers rely on low-level languages (e.g., FORTRAN, C++, C) and

APIs (e.g., CUDA, OpenMP), limiting accessibility for users without specialized expertise. To overcome this barrier, high-level

languages like Python offer a viable alternative, although traditional parallelization has been challenging due to issues such

as the Global Interpreter Lock (Turner and Wouters, 2024). This is usually addressed using libraries like Numba (Lam et al.,40

2015), PyCUDA (Kloeckner et al., 2025), TensorFlow (Abadi et al., 2015), PyTorch (Ansel et al., 2024), and Dask (Rocklin,

2015), which enable GPU-based parallelization via Single Instruction Multiple Data (SIMD) techniques, or “compiled loop”

parallelization. These libraries, although powerful, primarily operate via decorators and wrappers, which can make achieving

modularity a bit unclear. In addition, the last three options are oriented towards machine learning and big data. In contrast,

CuPy (Okuta et al., 2017) serves as a drop-in replacement for NumPy (Harris et al., 2020), handling array calculations with45

CUDA kernels to provide seamless, user-friendly GPU acceleration—versatile enough for custom kernels and even multi-GPU

setups—while democratizing advanced modeling without sacrificing efficiency.

Although almost all of the reviewed solvers are parallelized in some form, there is considerable variability in their scope,

parallelization strategies (e.g., CUDA, Kokkos, MPI, or OpenMP), numerical schemes, grid geometries, and programming

languages. For instance, while some are specialized for rainfall-runoff (e.g., SERGHEI-SWE, HiPIMS) or tsunami generation-50

propagation-inundation (e.g., COMCOT, Tsunami-HySEA, TsunAWI), others serve general-purpose applications like flooding

or channel flows. This diversity reflects trade-offs in design, but also highlights gaps in tools that integrate high flexibility

across these dimensions. The majority of these models rely on structured Cartesian grids due to their computational and

implementation simplicity. However, unstructured grids, particularly triangular ones, offer significant advantages by allowing

seamless local refinement (Schubert et al., 2008) in regions with complex bathymetry or where higher resolution is needed,55
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Model Reference GPU MPI Availability Scope Scheme type Grid

SERGHEI-SWE Caviedes-Voullième et al.

(2023)

Kokkos Yes Open-source (BSD) Rainfall runoff FV Roe Cartesian

TRITON Morales-Hernández et al.

(2021)

CUDA Yes Open-source (BSD) Flooding FV Roe Cartesian

PARFLOOD Vacondio et al. (2014) CUDA Yes Upon request Flooding FV HLLC Cartesian

HiPIMS Xia et al. (2019) CUDA – Open-source

(GPLv3)

Rainfall runoff FV HLLC Cartesian

DRR/FI Kobayashi et al. (2015) – Yes – Rainfall runoff FD Leapfrog Cartesian

SW2D-GPU Carlotto et al. (2021) CUDA – Open-source Flooding, Lake water

level

FD Leapfrog Cartesian

LisFlood-FP 8.0 Shaw et al. (2021) CUDA – Open-source

(GPLv3)

Flooding FE/FV DG Cartesian

IBER García-Feal et al. (2018) CUDA – Freeware Flooding, Rivers, Estuar-

ies

FV Roe Unstr. tri. &

quad.

SW2D-Lemon Steinstraesser et al. (2022) – – Freeware Flooding (upscaled

model)

FV HLL Unstr. poly.

B-flood Kirstetter et al. (2021) – – Open-source (GPL) Flash flooding FV HLLC Adaptive quad.

FullSWOF Delestre et al. (2017) – Yes Open-source (Ce-

CILL)

Rainfall runoff FV HLLC Cartesian

TELEMAC Moulinec et al. (2011) – Yes Open-source

(GPLv3)

General purpose Various FE and FV

Godunov

Unstr. tri.

GeoClaw Berger et al. (2011) – Yes Open-source (BSD) General purpose FV HLLE Adaptive

Cartesian

HEC-RAS2D Brunner (2021) CUDA* – Freeware Channel, Floodplain Implicit FV Unstr. poly. (up

to 8 sides)

HMS Simons et al. (2013) – Yes Open-source (GPL) Overland flows with

transport-reaction

FV HLLC Unstr. tri. &

quad.

COMCOT Wang and Power (2011) – OpenMP Open-source (GPL) Tsunami GPI** FD Leapfrog Cartesian

Tsunami-HySEA Macias et al. (2014) CUDA - Open-source (GPL) Tsunami GPI FV WAF Cartesian

TsunAWI Behrens (2008) - Yes Open-source (GPL) Tsunami GPI FE LC-LNC Unst. tri.

SWEpy This article. CuPy - Open-source (GPL) General purpose FV CU Unst. tri.

Table 1. Overview of openly available SWE solvers. Adapted from (Caviedes-Voullième et al., 2023). *: HEC-RAS 2025 (Alpha, in devel-

opment) has a CUDA implementation of their solver. **: Generation, Propagation, Inundation.

such as near coastlines or urban structures. This adaptability avoids the need for model coupling or nested grids in multi-scale

simulations, like those involving flooding and tsunami propagation (Harig et al., 2008; Bomers et al., 2019).

A common feature among the reviewed solvers is the finite volume method (FVM), particularly Godunov-type schemes, val-

ued for their inherently conservative derivation (LeVeque, 2002). These schemes excel at capturing shock-wave discontinuities

(Toro, 2001), making them ideal for simulating flows across diverse regimes and complex phenomena such as bore propaga-60

tion or dam-break events. However, a significant challenge in these Godunov-type approaches is their reliance on Riemann

solvers, such as the Roe (Roe, 1981) or Harten-Lax-van Leer (Toro et al., 1994) formulations, which resolve discontinuities at
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cell interfaces by approximating solutions to the associated eigenvalue problem (local wave propagation speeds) to construct

numerical fluxes. This dependency increases computational complexity and can limit extensibility to higher-order schemes. An

alternative approach, though less common, is the use of central-upwind (CU) schemes, initially introduced for Cartesian grids65

in the seminal work by Kurganov and Tadmor (2000) and later extended to triangular grids by Kurganov and Petrova (2005).

These schemes bypass Riemann solvers by integrating the equations over Riemann fans sized by estimated local propagation

speeds. This offers a simpler, yet robust framework, extensible to higher orders via polynomial reconstruction operators. How-

ever, existing CU formulations for the SWE often suffer from numerical diffusion, with recent efforts to address this shifting

toward Cartesian-grid finite-difference methods rather than enhancing triangular FV schemes (Kurganov and Xin, 2023; Chu70

et al., 2025; Cui et al., 2025).

Furthermore, the nature of the problem is determined by the source terms in the balance equations, as well as domain

characteristics including bathymetry and boundary conditions. Given the diversity of models represented by the SWEs, varied

criteria are required for their formulation and analysis. In this context, alongside numerical flux structures, spatial discretization

designs must satisfy both physical and numerical requirements, such as exact equilibrium (well-balancing) and positivity75

preservation, extensively discussed in the literature (e.g., Kurganov and Tadmor (2000); Kurganov and Petrova (2005); Toro

et al. (1994) to name a few). Well-balancing ensures that steady states–like lake-at-rest over variable topography or geostrophic

equilibrium where pressure gradients counter Coriolis forces–are preserved exactly, preventing spurious oscillations that could

undermine simulation accuracy in long-term or large-scale flows. Positivity preservation maintains non-negative water depths

at wet/dry fronts, crucial for realistic inundation modeling without nonphysical negative heights or instabilities. Moreover,80

defining how the computed values align with scheme evaluations necessitates reconstruction operators that effectively address

these constraints.

In this study, we present SWEpy, a solver designed to overcome these challenges by enabling versatile near- and far-field

modeling on unstructured triangular grids. To bridge these gaps, we present SWEpy, an open-source Python-based FV solver

for SWEs on unstructured triangular grids with GPU capabilities. Our primary contributions include: (1) the implementation of85

a central-upwind scheme extended to higher-order via quadratic WENO spatial reconstruction and third-order Strong-Stability-

Preserving (SSP) Runge-Kutta time integration, reducing diffusion for versatile near-field (shocks/wet-dry) and far-field (wave

propagation) simulations; (2) GPL licensing with modular architecture for reproducibility and community extensions (e.g.,

infiltration/transport); and (3) Python/CuPy implementation for accessible GPU acceleration, overcoming low-level barri-

ers while enabling rapid computations on consumer hardware. The solver is well-balanced in wet domains and positivity-90

preserving, validated across benchmarks, and real cases such as Malpasset dam-break for near-field inundation and the Maule

2010 tsunami for far-field propagation. This paper is structured as follows: Section 2 details governing equations and FV

foundations; Section 3 describes the CU scheme and reconstructions; Section 4 details Python/CuPy architecture; Section 5

presents validation results and performance analysis; Section 6 discusses implications, limitations, and future directions.
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2 Problem Setting95

This section presents the theoretical foundation of the model, defines the physical problem, and introduces the semi-discrete

form of the SWEs, which underpins the SWEpy framework’s central-upwind scheme with WENO reconstructions on unstruc-

tured triangular grids.

2.1 Governing Equations

The Shallow Water Equations, first proposed in one dimension by Saint-Venant in 1871, are derived for the two-dimensional100

case by applying the hydrostatic assumption to the Reynolds-Averaged Navier-Stokes equations. Using a scaling argument

and assuming fluid incompressibility, the vertical momentum equation yields a horizontal pressure gradient, enabling depth-

averaging of the continuity and momentum equations from the solid bottom to the free surface (Castro-Orgaz et al., 2019;

Chow, 1971; Hervouet, 2007; Vreugdenhil, 1994). These equations form the cornerstone of computational models for simu-

lating free-surface flows in rivers, coastal areas, and urban floodplains, capturing phenomena like flood waves, tsunamis, and105

storm surges (Delis and Nikolos, 2021), as validated in our benchmarks (Section 5).

To ensure consistent notation, we define the state vector q = (h,hu,hv)⊤, where h(x,y, t) is the water depth from the

bathymetry B(x,y) to the free surface w(x,y, t), measured relative to the z = 0 xy-plane, u(x,y, t) and v(x,y, t) are depth-

averaged velocities in the x and y directions, and hu(x,y, t) and hv(x,y, t) are the corresponding flux-discharges. Scalar

variables (e.g., h) use regular symbols, while vectors (e.g., q) are bold. These variables are illustrated in Figure 1.

B(x,y)

h(x,y)

w(x,y)

hu(x,y,t)

z

x

Figure 1. Model setting and physical variables used in the shallow water equations.

