

1 Signals Without Action: A Value Chain Analysis of 2 Luxembourg's 2021 Flood Disaster

3
4 Jeff Da Costa¹, Elizabeth Ebert³, David Hoffmann³, Hannah L. Cloke^{1,2}, Jessica Neumann¹

5
6 ¹Department Geography and Environmental Science, University of Reading, RG6 6AB, Reading, United Kingdom

7 ²Department of Meteorology, University of Reading, RG6 6ET, Reading, United Kingdom

8 ³Bureau of Meteorology, 3001, Melbourne, Victoria, Australia

9 *Correspondence to:* Jeff Da Costa (j.dacosta@pgr.reading.ac.uk)

10 **Abstract** Effective Early Warning Systems are essential for reducing disaster risk, particularly as climate change increases
11 the frequency of extreme events. The July 2021 floods were Luxembourg's most financially costly disaster to date. Although
12 strong early signals were available and forecast products were accessible, these were not consistently translated into timely
13 warnings or coordinated protective measures. While response actions were taken during the event, they occurred too late or
14 at insufficient scale to prevent major impacts. We use a value chain approach to examine how forecast information,
15 institutional responsibilities, and communication processes interacted during the event. Using a structured database
16 questionnaire alongside hydrometeorological data, official documentation, and public communications, the analysis
17 identifies points where early signals did not lead to anticipatory action. The findings show that warning performance was
18 shaped less by technical limitations than by procedural thresholds, institutional fragmentation, and timing mismatches across
19 the chain. A new conceptual model, the Waterdrop Model, is introduced to show how forecast signals can be filtered or
20 delayed within systems not designed to process uncertainty collectively. The results demonstrate that forecasting capacity
21 alone is insufficient. Effective early warning depends on integrated procedures, shared interpretation, and governance
22 arrangements that support timely response under uncertainty.

23

24 1 Introduction

25 1.1 Early Warning Systems

26 Effective Early Warning Systems are essential for disaster risk reduction. They identify, assess, and monitor upcoming
27 hazards, allowing people to take action to safeguard communities and livelihoods before a hazardhazard event occurs (Glantz
28 and Pierce, 2023; Kelman and Glantz, 2014; Tupper and Fearnley, 2023). Recognising their significance, the United Nations
29 has set an ambitious target through the Early Warnings for All (EW4All) initiative,to ensure that by 2027, everyone on
30 Earth should be covered by an Early Warning System (WMO, 2022).

31 As hydrometeorological hazards become more frequent and intense, global efforts to expand and improve early warning
32 capabilities have gained renewed urgency (Tupper and Fearnley, 2023; WMO, 2022). Early Warning Systems have therefore
33 become central to disaster risk management (UNDRR, 2015), yet their performance remains inconsistent, even in well-
34 resourced settings (Alfieri et al., 2012).

35 Early Warning Systems for hydrometeorological hazards consist of interconnected components, including weather and
36 hydrological forecasting, communication technologies and behavioural science (WMO, 2024a). Improving and
37 implementing effective warning systemEarly Warning System requires a holistic, interdisciplinary perspective that

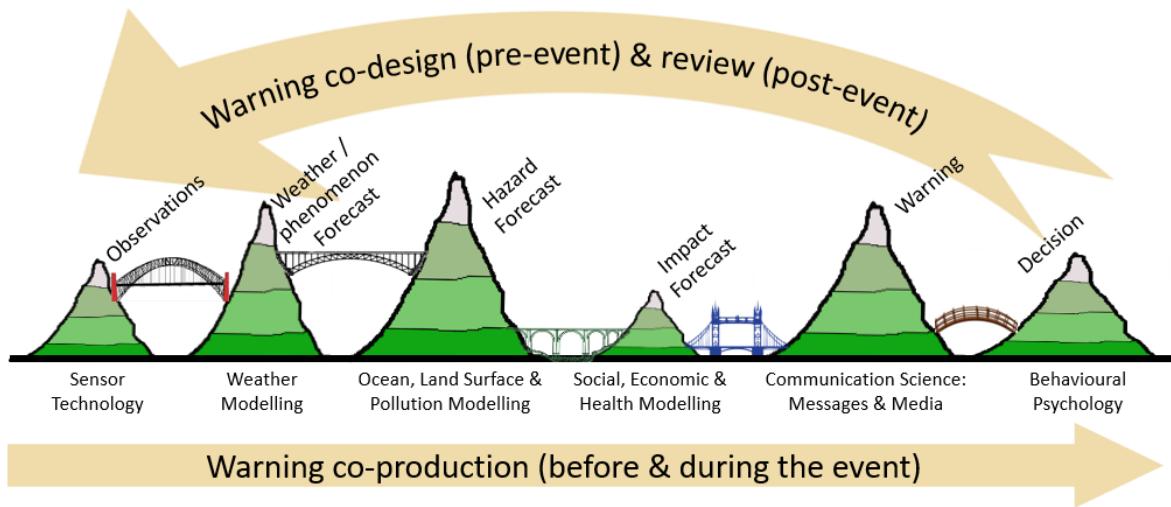
38 recognises the complex interactions between science, technology, and decision-making (Hermans et al., 2022; Oliver-Smith,
39 2018).

40 There is no universally agreed definition of an Early Warning System, as disciplinary and institutional perspectives vary
41 (Kelman and Glantz, 2014). The United Nations Office for Disaster Risk Reduction (UNDRR) defines Early Warning
42 Systems as integrated systems composed of four key elements: risk knowledge, monitoring and warning services,
43 dissemination and communication, and response capability. Such systems aim to enable individuals, communities, and
44 institutions to act in time to reduce disaster risk (UNDRR, 2015; WMO, 2022).

45 Evaluating the effectiveness of ~~warning system~~Early Warning Systems remains a recognised challenge (Basher, 2006;
46 Coughlan de Perez et al., 2022). While limitations such as institutional fragmentation, interpretive constraints, and
47 procedural rigidity have been widely documented, these issues are often overshadowed by discussions of forecast accuracy
48 or alert delivery (Alcántara-Ayala and Oliver-Smith, 2019; Mileti and Sorensen, 1990). While forecast accuracy and alert
49 dissemination remain important elements of early warning performance, recent work highlights the need to understand how
50 institutional structures, procedures and interpretation processes influence whether available information leads to timely
51 action (Busker et al., 2025; Coughlan de Perez et al., 2022; Diederichs et al., 2023). Each disaster unfolds within a specific
52 context and understanding these conditions is essential for analysing and evaluating ~~warning systems~~Early Warning Systems
53 on a case-by-case basis (Oliver-Smith, 2018).

54

55 **1.2 From Forecasts to Action: A Value Chain Approach**


56 We apply a value chain approach to examine how Early Warning Systems function in practice. The Value Chain Project
57 builds on the World Meteorological Organization (WMO) World Weather Research Programme (WWRP) High Impact
58 Weather (HIWeather) initiative by conceptualising Early Warning Systems as information value chains (Ebert et al., 2023;
59 Hoffmann et al., 2023; WMO, 2024b). The framework aims to improve decision-making by ensuring that each stage of the
60 chain adds value and supports consistent interpretation across institutional actors (WMO, 2024b).

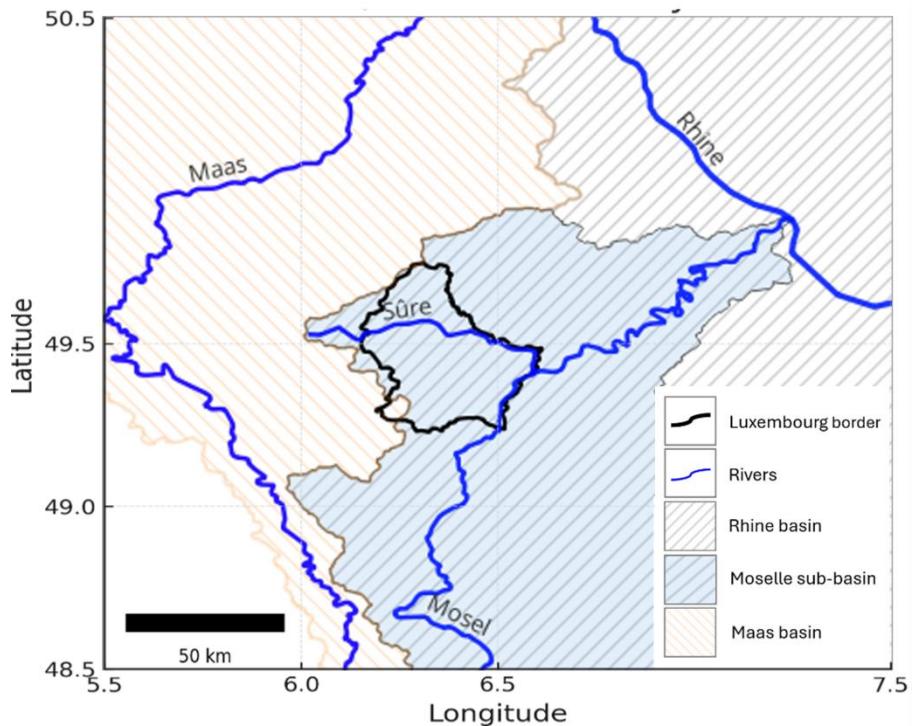
61 The value chain approach shifts focus from technical accuracy alone to the entire process by which forecasts are interpreted,
62 communicated, and acted upon. This includes the institutional decisions that shape how warning information is transmitted,
63 prioritised or delayed across different actors. The concept of “valleys of death” separating peaks of disciplinary expertise
64 was introduced by Golding (2022) to highlight communication breakdowns across scientific domains. This framing was later
65 expanded by the Value Chain Project, particularly by Hoffmann et al. (2023), who developed a full value chain model that
66 incorporates feedback loops, iterative co-production and institutional decision pathways (Figure 1).

67

68 In Luxembourg, early warning and emergency management are organised within a centralised national governance system,
69 with no intermediate regional tier between national authorities and municipalities. Forecasting, warning issuance, emergency
70 planning and crisis coordination are assigned to distinct national authorities. The following sections introduce the national

71 and transboundary context of the July 2021 floods, while Section 3 provides a detailed description of institutional roles,
72 responsibilities and activation protocols.
73

74
75 **Figure 1** The warning chain as five “valleys of death” separating peaks of disciplinary expertise, showing the capabilities and outputs
76 (mountains) and information exchanges (bridges) linking the capabilities and their associated communities (Tan et al., 2022). Before and
77 during an actual severe event, the flow of information is predominantly downstream, while for post-event assessments, implementation of
78 improvements, and creation of new services the chain becomes a feedback loop. Figure originally published in Hoffmann et al. (2023) and
79 used here with co-author permission.


80 1.3 Transboundary Risk and Governance in Luxembourg

81 Luxembourg lies almost entirely within the Moselle sub-catchment of the Rhine basin (European Commission, 2021). Its
82 eastern border follows the Moselle, Sauer, and Our rivers. As shown in Figure 2, most of the country lies within a broader
83 transboundary catchment that connects Luxembourg with Germany, France, and Belgium. Along most of its eastern border,
84 Luxembourg and Germany jointly administer sections of the Moselle and Sauer and Our rivers through condominium
85 arrangements (see Box 1). These arrangements assign shared legal responsibility to both countries and do not establish a
86 fixed national boundary along the rivers (Moselle Convention States, 1956; Our-Sauer-Moselle, 1984; Zaiotti, 2011).

87 Although these agreements apply only to specific river sections, they highlight a broader reality in which physical risk is
88 shared across borders, but mandates for managing that risk remain nationally defined (European Commission, 2021).

89 National authorities remain responsible for issuing forecasts, setting alert thresholds and activating emergency plans within
90 their own jurisdictions. Cross-border coordination depends on established protocols, but operational decisions are still taken
91 within national systems (Becker et al., 2018; Schanze, 2009).

92 Luxembourg is highly integrated with its neighbours. Roughly 47 percent of the workforce commutes daily from
93 neighbouring countries and over 170 nationalities reside within its borders (STATEC, 2022). Public services operate in
94 multiple languages, including Luxembourgish, French, and German. While people, services, and information flow fluidly
95 across borders, responsibility for warning and emergency coordination remains limited to national authorities.

Figure 2 Luxembourg's position the Moselle and Maas catchments (sub-basin of the Rhine basin) within the Rhine basin. The national Luxembourg border (thick black line) outlines Luxembourg the national border, which lies almost entirely within the Moselle sub-catchment (blue dashed), itself part of the larger Rhine basin (grey dashed). A small portion in the southwest lies within the Meuse basin (orange dashed). The eastern border follows the Moselle, Sauer, and Our rivers (blue lines), parts of which are governed as international condominiums.

96 In July 2021, the meteorological conditions that led to flooding developed across the region. While neighbouring countries
97 experienced similar rainfall and catchment conditions, the warnings issued and decisions taken varied (Busker et al., 2025;
98 Grimaldi et al., 2023). Whether a hazard event leads to disaster depends not only on the physical event, but on how risk is
99 interpreted and managed within institutional and social systems. Disasters occur when hazards interact with conditions of
100 vulnerability, exposure, and governance, rather being a direct outcome of the hazard itself (Ball, 1975; Gould et al., 2016).
101 Luxembourg provides a relevant case as its location, demographic profile, and degree of cross-border integration make it an
102 important setting to examine how nationally organised warning and response systems operate in a transboundary context. It
103 shows that institutional responsibilities influence responses to shared risks. We examine how forecast information was-were

104 interpreted and acted upon within this transboundary environment and how institutional structures shaped the management
105 of the 2021 flood event.