110

With this notation, the SWEs are expressed in conserved vector form as:

qt + f(q)x + g(q)y = SB(q) +S(q) (1)

where the subscripts (·)t, (·)x, and (·)y denote partial differentiation with respect to time t, and spatial coordinates x and y,

respectively; furthermore, the vectors defined are
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q = (h,hu,hv)⊤, (2)115

f(q) =
(

hu,hu2 +
gh2

2
,huv

)⊤
, (3)

g(q) =
(

hv,huv,hv2 +
gh2

2

)⊤
, (4)

SB(q) = (0,−ghBx,−ghBy)⊤ , (5)

and S(q) represents additional source terms, such as Coriolis, friction, rheology, or turbulence. In this work, we focus on bot-

tom friction SF (q) and Coriolis effects SC(q), critical for modeling dam-break scenarios and far-field tsunami propagation,120

respectively. Thus, the bottom friction–requiring semi-empirical closure laws, specifically the Manning-Strickler parameteri-

zation (Chow, 1971)– and coriolis terms are expressed as:

SC(q) = (0,fhv,−fhu)T
, (6)

SF (q) =
(

0,−g
n2

h7/3
hu
√

(hu)2 + (hv)2,−g
n2

h7/3
hv
√

(hu)2 + (hv)2
)T

, (7)

where n is the Manning friction coefficient and f is the Coriolis parameter, typically approximated as 10−4 s−1 (Kundu et al.,125

2012). For long-range tsunami propagation, both SB and SC are considered, while flooding scenarios use SB and SF , as

validated in Section 5. Solving these nonlinear hyperbolic equations requires robust numerical methods to capture shocks and

ensure stability, particularly for complex geometries and wet/dry interfaces. SWEpy’s central-upwind scheme on unstructured

triangular grids, detailed in Section 3, addresses these challenges to achieve high accuracy.

2.2 Semi-discrete formulation130

To ensure conservation of mass and momentum while effectively handling discontinuities such as shocks or wet/dry fronts

prevalent in shallow water flows, FVM offer a robust numerical framework for solving the SWEs (LeVeque, 2002; Moukalled

et al., 2015; Toro, 2001). These methods integrate the governing equations over finite control volumes, approximating cell-

averaged states and evolving them by computing fluxes across cell interfaces. This approach naturally captures shock waves,

like hydraulic jumps or bore propagation, without requiring additional artificial viscosity (Stiernström et al., 2021), making it135

particularly suited for shallow water applications where abrupt changes in flow regime are common.

For enhanced well-balancing—ensuring exact preservation of steady states, especially over variable bathymetry—we refor-

mulate the equations by substituting the water depth h with the surface elevation w = h + B in the conserved variables vector

q, resulting in q(x,y, t) = (w,hu,hv)T . This substitution avoids numerical imbalances caused by topography gradients, trans-

forming the system into:140

qt + F (q,B)x + G(q,B)y = SB(q,B) +S(q,B), (8)
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with

F (q,B) =
(

hu,
(hu)2

w−B
+

1
2
g(w−B)2,

(hu)(hv)
w−B

)T

(9)

G(q,B) =
(

hv,
(hu)(hv)
w−B

,
(hv)2

w−B
+

1
2
g(w−B)2

)T

, (10)

We consider a triangular discretization of the polygonal spatial domain Ω =
⋃

j Ωj , including additional "ghost" cells for145

boundary conditions, as depicted in Figure 2 (bottom border).

Figure 2. Illustration of a triangular unstructured grid. The figure shows on the left an example of a finite volume grid, while on the right a

typical triangular cell with some attributes used in the semi-discrete formulation

Integrating (8) over each cell Ωj and applying the Gauss divergence theorem yields:

d

dt

∫

Ωj

qqqdΩ +
∮

∂Ωj

(FFF ,GGG)n̂jdlj =
∫

Ω

(
SB +SSS

)
dΩ (11)

Let Ωjk (k = 1,2,3) denote the neighboring cells of Ωj , with (xj ,yj) as the barycenter coordinates, Γjk the side toward

Ωjk, ljk as its length, and n̂jk = cos(θjk )̂i + sin(θjk)ĵ as its outward normal vector, where θjk is its angle.150

The semi-discrete formulation becomes:

d

dt
qqqj(t) +

1
|Ωj |

∑

k∈Nj

Fjk ljk = SBj + Sj (12)

where qj = 1
|Ωj|

∫
Ωj

q(x,y, t)dΩ is the average state over the cell, andFjk is the numerical flux along segment Γjk, capturing

interface interactions. This flux is derived from fields F and G in equation (9). The scheme relies on approximations of q

(and bathymetry B) at Γjk, denoted qin
jk and qout

jk , and obtained using reconstruction operators. Integrations employ Gaussian155
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quadrature, with the number of Gauss points determined by the degree of this reconstruction for the flow variables. As nodal

values are time-dependent, equation (12) yields a system of ordinary differential equations, setting the stage for the central-

upwind discretization detailed in Section 3. Terms SBj and Sj are each careful discretizations of the source terms, to be

discussed in detail moving forward.

3 SWEpy Numerical Model160

3.1 Central-Upwind Numerical Fluxes on Triangular Grids

Building on the semi-discrete formulation, SWEpy implements the central-upwind (CU) finite volume scheme for hyperbolic

conservation laws on triangular grids, as originally proposed by Kurganov and Petrova (2005) and in parallel by Bryson and

Levy (2005) who studied the well-balancing condition, and Xie et al. (2005) in the same direction, but with a modified flux

formulation; and refined in later works. This Riemann-solver-free method offers a balance between computational simplicity165

and robustness, estimating local propagation speeds to stabilize fluxes without solving the full Riemann problem, making it

well-suited for shallow water flows over unstructured grids with variable topography and wet/dry interfaces.

The numerical flux Fjk in (12) is formulated as the projection onto the edge-normal direction Γjk:

Fjk =
(
Fjk cos(θjk) +Gjk sin(θjk)

)
−

ain
jkaout

jk

ain
jk + aout

jk

Ns∑

s=1

cs

[
qqqin

jk(Ms
jk)−qqqout

jk (Ms
jk)
]

(13)

where Ms
jk are the scaled Gaussian quadrature points along the edge, and cs are the associated weights. The number of170

points Ns depends on the reconstruction order, ensuring accurate integration of higher-degree polynomials. The terms ain
jk and

aout
jk represent the inward and outward local propagation speeds, detailed below.

The projection components are:

Fjk =
1

ain
jk + aout

jk

Ns∑

s=1

cs

[
ain

jkF
(
qin

jk(Ms
jk),B(Ms

jk)
)
+ aout

jk F
(
qout

jk (Ms
jk),B(Ms

jk)
)]

(14)

Gjk =
1

ain
jk + aout

jk

Ns∑

s=1

cs

[
ain

jkG
(
qin

jk(Ms
jk),B(Ms

jk)
)
+ aout

jk G
(
qout

jk (Ms
jk),B(Ms

jk)
)]

(15)175

Here, qout
jk represents the limit q(x,y)→ qout

jk (Ms
jk) as (x,y) ∈ Ωj , while qin

jk is the limit q(x,y)→ qin
jk(Ms

jk) as (x,y) ∈
Ωjk. Furthermore, since divisions by zero may appear near wet/dry fronts given the form of Fjk and Gjk, an adequate treatment

of the fluxes is required to avoid these singularities as addressed in the positivity-preserving reconstruction (Section 3.4). Then,
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substituting (14) and (15) into (13) and integrating into the semi-discrete scheme (12) results in:

dqj

dt
=− 1

|Ωj |
3∑

k=1

ljk cosθjk

ain
jk + aout

jk

Ns∑

s=1

cs

[
ain

jkF
(
qjk(Ms

jk),B(Ms
jk)
)
+ aout

jk F
(
qj(Ms

jk),B(Ms
jk)
)]

− 1
|Ωj |

3∑

k=1

ljk sinθjk

ain
jk + aout

jk

Ns∑

s=1

cs

[
ain

jkG
(
qjk(Ms

jk),B(Ms
jk)
)
+ aout

jk G
(
qj(Ms

jk),B(Ms
jk)
)]

+
1
|Ωj |

3∑

k=1

ljk

ain
jkaout

jk

ain
jk + aout

jk

Ns∑

s=1

cs

[
qjk(Ms

jk)− qj(Ms
jk)
]
+ SBj + Sj ,

(16)180

where qj is the cell-averaged state, B follows the same reconstruction criterion as the flux variables, and Sj is the discretized

source term, discussed in the following subsection.

To define the one-sided local speeds ain
jk and aout

jk , which represent the maximum wave speeds at which information prop-

agates inward or outward across the jk interface, we first compute desingularized velocities at the Gaussian points to avoid

singularities near dry states:185

u =
√

2h(hu)√
h4 + max(h4,ε)

, v =
√

2h(hv)√
h4 + max(h4,ε)

, (17)

where h = w−B is the water depth, and ε is a small tolerance parameter to prevent singularities. These equations represent

the structure to be used with the respective reconstruction operators of the variables evaluated at the necessary points. These

velocities are then projected onto the edge normal:

uθ
j (M

s
jk) = cos(θjk)uj(Ms

jk) + sin(θjk)vj(Ms
jk) ; uθ

jk(Ms
jk) = cos(θjk)ujk(Ms

jk) + sin(θjk)vjk(Ms
jk)

using reconstructions from cells j and its neighbor jk. The local speeds are then determined as the extrema over the Gaussian

points:

aout
jk = max

s

{
max

{
uθ

j (M
s
jk) +

√
ghj(Ms

jk), uθ
jk(Ms

jk) +
√

ghjk(Ms
jk), 0

}}
,

ain
jk =−min

s

{
min

{
uθ

j (M
s
jk)−

√
ghj(Ms

jk), uθ
jk(Ms

jk)−
√

ghjk(Ms
jk), 0

}}
.

(18)

We remark that points Ms
jk are a number of Gaussian points that depend on the degree of the reconstruction used. In our190

case, Ns = 1 for the linear reconstruction and Ns = 2 for the quadratic case.

3.2 Well-balancing of the source terms

A key requirement for robust SWE solvers, particularly in applications involving complex topography like dam-breaks and

tsunamis, is well-balancing: the exact preservation of steady-state solutions without introducing artificial oscillations. This

property is essential to maintain physical accuracy in lake-at-rest scenarios or geostrophic equilibria, where source terms must195

counterbalance flux gradients (Kurganov and Petrova, 2007; Bryson et al., 2011; Liu et al., 2018; Chertock et al., 2015, 2018;

Desveaux and Masset, 2022; Greenberg and Leroux, 1996; Liu, 2021b; Cao et al., 2024). In SWEpy, we achieve well-balancing

through careful discretization of the source terms, ensuring numerical fluxes align with physical conditions across both fully

wet domains and variable bathymetry.
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3.2.1 Bathymetry gradient contribution200

For the bathymetry source term, we derive a balanced discretization by assuming lake-at-rest conditions and equating it to the

momentum flux contributions, as described in Bryson et al. (2011). Using the polynomial reconstructions of the variables, we

integrate over the cell interior and its edges via Gaussian quadrature, yielding a general form applicable to arbitrary reconstruc-

tion orders:

SB
(l)

j =−g

Nint
s∑

s=1

cs

∂w(Ms
j )

∂x

(
wj(Ms

j )−B(Ms
j )
)
+

g

2|Ωj |
3∑

k=1

Ns∑

s=1

csljk(wj(Ms
jk)−B(Ms

jk))2 cosθjk,

SB
(3)

j =−g

Nint
s∑

s=1

cs

∂w(Ms
j )

∂y

(
wj(Ms

j )−B(Ms
j )
)
+

g

2|Ωj |
3∑

k=1

Ns∑

s=1

csljk(wj(Ms
jk)−B(Ms

jk))2 sinθjk

(19)205

where N int
s is the number of Gaussian points Ms

j for quadrature over the cell interior Ωj , B is the reconstructed bottom via

a same-order operator as the one used for the variables, and cs are the corresponding weights. This formulation ensures the

source term discretization mirrors the flux contributions, preventing spurious flows over uneven topography and maintaining

equilibrium states critical for realistic simulations, as demonstrated in our steady-state benchmarks (Section 5).

3.2.2 Manning friction210

The Manning friction source term’s structure makes it rather straightforward to discretize in a well-balanced manner, since

it is proportional to the discharge components hu and hv; thus, the term vanishes identically, preserving equilibrium without

further modifications. However, near wet/dry fronts or in low-depth regions where h→ 0, desingularization is required to avoid

division by zero and ensure numerical stability. Following (Chertock et al., 2015), we introduce the discrete friction coefficient:

215

G(qj) :=−gn2


 2hj

h
2

j + max
(
h

2

j ,ε
2
)




7/3√
(hu)2j + (hv)2j . (20)

where hj = wj −Bj , and ε as indicated before, yielding the discretized friction term as:

SF j = G(qj)
[
0 (hu)j (hv)j

]T
. (21)

This formulation is incorporated semi-implicitly in time integration (Section 3.5) to handle the stiffness of the friction source

term (Chertock et al., 2015). In SWEpy, G is computed vectorially across all cells on the GPU, enabling efficient parallel220

evaluation even for large grids.

Although it may vary across the domain, in our experiments the n coefficient is set as a constant for the whole grid (cf. sect.

5.2)
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3.2.3 Coriolis

The Coriolis source term vanishes identically under zero-discharge equilibria where hu = hv = 0, ensuring inherent well-225

balancing in friction-dominated regimes, requiring no additional discretization strategies beyond direct averaging:

(SC)j = f
[
0 (hv)j −(hu)j

]T
. (22)

where f is the Coriolis parameter, typically approximated as 10−4,s−1 in mid-latitude regions (Kundu et al., 2012), as used in

our Maule 2010 tsunami validation (Section 5.2.2). However, for geophysical flows such as large-scale oceanic or atmospheric

circulations–relevant to the far-field tsunami propagation modeled in SWEpy–a more subtle form of well-balancing, known230

as geostrophic balance, is often required. This non-static steady state equilibrates horizontal pressure gradients with Coriolis

forces. Recent schemes have addressed this for rotating SWEs through distinct approaches (Desveaux and Masset, 2022;

Chertock et al., 2018). However, SWEpy’s central-upwind framework employs standard balancing, with potential for extensions

to enhance geostrophic fidelity in future developments.

3.3 Spatial Reconstruction Operators and Scheme Formulation235

This section presents the methodologies for spatial reconstruction of flow variables within SWEpy’s central-upwind finite vol-

ume scheme, tailored to address the physical and numerical demands of shallow water equations (SWE) on unstructured trian-

gular grids. The reconstruction approach is influenced by problem-specific features—such as variable bathymetry, roughness,

and domain extent—which dictate the need for accurate approximations to capture gradients and discontinuities, particularly

in near-field shocks and far-field wave propagation validated in Section 5. These approximations must satisfy critical prop-240

erties: well-balancing, ensuring exact preservation of steady states (e.g., lake-at-rest or geostrophic equilibria over complex

topography) to avoid spurious oscillations (Bryson et al., 2011), and positivity preservation, maintaining non-negative water

depths at wet/dry fronts to ensure physical realism in inundation scenarios. Numerical experiments with long-range tsunami

waves (Section 5) revealed that constant and linear reconstructions introduce excessive diffusion, compromising wave height

accuracy, thus motivating the development of higher-order operators. The reconstruction operators are defined as piecewise245

polynomials over each cell Ωj , expressed as:

q̃j(x,y) = qj + pq
j(x,y) (23)

where qj is the cell-averaged variable to be reconstructed, pq
j the interpolating polynomial with coefficients derived from

local geometry and neighboring variable cell-averaged values. This cell-wise approach allows tailored approximations, with

stencil selection critical for accuracy and stability.250
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Figure 3. Stencil illustration for the j-th cell (left) and its sectorial division (right). The blue triangles represent first-order neighbors Ωjk,

while the green triangles denote second-order neighbors Ωjkl.

Figure 3 illustrates the stencil structure, where Ωj0 (red) is the reference cell, surrounded by first-order neighbors (blue) and

second-order neighbors (green). For each Ωj0, the stencils are defined as

{Ωj0 ,Ωj1 ,Ωj2 ,Ωj3};{Ωj0 ,Ωj1 ,Ωj11 ,Ωj12};{Ωj0 ,Ωj2 ,Ωj21 ,Ωj22};{Ωj0 ,Ωj3 ,Ωj31 ,Ωj32}.

Linear reconstructions utilize the first group Ωji, while quadratic reconstructions (employing two Gaussian points per edge)

incorporate all cells of the big stencil Ωjkl. The right panel of Figure 3 depicts the selection process for these sub-stencils,

illustrating how barycenters of the chosen cells are constrained to lie within cones formed by lines connecting the reference

cell’s barycenter to its vertices.

3.3.1 Linear Piecewise Reconstruction with Minmod Gradient Limiter255

In this context, the general form of the interpolator (23) is given by:

q̃j(x,y) = qj + (qx)j(x−xj) + (qy)j(y− yj) (24)

with Dqj = ((qx)j ,(qy)j) denoting the numerical gradient. The selection criterion for this gradient determines the recon-

struction and responds to simulation needs. The variety of selection methods is extensive, as seen in classical approaches

(Nessyahu and Tadmor, 1990; Sweby, 1984; Van Leer, 1997), finite volume treatments (Arminjon and St-Cyr, 2003; Chris-260

tov and Popov, 2008; Jawahar and Kamath, 2000; LeVeque, 2002), and central-upwind schemes for Saint-Venant systems

(Bryson et al., 2011; Kurganov and Petrova, 2005). In SWEpy’s implementation, we follow Bryson et al. (2011) by construct-

ing three conservative interpolating polynomials Lj
k,l(x,y) over Ωj and pairs Ωj,k, Ωj,l (see Figure 3). With θ ∈ [1,2], define

q′j = θminmod{∇Lj
kl}. If substituting q′j in (24) causes midpoints to exceed local extrema, a constant plane through the cell’s

mean value is imposed; otherwise, Dqj = q′j . This ensures monotonicity and supports well-balancing by aligning with source265
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term discretizations, though it may introduce diffusion in smooth regions, as observed in Section 5. Details of the procedure

are synthesized in Algorithm A1 in the appendices.

The minmod operator, adapted from Bryson et al. (2011), constructs a piecewise linear interpolant using the cell and two

neighbors, minimizing the magnitude of the gradient unless the midpoints exceed the local extrema, in which case a constant270

value is imposed. The formulation is given as:

ũj = uj + ϕlin
x (x−xj) + ϕlin

y (y− yj) (25)

where (ϕlim
x ,ϕlim

y ) are the regularization parameters (limiters) computed according to the employed method. This ensures

monotonicity and supports well-balancing by aligning with source term discretizations, though it may introduce diffusion in

smooth regions, as observed in Section 5.275

3.3.2 Quadratic (WENO)

To mitigate numerical diffusion observed in lower-order reconstructions during long-range wave propagation (e.g., tsunami

simulations in Section 5), we implement a quadratic weighted essentially non-oscillatory (WENO) reconstruction operator,

adapted from (Zhu and Qiu, 2018) and applied to unstructured triangular grids like (Sunder et al., 2021), while adhering to the

original spatial constraints for stability.280

The reconstruction combines a least-squares quadratic polynomial pq,j over the full stencil with four linear polynomials pk,j

(k = 1, . . . ,4) over sub-stencils, expressed as:

q̃j(x,y) =
w0

γ0

(
p0(x,y)−

4∑

k=1

γkpk,j(x,y)

)
+

4∑

k=1

wkpk,j(x,y) (26)

where p0 is the quadratic polynomial and pk,j are the linear ones, with nonlinear weights w0,wk (k = 1, . . . ,4) computed

from smoothness indicators β0 (quadratic) and βk (linear) as wl = wl/(w0 +
∑4

k=1 wk), where wl = γl(1+ τ/(ϵ+βl)) and τ285

is a corrector parameter derived from the βl values (Zhu and Qiu, 2018).

The quadratic interpolant pq,j is obtained via least-squares fitting to the cell-averaged states over Ωj and its first- and

second-order neighbors, ensuring exact reproduction of the mean in Ωj . Details of this construction, leveraging only geometric

information (e.g., barycenters and area moments) without numerical quadrature for efficiency, are provided in (Fuenzalida A.

et al., 2025)–representing a key contribution to streamlined WENO implementations on CU schemes over unstructured grids.290

For stencil selection, grids with sufficient structure enable a fast, loopless index-based search; However, an efficient geo-

metric search algorithm is to be implemented to relax the requirements on the grid further. The procedure is summarized in

Algorithm A2, highlighting SWEpy’s efficient, GPU-parallelizable design. This WENO adaptation guarantees high-order accu-

racy in smooth regions while minimizing errors near abrupt gradients, a crucial enhancement for SWEpy’s far-field applications

where diffusion must be controlled without Riemann solvers (Kurganov and Petrova, 2005).295
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3.4 Wet/dry fronts reconstruction

High-order reconstructions, while effective for reducing diffusion in smooth regions, can produce unphysical negative wa-

ter depths near wet/dry interfaces, where the water surface intersects the bathymetry. To preserve positivity—ensuring non-

negative depths for numerical stability and physical realism—we conservatively modify the reconstruction following Bryson

et al. (2011). This procedure replaces affected reconstructions with a linear polynomial that maintains the cell-averaged value,300

thus conserving mass, and handles cases with one or two dry vertices differently to align the surface with the bathymetry at

those points.

For a cell where reconstructed depths at vertices yield negatives, the surface is redefined as a plane passing through points

that enforce positivity. In the two-dry-vertex case, the plane connects the dry vertices at bathymetric levels and the barycenter

at the mean surface elevation. For one dry vertex, it connects the dry vertex at bathymetry, a wet vertex at an adjusted elevation,305

and the barycenter. Mathematically, the plane equation is fitted to these points, ensuring h = w−B ≥ 0 across the cell while

preserving the mass. A schematic is provided in Figure 4, illustrating the geometric adjustment.