Box 1. River Condominiums Parts of the Moselle, Sauer and Our rivers form Luxembourg's eastern border with Germany. In these sections, the rivers are governed as condominiums, legal arrangements that grant joint sovereignty to both countries over the entire waterbody. This arrangement originates from Article 27 of the 1816 Treaty of Aachen, which established joint sovereignty over rivers forming the state boundary and later reaffirmed in bilateral treaties in 1984. While cooperation exists on navigation and infrastructure, emergency and warning responsibilities remain defined at the national level even in areas where physical geography is shared but operational governance is not (Moselle Convention States, 1956; Our-Sauer-Moselle, 1984; Treaty of Aachen, 1816; Zaiotti, 2011)

106

107

108 **1.4 The July 2021 European Flood Disaster**

109 In July 2021, extreme rainfall and widespread flooding tested early warning and emergency systems across western Europe.
110 Between 12-15 July, heavy rainfall, saturated soils, and a slow-moving low-pressure system triggered devastating floods in
111 Germany, Belgium, Luxembourg, France and the Netherlands (EUMETSAT, 2021). In Germany alone, the floods caused
112 over 180 fatalities and an estimated €32 billion in losses (Rhein and Kreibich, 2024; Zander et al., 2023). In Luxembourg,
113 the event was the costliest on record, with damages exceeding €145 million and more than 6,500 homes inundated (ACA,
114 2021). In Luxembourg, the July 2021 floods were formally declared a 'natural disaster', reflecting the scale of impacts
115 relative to national coping capacity rather than absolute losses. While the event was smaller in scale than the catastrophic
116 flooding experienced in parts of Germany, it exceeded available response and recovery capacities in Luxembourg and
117 constituted the most damaging flood event on record nationally.

118 Luxembourg's position within a dense river network contributes to recurrent flood exposure, particularly in low-lying
119 valleys and urbanised catchments. Luxembourg's position within a dense river network contributes to frequent flood
120 exposure, especially in low-lying valleys and urbanised catchments. Historically, major floods occurred in winter, driven by
121 snowmelt and seasonal rainfall, with notable events in 1983, 1993, 1995, 2003, and 2011 (ACA, 2021; AGE, 2021b). These
122 events, though limited in number, have raised concern over a possible shift in seasonal flood patterns. Recent studies suggest
123 that off-season flood risk may be increasing in the region (Ludwig et al., 2023). On 14 July 2021, the Godbrange weather
124 station recorded 105.8 l/m² of rainfall in 24 hours, the highest national daily rainfall total on record.

125 Although forecasts were available, warnings did not reach higher level colour-coded alert levels until shortly before impacts
126 began to unfold. Challenges in communication, including a warning notification via the GouvAlert mobile notification
127 system (Gouvalert) that was not delivered and delays in institutional coordination, contributed to ambiguity regarding
128 responsibilities and the actions expected of different actors, appropriate actions. These factors, combined with limited
129 preparedness across agencies, revealed underlying structural constraints in Luxembourg's Early Warning System (Szönyi et
130 al., 2022).

131 Germany and Belgium have received substantial scholarly attention (Lietaer et al., 2024; Ludwig et al., 2023; Mohr et al.,
132 2023; Rhein and Kreibich, 2024; Thielen et al., 2023), but Luxembourg's experience remains comparatively
133 underexamined. Broader European studies have analysed forecast and warning performance, most notably (Busker et al.,
134 2025), who provide a synthesis across countries. In these accounts, Luxembourg is only briefly addressed.

135

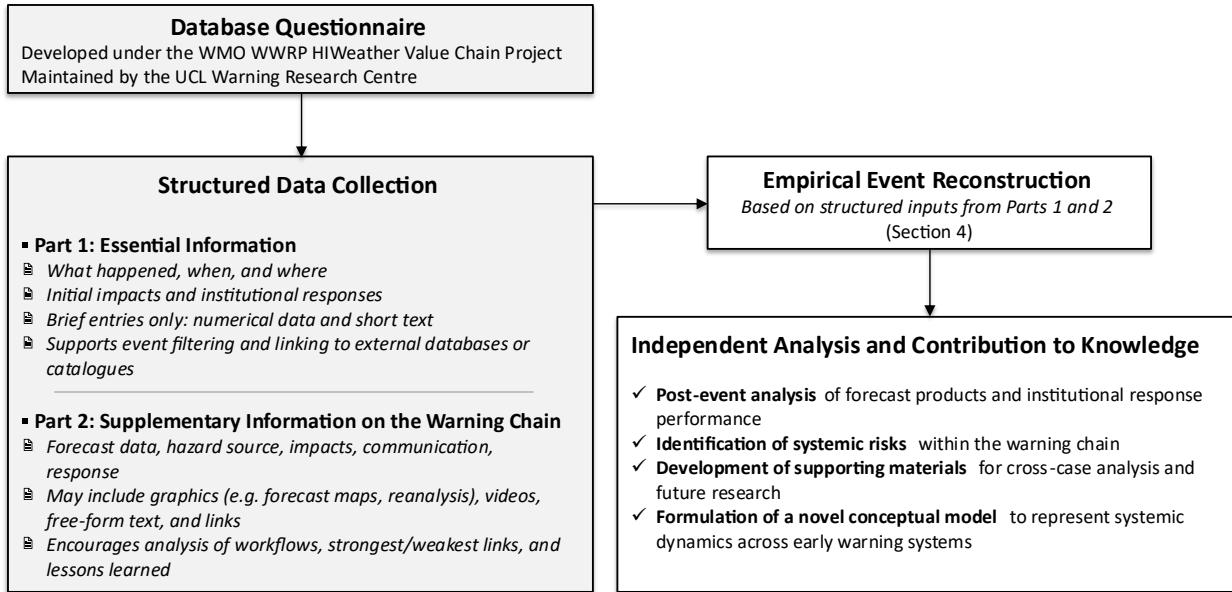
136 **1.5 Learning from the 2021 Flood in Luxembourg**

137 Using a value chain approach, we reconstruct how forecasts and information was interpreted and shared across agencies and
138 institutional levels. The analysis traces communication and decision points across the ~~warning system~~Early Warning System
139 to examine how information moved and what institutional processes shaped the response (Busker et al., 2025; Hagenlocher
140 et al., 2023). This includes exchanges between national meteorological services, water management authorities, emergency
141 coordination bodies, and local responders.

142 To explore how institutional structures may have influenced the timing of ~~response action~~ during the event, we present the
143 Waterdrop Model, a conceptual model that illustrates how forecast signals interact with organisational constraints and
144 ~~procedural institutional~~ thresholds for decision-making. The model was developed during post-event reflection and
145 synthesizes patterns observed in the Luxembourg case and comparable events. It is revisited in section 6.

146 While the findings are specific to Luxembourg, they reflect broader challenges in countries where early warning depends on
147 multi-level institutional coordination. This analysis helps clarify how governance structures, communication dynamics and
148 procedural thresholds shape the performance of ~~warning systems~~Early Warning Systems and their capacity to support timely,
149 protective action.

150


151 **2. Methods**

152 **2.1 The Value Chain ~~Framework-Approach~~ and Database Questionnaire-~~Tool~~**

153 A central element of the value chain approach is a database questionnaire designed to evaluate Early Warning Systems
154 performance. It builds on the WMO WWR HIWeather Value Chain Project, which conceptualise Early Warning Systems as
155 information chains that extend from forecast generation to community-level protective action, including measures taken by
156 individuals, communities, and institutions-(Ebert et al., 2023; Hoffmann et al., 2023; WMO, 2024b). The questionnaire is
157 maintained by the University College London (UCL) Warning Research Centre (Ebert et al., 2024; UCL, 2025).

158 The database questionnaire combines quantitative and qualitative inputs to assess how weather information moves through
159 the warning chain, including bulletins, official statements and institutional actions. It is structured around a sequence of
160 value chain stages and was designed to capture technical, institutional and communication-related factors (Ebert et al., 2024;
161 Hoffmann et al., 2023). The approach differs from traditional forecast evaluation methods by focusing on how warnings are
162 understood, interpreted and aected upontranslated into action by different actors across the chain.

163 We completed the standard version of the [database](#) questionnaire retrospectively using available public records, institutional
164 documentation and supplementary datasets. The completed questionnaire will be archived with the [UCL Warning Database](#)¹
165 and made available upon publication. Figure 3 provides a schematic overview of this methodological structure.

166

167 **Figure 3 Schematic representation of the methodological structure used.** The structure of the database questionnaire (Part 1: Essential
168 Information; Part 2: Supplementary Information on the Warning Chain) is adapted from Hoffmann et al. (2023). The original questionnaire
169 also includes Part 3, a subjective effectiveness rating, which was not used in this study. These inputs also informed the Waterdrop Model
170 presented in Section 6.

171 **2.2 Applying the Value Chain Approach to the 2021 Flood in Luxembourg**

172 We applied the database questionnaire to the July 2021 floods in Luxembourg to reconstruct how forecasts were generated,
173 interpreted and communicated, and how decisions were made within national institutions. The analysis focuses on what
174 information was available, how it was interpreted and how it shaped the activation of protective measures [and emergency](#)
175 [plans](#). In addition to the questionnaire, we drew on multiple forensic analysis frameworks to examine how decisions were
176 made, including Forensic Investigations of Disasters (FORIN) (Alcántara-Ayala and Oliver-Smith, 2016) and the Post-Event
177 Review Capability (PERC) (Szönyi et al., 2022). These frameworks aim to identify underlying risk drivers and institutional
178 barriers to effective [responseaction](#).

179 We used a structured timeline-based approach to organise institutional messages, [alert levels](#) [colour-coded alert levels](#) and
180 decision points. This included bulletin releases, agency communications and reported emergency actions. Forecast and

¹ UCL. (2025). UCL Warning Database. Warning Research Centre, University College London.
<https://www.ucl.ac.uk/sts/warning-research-centre/ucl-warning-database>

181 reanalysis data were sourced from the ECMWF Severe Weather Catalogue (Magnusson, 2019), ERA5 reanalysis (Hersbach
182 et al., 2020), and the European Severe Storms Laboratory (ESSL) (www.essl.org).
183 Operational mapping from the Copernicus Emergency Management Service (CEMS) (<https://emergency.copernicus.eu>) and
184 event reporting from the international disaster database (EM-DAT) (www.emdat.be) supplemented the analysis. We also
185 used grey literature, press releases, social media and institutional archives to reconstruct public messaging, institutional
186 coordination and informal communication dynamics. Information was reviewed in three working languages
187 (Luxembourgish, French, German), and findings were triangulated across sources. Where available, supplementary data
188 were accessed through institutional partnerships or publicly released repositories.
189

190 **3. Institutional and Legal Framework for Disaster Management in Luxembourg**

191

192 **3.1 Institutional Roles and Responsibilities**

193 The institutional framework for weather and flood forecasting and emergency response in Luxembourg is centralised at the
194 national level but implemented through coordination between ministries, public agencies and municipalities.
195 The Ministry of Home Affairs is responsible for emergency planning and ~~collaborates with supervises~~ the High
196 Commissioner for National Protection (*Haut-Commissariat à la Protection Nationale*, HCPN), the central crisis coordination
197 body. The HCPN, established in 2016 under the HCPN Law, ~~which~~ leads preparedness and interministerial coordination
198 under the Prime Minister (HCPN Law, 2016).
199 The Ministry of the Environment, Climate and Sustainable Development manages water resources and oversees flood
200 preparedness through the Water Management Administration (*Administration de la Gestion de l'Eau*, AGE). AGE conducts
201 hydrological monitoring, ~~issuing~~ flood forecasts and warnings, and ~~maintaining~~ ~~maintains~~ the national Flood Forecasting
202 Service (*Service de Prévision des Crues*, SPC) (HCPN Law, 2016).
203 The Grand Ducal Fire and Rescue Corps (*Corps Grand-Ducal d'Incendie et de Secours*, CGDIS) is Luxembourg's unified
204 emergency service agency. Created by the *loi du 27 mars 2018 portant organisation de la sécurité civile* (Law of 27 March
205 2018 on the Organisation of Civil Security), it merged local fire brigades, emergency medical services, and civil protection
206 units into a single national structure. ~~CGDIS operates within a multi-hazard civil protection framework, with responsibility~~
207 ~~for operational response to meteorological, hydrological and other civil protection emergencies in Luxembourg.~~ ~~CGDIS~~
208 ~~leads operational response during severe weather and flooding and with both municipalities and national coordination bodies~~
209 (CGDIS Law, 2018). Article 69 of this law also mandates a *Plan National d'Organisation des Secours* (National
210 Organisation of Emergency Services Plan, PNOS), which sets national coverage objectives, defines the operational
211 organisation of rescue services, and establishes performance evaluation mechanisms. The PNOS was approved and signed in
212 October 2021 and had not yet been implemented ~~during the July 2021 flood event~~. In July 2021, operational response to
213 floods and severe weather was carried out under the structures established by the CGDIS law and the applicable *Plans*

214 *d'intervention d'urgence (Emergency Intervention Plans)*, including the *PIU Inondations* (Flood Emergency Intervention
215 Plan) and the *PIU Intempéries* (Severe Weather Emergency Intervention Plan).

216 MeteoLux is the sole national authority for issuing meteorological warnings and forecasts. It operates under the Ministry of
217 Mobility and Public Works and is part of the Air Navigation Administration (*Administration de la navigation aérienne*),
218 based at Luxembourg-Findel Airport. All national warning thresholds are based on data from its single official observation
219 station at Findel. MeteoLux uses a four-colour coded alert level scale (Table 2). While it issues public forecasts and
220 warnings, it cannot independently activate emergency plans or emergency alert systems. ~~Only alerts issued by MeteoLux are~~
221 ~~considered valid for national decision-making. Institutional Meteorological forecasts and warnings issued by MeteoLux are~~
222 ~~recognised as the official basis for decision-making, while Crisis Unit activation are determined by the HCPN and the Prime~~
223 ~~Minister thresholds and any Crisis Unit activation must be decided by the HCPN and the Prime Minister~~ (HCPN Law, 2016;
224 Ministry of State et al., 2015).

225 AGE monitors river levels through a network of over 30 hydrometric stations and issues flood forecasts and warnings via
226 www.inondations.lu. Flood warnings are also displayed on www.meteolux.lu alongside meteorological warnings. The Flood
227 Forecasting Service (*Service de prévision des crues*, SPC), chaired by AGE, applies a three-level vigilance scale (Table 3)
228 linked to defined update frequencies and bulletin issuance. Under the Flood Emergency Intervention Plan, SPC also advises
229 the HCPN when procedural hydrological thresholds for institutional activation are reached.

230 The Technical Agricultural Services Administration (*Administration des services techniques de l'agriculture*, ASTA)
231 operates a network of more than 35 meteorological stations used for agricultural and environmental monitoring
232 (www.agrimeteo.lu/Agrarmeteorologie). These stations are not integrated into the official ~~warning system~~Early Warning
233 System and their data are excluded from formal alert protocols. National decisions rely exclusively on MeteoLux forecasts
234 (Ministry of State et al., 2015)

235 The HCPN manages infocrise.lu, Luxembourg's national crisis information portal, which provides official emergency plans,
236 institutional updates, and public guidance. Official alerts are disseminated via GouvAlert, the national mobile notification
237 system in place during 2021, following activation by the competent authorities.²

238 *Table 2* presents an overview of the institutions responsible for issuing, interpreting, and implementing warnings in
239 Luxembourg's disaster risk system.