Figure 4. Schematic representation of the wet/dry treatment: (a) two dry points and (b) one dry point

This method guarantees positivity of the water column (h≥ 0) across the domain, essential for avoiding instabilities in

inundation problems like in the Conical Island test, or the Malpasset Dam failure case (Section 5), with the correction algorithm

summarized in Algorithm A3 and executed in parallel via GPU vectorization to identify and adjust interface cells efficiently.310

However, it does not ensure well-balancing near fronts, where slight imbalances may occur (Liu et al., 2018), suggesting

potential extensions with advanced reconstructions for future work.

3.5 Temporal discretization

Following the spatial discretizations detailed in previous subsections, the next challenge is to integrate the resulting system of

ordinary differential equations (12) in time, ensuring stability and accuracy across varying flow regimes. We implement both315

the Forward-Euler (FE) and a four-stage, third-order strong stability-preserving Runge-Kutta scheme (SSP RK4,3, referred to

as RK4,3 throughout our work) (Gottlieb et al., 2001) for time integration.
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For problems involving Manning friction a semi-implicit treatment is incorporated with the objective to enhance stability

without compromising efficiency (Chertock et al., 2015). We define the flux operator as:

Hj(qj , q̃j) =− 1
|Ωj |

∑

k∈Nj

(
Fjk

)
ljk + SBj , (27)320

where qj are the conserved variables, q̃j denotes the reconstructions. In a Shu-Osher form, the semi-implicit RK update is

then:

(
qj

)i =
i−1∑

l=0

αi,l

(
qj

)l +
∆t

2

i−1∑

l=0

βi,lHl
j + ∆t

(
G(qj)

)i−1
[
0 (hu

i

j) (hv
i

j)
]T

, i = 1,2,3,4 (28)

with ql
j are the intermediate state values, q0

j = q
(n)
j and q

(n+1)
j = q4

j . The nonzero coefficients for SSPRK(4,3) are

(
α1,0 α2,1 α3,0 α3,2 α4,3

)
=

(
1 1 2/3 1/3 1

)
,(

β1,0 β2,1 β3,2 β4,3

)
=

(
1 1 1/3 1

) . (29)325

while the FE formulation is identical with nonzero coefficients α1,0 = 1,β1,0 = 1.

This semi-implicit approach tackles numerical stability challenges from stiff, strongly coupled, or problematic source terms,

particularly in friction-dominated flows near wet/dry fronts, as validated in our dam-break cases (Section 5).

Finally, as a quantifier of the control process between the model evolution, the grid, and the information transport speed, the

Courant–Friedrichs–Lewy condition can be forced so the time step ∆t is adaptively computed as:330

∆t = CFL ·min
jk

rjk

max{ain
jk,aout

jk}
. (30)

where rjk is the perpendicular height from edge jk to the opposite vertex, and CFL is user-defined. Per Bryson et al. (2011),

CFL ≤ 1/3 is recommended, though our scheme supports larger values empirically, which ensures the positiy preserving

condition h = w−B ≥ 0. For SSP RK4,3, ∆t is calculated in the first stage and scaled for subsequent ones, balancing stability

and efficiency.335

4 Architecture & parallel structure

Having established the central-upwind fluxes, reconstructions, and source term discretizations in Section 3, we now describe

their GPU-optimized implementation in SWEpy. This implementation is designed for modularity, extensibility, and high-

performance parallel execution. It also accelerates computations on unstructured grids while allowing users to customize

models–such as adding new source terms for phenomena such as rheology or infiltration.340

SWEpy follows a modular programming paradigm, partitioning the complex finite volume solver into independent, reusable

components or modules (Parnas, 1972). Each module handles different tasks, including grid loading, analysis configuration,

preprocessing, time-step integration, spatial reconstruction, numerical flux and source term computations, or data output. This
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modular structure enhances user accessibility by isolating functionalities into self-contained units. It also promotes community-

driven development through simple modification or extension of modules to accommodate additional source terms, boundary345

conditions, and other user-specific needs.

Developed in Python, SWEpy utilizes CuPy, a CUDA-accelerated counterpart to NumPy, to perform array-based opera-

tions on GPUs. This feature enables significant speedups in parallel computations without demanding expertise in low-level

languages like C++ or CUDA (Okuta et al., 2017). By representing cell-based data (e.g., states and fluxes) as CuPy arrays in-

dexed by cell number—such as storing the mean water level of cell Ω3 in Wj[3]–SWEpy exploits data parallelism inherent to350

finite volume methods. Operations such as reconstructions and flux evaluations are vectorized across the entire grid, reducing

CPU-GPU transfers and leveraging the efficiency of single instruction, multiple data (SIMD) execution (Harris et al., 2020).

This architecture not only accelerates SWEpy’s central-upwind scheme on unstructured triangular grids (Section 3) but also

scales efficiently for large-scale simulations like the Maule tsunami (Section 5), delivering high-resolution results on consumer-

grade hardware. The runtime execution is organized into three phases: Preprocessing, Run-analysis, and Post-processing, as355

illustrated in the flowchart (Figure 5). Green boxes enclose GPU-accelerated tasks, segmented boxes indicate time-stepping

operations and general phases, and arrows over the green boxes highlight CPU-GPU synchronizations, providing a conceptual

map of data flow and parallelism.
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Figure 5. Overview of the SWEpy software parallel structure and architecture. The green box contains tasks performed on the GPU. The

inner segmented box contains tasks done by the chosen timestepping method. Outer segmented boxes indicate phases. Arrows going into/out

of green box indicate CPU-GPU synchronization.
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4.1 Preprocessing

As illustrated in the uppermost part of Figure 5, the preprocessing phase initializes the simulation by preparing input data360

for efficient GPU execution, minimizing subsequent CPU-GPU transfers, and ensuring scalability for large unstructured grids.

SWEpy accepts a user-generated triangular grid with vertex coordinates, connectivity arrays, and bathymetry values at vertices,

along with initial conditions for the conserved variables and a configuration file specifying simulation parameters such as

numerical tolerances, maximum runtime, gravitational acceleration, CFL number, and optional source term coefficients (e.g.,

Manning roughness or Coriolis parameter).365

Key geometric properties required for the numerical scheme–cell areas |Ωj |, edge lengths ljk, barycenters (xj ,yj), per-

pendicular heights rjk, and second area moments Ix, Iy, Ixy (Fuenzalida A. et al., 2025)–are computed in parallel across all

cells. Leveraging CuPy’s array operations, these calculations exploit vectorized formulas based on vertex coordinates, enabling

simultaneous evaluation on the GPU for the entire grid and accelerating setup for high-resolution domains typical in flood or

tsunami modeling.370

Bathymetry is then reconstructed using an interpolator chosen based on the selected reconstruction method. For example,

a linear interpolator is used with the minmod scheme (Bryson et al., 2011), while higher-order schemes like WENO are

employed for more accurate reconstructions. This process involves interpolating vertex values to both edge Gaussian points

and the cell interiors, which are required for source term evaluations in equation (19). The interpolation is performed using

algebraic expressions, such as calculating the gradient of a plane defined by three vertices. These operations are efficiently375

executed across the GPU, with precomputed values stored to optimize performance.

For quadratic WENO reconstruction, a vectorized algorithm identifies first- and second-order neighbors without going

through the data each time, flagging boundary cells lacking full stencils for fallback to minmod. Precomputation of least-

squares matrices (right-hand side of (A2))–dependent solely on grid geometry–is performed using CuPy’s linalg module

to invert and multiply stacked matrices in parallel, storing local coefficients as arrays for rapid reuse in the run-analysis phase380

and reducing overhead in time-critical loops. By offloading these computations to the GPU, preprocessing establishes a data-

parallel foundation, enabling SWEpy to handle complex simulations with minimized runtime delays.

4.2 Run-analysis

The run-analysis phase, as represented in the outer central segmented box of Figure 5, constitutes the core of SWEpy’s time

evolution, iteratively advancing the solution through spatial reconstructions, source term evaluations, flux computations, and385

state updates—all optimized for GPU parallelism to exploit the data-local nature of finite volume operations on unstructured

grids. This phase leverages CuPy’s array-based processing to perform calculations simultaneously across the entire domain,

minimizing serial bottlenecks and enabling efficient simulation of large-scale flows, such as those validated in Section 5.
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4.2.1 Reconstruction

For minmod reconstruction, SWEpy computes gradients for each cell using neighboring average states, interpolating conserved390

variables qj(Mjk) at edge midpoints for flux calculations in equation (16) and water surface values at vertices for wet/dry

handling. Users can optionally include a diffusion coefficient, which is commonly used in minmod reconstruction, ϑ ∈ [1,2]

to control dissipation, where higher values reduce diffusion but may introduce oscillations. CuPy’s Single Instruction Multiple

Data (SIMD) capabilities enable parallel gradient computation and interpolation across all cells, replacing sequential iterations

in Algorithm A1 with vectorized operations on the GPU for accelerated performance. This means that "for-loops" in alg. A1395

are performed in parallel over all cells.

In the case of the WENO reconstruction, the model solves the LSQ linear systems A2 using the precomputed matrices to

construct the reconstruction polynomials. These are used to reconstruct the values at the two gaussian midpoints of the sides

of each cell (for use in the numerical flux calculation 16), the values in the three gaussian points inside the cell (for use in the

source terms calculation 19), and the values of the water surface at the vertices (for use in the wet/dry reconstruction). Since we400

saved the stencils needed for each cell in the preprocessing phase, we can perform these reconstructions in parallel accelerated

by the GPU processing. Once again, this means that iteration in alg. A2 is parallelized over all cells.

Boundary cells lacking full second-order neighbors, identified during preprocessing, default to minmod reconstruction.

Wet/dry fronts are corrected by replacing invalid reconstructions (negative depths) using CuPy’s fancy indexing to locate

and adjust affected cells in parallel, executing Algorithm A3 via SIMD commands on the GPU without explicit loops. This405

means that “for-loops” in alg. A3 is replaced by SIMD commands for all cells, efficiently performed over the GPU. SWEpy’s

modularity supports user-defined reconstruction operators, requiring only interpolated values at specified points, facilitating

extensions like hybrid schemes while preserving GPU efficiency.

4.2.2 Source Terms

Bathymetry source terms are computed for all cells using equation (19), leveraging preprocessed bathymetry reconstructions410

and the active spatial operator. These evaluations are vectorized across the grid on the GPU, ensuring parallel computation even

for optional terms. The scheme’s flexibility accommodates multiple source terms, allowing users to define custom modules

(e.g., for rainfall, rheology, and/or turbulence) integrated seamlessly into the parallel workflow.

4.2.3 Local speeds and time steps

Using reconstructed states, velocities are desingularized and projected onto edge normals to compute local propagation speeds415

(18) for all edges simultaneously on the GPU. If adaptive time stepping is enabled, ∆t is determined enforcing the CFL stability

limit given the local propagation speeds, maximizing step size with the objective of enhancing efficiency and minimizing

diffusion (cf. (30)).

Forward-Euler integration applies (16) via array operations on the GPU, with CPU synchronization only for timestep ad-

vancement (one cycle in Figure 5). The SSP RK4,3 methods (Gottlieb et al., 2010), and the classical 4-step RK4 method420
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both decompose into four scaled Forward-Euler steps, executed sequentially on the GPU to avoid iterative solvers and reduce

overhead, optionally including friction corrections per stage.

Modularity enables user-defined integrators, such as implicit schemes for stiff problems, to be integrated into the GPU

workflow for future extensions.

4.2.4 Variable update and correction425

Fluxes are assembled using local speeds and reconstructions, updating cell states via the CU scheme in equation (16) in

a single GPU-parallel operation, followed by ghost cell boundary imposition. For Manning friction, an intermediate semi-

implicit correction adjusts the discharge vector-wise across the grid.

For multi-stage Runge-Kutta updates, intermediate states and fluxes are computed on the GPU and stored, with optional

friction corrections applied per stage, minimizing synchronization and preserving third-order accuracy.430

4.2.5 Boundary conditions

The program imposes the user-defined boundary conditions on the ghost cells’ states. Since each ghost cell has its definition,

mixed boundary conditions at border cells can be defined and imposed all at once. The modularity of the program even allows

for the definition of more complex functions that take care of the boundary conditions, like transport models for coupling other

solvers’ results, or higher-order extrapolations.435

Boundary conditions currently implemented via ghost cells are: zero-order fully permeable (soft) border, by replicating the

border cell’s state at the neighboring ghost cell; and impermeable (wall) boundary, by replicating the border cell’s water height,

but inverting the flow direction, resulting in a zero-flow interface.

We highlight that periodic boundary conditions may also be modeled by setting boundary cells as neighbors of other bound-

ary cells. For example, if we want the top and bottom borders of a channel to be periodic, the grid should consider the bottom440

cells as the upwards neighbors of the top border cells and vice versa. These kinds of boundary conditions are used in some of

our experiments.

4.3 Postprocessing

The post-processing phase, as shown in the lower portion of Figure 5, finalizes the simulation by managing data output and

termination criteria, leveraging SWEpy’s modularity to enable customizable workflows that support both research analysis and445

operational monitoring. Users can integrate routines—predefined or custom—to export results at any runtime stage, facilitating

immediate inspection and post-simulation processing.

For data saving, SWEpy offers built-in options to store initial conditions and bathymetry in .vtk format before run-analysis

begins, with subsequent snapshots saved at user-defined intervals ∆tsave until completion. This format is optimized for vi-

sualization tools like ParaView (Ayachit, 2015), enabling rendering of snapshots or animations to track flow evolution over450

unstructured grids. Time series of states for selected cells (e.g., virtual gauges in tsunami validations, Section 5) are also
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supported at the same ∆tsave. Integrated into the main runtime, this successive saving enables live visualization of emerg-

ing solutions, crucial for detecting anomalies in long-running simulations without halting progress. CuPy’s GPU-accelerated

NumPy equivalents (e.g., save, savez, savetxt) ensure efficient disk writes for large arrays, preserving performance even

during high-frequency outputs.455

Simulation termination occurs when the elapsed time reaches the user-specified target. Still, modularity allows for tailored

criteria, such as divergence detection (e.g., if adaptive ∆t drops below a threshold) or stagnation monitoring (e.g., negligible

progress after a set number of iterations). In our experiments, these controls prevented unproductive runs, complementing live

visualization for on-the-fly adjustments. This flexibility extends SWEpy’s utility, allowing integration with external tools for

automated error handling or real-time coupling in hybrid modeling setups.460

5 Results and Discussion

This section presents a series of numerical experiments to validate SWEpy’s implementation, accuracy, and performance against

analytical benchmarks and real-world cases, demonstrating the efficacy of the central-upwind scheme with WENO reconstruc-

tions and GPU acceleration detailed in Sections 3 and 4. We begin with canonical tests assessing spatial and temporal order,

well-balancing, positivity preservation, and diffusion reduction, followed by synthetic scenarios highlighting versatility across465

reconstruction operators. Finally, large-scale simulations of the 1959 Malpasset dam failure and 2010 Maule tsunami evaluate

real-world applicability, comparing results to historical data and established solvers like TELEMAC (Moulinec et al., 2011).

These experiments underscore SWEpy’s robustness for inundation with complex topography and long-range wave propagation,

achieving high-resolution outcomes on consumer hardware with computation times reduced by up to 21× via CuPy parallelism.

5.1 Benchmark tests470

5.1.1 Spatial convergence order study

To validate SWEpy’s spatial accuracy and verify the correct implementation of the bathymetry source term discretization (19),

we replicate the convergence test of Bryson et al. (2011), focusing on scenarios where well-balancing is essential to preserve

steady states over non-flat topography without introducing spurious oscillations. The test quantifies the order of convergence

for different spatial reconstruction operators (Section 3.3) in the presence of a smooth Gaussian bump.475

The computational domain is a 2×1 m rectangle discretized into a regular mesh of equilateral triangles, with triangles along

the top and bottom boundaries halved for consistent boundary treatment. The bottom topography is defined as

B(x,y) = 0.5 exp
(
− 25(x− 1)2− 50(y− 0.5)2

)
. (31)

The initial conditions are a uniform free-surface elevation w(x,y,0) = 1.0 m and velocity field u(x,y,0) = 0.3 m/s, v(x,y,0) =

0. Fully permeable (zero-gradient) boundary conditions are applied on all sides, with g = 1 m/s2. The flow evolves to a steady,480

non-uniform state by t≈ 0.07 s, at which point temporal errors are negligible and spatial errors dominate.
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Figure 6. Bottom topography on a nx = 32 point grid (left) and reference solution (right) for the Gauss bump. The zoomed-in circular

window highlights the grid structure pattern.

The reference solution is computed at t = 0.07 s on a fine grid with nx = 512 horizontal divisions, corresponding to approx-

imately 1.18× 106 cells. Figure 6 illustrates the Gaussian bump on a coarse grid (nx = 32) and the corresponding reference

solution. The L2 error is defined as

∥e∥2 =
√∑

j

|Ωj |
(
wj −wref,j

)2
,485

and convergence orders are estimated via successive grid refinements. Table 2 reports errors and orders for grids p = 0 to 3

(nx = 32 · 2p) across reconstruction–timestepper combinations, while figure 7 shows the log–log relationship between error

and effective grid spacing ∆x, with fitted power laws confirming the observed slopes.

Grid
Const. - FE Lin. - FE Lin. - RK4,3

L2 Err Ord L2 Err Ord L2 Err Ord

p = 0 1.7E-3 - 6.4E-4 - 6.4E-4 -

1 7.6E-4 1.15 1.6E-4 1.91 1.6E-4 1.90

2 3.1E-4 1.28 3.9E-5 1.63 3.8E-5 1.78

3 1.2E-4 1.43 9.6E-6 2.01 8.8E-6 2.12

Grid
Quad. - FE Quad.- RK4,3 Quad. - RK4

L2 Err Ord L2 Err Ord L2 Err Ord

p = 0 2.9E-4 - 2.9E-4 - 2.9E-4 -

1 6.7E-5 1.90 6.6E-5 1.90 6.6E-5 2.13

2 1.6E-5 1.78 1.5E-5 1.78 1.5E-5 2.11

3 3.9E-6 2.02 3.6E-6 2.12 3.5E-6 2.14

Table 2. L2 errors and numerical orders of accuracy. Grid number p

corresponds to nx = 32 · 2p horizontal divisions of the domain. Figure 7. Log-log plot of L2 error versus grid size ∆x, with fitted

power-law curves indicating convergence orders.

The results confirm the robustness of all configurations. Constant reconstruction yields better-than-first-order accuracy, while

linear and quadratic reconstructions approach second-order convergence, in agreement with the scheme’s formal order for490

smooth solutions. The theoretically attainable third-order accuracy with quadratic reconstruction is not achieved, suggesting

that further refinement of either the numerical flux formulation or the bathymetry source term discretisation may be needed to
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fully realise higher-degree polynomial benefits. Nevertheless, WENO-based quadratic reconstruction consistently produces the

smallest errors, outperforming lower-order approaches across all resolutions. This improved accuracy is particularly relevant

in precision-critical scenarios, where error propagation over long timescales can be significant.495

From a performance standpoint, generating the fine-grid reference solution with forward Euler time-stepping and linear

reconstruction required approximately 5 minutes wall-clock time on consumer-grade GPU hardware, including high-frequency

(0.01 s) output for animation purposes. This demonstrates that SWEpy can deliver high-resolution, well-balanced solutions for

smooth-bottom flows at modest computational cost.

5.1.2 Conical island wetting–drying benchmark500

To evaluate SWEpy’s wet/dry handling and reconstruction detail during wave-obstacle interactions—essential for coastal inun-

dation modeling—we simulate the conical island benchmark, a laboratory experiment by Briggs et al. (1995) recommended for

SWE validation in Synolakis et al. (2008). This test assesses (i) positivity preservation on sloped topography, where runup/run-

down induces dynamic wetting without unphysical negatives, and (ii) compares operator fidelity in capturing complex wave-

fronts. The domain is a 41× 30 m tank with permeable (soft) boundaries to absorb reflections, minimizing boundary artifacts.505

Discretization uses an equilateral triangular grid with edge length 0.5 m ( 12,000 cells) for isotropy. Bathymetry features a flat

bottom with a truncated cone (toe diameter 7.2 m, crest 2.2 m, height 0.625 m) centered at the origin, simulating an island. The

initial free-surface elevation is given by the solitary-wave profile:

w(x,y,0) =
H

d
sech2

(
γ (x−X1)

)
, (32)

with d = 0.320 m, H = 0.02976 m, and γ =
√

3H/4d3, positioned at X1 =−13 m. The initial velocity field is510

u(x,y,0) =
g

d
w(x,y,0)

(
1− 0.25

w(x,y,0)
d

)
, v(x,y,0) = 0, (33)

Derived to ensure consistent propagation, and extruded uniformly in the y-direction to simulate a two-dimensional wave front.

Simulations are conducted with constant, minmod, and WENO reconstruction operators for cross-comparison, employing a

forward Euler time integration scheme with a Courant-Friedrichs-Lewy (CFL) number of 0.25. This choice isolates spatial-

reconstruction effects, allowing a focused assessment of how each operator handles wet/dry transitions and wavefront mod-515

elling as the soliton interacts with the cone, as visually depicted in the initial setup of Figure 8.
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Figure 8. Configuration of original experiment (digitized from Briggs et al. (1995)) for the conical island benchmark, illustrating the solitary

wave profile approaching the truncated cone.

Figure 9 shows the free-surface elevation for solutions using each reconstruction operator at t = 7 s, when the leading

wave is passing the location of gauge 16. This snapshot provides a spatial context for the subsequent time-series comparison,

highlighting differences in wavefront sharpness and height at the gauge location. The WENO reconstruction exhibits the

sharpest and highest wave at gauge 16 (η ≈ 0.041 m), the minmod reconstruction shows moderate attenuation (η ≈ 0.03 m),520

and the constant reconstruction produces a visibly diffused wavefront (η ≈ 0.011 m). Green markers indicate the positions of

gauges 1, 6, 16, and 22 (respectively from left to right), aligning with the experimental setup for direct validation of runup

dynamics.