Actor	Role	Key Responsibilities
Ministry of Home Affairs	National oversight	Leads disaster risk strategy, supervises HCPN, and coordinates inter-agency emergency response. Reports to parliament.
Ministry for the	Sectoral coordination	Oversees water resource management and municipal

² GouvAlert was replaced by LU-Alert (<https://lu-alert.lu/en>) in 2024, Luxembourg's current national ~~warning system~~Early Warning System. All analysis here refers to the alerting framework in place during the July 2021 flood event.

Environment		flood preparedness; chairs AGE.
High Commissioner for National Protection (HCPN)	National crisis coordination	Maintains emergency plans, oversees crisis evaluation, requests Crisis Unit activation. Manages www.infocrise.lu
Prime Minister	Executive leadership	Authorises Crisis Unit activation and leads national-level coordination during major crises.
MeteoLux	Meteorological authority	Issues weather warnings via a four-colour scale via www.meteolux.lu . Uses a single official station (Findel) for national alert thresholds. Cannot activate crisis measures independently.
AGE (Administration de la gestion de l'eau)	Flood forecasting	Manages flood forecasts and river monitoring. Chairs the SPC. Publishes flood warnings on inondations.lu (also displayed on meteolux.lu) and advises HCPN under the Flood Emergency Intervention plan.
CGDIS (Grand-Ducal Fire and Rescue Corps)	Emergency services	Leads operational response, evacuation, and public safety during extreme weather and floods.
ASTA (Administration des Services Techniques de l'Agriculture)	Agrometeorological monitoring	Operates more than 35 weather stations for agriculture. Not integrated into official warning protocols; issues alerts via www.agrimeteo.lu
Municipalities	Local responders	Implement local flood protection measures and coordinate community-level actions.
Crisis Unit	Multi-agency coordination	Activated by the Prime Minister. Coordinates strategic response involving HCPN, MeteoLux, AGE, CGDIS, and other bodies.
www.inondations.lu	Public flood alert platform	Disseminates flood alerts, bulletins, and hydrological information to the public.
www.infocrise.lu	Government crisis information portal	Provides background on emergency protocols and institutional roles. Not used for real-time alerts.
www.meteolux.lu	Public weather alert platform	Disseminates official weather warnings issued by MeteoLux and displays flood warnings mirrored from

240

241 **Table 1 Roles and responsibilities of national and local actors in Luxembourg's disaster management system.**

242

243 **3.2 Emergency Planning and Activation Protocols**

244 Luxembourg's emergency coordination system for severe weather and floods is defined by emergency intervention plans,
 245 adopted by decree in 2015 (severe weather) and 2019 (floods). These plans set out colour-coded alert levels, institutional
 246 roles and activation procedures (HCPN, 2019; Ministry of State et al., 2015). Both plans use a four-phase colour-coded
 247 warning structure as summarised in *Table 3*.

248 **3.2.1 Severe Weather Emergency Intervention Plan**

249 MeteoLux determines warning levels based on procedural rainfall thresholds and duration-intensity curves (HCPN, 2015). It
 250 issues public warnings, but these do not automatically trigger activation of emergency responseplans. Once a red alert level
 251 is issued, an inter-institutional evaluation unit, chaired by MeteoLux, assesses the situation. The HCPN is informed and
 252 determines whether the Crisis Unit should be activated. That decision rests with the Prime Minister and is based on
 253 institutional review rather than forecast level alone (HCPN, 2019).

254 **3.2.2 Flood Emergency Intervention Plan**

255 Flood alerts are issued by the SPC, chaired by AGE, based on procedural hydrological thresholds and real-time river data.
 256 Warnings are published through inondations.lu and mirrored on meteolux.lu (AGE, 2021d). These bulletins are shared with
 257 CGDIS, municipalities and the HCPN through institutional channels.

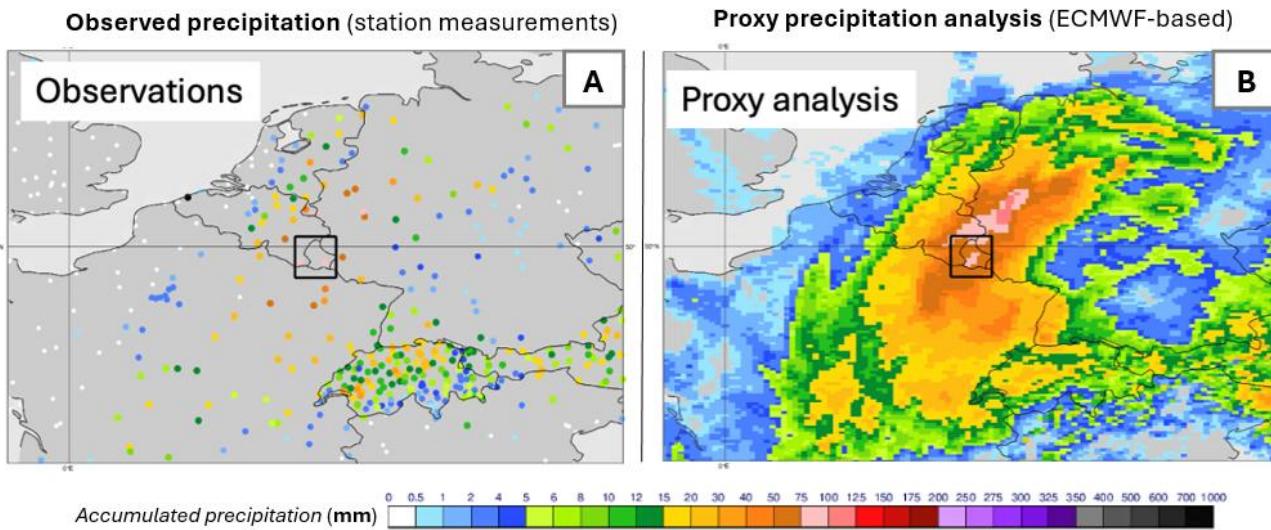
258 In the red alert phase, AGE must notify the HCPN, which evaluates whether national coordination is needed. As with the
 259 meteorological plan, activation of the Crisis Unit activation is not automatic. It is authorised only when the Prime Minister
 260 concludes that multi-agency coordination is required, typically for complex or cross-border events (HCPN, 2019). Once
 261 activated, the Crisis Unit coordinates national emergency response actions, including evacuation, emergency logistics, and
 262 communication. It includes representatives from HCPN, MeteoLux, AGE, CGDIS, Police, the Army, and other ministries
 263 depending on the scenario (Ministère de l'Intérieur and HCPN, 2021a).

264

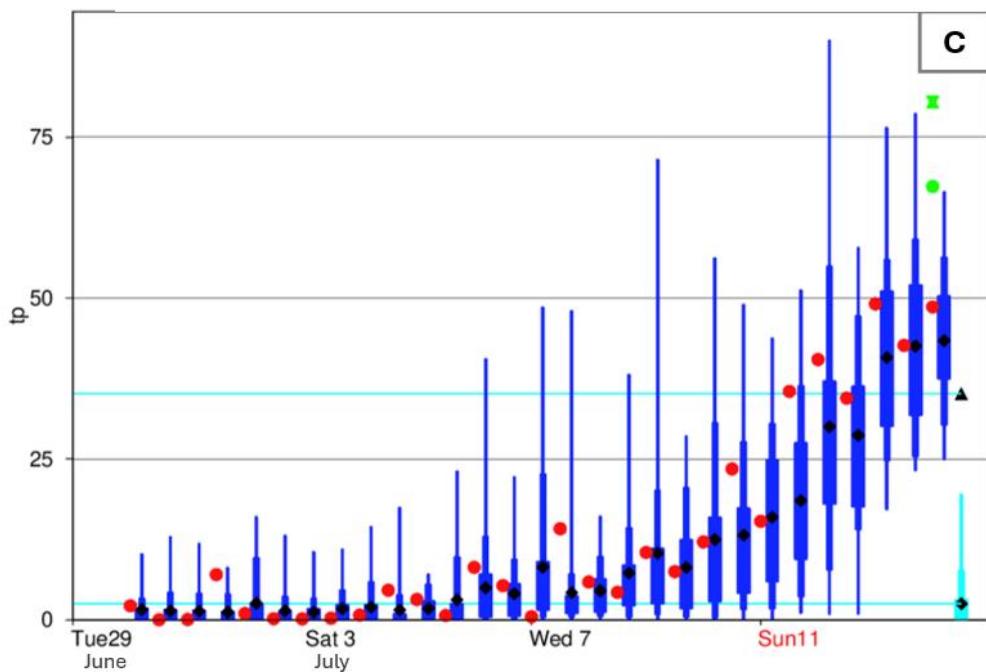
265 **Table 2 Alert thresholds for rainfall and flood events** (adapted from HPCN, 2019; Ministère d'État et al., 2015; Ministry of Home
 266 Affairs, 2021). Official documentation does not explicitly specify whether thresholds are defined using forecasted or observed data. In
267 practice during July 2021, rainfall alerts issued by MeteoLux were forecast-based, while flood alerts issued by AGE relied on observed
268 river levels. Terminology reflects the institutional configuration and official wording in use during July 2021. Subsequent changes
269 introduced after 2024 are outside the scope of this analysis. Documentation does not explicitly define whether thresholds are based on
270 forecasted or observed data. In practice, rainfall alerts from MeteoLux are forecast-based, while flood alerts from AGE rely on observed
271 river levels.

Emergency Intervention Plan	Alerts	Description	Thresholds set by Emergency intervention plans.
Severe Weather Emergency Plan (for rainfall only)	Green	No danger	NA
	Yellow	Potential Danger	NA

	Orange	Danger	31-45 mm in 6 hours or 51-80 mm in 24 hours
	Red	Extreme Danger	More than 45 mm in 6 hours or 80 mm in 24 hours
Flood Emergency Plan (Excluding Flash Floods)	Green	No flood risk (normal phase)	NA
	Yellow	Potential flood risk (vigilance phase)	Triggered by meteorological conditions, whether observed or forecasted, indicating a potential rise in water levels
	Orange	Minor flood risk (pre-alert phase)	Initiated when river levels approach pre-alert levels within 24 hours.
	Red	Major flood risk (Alert phase)	Triggered when river levels reach or exceed alert levels.


272

273 **4. Reconstruction of the Flood in Luxembourg**


274 **4.1 Antecedent Conditions and Rainfall Evolution**

275 In the months preceding July 2021, Luxembourg experienced frequent precipitation, leading to saturated soils and an
 276 elevated risk of surface runoff across much of the country's river basins (EUMETSAT, 2021; Ludwig et al., 2023;
 277 Tradowsky et al., 2023). At the same time, sea surface temperatures over the Baltic Sea were more than 8°C above average,
 278 increasing atmospheric moisture availability (Lang and Poschlod, 2024). This warm and humid air mass contributed to
 279 greater atmospheric instability in the region and conditions became increasingly favourable for extreme precipitation (Mohr
 280 et al., 2023).

281 The critical rainfall event was associated with low-pressure system Bernd, which became quasi-stationary over western
 282 Europe due to a blocking anticyclone positioned to the northeast (Mohr et al., 2023). Between 13 and 15 July, regional totals
 283 ranged from 100 to 200 mm. On 14 July, the Godbrange station in central Luxembourg (approximately 12 km east-northeast
 284 of the Findel station) recorded 105.8 mm in 24 h, the highest national daily total on record (MeteoLux, 2021).
 285 The volume and persistence of rainfall triggered widespread surface runoff and fluvial flooding. Ensemble forecasts began
 286 signalling the potential for high rainfall from 7 July onwards, with observed and proxy totals later confirming extreme
 287 precipitation across Luxembourg (Figure 4).

ECMWF ensemble forecast precipitation evolution over Luxembourg

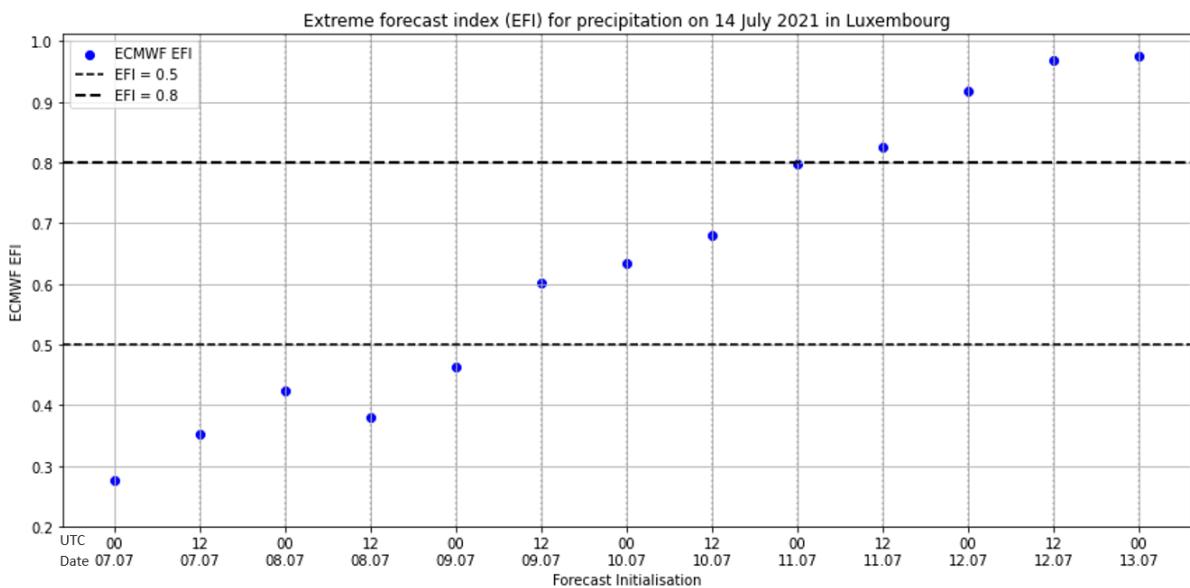
Figure 4 Observed, proxy and ECMWF ensemble forecast precipitation associated with the 14–15 July 2021 flood event in Luxembourg. (A) Observed precipitation from station measurements for 14–15 July 2021, aggregated over a $1^\circ \times 1^\circ$ grid box centred on 49.75° N, 6° E (Luxembourg). (B) Proxy precipitation analysis for the same period and spatial domain, used where direct observations are spatially or temporally limited. In both panels, colours indicate accumulated precipitation (mm). (C) ECMWF ensemble forecast precipitation evolution over the same $1^\circ \times 1^\circ$ grid box. Blue box-and-whisker plots represent the distribution of IFS ensemble forecast members (IFS-ENS) for each forecast date, red dots indicate the deterministic control forecast, and cyan box-and-whisker plots show the corresponding IFS model climate. Black triangle denotes the maximum value of the model climate. Green hourglass symbol represents the mean of station observations within the analysis box, while the green dot indicates the proxy precipitation totals for 14–15 July. Turquoise horizontal lines denote fixed reference thresholds derived from the model climate. From 7 July onward, forecast spread increases markedly, with some ensemble members exceeding 50 mm, consistent with the high precipitation totals observed in panels A and B.