Figure 9. Comparison of wavefront measurement at gauge 16. Free-surface elevation at t = 7 s for (a) constant, (b) minmod, and (c) WENO

reconstruction operators. Green markers indicate the positions of gauges 1, 6, 16, and 22 (respectively from left to right).

Figure 10 presents time-series results for gauges 1, 6, 16, and 22 using the constant, minmod, and WENO reconstruction

operators. The laboratory records, originally timed from wavemaker initiation, have been shifted by −25 s to align incident525

wave arrival with simulations, corresponding to the estimated paddle deceleration inferred from signal traces in Briggs et al.

(1995).
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Figure 10. Time series of water heights at gauges 1 (a), 6 (b), 16 (c), and 22 (d). Solid line is laboratory data, and dashed lines are SWEpy’s

solutions.

Across gauges, WENO reproduces main crest height and arrival with minimal phase error, while constant and minmod

underestimate secondary oscillations and show greater dissipation during rundown. Quantitatively, the L2 norm of differences

between numerical and experimental series (Table 3) confirms that WENO and minmod exhibit similar performance, with530

WENO showing slightly higher averaged errors over the four gauges (|e|WENO
2 = 0.0321 vs. |e|minmod

2 = 0.0320), while both

outperform constant by approximately 40% (|e|constant
2 = 0.0533).

Rec. Gauge 1 Gauge 6 Gauge 16 Gauge 22

Constant 0.0302 0.0373 0.1014 0.0443

Minmod 0.0254 0.0288 0.0325 0.0412

WENO 0.0262 0.0296 0.0316 0.0409

Table 3. L2 error of time series for each reconstructor at the different gauges.
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Since L2 is phase-sensitive and the shift is estimated, we repeated analysis with uniform shifts from −0.10 to +0.30 s on

numerical series (Table 4), confirming WENO’s robustness (lowest scores across shifts), validating its capacity for dynamic

wet/dry reconstruction in coastal flows.535

Rec. +0.30 +0.25 +0.20 +0.15 +0.10 +0.05 -0.05 -0.10

Constant 0.0516 0.0518 0.0520 0.0523 0.0526 0.0529 0.0537 0.0540

Minmod 0.0285 0.0288 0.0292 0.0298 0.0304 0.0312 0.0329 0.0338

WENO 0.0274 0.0277 0.0282 0.0289 0.0298 0.0309 0.0334 0.0348

Table 4. L2 average error for each reconstructor with different time shifts of laboratory data to account for phase error.

Figure 11 illustrates spatial diffusion effects by comparing free-surface elevation at t = 13 s across the three reconstruction

operators, a stage where the wave has traversed the island and formed the cardioid-shaped crest pattern observed in labora-

tory measurements. The WENO reconstruction (panel c) preserves sharp gradients, with minimal attenuation and retaining

intricate structures. By contrast, the minmod reconstruction (panel b) maintains the overall pattern but introduces noticeable

smoothing, while the constant reconstruction (panel a) dissipates most fine-scale features, resulting in a blurred profile. To540

quantify these differences, we computed the depth-integrated potential energy E = ρg
∫
Ωstrip

η2,dΩ over a vertical strip from

xl = 9.5 m to xr = 14.5 m downstream, where η = w given the zero still-water level in the solitary-wave setup. The energies

are Econst = 0.015, Eminmod = 0.020, and EWENO = 0.044, confirming WENO’s superior wave energy retention in the post-

interaction field. Combined with the L2 analysis, these findings underscore WENO’s optimal balance between low numerical

diffusion and faithful waveform reproduction, whereas constant reconstruction underperforms in both aspects.545

Figure 11. Diffusion study. Solution at time t = 13 s for constant (a), linear (b), and quadratic (c) renconstructors. Green marks are the

locations of gauges 1, 6, 16, and 22 (from left to right).

From the previous comments, it can be appreciated that point measurements reflect only one aspect of the numerical result,

which can be helpful for specific events such as wave front arrival time, zones of maximum amplitudes, or inundations, among

others. In addition, Figure 11 shows a plan view to emphasize the importance of a global approach to the numerical results
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and their relation to the physical problem analyzed. In that direction, and drawing on the conclusion that the WENO-based550

approach captures relevant information for global analysis, Figure 12 provides a detailed sequence of the wavefront evolution

under WENO reconstruction, illustrating how it maintains sharp gradients and structural integrity throughout the interaction

at t = 7, 8, and 9 s. The leading crest propagates toward the island, splits, and wraps around its flanks, producing a clear

diffraction pattern. In the lee, the opposing wavefronts converge and form a coherent cusp that advances shoreward. A small,

nearly circular secondary wave is visible behind the main crest; this is a residual artifact of the wetting–drying correction555

process, but it decays rapidly and does not trigger further spurious oscillations. For the whole simulation, the shoreline evolves

smoothly, and the wavefront retains sharp gradients through the interaction, even in the presence of zeroth-order boundary

conditions. Thus, the wavefront sequence in Figure 12 illustrates that SWEpy’s implementations incorporate the appropriate

numerical foundations, enabling detailed descriptions of more complex real-world phenomena.

Figure 12. Wave-obstacle interaction study. Solution at times t = 7 s (a), t = 8 s (b), and t = 9 s (c), using the WENO reconstruction

operator. Green marks are the locations of gauges 1, 6, 16, and 22 (from left to right).

Overall, the conical-island benchmark confirms that SWEpy reproduces the key hydrodynamic processes involved in wave–obstacle560

interaction, including runup and rundown on sloping topography, diffraction around an emergent feature, and convergence in

the lee. The comparison with laboratory measurements demonstrates that the WENO reconstruction consistently achieves

the most faithful representation of height amplitude, phase, and post-interaction structure, while maintaining stability at wet-

ting–drying fronts, ensuring positivity preservation. Although small discrepancies remain–particularly in negative water levels

following the first rundown–these can be attributed to physical processes not represented in the depth-averaged SWE frame-565

work (e.g., vertical accelerations) and to uncertainties in aligning the laboratory and numerical time series. Taken together with

the other validation cases, these results highlight the model’s capability to resolve complex nearshore hydrodynamics with high

numerical fidelity, especially when paired with high-order reconstruction.

5.2 Real-life scenario 1: Malpasset Dam failure

To evaluate SWEpy’s performance in realistic inundation scenarios involving complex topography and moving wet/dry fronts,570

we reproduce the 1959 Malpasset dam failure on France’s Reyran River. This benchmark event is characterized by rapid
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flooding over highly irregular terrain (Moulinec et al., 2011). The case serves to validate the model’s positivity-preserving

reconstruction schemes, treatment of bathymetric source terms, and semi-implicit friction formulation described in Section 3.

The computational domain is discretized using an unstructured triangular grid adapted from the TELEMAC-2D validation

dataset. The mesh contains 26,000 elements, with characteristic triangle heights (measured from a vertex to the opposing side)575

ranging from ∆rmin = 4.01 m to ∆rmax = 401.95 m, and an average value of ∆ravg = 40.28 m.

The bathymetric and topographic data are derived from the 1931 IGN Saint-Tropez map, with additional refinement upstream

of the dam to better resolve steep gradients (Figure 13a, inset). The initial condition sets the reservoir water surface to an

elevation of 100 m upstream of the dam, represented as a vertical plane between coordinates (4701.18, 4143.10) and (4655.50,

4392.10), and 0 m elsewhere, with all cells above sea level initialized as dry (Figure 13b). Boundary conditions are specified580

as impermeable walls. The Manning roughness coefficient is set to n = 0.03 to match the TELEMAC configuration. The

simulation employs minmod reconstruction and adaptive time stepping with a Courant–Friedrichs–Lewy (CFL) number of

0.33, and is run until tmax = 4000 s.

Figure 13. Grid used in the simulation (a) with zoomed view of the upstream refined part, and initial water height (b). Points are the locations

of measured data.

Twelve virtual gauge locations are defined along the river valley to monitor the flood wave progression (Figure 13b). Three

gauges (transformers A, B, and C) are used to measure wave arrival times, while nine gauges (P6–P14) record maximum585

water heights from 1:400 scale laboratory experiments by Electricité de France. The simulated values of arrival times and peak

heights are reported in Table 5 alongside the corresponding experimental data and results from TELEMAC’s HLLC solver,

which is regarded as the most accurate scheme for this benchmark.
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Point
Recorded Data SWEpy TELEMAC

hmax [m] tArrA [s] hmax [m] tArrA [s] Err [%] hmax [m] tArrA [s] Err [%]

A - - - - - - - -

B - 1140 - 1071 -6 - 1142.9 0

C - 1320 - 1088 -18 - 1387.3 5

P6 40.3 - 37.72 - -6 81.58 - 102

P7 14.6 - 18.13 - 24 55.88 - 283

P8 24.0 - 22.46 - -6 53.21 - 122

P9 12.8 - 18.6 - 45 48.14 - 276

P10 11.8 - 15.34 - 30 36.88 - 213

P11 8.3 - 6.21 - -25 25.41 - 206

P12 10.1 - 5.89 - -42 19.29 - 91

P13 6.8 - 12.21 - 80 17.74 - 161

P14 5.4 - 4.32 - -20 12.71 - 135
Table 5. Simulation results and relative errors, evaluated against recorded data, for both TELEMAC and SWEpy

This benchmark provides a rigorous test of SWEpy’s ability to handle complex bathymetry, apply semi-implicit friction for

roughness effects, and accurately treat wetting–drying fronts in initially dry cells. While SWEpy exhibits notable discrepan-590

cies at certain locations, its relative errors are, in most cases, nearly an order of magnitude smaller than those produced by

TELEMAC’s finite volume solver. As noted in TELEMAC’s validation guide, these discrepancies may stem from several fac-

tors: (i) measurement uncertainty in the 1:400 scale physical model, (ii) omission of debris transport and sediment dynamics,

and (iii) the likelihood that the dam breach was not truly instantaneous. In addition, the combination of rapidly varying topogra-

phy and highly curved flow paths may violate the underlying assumptions of the shallow-water equations, further contributing595

to deviations between simulated and observed results.

TELEMAC’s accuracy improves with increasing distance from the dam, suggesting that numerical diffusion is a significant

factor in the model and may help explain its closer agreement in arrival-time estimates. Point P13 stands out as a pronounced

outlier for both solvers. Its location within a poorly resolved section of the inner riverbank likely contributes to the large

discrepancy in the predicted maximum height. To support this hypothesis, nearby points located outside the riverbank record600

simulated water heights between 4 m and 8 m, values that align more closely with the observed data.

Given the complex bathymetry and the tightly spaced unstructured grid, some numerical artifacts arise in our solutions

from the interaction between the wet/dry treatment and the impermeable-wall ghost-cell boundary conditions. These occur in

border cells where the bathymetry normal points outward from the domain, i.e., locations where water would naturally exit the

computational area. Such cells can act as an artificial source of inflow, as observed in the animations provided in the supplement.605

In the present case, these artifacts do not significantly affect the solutions presented. However, careful grid construction can

help prevent such situations. Figure 14 illustrates the original and corrected bathymetry near domain boundaries, showing a

noticeable reduction in spurious water influx after applying the correction.

29

https://doi.org/10.5194/egusphere-2025-3900
Preprint. Discussion started: 4 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 14. 3D View of solution before (a) and after (b) grid correction. Artificial water influx is reduced thanks to the bathymetry fix.

However, some artificial inflows remain even after applying this correction procedure. Figure 15 shows the wave arrival at

transformers A and C, where the inundation pattern is correctly reproduced but small residual mass contributions from these610

artifacts are still visible in some cells.

Figure 15. Top-down view of inundation wave arriving at transformer A (a) and C (b). Transformer locations are marked with magenta

boxes. Some water influx is present due to errors of the border-wet/dry interaction.

These results confirm that SWEpy can reliably reproduce complex inundation dynamics over irregular terrain while also iden-

tifying clear avenues for improvement. Zones with limited topographic resolution would benefit from targeted mesh refinement,

and the integration of additional physical processes, like rheology, sediment transport, and the influence of steep bathymetric

gradients or strong flow curvature, could further enhance predictive skill. The interaction between ghost-cell boundaries and615

the wet/dry treatment, identified here as a source of spurious inflow, will be studied in more detail in (Fuenzalida A. et al.,

2025).

5.3 Real-life scenario 2: Maule 2010 tsunami

To evaluate SWEpy’s capability for far-field tsunami simulation–specifically its ability to propagate long-period waves over

transoceanic distances with minimal numerical dissipation–we reproduce the 2010 Maule tsunami, generated by an Mw 8.8620
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earthquake along the Chilean subduction zone (Benavente and Cummins, 2013). This event produced measurable signals across

the Pacific basin, where Coriolis effects are dynamically relevant and numerical accuracy over very long propagation paths is

essential for preserving wave amplitude and shape. This test also enables assessment of the combined impact of WENO spatial

reconstruction and SSP RK4,3 time integration, in comparison with minmod and FE methods. The computational mesh is an

equilateral triangular grid generated from GEBCO bathymetry (GEBCO Bathymetric Compilation Group 2024, 2024) via a625

spherical–Cartesian transformation, containing approximately 106 cells (∼536 000 nodes). Because the mesh was constrained

to a rectangular bounding box for refinement, additional cells were created at the corners; the effective number of wet cells

representing the domain is therefore about 860 000. The initial sea-surface displacement is prescribed from the inversion by

Benavente and Cummins (2013) using the Okada fault-slip model, with zero initial velocity. Coriolis effects are included by

setting f = 10−4 s−1. Simulations span 24 h of physical time, using adaptive time stepping with a Courant–Friedrichs–Lewy630

(CFL) number of 0.25 for FE integration and 0.5 for RK4,3 integration, applied to each reconstruction–integrator configuration.

Two virtual wave gauges are positioned at the locations of NOAA DART buoys 32412 (southwest of Lima, Peru) and 21413

(southeast of Kyoto, Japan), as indicated in figure 16. At each gauge, the water-column height is recorded every 60 s of

simulated time, yielding continuous time series for the 24 h simulation period. This duration captures the primary tsunami

signal and subsequent wave groups at both stations. The numerical results are compared with quality-controlled, rectified635

DART measurements (Mungov et al., 2005), enabling a direct evaluation of amplitude and phase preservation over basin-scale

propagation.

Figure 16. Bathymetry grid employed for the Maule tsunami simulation.

Figure 17 compares the simulated tsunami waveforms at DART buoys 32412 (panel a) and 21413 (panel b) with quality-

controlled observations and reference simulations from the HySEA model. At buoy 32412, the WENO reconstruction with FE

integration provides the closest match to the observed primary wave amplitude and timing, and retains secondary oscillations640

more effectively than the minmod and constant reconstructions. Minmod with a high limiter parameter (ϑ = 1.4) reduces phase

drift relative to the constant scheme, but still underestimates the amplitude of later wave groups. At buoy 21413, located in
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the northwestern Pacific, all SWEpy configurations exhibit greater attenuation of the signal, reflecting the cumulative impact

of propagation distance and coarse resolution; here, the WENO scheme again preserves amplitude better than the other re-

constructions, with the minmood operator becoming too oscillatory, although the differences are less pronounced. Across both645

sites, HySEA results at 1.5 M cells show closer agreement with the DART data than SWEpy, consistent with the benefits of

higher effective resolution. While WENO incurs a modest computational cost increase over minmod (+14 minutes), it remains

faster than real time for the domain and resolution tested, and offers a consistent improvement in waveform fidelity.

Figure 17. Tsunami profile comparison at DART buoy 32412 (a) and 21413 (b). Results from the HySEA model are included for reference.

The FE+WENO result for buoy 21413 is omitted because of high-frequency oscillations that obscured the primary tsunami signal.

The FE+WENO result is not shown for buoy 21413 because the combination of forward Euler time-stepping and coarse

resolution over the long propagation path generated high-frequency oscillations that obscured the primary tsunami signal650

(figure 18). Table 6 quantifies the performance of each configuration by comparing the maximum wave height Hmax and

arrival time Tarr of the first wave against the DART observations. These metrics complement the full time-series comparison

by highlighting differences in amplitude attenuation and phase shift.
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Table 6. Performance summary of SWEpy configurations and HySEA for the Maule 2010 tsunami benchmark. Maximum surface displace-

ment Hmax [m] and arrival time Tarr [min] are extracted at the first wave crest for DART buoys 32412 (Lima) and 21413 (Kyoto). Relative

errors (%) are computed with respect to the DART observations.

Method
Lima Kyoto

Hmax Err% Tarr Err% Hmax Err% Tarr Err%

DART Data 0.237 - 196 - 0.098 - 1296 -

WENO+RK4,3 0.1034 -56.4 167.263 -14.7 0.022 -77.6 1151.39 -11.2

WENO+FE 0.1703 -28.1 167.098 -14.7 - - - -

minmod+RK4,3 0.0851 -64.1 167.197 -14.7 0.02551 -74.0 1152 -11.1

minmod+FE 0.1005 -57.6 169.068 -13.7 0.03611 -63.2 1158.1 -10.7

HySEA 0.1537 -35.1 190.064 -3.02 0.0534 -45.5 1281 -1.2

These metrics indicate that SWEpy underestimates the maximum crest height and predicts earlier arrivals at both stations,

whereas HySEA exhibits smaller amplitude bias—particularly at Lima—and reduced phase error, consistent with the visual655

comparisons in figure 17. The differences likely reflect a combination of: (i) source smoothing introduced during interpolation

to the computational grid, (ii) bathymetric resolution, with the HySEA configuration employing nearly twice as many cells,

and (iii) projection-related errors from the spherical–Cartesian transformation, given that HySEA solves the shallow-water

equations directly on the sphere. This last point is important, since we only converted the grid to cartesian coordinates via a

haversine transformation; however, formulas for fluxes, cell side length, cell area, and such were maintained, when they should660

be calculated considering transformations. Quantifying the contribution of each factor is left for future work, with the aim of

guiding targeted improvements to SWEpy’s far-field performance by a rigorous treatment of the spherical case.

While initially producing the most accurate waveforms at the near-field gauge, the FE time integrator—particularly in combi-

nation with the WENO reconstruction—develops spurious high-frequency oscillations after extended transoceanic propagation.

These oscillations overwhelm the primary tsunami signal at the Kyoto gauge, making the solution unsuitable for quantitative665

analysis. Figure 18 illustrates the modeled free-surface elevation at the moments when the wave passes the Lima and Kyoto

DART buoys, for both FE+WENO and RK4,3+WENO configurations, highlighting the marked difference in solution smooth-

ness.
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Figure 18. Snapshots of simulated free-surface elevation for the Maule 2010 tsunami at the times when the leading crest passes the locations

of DART buoys 32412 (Lima) and 21413 (Kyoto). Insets show zoomed view of wave at Lima buoy. Panels (a) and (b) correspond to forward

Euler (FE) integration, and panels (c) and (d) to SSP RK4,3 integration. Buoy locations are marked with magenta circles. These views provide

basin-scale context for the time-series comparisons in figure 17.

Control of these oscillations could, in principle, be achieved by reducing the CFL number; however, this would further

increase numerical diffusion. Even with a reduced value of CFL = 0.15, the oscillations remain excessive by the time the670

wave reaches Kyoto, producing spurious amplitudes of approximately 0.3 m, while simultaneously reducing the maximum

height at Lima to 0.14 m.

To evaluate computational efficiency and the benefits of GPU acceleration, the Maule 2010 scenario was repeated on a

simplified, non linearized, mesh of approximately 2.5× 105 elements, using different combinations of time integrators and

spatial reconstructors. At this reduced resolution, wave-height errors ranged from −98% to −13.4% and arrival-time errors675

from −2% to 26.5% relative to DART observations, reflecting the expected degradation in solution quality. Despite this,

execution times for all configurations were faster than real time (table 7).
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Table 7. Comparison of methods minmod+FE (fastest) and WENO+RK4,3 (slowest)

Method CPU (min) GPU (min) Speedup (×)

minmod+FE 37.32 2.87 13.0

WENO+RK4,3 360.49 17.31 20.8

Tests were performed on an Intel® CoreTM i5-10300H CPU (10th generation) and an NVIDIA GeForce GTX 1650 GPU,

both consumer-grade components released more than six years prior to writing. These results underscore SWEpy’s ability to

deliver high-performance simulations on widely available, non-specialized hardware.680

As a whole, the Maule 2010 benchmark results demonstrate SWEpy’s ability to reproduce the main features of basin-scale

tsunami propagation, including crest arrival timing, amplitude decay, and the modulation of subsequent wave groups. Among

the tested schemes, the WENO reconstruction consistently yields the most accurate far-field waveforms, though in combina-

tion with forward Euler integration it can develop basin-scale oscillations that obscure the signal at distant stations (figure 18).

These oscillations persist even under reduced CFL numbers, with the trade-off of increased diffusion and degraded amplitudes685

at nearer gauges. The SSP RK4,3 integrator mitigates this instability while preserving much of WENO’s accuracy, making it

the most balanced choice for long-range simulations. GPU acceleration enables faster-than-real-time performance even for the

most demanding configuration, with speedups exceeding 20× on consumer-grade hardware with respect to serial implemen-

tations. Together, these results confirm the model’s applicability to large-domain tsunami scenarios, while highlighting clear

paths for improvement in projection accuracy, bathymetric resolution, and source initialization to close the remaining gaps690

with higher-resolution reference models such as HySEA.

6 Conclusions

We presented SWEpy, an open-source Python package implementing a GPU-accelerated central-upwind finite-volume solver

for the shallow-water equations (SWEs) on unstructured triangular grids. The solver addresses hydrodynamic hazard scenarios

across a wide range of spatial and temporal scales, from localized flooding to transoceanic tsunami propagation, by combin-695

ing conservative numerical schemes with high-performance computing capabilities on consumer-grade hardware. Its modular

design allows researchers to adapt or extend the code for specific applications while maintaining computational efficiency and

numerical stability. Core features include robust wetting/drying treatment, low-diffusion reconstructions, and well-balanced

source-term discretizations, enabling reliable simulations in complex, high-risk environments.