289 **4.2 Flood Onset and Impacts**

290 Flood onset began late on 13 July, with sustained rainfall intensifying overnight into 14 July (Mohr et al., 2023). Water
291 levels rose across the country (Douinot et al., 2022). The SPC issued a yellow vigilance alert at 14:30 on 13 July, upgraded
292 to orange by midday on 14 July and to red at 17:15 the same day (AGE, 2021a). At the time of the yellow level alert on 13
293 July, river levels were already increasing across several catchments. Flooding began during the early hours of 14 July as
294 rainfall intensified and runoff accumulated. By the time the red level alert was issued in the late afternoon of 14 July,
295 flooding was already affecting multiple river systems, with water levels continuing to rise and peak conditions extending into
296 15 July. Rainfall accumulations in some basins approached or exceeded 100-year return periods, and institutional-procedural
297 thresholds for red-alert activation were surpassed at multiple sites (AGE, 2021a; Mohr et al., 2023).

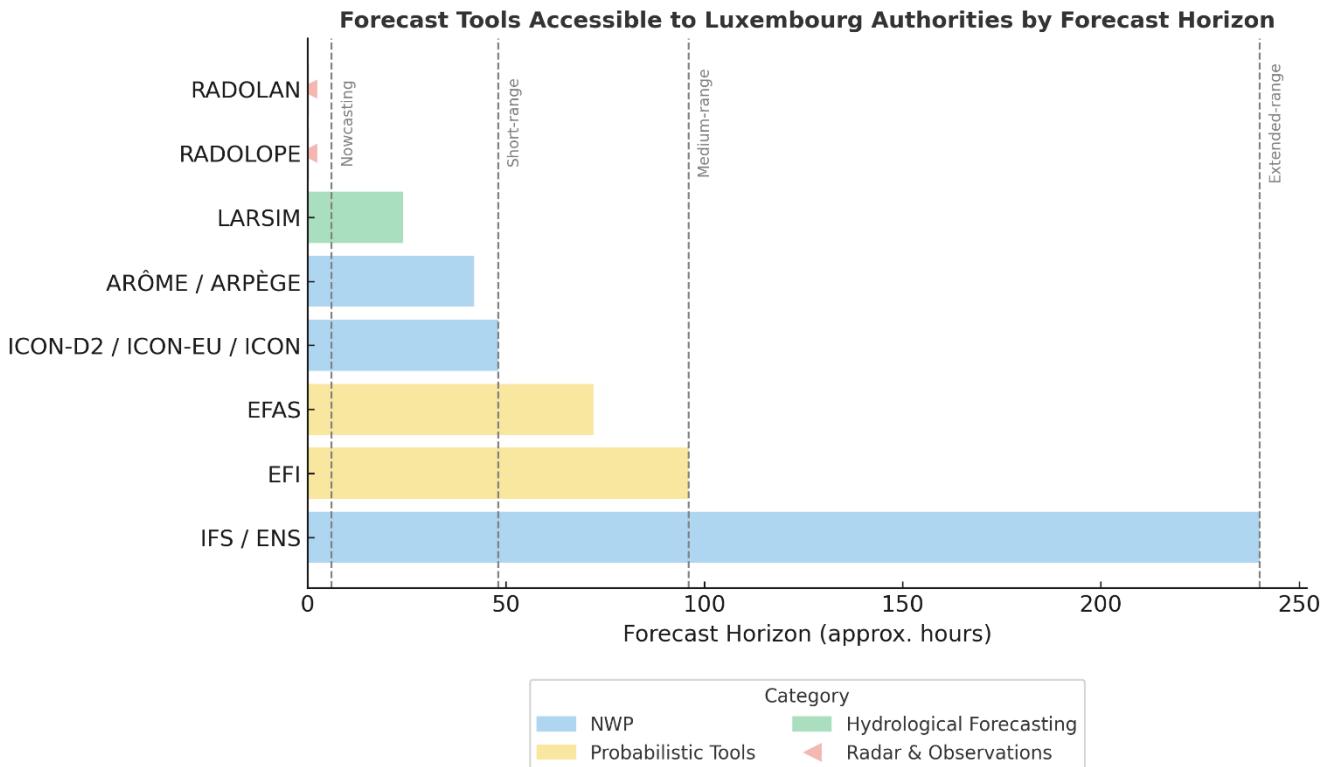
298 Hydrologically, the event was marked by multi-day discharge exceedances with prolonged peaks in several catchments. In
299 Ettelbruck, water levels remained above warning thresholds for over 30 hours. Most catchments in central and northern
300 Luxembourg experienced prolonged peaks, while the Moselle showed more modest response due to its engineered channel
301 structure (Douinot et al., 2022). Despite occurring in midsummer, the event's discharge profile resembled winter flooding,
302 with high antecedent flow, prolonged flood persistence, and strong basin connectivity (Ludwig et al., 2023).

303 River levels began receding on 15 July. Emergency damage assessments were initiated the same day by CGDIS and AGE,
304 in coordination with municipal authorities. Clean-up and infrastructure recovery efforts extended through the weekend of 17–
305 18 July (CGDIS, 2022) Nationwide, more than 6,500 households were affected, and insured damages exceeded €145 million
306 (ACA, 2021).


307

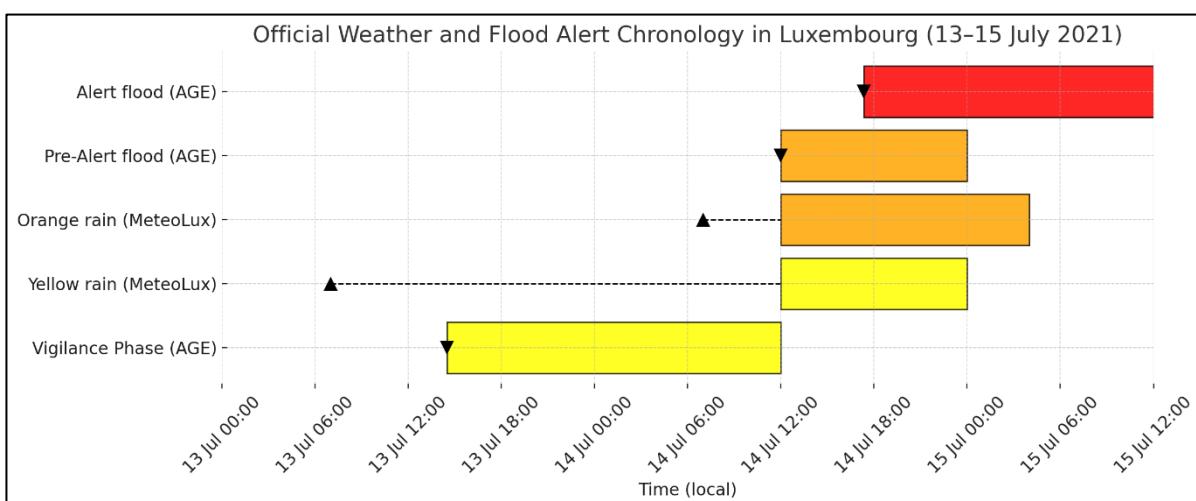
308 **4.3 Forecast Indicators and Access**

309 Multiple forecast products were available to national authorities in the lead-up to the July 2021 flood. Forecast outputs
310 signalled a strong likelihood of a high-impact rainfall event several days before the onset of flooding, with signals for a
311 high-impact rainfall event emerging several days before onset. From 8 July, ECMWF ensemble precipitation forecasts
312 showed increasing spread and by 12 July, the ensemble mean exceeded the 99th percentile (Magnusson et al., 2021). The
313 Extreme Forecast Index (EFI) for Luxembourg surpassed 0.5 by 9 July and reached 0.8 by 11 July, indicating a very strong
314 signal for extreme rainfall relative to model climatology. This signal remained consistent across successive model cycles.
315 Building on Mohr et al. (2023), who calculated EFI for a larger region mostly covering Germany, we produced values for a
316 $1^\circ \times 1^\circ$ grid box centred on Luxembourg, supporting their findings and adding new insight into Luxembourg-specific EFI
317 evolution. EFI values were derived from ECMWF ensemble forecasts archived in the Severe Event Catalogue (Magnusson,
318 2019) using ECMWF's operational method, which compares the forecast ensemble distribution to a reforecast-based
319 climatology. Figure 5 shows the daily progression of EFI values, with a steady increase in signal strength over the preceding
320 week.


321 Deterministic forecasts from ECMWF and MeteoLux did not exceed Luxembourg's national red alert level precipitation
322 thresholds (MeteoLux, 2021). Forecast totals for the Findel reference station remained within the orange level alert range

323 (Table 3). National alert protocols at the time were based on procedural deterministic forecast thresholds and did not include
 324 public facing ensemble-derived indicators such as EFI (Busker et al., 2025).
 325 Forecast access and operational capacity during July 2021 are documented in national user reports and institutional guidance.
 326 MeteoLux and AGE had operational access to ECMWF's IFS/ENS, ICON-D2, ICON-EU, Météo-France ARÔME and
 327 ARPÈGE, and radar composites including RADOLAN (AGE, 2021c; Kobs, 2018). Figure 6 summarises these products,
 328 grouped by type and indicative lead time in 2021. AGE also operated the Large Area Runoff Simulation Model
 329 (*Landesweiter Flächenhaushalts-Simulationsmodell*, LARSIM), which ingested ensemble and radar-based inputs. Forecasts
 330 were updated every three hours under routine operation and hourly during heightened alert phases. AGE is Luxembourg's
 331 EFAS (European Flood Awareness System) contact point and had access to EFAS outputs during the flood period
 332 (Dieschbourg and Bofferding, 2021; Grimaldi et al., 2023). No formal EFAS alert was issued, an informal notification for
 333 the Sauer basin was issued at 11:31 on 14 July, less than six hours before peak impacts (Grimaldi et al., 2023; Luxembourg
 334 Government, 2021b). EFAS had issued alerts for the Rhine, Ourthe, Rur, and Moselle from 10 July, but not for Luxembourg
 335 due to dissemination criteria requiring $\geq 2\ 000\ \text{km}^2$ upstream area and persistence across ensemble runs. The internal report
 336 on the flood event stated: « *il reste à préciser que les notifications de l'EFAS sont limitées aux grands fleuves (Moselle, Sûre
 337 et Alzette). En aucun cas, les notifications de l'EFAS ne renseignent sur un danger potentiel* » (“it should be noted that
 338 EFAS notifications are limited to the major rivers Moselle, Sûre, and Alzette. In no case do EFAS notifications provide
 339 information on a potential danger”) (Luxembourg Government, 2021b).

340


341 **Figure 5 Progression of ECMWF Extreme Forecast Index (EFI) for 14 July 2021.** Each blue dot shows the EFI value from a different
 342 forecast initialisation between 7 and 13 July. The horizontal dashed lines indicate thresholds of 0.5 (moderate signal) and 0.8 (very strong
 343 signal). EFI values steadily increased over time, indicating high confidence in an extreme rainfall event.

344

345 **Figure 6 Forecasting products and data sources available to Luxembourg's national meteorological and hydrological authorities**
 346 (**MeteoLux and AGE**) during the July 2021 flood event. [The table](#) [This presentation](#) distinguishes between weather and flood-related
 347 operational use, grouped by function. Forecast horizons are indicative of standard availability during 2021. This table was compiled from
 348 institutional documentation and peer-reviewed literature (AGE, 2021c; Busker et al., 2025; CEMS, 2022; Kobs, 2018; Mohr et al., 2023;
 349 Schanze, 2009)

350 4.4 Warning Dissemination Timeline

Figure 7: Official weather and flood alert chronology for Luxembourg, 13–15 July 2021.

This figure presents the empirical timeline of available forecasts and officially issued alerts during the event. Alerts are shown for MeteoLux (weather) and AGE (flood) with triangle markers indicating forecast issuance time and coloured bars representing alert validity periods. Observed impacts and response actions are not represented in this figure. This figure chronology is based on official bulletins and institutional records (AGE, 2021a; MeteoLux, 2021a; Gouvernement du Grand-Duché de Luxembourg, 2023).

351
352 The warning timeline during the July 2021 flood is based primarily on the Luxembourg Government's internal post-event
353 review (Luxembourg Government, 2021b), supplemented by official bulletins from MeteoLux, AGE, and CGDIS, as well as
354 recorded communications and selected media reports. The official warning sequence began on 13 July. At 07:00, MeteoLux
355 issued a yellow alert level rainfall warning, valid from 14 July at 11:00 to 24:00. An orange alert followed at 07:00 on 14
356 July, valid from 12:00 to 04:00 on 15 July (Luxembourg Government, 2021b). Dissemination occurred via meteolux.lu,
357 inondations.lu email subscriptions and media platforms such as national television broadcaster RTL (www rtl lu).
358 At 14:30 on 13 July, AGE initiated yellow-alert level hydrological monitoring for the Sûre, Alzette, Chiers, and Syre basins.
359 On 14 July at 12:00, an orange level flood alert was issued for the southern region, followed by a red alert at 17:20,
360 applicable nationally and valid until 12:00 on 15 July (AGE, 2021a; Luxembourg Government, 2021b; MeteoLux, 2021).
361 At 14:23 on 14 July, CGDIS sent an informal text message (SMS) to municipal decision-makers, warning of threshold
362 exceedances and encouraging preparatory measures during the orange flood alert. No follow-up text message was issued
363 when the red level flood alert was activated later that day. Behavioural advice was also published on the CGDIS Twitter and
364 Facebook accounts the same afternoon (Biancalana, 2021; CHD, 2021a; Luxembourg Government, 2021b).
365 Real-time river level updates and flood bulletins were maintained via the website www inondations lu. An informal EFAS
366 notification for the Sauer sub-basin was received at 11:31 on 14 July. No formal EFAS alert followed, as ensemble
367 thresholds for basin area and persistence were not met (Dieschbourg and Bofferding, 2021; Grimaldi et al., 2023). No mass
368 notification was issued through the GouvAlert platform.
369 A national press briefing was held on the afternoon of 15 July and livestreamed through the government portal (Luxembourg
370 Government, 2021a). The Crisis Unit was activated at midnight on 15 July under the Severe Weather Emergency
371 Intervention Plan. According to the government's internal post-event review, this was in accordance with a clause in the
372 Flood Emergency Intervention Plan that assigns flash-flood-type events to the Severe Weather Emergency Intervention
373 Plan. As a result, the activation occurred despite the severe weather alert level remaining at orange, while the flood alert had
374 already reached red earlier that evening. Coordination meetings continued through the night. When the Crisis Unit convened,
375 field-level interventions were already underway. Between 14 and 16 July, CGDIS registered over 8,000 emergency calls to
376 112 and conducted at least 1,385 recorded interventions. More than 1,600 firefighters, 270 soldiers, and 230 police officers
377 were deployed nationally. The CGDIS coordinated field operations through local fire and rescue stations (*centres d'incendie*
378 *et de secours*, CIS), focusing on evacuation, public safety, and critical infrastructure protection (CGDIS, 2022; Luxembourg
379 Government, 2021a).

380

381 **4.5 Institutional Coordination and Crisis Response**

382 Coordination at the national level followed the procedures defined in Luxembourg's national emergency intervention
383 framework. The Crisis Unit may be convened following the issuance of a red alert, if conditions meet predefined thresholds
384 concerning urgency, cross-agency coordination and anticipated impact (AGE, 2021a; Luxembourg Government, 2021b). In

385 accordance with this framework, the Cerisis Unit was activated by the Prime Minister on the night of 14 July and its first
386 formal meeting was held at midnight on 15 July, more than six hours after AGE issued a red flood alert at 17:20 (AGE,
387 2021a; Benoy, 2021; Luxembourg Government, 2021b).

388 Once active, the Crisis Unit included representatives from MeteoLux, AGE, CGDIS, the Army, the HCPN, the police, and
389 the Ministry of Home Affairs. Coordination focused on public safety, logistical resourcing, and continuity of operations.
390 CGDIS and local municipal actors continued to lead evacuation and field logistics. Emergency shelter was provided in
391 multiple municipalities, and over 560 people were relocated by joint civil-military teams (CGDIS, 2022). Communication
392 during the peak impact period included updates from multiple agencies via social media, national press and municipal
393 platforms. A consolidated national bulletin was issued following the activation of the Crisis Unit (Benoy, 2021; CGDIS,
394 2022; Luxembourg Government, 2021a).

395

396 **5. Evaluating Forecast and Warning SystemEarly Warning System Performance**

397 **5.1 Comparative Post-Event Evaluation Processes**

398 Following the July 2021 floods, several European countries conducted formal reviews to assess the performance of forecast
399 and warning systemEarly Warning Systems. These evaluations varied in scope and method, but shared an emphasis on
400 institutional transparency and learning. Table 5 summarises the type of reviews conducted, levels of institutional access and
401 key outputs across five countries. In Germany, technical audits were complemented by parliamentary inquiries in North
402 Rhine-Westphalia and Rhineland-Palatinate. These revealed major deficiencies in the warning chain, with more than one-
403 third of surveyed residents reporting that they had not received an alert (BMI and BMF, 2022; Mohr et al., 2023; Thieken et
404 al., 2023). Cross-country references are included to document procedural arrangements and post-event review mechanisms,
405 not overall warning system performance.

406 Belgium's Walloon region initiated an expert-led governance review, resulting in a 146-page report published in
407 collaboration with the United Nations University Institute on Comparative Regional Integration Studies (UNU-CRIS). A
408 parliamentary inquiry was proposed but not adopted by the regional government (Lietaer et al., 2024).

409 In the Netherlands, the Dutch Court of Audit conducted a national review, concluding that warning and evacuation systems
410 functioned effectively but highlighting the need for improved preparedness and inter-agency coordination. A separate
411 technical audit by Deltares confirmed the efficacy of warnings in supporting evacuations and recommended more robust
412 stress testing. Both reviews were complemented by peer-reviewed research outputs (Deltares, 2023; Endendijk et al., 2023;
413 Netherlands Court of Audit, 2024; Pot et al., 2024).

414 In France, legally mandated post-event reviews (*retours d'expérience*) on the July 2021 floods were conducted at national
415 and local levels by the French government. These multi-agency reviews assessed domestic impacts and included analysis of
416 effects in Belgium, the Netherlands, and Germany. They examined crisis governance, operational coordination, forecasting

417 and warning, and cross-border cooperation, with findings shared through national channels and via European platforms such
418 as the EU Civil Protection Mechanism (Diederichs et al., 2023).

419 Unlike neighbouring countries, Luxembourg did not commission an independent or external review of the July 2021 floods.
420 An internal government-led assessment was carried out, but it was not part of any comparative or regional evaluation
421 process. The French government's post-event review notes that requests for information from Luxembourg were either
422 declined or left unanswered (Diederichs et al., 2023; Lietaer et al., 2024). No contributions were made to EU platforms or
423 scientific networks, creating a gap in regional learning.

424 **Table 3 Comparative post-event evaluation processes following the July 2021 floods.** Review types, parliamentary inquiries,
425 institutional access (as reported in the French government's post-event review unless otherwise noted), key documented outcomes, and
426 publication platforms across five countries (BMI and BMF, 2022; Deltares, 2023; Diederichs et al., 2023; Endendijk et al., 2023; Lietaer et
427 al., 2024; Luxembourg Government, 2021b; Pot et al., 2024)

Country	Independent Review	Parliamentary Inquiry	Institutional Access to cross-border analysis ³	Key Review Outcome	Publication Platform(s)
Belgium	Yes Wallonia expert panel	No Inquiry proposed, not adopted	Access granted	146-page stakeholder-led review; formal inquiry blocked by regional executive	UNU-CRIS (open-access); Regional government portal
Germany	Yes Technical + stakeholder reviews	Yes NRW and RP state inquiries	Access and cooperation	Surveys: >30% lacked alerts; ~€7 bn in insured losses; two inquiries convened at state level	NHESS journal; State parliament archives; ISF publication (BIH and BF, 2022)
Netherlands	Yes Deltares technical audit	No	Access granted	Audit confirmed warning efficacy; €455 m in damages; stress testing proposed	Deltares.nl; TU Delft study; PreventionWeb
France	Yes, post-event review	No	Access granted	Multi-agency learning; findings contributed to EU DRR knowledge-sharing	Ministère de l'Économie portal; EU Civil Protection Forum
Luxembourg	No, internal review only	No	Access declined, no response	No independent or parliamentary review commissioned	None (no formal publication or participation)

428

429 A standing review mechanism could help address this gap. Such a process could be hosted under the Ministry of Home
430 Affairs and include representatives from MeteoLux, AGE, CGDIS, ASTA, and independent experts. Reviews should be
431 initiated automatically when threshold-impact events occur and examine timelines, institutional coordination, and
432 communication processes. Without a formal structure for review, lessons remain anecdotal and preparedness does not
433 evolve.

³ Refers to the degree of cooperation and information-sharing with the French government's legally mandated post-event review (*retour d'expérience*), which included cross-border analysis of the July 2021 floods in Belgium, the Netherlands, Germany, and Luxembourg.

434 **5.2 Why Forecasts Did Not Lead to Action**

435 Forecast guidance in the days leading up to the July 2021 flood presented clear signals of extreme rainfall and pointed to a
436 statistically rare and potentially high-impact rainfall event (Mohr et al., 2023; Thompson et al., 2025). However,
437 Luxembourg's national warning-alert level did not move beyond yellow until the morning of 14 July. In the days
438 immediately preceding the flooding, institutional interpretation was based primarily on deterministic rainfall totals at the
439 Luxembourg-Findel reference station, where forecast and observed precipitation remained below the national red alert level
440 procedural threshold (MeteoLux, 2021; Ministry of State et al., 2015). Observations from other stations, in central and
441 northern Luxembourg exceeded these red alert-level criteria, but these sites were not included in the formal decision-making
442 protocol (AGE, 2021c; HCPN, 2019; Szönyi et al., 2022). Ensemble indicators, while reviewed internally, had no procedural
443 role in alert level decisions (Busker et al., 2025).

444 Forecast skill was not the limiting factor. Forecast products from ECMWF, ICON-EU, and Météo-France consistently
445 showed elevated rainfall potential across the wider region (Mohr et al., 2023; Thompson et al., 2025). Several ensemble
446 members projected accumulations well above the return periods typically used in warning calibration. At the time, however,
447 there was no mechanism in national procedures to translate these probabilistic signals into operational triggers for alert
448 escalation or plan activation. The protocol relied on thresholds applied to a single reference station, with no formal post-
449 processing of ensemble outputs.

450 Hydrological forecasts showed a similar pattern (Busker et al., 2025; Montanari et al., 2024). Although AGE used ensemble
451 and radar-based inputs within the LARSIM model, public bulletins were deterministic, and probabilistic information was not
452 formally linked to warning alert level changes (Busker et al., 2025).

453 Public communication during this period reflected the same deterministic framing (Zander et al., 2023). On the evening of
454 13 July, RTL's national news broadcast quoted MeteoLux:

455 *“From Wednesday morning until Thursday, larger amounts of rainfall could reach us, so we need to be a bit cautious.”*

456 The presenter added:

457 *“Foreign weather services are talking about 100 litres per square metre, but for Luxembourg, the warning levels are still
458 only at yellow.”* (RTL, 2021a)

459 This comparison emphasised that while neighbouring services, including in directly connected catchments, were warning of
460 extreme totals across the border, Luxembourg's own alerts remained in the yellow range (below 31 mm in six hours or 51
461 mm in 24 hours). No reference was made to EFI values or to the consistent ensemble signals emerging across multiple
462 models. The first orange level rainfall warning was issued on the morning of 14 July and took effect at 12:00, after heavy
463 rain had already begun in parts of the country (AGE, 2021a)

464 The Prime Minister's public statement after the event reinforced the framing of the flood as unexpected.

465 *“No one could have predicted the extent of the flooding as it unfolded in mid-July, and it was nothing short of a miracle
466 that no one had been seriously harmed by the catastrophe.”* (RTL, 2021b)

467 While precise local impacts could not have been forecast with certainty, the broader signal of an extreme rainfall event had
468 been evident in ensemble guidance for several days. The challenge was the absence of institutional mechanisms to interpret
469 and act on probabilistic signals under uncertainty.

470 One recommendation would be to formally integrate probabilistic forecast tools such as the Extreme Forecast Index (EFI)
471 within national warning protocols when converging probabilistic signals indicate the potential for severe impacts (Busker et
472 al., 2025; Cloke and Pappenberger, 2009; Mohr et al., 2023). Ensemble outputs should be post-processed into operational
473 scenarios and supported by targeted training. Observational data from ASTA and municipal networks should also be
474 integrated when they exceed warning criteria (Lanfranconi et al., 2024; Szönyi et al., 2022). These measures would support
475 earlier action when risk is emerging, rather than only after it is confirmed by deterministic indicators.

476

477 **5.3 How Thresholds Delayed the Response**

478 Luxembourg's warning protocols were structured around fixed procedural rainfall thresholds measured at a single reference
479 station. Under the Severe Weather Emergency Intervention Plan, a red level weather warning may be issued if rainfall
480 exceeds 80 mm in 24 hours or 45 mm in 6 hours at the Luxembourg-Findel station (HCPN Law, 2016). On 14 July, Findel
481 recorded 74.2 mm over 12 hours, breaking its all-time daily record for any month since observations began in 1947, yet no
482 red alert level warning-level warning was issued (MeteoLux, 2021)

483 Other stations from the ASTA network also recorded totals above red-level colour-coded alert level criteria on 14-15 July
484 (AGE, 2021a). These observations were not included in the formal warning framework and therefore played no role in real-
485 time decision-making (HCPN, 2019). Excluding a large share of the available observational network from official warning
486 protocols is not unique to Luxembourg and has been identified in other regions that rely on narrowly defined deterministic
487 systems (Cosson et al., 2024; Trošelj et al., 2023).

488 This arrangement created a structural limitation. The agrometeorological network operated by ASTA includes over 35
489 weather stations across the country. However, institutions did not recognise their data within the official warning framework
490 (HCPN Law, 2016). Consequently, a significant share of Luxembourg's observational infrastructure was excluded from the
491 official process of warning generation.

492 Hydrological forecasting faced similar structural constraints. The use of probabilistic inputs was limited to internal
493 processing and no mechanisms were in place for using this information to support escalation to higher colour-coded alert
494 levels. in operational warning escalation (Busker et al., 2025; Haag et al., 2022).

495 ThresholdProcedural thresholds defined when warnings could be issued, but also and the basis on which decisions were
496 deemed valid. In theory, the presence of a single institutional threshold at Findel was meant to simplify decisions. In
497 practice, it constrained them. Even when that station recorded historically extreme rainfall, no warning level change
498 followed. In neighbouring countries, Early Warning Systems operated under different procedural criteria, allowing alert
499 decisions to draw on exceedance across regional observation networks and convergence within ensemble forecast products,
500 leading to earlier issuance of red-level alerts on 13 July. Neighbouring countries responded differently. Germany and

501 ~~Belgium issued red alerts on 13 July, one day earlier, based on consistent observational exceedance across regional networks~~
502 ~~and convergence within ensemble forecast products.~~ Their approaches allowed for distributed decision-making using broader
503 spatial criteria, rather than relying on one location to validate action (Lietaer et al., 2024; Mohr et al., 2023).
504 A key recommendation is to formally integrate Luxembourg's existing observational infrastructure such as ASTA stations
505 into the operational ~~warning system~~Early Warning System, allowing wider spatial validation of hazard signals. A
506 parliamentary question in July 2024 proposed merging Luxembourg's two public meteorological services to improve
507 efficiency and integration. The government confirmed that while discussions had been held since 2018, the proposal was not
508 adopted. It stated that cooperation between MeteoLux and ASTA had been sufficient and that the implementation of LU-
509 Alert provided a direct channel for transmitting official warnings to the public. On this basis, it argued that a merger was
510 unnecessary and confirmed that no such measure was foreseen in the 2023–2028 government programme (CHD, 2024).
511 However, no evidence was presented on how this arrangement addresses the structural limitations identified in the July 2021
512 event. In parallel, AGE should implement probabilistic flood forecasting workflows that carry procedural weight. These
513 steps would increase situational awareness and reduce dependence on a single reference station (Ebert et al., 2023; Golding,
514 2022; WMO, 2024b).