A spatial-accuracy study was performed using grid refinement against a numerically converged reference solution computed700

with SWEpy on the finest mesh. The results showed monotonic L2 error reduction with decreasing ∆x, with constant recon-

struction achieving better-than-first-order accuracy and both linear and quadratic variants achieving second-order convergence.

The quadratic WENO reconstruction, while not attaining full third-order due to flux–bathymetry coupling, reduced errors by

an average of ∼ 58% relative to the linear reconstruction at matched resolution. Across all refinements, the well-balanced
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source-term discretization preserved steady-state conditions, providing a reliable numerical baseline for the subsequent real-705

case validations.

The accuracy and robustness of SWEpy–particularly of its wet/dry treatment–were further assessed using the well-known

Conical Island laboratory experiment, a benchmark widely employed in coastal hydrodynamics studies. This configuration

provides high-quality measurements of wave transformation, run-up, and diffraction around an isolated obstacle. SWEpy re-

produced the main free-surface patterns and wetting–drying transitions with close agreement to the experimental records,710

confirming its ability to capture the fundamental physics of wave–obstacle interaction. Beyond its intrinsic value as a verifica-

tion benchmark, the experiment established confidence in the solver’s applicability to more complex and operationally relevant

scenarios, such as large-scale dam-break inundations and basin-scale tsunami propagation over realistic bathymetry.

The real-case applications to the Malpasset dam-break and the Maule 2010 tsunami stress different aspects of the solver. In

Malpasset, characterized by being a short-duration, high-gradient flood in a confined valley, SWEpymaintained physically real-715

istic wetting–drying, conserved mass across advancing fronts, and achieved substantially lower height errors than TELEMAC’s

finite-volume solver, with arrival times generally within ∼ 18% of observations. By contrast, the Maule tsunami exposed cur-

rent limitations in basin-scale propagation: all SWEpy configurations underestimated the first-crest amplitude and arrived early

at both DART buoys, with WENO+FE performing best at−28% error in amplitude and−15% error in arrival times, but further

developing high-frequency oscillations over long propagation paths. WENO+RK4,3 is oscillation free and reduced dissipation720

and phase drift relative to lower-order schemes, but appreciable amplitude and timing biases remained. Likely error sources in-

clude source smoothing during interpolation, spherical–Cartesian projection error (versus HySEA’s spherical formulation), and

coarser bathymetric resolution. These results point to clear targets for improvement: projection accuracy, source initialization,

and mesh resolution. Addressing these would allow SWEpy to show stronger far-field skills at ocean-basin scale.

From a computational standpoint, SWEpy delivers high throughput even on modest hardware, that’s more than 6-years-old725

at the time. Using a simplified unstructured mesh of approximately 2.5× 105 elements for benchmarking purposes, the 24-

hour Maule 2010 tsunami scenario was simulated in approximately 17 minutes on an NVIDIA GeForce GTX 1650 laptop

GPU, representing a speedup of about ∼ 2100% relative to the CPU baseline, ran on an Intel® CoreTM i5-10300H processor.

These results, achieved through extensive CuPy-based vectorization and memory-efficient data structures, demonstrate that

large-scale, unstructured-grid SWEs simulations can be executed well within real-time on widely accessible systems, signif-730

icantly lowering the entry barrier for high-performance hydrodynamic modeling while retaining scalability for more detailed

configurations.

Despite these advances, the present implementation of SWEpy has clear limitations revealed by the validation exercises. In

the Maule 2010 tsunami case, amplitude underestimation and arrival-time biases highlight the need for improved bathymetric

interpolation, reduced projection error between spherical and Cartesian coordinates, and higher-resolution meshes for basin-735

scale simulations. In the Malpasset Dam case, complex gridding and bathymetry shows that the wet/dry treatment can interact

with the ghost cell boundary conditions and form artificial sources of mass influx, requiring further study. The sub-third-order

convergence observed for the quadratic WENO scheme suggests that flux–bathymetry coupling remains a limiting factor for

spatial accuracy. Furthermore, the solver inherits the hydrostatic assumption of the SWEs, which can introduce inaccuracies

36

https://doi.org/10.5194/egusphere-2025-3900
Preprint. Discussion started: 4 October 2025
c© Author(s) 2025. CC BY 4.0 License.



in steep or highly curved flows where vertical accelerations are non-negligible. Ongoing development is therefore directed at740

enhancing bathymetric handling, coordinate projection, spatial accuracy, and physical modeling to make SWEpy an even more

robust and attractive tool for a broad range of hydrodynamic applications.

Looking ahead, the flexibility of SWEpy makes it a solid foundation for extending its scope well beyond the present applica-

tions. Planned developments include additional source-term modules for rainfall and infiltration to enable catchment-scale hy-

drology, and rheological models for non-Newtonian fluids to simulate landslides, tailings dam breaches, snow avalanches, and745

debris flows. The existing implementation is also well suited for integrating two-layer shallow-water formulations (2LSWE),

following recent advances in central-upwind-type schemes (Cao et al., 2024; Liu, 2021a), to represent stratified and two-

phase flows such as water–mud avalanches or estuarine mixing. These upgrades, combined with continued improvements in

bathymetric representation, mesh refinement, and large-scale projection accuracy, will strengthen the solver’s predictive skill

across an even broader spectrum of hydrodynamic hazards. By retaining its modular, open-source, and GPU-accelerated de-750

sign, SWEpy is poised to become a versatile and high-performance modeling environment, bridging the gap between research

prototypes and operational tools for flood and tsunami risk assessment worldwide.

Code and data availability. SWEpy is available through GitHub at https://github.com/joaquinmeza90/SWEpy.git (last access: 10 August

2025), under a GPL license. SWEpy v1.0 was tagged as the first release at the time of submission of this paper. A static version of SWEpy

v1.0 is archived in Zenodo, DOI: https://doi.org/10.5281/zenodo.16789890 (Fuenzalida Alarcón et al., 2025a). A repository containing test755

cases showed in Section 5 is available at https://github.com/joaquinmeza90/SWEpy/tree/main/Examples (last access: 10 August 2025). This

repository includes many of the cases reported here, except those for which data cannot be publicly released but can be obtained from the

original sources (e.g., TELEMAC validation suite for Malpasset, GEBCO and NOAA for Maule).

Video supplement. Animations of both the Malpasset (3D and topdown view) and Maule (FE+WENO and RK4,3+WENO configurations)

scenarios simulated are available for visualization and download at https://doi.org/10.5281/zenodo.16798435760

Appendix A: Reconstruction Operators

A1 Linear (Minmod) Reconstruction

The minmod linear reconstruction is detailed in Algorithm A1.
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Algorithm A1 Minmod linear reconstruction

1: identify neighbors of each cell (cf. group Ωjk in Fig. 3)

2: construct planes passing through the mean value of the variable at the barycenters of the cell and its neighbors.

3: calculate ((qx)j ,(qy)j)

4: select the plane whose gradient’s magnitude is lowest among its three constructed planes

5: for each cell do

6: for each side do

7: if not mean value at cell<reconstructed value at midpoint<mean value at side's

neighbor then

8: impose a constant plane passing through mean value of the variable over the cell

9: end if

10: end for

11: end for

This ensures monotonicity by selecting the least oscillatory interpolant. The algorithm is implemented in parallel for all cells

in the SWEpy code by operating arrays containing the mentioned quantities.765

A2 Quadratic WENO Reconstruction

The quadratic WENO reconstruction is summarized in Algorithm A2, which outlines the steps for computing the operator on

unstructured triangular grids.

Algorithm A2 Quadratic WENO reconstruction

1: identify neighbors of each cell (cf. group Ωjk in Fig. 3)

2: identify neighbors of neighbors of each cell (cf. group Ωjkl in Fig. 3)

3: for each cell do

4: Construct quadratic polynomial interpolator uq (cf. Eq.A1)

5: Construct linear interpolators p1,j ,p2,j ,p3,j ,p4,j

6: Set linear weights γ0,γ1,γ2,γ3,γ4

7: Calculate smoothness indicators β0,β1,β2,β3,β4 ( Eq. (2.8) in (Zhu and Qiu, 2018))

8: Calculate corrector τ for WENO-Z procedure (Eq. (2.13) en (Zhu and Qiu, 2018))

9: Calculate and normalize nonlinear weights w0,w1,w2,w3,w4

10: Construct reconstruction operator over cell as q̃j = w0
γ0

(
p0−

∑4
k=1 γkpk,j

)
+
∑4

k=1 wkpk,j

11: end for

The detailed calculation procedure for the quadratic polynomial pj0(x,y) relies solely on geometric information associated

with the control cell Ωj . Consider the quadratic form:770
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pj0(x,y) = a0 + a1x + a2y + a3x
2 + a4y

2 + a5xy, (A1)

shown in 26, the associated integrals in the construction of the quadratic polynomials and smoothness indicators are calcu-

lated exactly.

This polynomial approximates the mean values over the stencil cells and exactly reproduces the mean in Ωj0 . The associated

integrals for smoothness indicators are computed exactly. Since the system is overdetermined (9 equations for 5 coefficients),775

it is solved via least-squares: given Ma = ∆q,

a
lsq
= (M tM)−1M t∆q. (A2)

This approach ensures high-order accuracy while preserving well-balancing in the central-upwind scheme. A further detailed

explanation of the reconstructor and its usage in the CU scheme will be in (Fuenzalida A. et al., 2025).

A3 Wet/dry treatment780

The positivity-preserving correction for wet/dry fronts is outlined in Algorithm A3.

Algorithm A3 Positivity preserving wet/dry reconstruction

1: find cells at the wet/dry front

2: for each cell in front do

3: determines if the cell has one or two dry vertices

4: if cell has two dry vertices then

5: v1 := (xjk1,yjk1)← dry vertex 1

6: v2 := (xjk2,yjk1)← dry vertex 2

7: v3 := (xj ,yj)← cell barycenter

8: Bjk1,Bjk2,W ← bathymetry at v1, bat. at v2, cell mean water level

9: replace reconstruction with plane passing through (v1,Bjk1), (v2,Bjk2), and (v3,W )

10: else if cell has one dry vertex then

11: v1 := (xjk1,yjk1)← dry vertex

12: v2 := (xjk2,yjk2)← wet vertex

13: v3 := (xj ,yj)← cell barycenter

14: Bjk1,w,W ← bat. at v1, cell mean w.l., 3/2(w - cell mean bat.)+bat. at v2

15: replace reconstruction with plane passing through (v1,Bjk1), (v2,W ), and (v3,w)

16: end if

17: end for
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This algorithm corrects reconstructions yielding negative depths by fitting a mass-conserving linear plane, executed in par-

allel on the GPU for efficiency.
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