515

516 **5.4 When Warnings Did Not Reach the Public**

517 During the July 2021 flood, Luxembourg's public alerting systems were not used in a way that enabled timely early
518 protective action. The GouvAlert mobile application, designed to send real-time emergency notifications, did not transmit
519 any message on 14 July. A scheduled alert was not delivered due to an expired Secure Sockets Layer (SSL) certificate, and
520 no warning reached users during the hours when rainfall intensified and river levels began to rise (Tobias, 2021).

521 Institutional communication remained limited. At 14:23 on 14 July, CGDIS issued an SMS to local authorities referencing
522 orange-level conditions. The message did not contain the word "alert" and was not accompanied by a wider public advisory
523 (CHD, 2021b; Luxembourg Government, 2021b). No coordinated national message was issued through press channels or
524 social media before flood impacts were widely reported. Infocrise.lu, which serves as the government's official crisis
525 information portal, is not designed to function as a real-time alerting tool and was not used for that purpose during the
526 warning phase (HCPN Law, 2016). The communication environment during the flood evolved across multiple platforms,
527 with limited coordination prior to impact.

528 Multilingual accessibility may also have limited the reach of warning messages. Luxembourg's official languages are
529 Luxembourgish, French, and German, but alerts are often issued in one or two languages only. (STATEC, 2022) estimates
530 that only around 60 percent of the population speaks Luxembourgish fluently. Many residents rely on French or German for
531 official communication, and a significant proportion of the workforce consists of daily cross-border commuters. In this
532 context, the absence of standardised multilingual communication protocols can reduce the effectiveness of public alerts,
533 particularly in linguistically diverse populations (Hannes et al., 2024; IFRC, 2020; Kalogiannidis et al., 2025; UNDRR,
534 2022)

535 While these issues were not the primary cause of limited operational response during the flood, they revealed how dependent
536 the system had become on a small number of delivery channels. This became evident on 16 July, when the MeteoLux
537 website went offline due to a server failure and remained inaccessible until 19 July. During this period, CGDIS continued
538 referring the public to the offline site (Tobias, 2021), highlighting a lack of contingency planning for communication
539 continuity (Reichstein et al., 2025).

540 Following the flood, Luxembourg introduced LU-Alert, a multilingual cell broadcast system designed to deliver real-time
541 notifications to all mobile phones in a given area. While this improves technical capacity, it does not resolve the procedural
542 barriers that limited alert use in July 2021. Without clearly defined protocols for who authorises and triggers alerts, when,
543 and through which channels, even advanced systems may fail to support timely action (Oliver-Smith, 2018; WMO, 2022).

544 The 2024 DANA floods in Valencia illustrate how procedural communication choices, including alert timing and message
545 content, can limit the protective value of public warnings. The 2024 DANA floods in Valencia illustrate this challenge.
546 Spain's ES-Alert system functioned technically, but alerts were issued at a stage in the event when opportunities to influence
547 public decision-making were already reduced. Post-event reviews linked this to weak integration between forecast
548 interpretation and operational decision-making (Aznar-Crespo et al., 2024; Galvez-Hernandez et al., 2025; Martin-Moreno
549 and Garcia-Lopez, 2025). Luxembourg faces similar risks if alert systems remain detached from institutional procedures.
550 Effective public communication requires more than new infrastructure. A central protocol should define when alerts are
551 triggered, which institutions are responsible, how content is translated across platforms and languages, and how redundancy
552 is ensured. Without these structural measures, warnings may not reach the public in time to support protective action.

553 In the national system, warnings are intended to reach residents through official dissemination channels, including public
554 alerting systems, press communication, and institutional information platforms. This analysis focuses on the institutional
555 conditions that shape whether public warnings can be authorised, issued, and disseminated, rather than on how residents
556 interpret or respond to those warnings.

557

558 **5.54 Coordination Only Began After Impact**

559 Luxembourg's emergency coordination during the July 2021 flood was constrained by a procedural sequence that delayed
560 strategic activation. Although flood forecasts and operational responses were already active on 14 July, national-level
561 coordination through the Crisis Unit was only initiated at midnight, several hours after widespread flooding had begun. This
562 delay stemmed from a rigid stepwise process, a red alert had to be issued, followed by a ministerial evaluation, before cross-
563 agency coordination could be formally launched (CHD, 2021a; Luxembourg Government, 2021b).

564 Operational agencies, including CGDIS, MeteoLux, and AGE, responded to early signals. CGDIS alone handled over 1,200
565 calls and deployed more than 100 units throughout the day (CGDIS, 2022). However, without formal activation of the Crisis
566 Unit, no unified public messaging or strategic coordination was possible. Communication remained decentralised and limited
567 to agency-specific channels.

568 This misalignment occurred despite the existence of both capacity and legal authority. It reflected procedural inflexibility
569 that prevented early convergence of information and action. As highlighted by (Hegger et al., 2016), effective flood risk
570 governance requires both anticipatory mechanisms and coordination structures that can adapt in real time. In fast-onset
571 crises, ~~formal threshold~~procedural thresholds may delay the shift from proactive intervention to reactive response (Lietaer et
572 al., 2024).

573 To improve future alignment, Luxembourg could revise procedural thresholds to enable early coordination based on
574 consistent forecast indicators, such as rising hydrometric levels and multi-agency consensus. A shared operational platform
575 involving AGE, MeteoLux, CGDIS, and crisis managers could allow joint interpretation of dynamic risks, enabling earlier
576 activation even before red alert level thresholds are formally crossed (Amarnath et al., 2023; Dasgupta et al., 2025; Šakić
577 Troglić and Van Den Homberg, 2022). This would help ensure that national-level coordination begins in response to
578 emerging risk, rather than observed impacts.

579

580 **5.65 Reading Forecasts as Policy Signals**

581 Forecasts ahead of the July 2021 flood contained multiple early indicators of an emerging regional hazard. EFI values
582 exceeded 0.8 by 11 July, and EFAS issued alerts for nearby river basins from 10 July onward. These signals, documented in
583 ~~widely recognised in~~ post-event evaluations in Germany and Belgium, were also available in Luxembourg, but they did not
584 inform operational decision-making (Lietaer et al., 2024; Mohr et al., 2023).

585 Although EFAS and EFI were monitored internally by AGE and MeteoLux, no procedural framework existed in
586 Luxembourg for ~~acting on using~~ these products to inform warning level decisions and public communication. In Germany
587 and Belgium, post-event analyses describe procedural arrangements that allowed ensemble-based and regional information
588 to be considered within warning processes, without implying more effective outcomes. In Luxembourg, the absence of an
589 equivalent framework meant that these forecasts remained outside formal decision pathways and no institutional review has
590 clarified how such inputs could be interpreted or integrated. Unlike Germany and Belgium, Luxembourg did not use these
591 forecasts to justify public warnings, and no institutional review has clarified how such inputs should be interpreted or
592 integrated. EFAS alerts, while designed for larger river systems, still provide contextually valuable information, especially
593 when interpreted alongside local data. Treating them as irrelevant, rather than evaluating their limitations constructively,
594 limits the system's ability to recognise transboundary risk (Busker et al., 2025; Mohr et al., 2023).

595 The problem is not the forecasts, but the absence of structures to interpret and act on them collectively. Luxembourg's
596 warning framework remains tied to deterministic ~~threshold~~procedural thresholds without a mechanism for incorporating
597 probabilistic guidance. EFI and EFAS are treated as reference data rather than operational tools and their signals hold no
598 procedural weight.

599 It is recommended that Luxembourg establish a formal joint interpretation mechanism involving MeteoLux, AGE, CGDIS,
600 and other relevant actors, to review ensemble guidance and translate it into operational scenarios. This process would allow
601 for expert judgement to be exercised under uncertainty and would increase the policy relevance of probabilistic signals

602 (Hoffmann et al., 2023; WMO, 2024b). Forecasts can support anticipatory action, but only if the system is configured to read
603 them as policy-relevant signals, not technical background.

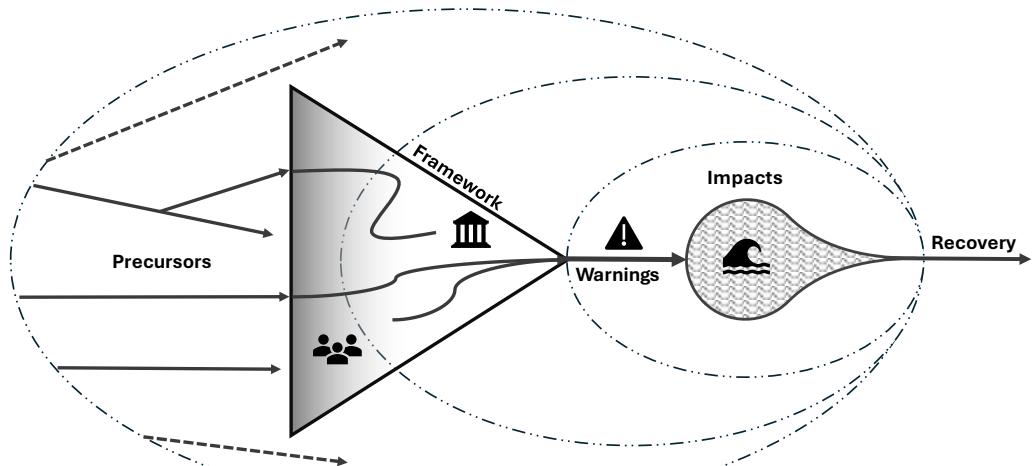
604

605 **6 Risk Interpretation and System Structure**

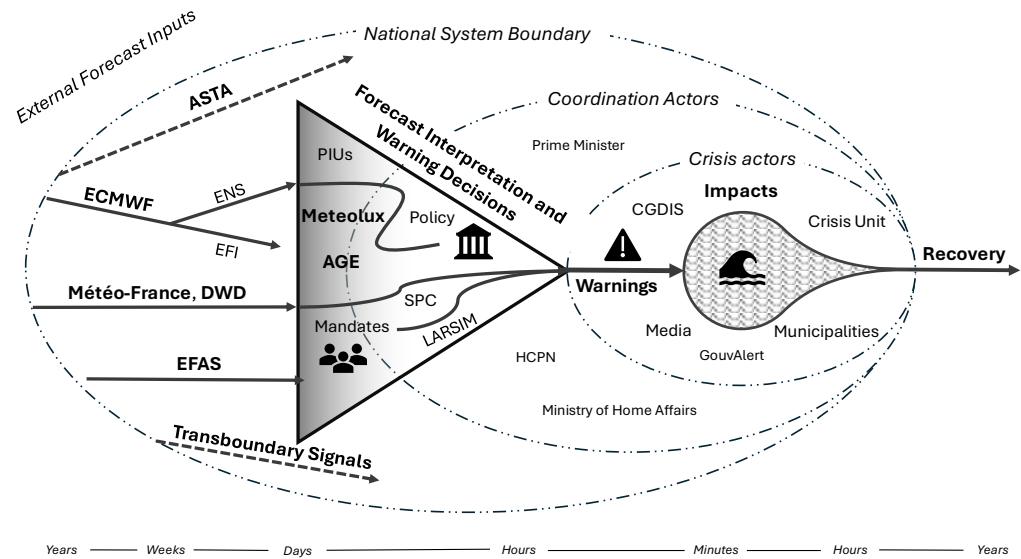
606 ~~Early warning systems~~Early Warning Systems are widely recognised as central to disaster risk reduction (Kelman and
607 Glantz, 2014; Šakić Troglić and Van Den Homberg, 2022; UNDRR, 2015; WMO, 2024b). They are typically embedded in
608 frameworks that conceptualise disasters into sequential phases of preparedness, response, recovery, and ~~mitigation~~risk
609 reduction. These phases are often assumed to unfold in a linear progression, with decisions and responsibilities evolving
610 predictably over time (Berke et al., 1993; McEntire, 2021). However, critical perspectives challenge this view, emphasising
611 that disasters emerge within complex, uncertain, and structurally constrained systems (McDermott et al., 2022; Wilkinson,
612 2012).

613 The analysis builds on those insights by examining how institutional structures shape the interpretation of risk. It introduces
614 the Waterdrop Model and applies it to the July 2021 floods in Luxembourg.

615


616 **6.1 The Waterdrop Model**

617 The Waterdrop Model is a structural model for analysing how Early Warning Systems filter risk signals (Figure 8). The
618 model was developed as a diagnostic extension of the reconstructed value chain and is intended to examine how institutional
619 design conditions the use of forecast information and is not intended as a prescriptive or deterministic framework. Developed
620 through reflection on the Luxembourg 2021 flood, the model builds on the value chain approach by clarifying how
621 institutional configuration not just communication or technical capacity determines whether forecast information can lead to
622 anticipatory action (Cloke and Pappenberger, 2009; Hermans et al., 2022; Golding, 2022). Rather than assuming that signals
623 automatically translate into responseaction, the model helps identify how value is conditioned by the system into which
624 information enters. The Waterdrop Model explains how mandates and responsibilities shape whether forecast information
625 can lead to action.


626 Figures 7 and 8 are intended to be read together, with Figure 7 documenting the empirical sequence of forecasts and alerts
627 during the event and Figure 8 providing a conceptual framework for interpreting how the warning system processed that
628 information.

629 At the centre of the model is a triangle representing the architecture of a national ~~warning system~~Early Warning System.
630 Each corner of the triangle corresponds to one of three gatekeeping elements; authorised data sources, predefined procedural
631 thresholds and designated institutional mandates that define responsibility and the timing of warning authorisation and
632 dissemination. Only when a signal passes through all three originating from a recognised source, exceeding a defined
633 thresholdprocedural threshold, and falling within the responsibility of an authorised actor can it initiate protective measures

634 (Alfieri et al., 2012; Antwi-Agyakwa et al., 2023). These thresholds function as institutional decision rules that intersect with
635 governance arrangements by defining when responsibility shifts from monitoring to authorisation and action. If any of these
636 conditions are not met, the signal may circulate informally but cannot trigger official warning. The triangle defines the
637 system's operational boundaries for action. Within this structure, procedural bottlenecks can delay escalation and
638 dissemination even when risk information is available and technically credible.
639 Surrounding this core are institutional actors, forecast and data products, observational networks that may hold operational
640 relevance but lack formal standing within the warning protocol. These include probabilistic forecast products, transboundary
641 alerts, local data sources, and expert assessments from actors without decision authority. The model distinguishes between
642 signals that are visible and those that are usable within institutional procedure (De Coning et al., 2015; Jaime et al., 2022).
643 Information may be available, but it only becomes actionable when it meets the system's internally defined criteria.

A

Figure 8 The Waterdrop Model: How Structural Design Filters Risk Information in Early Warning Systems. [This figure provides a conceptual representation of how warning systems process and filter forecast information.](#)

Panel A presents the conceptual model. Forecast signals enter from the left and are filtered through a triangular warning core defined by three structural components: authorised data sources (left corner), procedural thresholds and policy rules (top), and institutional mandates (bottom). Only signals meeting all three criteria progress to warnings and response. Dashed arrows represent excluded signals. Concentric ellipses represent the narrowing opportunity for anticipatory action, aligned with the timeline at the base.

Panel B applies the model to Luxembourg's 2021 flood. Forecast inputs from ECMWF, EFI, EFAS, ASTA, and cross-border sources were available but remained outside national procedures. Only deterministic inputs from authorised actors (MeteoLux, AGE) passed through the system's triangle via PIUs and LARSIM. Signals lacking procedural status were filtered out. On the right, warnings connect to coordination actors (CGDIS, municipalities, Crisis Unit), with post-warning actions and impacts shown. The national system boundary illustrates how institutional design limited the use of probabilistic and transboundary signals.

645 As time passes and certainty increases, more signals may enter the triangle, but the decision space for anticipatory action
646 narrows, increasing the risk that warnings are issued once impacts are already unfolding. As time passes and certainty
647 increases, more signals may enter the triangle, but the opportunity for mitigation diminishes. The model is intentionally
648 diagnostic. It does not propose an ideal structure, but instead clarifies how institutional design choices govern the use of
649 information. It supports critical analysis of how systems configured around deterministic certainty and linear authority may
650 fail to act on probabilistic or emerging risk, even when warnings are technically available (Arnal et al., 2020; Bourtier and
651 Marchal, 2024). In Luxembourg, this structural filtering was reinforced by reliance on a single reference station at Findel,
652 which concentrated procedural authority in one location and increased vulnerability to delayed threshold exceedance
653

654 **6.2 Application to the Luxembourg 2021 Flood Disaster**

655 The Waterdrop Model helps explain why Luxembourg's national warning systemEarly Warning System did not activate
656 early action in response to multiple early indicators of flood risk in July 2021. Ensemble forecasts from ECMWF, EFI values
657 exceeding 0.8, and EFAS alerts for neighbouring basins all pointed to a high-impact rainfall event. No warning level
658 increase occurred until deterministic thresholds were breached, and national coordination began only after widespread
659 impacts were already underway (Busker et al., 2025; Haag et al., 2022). This outcome was not due to a lack of forecast
660 capacity, but to the system's structural configuration.

661 Under Luxembourg's operational rules, meteorological warnings could only be issued by MeteoLux on the basis of
662 deterministic forecasts from the Findel reference station, while hydrological alerts from AGE depended on observed
663 exceedance at designated gauging stations. Forecasts from ensemble systems, Extreme Forecast Index values, EFAS alerts,
664 and observations from other networks such as ASTA's agrometeorological stations were available but held no formal status
665 within the Weather and Flood Emergency Plans (Section 3). These products could inform internal situational awareness, but
666 they were not recognised as valid inputs for official activation or public warning.

667 Although AGE had access to probabilistic flood forecasts and ensemble precipitation inputs through models such as
668 LARSIM, these were not operationalised in the alerting process. As noted in (Busker et al., 2025), probabilistic outputs are
669 used internally but have no procedural consequence. The national warning systemEarly Warning System was designed to act
670 on deterministic exceedance at specified locations, not on converging probabilistic evidence. Even when credible signals
671 were identified, there was no mechanism to translate those signals into formal decisions unless they matched the authorised
672 criteria embedded in national protocol (Jaime et al., 2022).

673 This design filtered out signals that were visible but procedurally unusable. Despite record precipitation at Findel and
674 extreme rainfall recorded at other stations, no procedural mechanism existed to escalate warnings based on broader
675 observational or probabilistic evidence. Godbrange recorded over 100 mm of rainfall in 24 hours, well above the red alert
676 level threshold but this observation played no role in national activation because it came from a station not designated in the
677 Emergency Plan. EFAS alerts issued for upstream river basins in Germany and Belgium were not extended to Luxembourg
678 due to dissemination criteria that required a minimum upstream catchment area of 2000 km² and persistence across multiple

679 ensemble cycles. An informal notification for the Sauer was received shortly before peak impacts but held no formal status.
680 Forecast interpretation remained tied to deterministic exceedance from nationally authorised sources.
681 Coordination followed the same logic. The emergency protocols allow for the convening of an inter-institutional Evaluation
682 Cell during orange or red alert phases. This unit, chaired by the responsible technical authority (Meteolux or AGE), assesses
683 conditions and advises the HCPN on whether national coordination is required. However, activation of the Crisis Unit
684 remains a political decision and must be authorised by the Prime Minister. In July 2021, this process delayed formal cross-
685 agency coordination until midnight on 15 July, by which time widespread impacts were already unfolding (Hagenlocher et
686 al., 2023). No procedural mechanism existed to initiate anticipatory coordination based on converging probabilistic signals.

687 The system remained in observation mode until deterministic ~~threshold~~procedural thresholds were exceeded.
688 The Waterdrop Model captures this disconnect. It shows how system structure rather than technical capacity determined
689 what information could lead to action. In Luxembourg, early signals were present, but action was delayed not necessarily
690 because they were missed, but because they were procedurally unusable. The model highlights how protocols that prioritise
691 deterministic certainty and formal authority may struggle to respond under uncertainty, even when forecasts provide advance
692 warning.

693

694 **6.3 Implications for Systemic Risk and Governance**

695 The 2021 flood disaster illustrates how ~~early warning systems~~Early Warning Systems can be technically capable but
696 structurally restricted. Convergent and credible risk information was available, but the system design prevented early action
697 based on early warning. The Waterdrop Model shows that these dynamics emerge not from isolated misjudgements, but
698 from how institutional arrangements define valid inputs and allocate authority to respond (Kelman and Glantz, 2014; Oliver-
699 Smith, 2018).

700 Systems that rely heavily on fixed thresholds, sequential decision-making processes and limited incorporation of
701 probabilistic signals may systematically exclude useful early indicators. These systems are optimised for certainty, not for
702 emerging or partial information. As a result, action may only begin once impacts are visible, reducing forecast value and
703 shortening the response window (Šakić Trogrić and Van Den Homberg, 2022).

704 The absence of a formal post-event review in Luxembourg suggest how governance cultures shape system learning. While
705 several European countries initiated independent evaluations following the 2021 floods, Luxembourg did not. This suggests
706 a governance context where formal post-event review is not institutionalised as standard practice.

707 Technical upgrades alone cannot resolve these challenges. The launch of LU-Alert improved message delivery capacity, but
708 the limitations observed in 2021 were primarily structural.

709 How institutions handle uncertainty also shapes trust in warning systems. When uncertainty is communicated implicitly
710 through procedural delay or conservative escalation, it may weaken confidence among both officials and the public.
711 Repeated exposure to warnings that do not lead to visible action further raises communication and risk-education challenges,
712 for decision-makers tasked with interpreting evolving signals under uncertainty.

713 The Waterdrop Model highlights how systemic risk can emerge not only from external hazards, but from internal design
714 features of governance systems. This reflects a broader understanding of systemic risk as emerging from the structure and
715 configuration of ~~warning system~~Early Warning Systems themselves (Bosher et al., 2021; Golding, 2022; Šakić Trogrlić and
716 Van Den Homberg, 2022). These insights align with critical analyses of disaster governance that emphasise how institutional
717 design filters what counts as actionable information (Alcántara-Ayala and Oliver-Smith, 2016; McDermott et al., 2022;
718 Wilkinson, 2012). It highlights how the operational value of information depends on whether systems are configured to use
719 it. While effective early warning depends on whether warnings are understood and acted upon by residents, this analysis
720 focuses on the institutional conditions that determine whether such warnings can be authorised, escalated, and disseminated
721 in the first place. The design, targeting, and evaluation of resident-facing messages are therefore recognised as essential, but
722 lie beyond the empirical scope of this study. A more detailed mapping of domain-specific processes and interpretive
723 practices within institutions would require data beyond those available for this analysis and represents a priority direction for
724 future research.

725 Early Warning Systems are not only about detecting hazard signals. They are about whether institutional structures enable
726 interpretation and coordinated action in time. Without that capacity, even the most advanced forecast systems may struggle
727 to prevent disaster.

728
729 This analysis is based on publicly available records, institutional documentation, and reconstructed timelines, and is
730 therefore limited to formally documented procedures, mandates, and authorised communication channels within the national
731 warning system. Informal decision-making, undocumented interpretations, and internal deliberations are not captured. The
732 analysis further focuses on the warning system up to the point at which alerts are issued to the public. Public interpretation,
733 behavioural response, and message effectiveness are not examined, as these dimensions require different data and methods.
734 These limitations should be considered when interpreting the findings. They also highlight an important direction for future
735 research on people-centred early warning, in which institutional analysis is complemented by studies of public understanding
736 and response.

737

738 7. Conclusion

739 Early Warning Systems are widely recognized as essential tools for disaster risk reduction. As ~~we~~ demonstrated by severe
740 floods of July 2021 in Luxembourg, having forecast information available does not guarantee that early action will follow.
741 While forecast signals were available several days in advance, procedural systems prioritised action based on confirmation
742 rather than forecast-based uncertainty. Using a value chain approach, we traced how forecast information moved through
743 Luxembourg's ~~warning system~~Early Warning System and identified points where timing, procedural thresholds, and divided
744 responsibilities limited anticipatory action. These constraints were not caused by inaccurate forecasts but by how risk
745 information was understood, prioritised, and ~~acted upon~~translated into action within existing structures.

746 To support this analysis, the Waterdrop Model was introduced to show how forecast signals interact with institutional rules
747 and operational timelines. It clarifies why credible early indicators may not lead to timely decisions when systems depend on
748 predefined criteria or rigid procedural steps. The model also highlights how time pressure and fragmented responsibilities
749 can hinder collective interpretation, especially when institutions lack not only authority but also the resources and structures
750 needed to act on probabilistic guidance.

751 Luxembourg's experience reflects a broader challenge. An effective ~~warning system~~Early Warning System derives its value
752 from the capacity of institutions to interpret forecasts as actionable signals and to mobilise timely, coordinated responses
753 under uncertainty.The analysis returns to the central question of how forecast signals were translated into anticipatory action
754 during the July 2021 floods in Luxembourg. The findings show that institutional design largely determined whether early
755 information could be authorised, interpreted, and acted upon in time. The Value Chain approach and the Waterdrop Model
756 show how governance structures shape the operational value of forecasts in Early Warning Systems across different
757 institutional settings.

758 **Author Contributions**

759 JDC led the investigation, conducted the analysis, and wrote the manuscript as part of his PhD research. EE and DH
760 contributed to the development of the value chain framework and the design of the database questionnaire. HLC and JN
761 supervised the PhD project and provided conceptual guidance and feedback on the manuscript. All authors contributed to
762 discussions of the results and approved the final version of the paper.

763 **Acknowledgements**

764 This research was conducted as part of JDC's PhD at the University of Reading. The author thanks HLC and JN for
765 supervision and guidance throughout the project, and EE and DH for their collaboration, input, and support. The author also
766 acknowledges the foundational work of the WMO WWRP HIWeather Value Chain Project team, and the continuity of that
767 work supported by the UCL Warning Research Centre, which hosts the value chain questionnaire used in this study.
768 Additional thanks go to Linus Magnusson (ECMWF) and Thomas Schreiner (ESSL) for providing access to forecast and
769 severe weather data used in the analysis.

770
771
772

773 **References**

774 ACA: Inondations de juillet 2021: 6300 victimes indemnisées. Association des Compagnies d'Assurances et de
775 Réassurances du Grand-Duché de Luxembourg. Available at: <https://www.aca.lu/fr/inondations-de-juillet-2021-6300-victimes-indemnisees/>, 2021.

776

777 AGE: Hochwasserereignis Juli 2021, 2021a.

778 AGE: Hochwasserinformation: Lageberichte 13.-17. Juli 2021, Administration de la Gestion de l'Eau, Ministère de
779 l'Environnement, du Climat et du Développement durable, Luxembourg, 2021b.

780 AGE: Hochwasserrisiko-Managementplan 2021-2027, Flood Risk management Plan, 2021c.

781 Alcántara-Ayala, I. and Oliver-Smith, A.: Forensic Investigations of Disasters (FORIN): A Conceptual Framework and
782 Guide to Research, Integrated Research on Disaster Risk (IRDR), 2016.

783 Alcántara-Ayala, I. and Oliver-Smith, A.: Early Warning Systems: Lost in Translation or Late by Definition? A FORIN
784 Approach, International Journal of Disaster Risk Science, 10, 317–331, <https://doi.org/10.1007/S13753-019-00231-3/FIGURES/3>, 2019.

785

786 Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.: Operational early warning systems for water-
787 related hazards in Europe, Environmental Science & Policy, 21, 35–49, <https://doi.org/10.1016/j.envsci.2012.01.008>, 2012.

788 Amarnath, G., Alahacoon, N., Attoh, E., and Jampani, M.: The AWARE Platform – Promoting Early Warning of and
789 Effective Response to Climate Hazards, International Water Management Institute (IWMI), CGIAR, 2023.

790 Antwi-Agyakwa, K. T., Afenyo, M. K., and Angnuureng, D. B.: Know to predict, forecast to warn: A review of flood risk
791 prediction tools, Water, 15, 427, <https://doi.org/10.3390/w15030427>, 2023.

792 Arnal, L., Anspoks, L., and Manson, S.: Are we talking just a bit of water out of bank? Or is it Armageddon?, Geoscience
793 Communication, 3, 203–218, 2020.

794 Aznar-Crespo, P., Aledo, A., Ortiz, G., and Tur-Vives, J.: Cómo escribir mensajes de alerta frente a inundaciones, Agua y
795 Territorio, 2024.

796 Ball, N.: The myth of natural disasters, The Ecologist, 5, 368–369, 1975.

797 Basher, R.: Global early warning systems for natural hazards: systematic and people-centred, Philosophical Transactions of
798 the Royal Society A: Mathematical, Physical and Engineering Sciences, 364, 2167–2182,
799 <https://doi.org/10.1098/rsta.2006.1819>, 2006.

800 Becker, G., Evers, M., and Slootjes, N.: Transboundary flood risk management: The role of coordination and communication
801 in early warning and crisis response, International Journal of Disaster Risk Reduction, 31, 1054–1061,
802 <https://doi.org/10.1016/j.ijdrr.2018.01.034>, 2018.

803 Benoy, F.: Interpellation au sujet de la réduction des risques d'inondations N° 3638: Motion 1, 2021.

804 Berke, P. R., Kartez, J., and Wenger, D.: Recovery after disaster: Achieving sustainable development, mitigation and equity,
805 Disasters, 17, 93–109, <https://doi.org/10.1111/j.1467-7717.1993.tb01137.x>, 1993.

806 Biancalana, D.: Interpellation au sujet de la gestion de catastrophes naturelles N° 3635: Motion 2, 2021.

807 BMI and BMF: Bericht zur Hochwasserkatastrophe 2021: Katastrophenhilfe, Wiederaufbau und Evaluierungsprozesse,
808 Bericht zur Hochwasserkatastrophe 2021, 2022.

809 Bosher, L., Chmutina, K., and Van Niekerk, D.: Stop going around in circles: towards a reconceptualisation of disaster risk
810 management phases, DPM, 30, 525–537, <https://doi.org/10.1108/DPM-03-2021-0071>, 2021.

811 Bouttier, F. and Marchal, H.: Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and
812 predictability limits, Natural Hazards and Earth System Sciences, 24, 2793–2810, 2024.

813 Busker, T., Castro, D. R., Vorogushyn, S., Kwadijk, J., Zoccatelli, D., Loureiro, R., Murdock, H. J., Pfister, L., Dewals, B.,
814 Slager, K., Thielen, A. H., Verkade, J., Willems, P., and Aerts, J. C. J. H.: Comparing Flood Forecasting and Early Warning
815 Systems in Transboundary River Basins, , <https://doi.org/10.5194/egusphere-2025-828>, 2025.

816 CEMS: EMSN139: Retrospective Flood Analysis in Luxembourg, July 2021, Copernicus Emergency Management Services,
817 2022.

818 CGDIS: Rapport d'activité 2021, Corps Grand-Ducal d'Incendie et de Secours, 2022.

819 CGDIS Law: Loi du 27 mars 2018 portant organisation de la sécurité civile et création d'un Corps grand-ducal d'incendie et
820 de secours, Law of 27 March 2018 on the organisation of civil security and the creation of the CGDIS, 2018.

821 CHD: Motion n°3634 concernant les inondations des 14 et 15 juillet 2021, déposée par Gilles Roth (CSV) et co-signée par
822 ADR, Déi Lénk et Piraten, Motion parlementaire, 2021a.

823 CHD: Procès-verbal de la réunion du 7 octobre 2021. P.V. AIEFH 24 / P.V. ECEAT 38, 2021b.

824 CHD: Réponse à la question parlementaire n° 984 sur la collaboration et la fusion éventuelle des services météorologiques
825 publics, 2024.

826 Cloke, H. L. and Pappenberger, F.: Ensemble flood forecasting: A review, Journal of Hydrology, 375, 613–626,
827 <https://doi.org/10.1016/j.jhydrol.2009.06.005>, 2009.

828 Cosson, C., Jordan, F., and Berne, A.: Ensemble approach for flash flood forecasting in alpine watersheds, Master's Thesis,
829 École Polytechnique Fédérale de Lausanne (EPFL), 2024.

830 Coughlan de Perez, E., Harrison, L., Berse, K., Easton-Calabria, E., Marunye, J., Marake, M., Murshed, S. B., Shampa, and
831 Zuisomue, E.-H.: Adapting to climate change through anticipatory action: The potential use of weather-based early
832 warnings, Weather and Climate Extremes, 38, 100508, <https://doi.org/10.1016/j.wace.2022.100508>, 2022.

833 Dasgupta, A., Arnal, L., Emerton, R., and others: Connecting Hydrological Modelling and Forecasting from Global to Local
834 Scales: Perspectives from an International Joint Virtual Workshop, Journal of Flood Risk Management,
835 <https://doi.org/10.1111/jfr3.12880>, 2025.

836 De Coning, E., Pegram, E., and Poolman, E.: Improvement of early preparedness and early warning systems for extreme
837 climatic events – flood warnings, Water Research Commission, 2015.

838 Deltaires: Audit of Flood Risk Communication and Warning Effectiveness: July 2021 Floods in the Netherlands, Deltaires,
839 2023.

840 Diederichs, O., Louviau, P., Catoire, S., and Torterotot, J.-P.: Retour d'expérience des inondations des 14 et 15 juillet 2021,
841 Inspection Générale de l'Administration (IGA), Conseil Général de l'Environnement et du Développement Durable
842 (CGEDD), Conseil Général de l'Économie (CGE), 2023.

843 Dieschbourg, C. and Bofferding, T.: Réponse à la question parlementaire n°4675 au sujet du système européen d'alerte pour
844 les inondations (EFAS), 2021.

845 Douinot, A., Iffly, J. F., Tailliez, C., Meisch, C., and others: Flood patterns in a catchment with mixed bedrock geology and a
846 hilly landscape: identification of flashy runoff contributions during storm events, *Hydrology and Earth System Sciences*, 26,
847 5185–5203, <https://doi.org/10.5194/hess-26-5185-2022>, 2022.

848 Ebert, E., Hoffmann, D., Da Costa, J., Liang, X., Mills, B., Mooney, C., Msemo, H., Pastor-Paz, J., Perrels, A., and Tupper,
849 A.: A framework and guide for using value chain approaches to understand, improve, measure, and design early warning
850 systems, *EMS2023*, <https://doi.org/10.5194/EMS2023-498>, 2023.

851 Ebert, E., Hoffmann, D., and Mooney, C.: Warning Value Chain Questionnaire and Guide,
852 <https://doi.org/10.5281/zenodo.10457434>, 2024.

853 Endendijk, T., Botzen, W., Moel, H. D., Aerst, J., Duijndam, S., Slager, K., Kolen, B., and Kok, M.: Experience From the
854 2021 Floods in the Netherlands, *Journal of Coastal and Riverine Flood Risk*, 2, <https://doi.org/10.59490/jcrfr.2023.0009>,
855 2023.

856 EUMETSAT: Case Study: Devastating floods in Western Europe, EUMETSAT, 2021.

857 European Commission: Implementation of the Water Framework Directive and the Floods Directive – Second River Basin
858 Management Plans, 2021.

859 Galvez-Hernandez, P., Dai, Y., and Muntaner, C.: The DANA disaster: Unraveling the political and economic determinants
860 for Valencia's floods devastation, *International Journal for Equity in Health*, 2025.

861 Glantz, M. H. and Pierce, G.: For the Record: Second Thoughts on Early Warning, Early Action (EWEA), EW4All, or
862 EWEA4All?, *Atmosphere*, 14, 1631, <https://doi.org/10.3390/atmos14111631>, 2023.

863 Golding, B.: Towards the “Perfect” Weather Warning, edited by: Golding, B., Springer International Publishing,
864 <https://doi.org/10.1007/978-3-030-98989-7>, 2022.

865 Gould, K., Jacob Remes, and Garcia, M.: Beyond “natural-disasters-are-not-natural”: the work of state and nature after the
866 2010 earthquake in Chile, *Journal of Political Ecology*, 23, <https://doi.org/10.2458/v23i1.20181>, 2016.

867 Grimaldi, S., Thiemig, V., Pechlivanidis, I., Sprokkereef, E., Harrigan, S., Mazzetti, C., Prudhomme, C., Ziese, M.,
868 Schirmeister, Z., Salvo, I. C., Arroyo, M. M., and Salamon, P.: The European Flood Awareness System - A technical
869 assessment of the EFAS performance during the Meuse and Rhine floods in July 2021, Technical report, European
870 Commission, 2023.

871 Haag, I., Krumm, J., Aigner, D., Steinbrich, A., and Weiler, M.: Simulation von Hochwasserereignissen in Folge lokaler
872 Starkregen mit dem Wasserhaushaltsmodell LARSIM, *Hydrologie & Wasserbewirtschaftung*, 66, 6–27, 2022.

873 Hagenlocher, M., Okamoto, S., Nagabhatla, N., Dietrich, S., Hassel, J., Heijden, S. van der, Kreft, S., Lombaerde, P. D.,
874 Nick, F., Oakes, R., and others: Building climate resilience: lessons from the 2021 floods in western Europe, Lessons from
875 the 2021 floods in western Europe, 2023.

876 Hannes, K., Thyssen, P., Bengough, T., Dawson, S., Paque, K., Talboom, S., Tuand, K., Vandendriessche, T., Van De
877 Veerdonk, W., Wopereis, D., and Vandamme, A.-M.: Inclusive Crisis Communication in a Pandemic Context: A Rapid
878 Review, IJERPH, 21, 1216, <https://doi.org/10.3390/ijerph21091216>, 2024.

879 HCPN: Plan d'intervention d'urgence en cas d'inondations (PIU inondations), Haut-Commissariat à la Protection nationale
880 (HCPN), 2019.

881 HCPN Law: Loi du 23 juillet 2016 portant création d'un Haut-Commissariat à la Protection nationale. Journal officiel du
882 Grand-Duché de Luxembourg. Available at: <https://legilux.public.lu/eli/etat/leg/loi/2016/07/23/n1/consolide/20220703>,
883 2016.

884 Hegger, D. L. T., Driessen, P. P. J., Wiering, M., Van Rijswick, H. F. M. W., Kundzewicz, Z. W., Matczak, P., Crabbé, A.,
885 Raadgever, G. T., Bakker, M. H. N., Priest, S. J., Larrue, C., and Ek, K.: Toward more flood resilience: Is a diversification of
886 flood risk management strategies the way forward?, E&S, 21, art52, <https://doi.org/10.5751/ES-08854-210452>, 2016.

887 Hermans, T. D. G., Troglić, R. Š., Homberg, M. J. C. van den, Bailon, H., Sarku, R., and Mosurska, A.: Exploring the
888 integration of local and scientific knowledge in early warning systems for disaster risk reduction: a review, Natural Hazards,
889 114, 1125–1152, <https://doi.org/10.1007/s11069-022-05468-8>, 2022.

890 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R.,
891 Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita,
892 M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A.,
893 Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G.,
894 Rosnay, P. de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Quarterly Journal of
895 the Royal Meteorological Society, 146, 1999–2049, <https://doi.org/10.1002/qj.3803>, 2020.

896 Hoffmann, D., Ebert, E. E., Mooney, C., Golding, B., and Potter, S.: Using value chain approaches to evaluate the end-to-
897 end warning chain, Advances in Science and Research, 20, 73–79, <https://doi.org/10.5194/ASR-20-73-2023>, 2023.

898 IFRC: Handbook on Risk Communication and Community Engagement, 2020.

899 Jaime, C., de Perez, E. C., van Aalst, M., and Raju, E.: What was known: Weather forecast availability and communication
900 in conflict-affected countries, International Journal of Disaster Risk Reduction, <https://doi.org/10.1016/j.ijdrr.2022.103182>,
901 2022.

902 Kalogiannidis, S., Kalfas, D., Koutsas, S., Papaevangelou, O., and Chatzitheodoridis, F.: Evaluating the Effectiveness of
903 Early Warning Systems in Reducing Loss of Life in Natural Disasters: A case study of Greece, JRACR, 15, 33,
904 <https://doi.org/10.54560/jracr.v15i1.547>, 2025.

905 Kelman, I. and Glantz, M. H.: Early Warning Systems Defined, in: Reducing Disaster: Early Warning Systems For Climate
906 Change, Springer Netherlands, 89–108, https://doi.org/10.1007/978-94-017-8598-3_5, 2014.

907 Kobs, D.: Application and verification of ECMWF products 2018 - Luxembourg, in: Green Book 2018, ECMWF, 2018.

908 Lanfranconi, C., Maio, F. V. D., and Stefano, R. D.: Multi-hazard and risk informed system for enhanced disaster risk
909 management, MEDIMATE Project, 2024.

910 Lang, A. and Poschlod, B.: Updating catastrophe models to today's climate – An application of a large ensemble approach to
911 extreme rainfall, Climate Risk Management, 44, 100594, <https://doi.org/10.1016/j.crm.2024.100594>, 2024.

912 Lietaer, S., Nagabhatla, N., Scheerens, C., Mycroft, M., and Lombaerde, P. D.: Blind Spots in Belgian Flood Risk
913 Governance: The Case of the Summer 2021 Floods in Wallonia, UNU-CRIS Research Report, 2, 2024,
914 <https://doi.org/10.13140/RG.2.2.28192.39688>, 2024.

915 Ludwig, P., Ehmele, F., Franca, M. J., Mohr, S., Caldas-Alvarez, A., Daniell, J. E., Ehret, U., Feldmann, H., Hundhausen,
916 M., Knippertz, P., Küpfer, K., Kunz, M., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Seidel, F., and Wisotzky, C.: A
917 multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 2: Historical context and
918 relation to climate change, Natural Hazards and Earth System Sciences, 23, 1287–1311, <https://doi.org/10.5194/nhess-23-1287-2023>, 2023.

920 Luxembourg Government: Briefing de presse: Conseil de gouvernement extraordinaire suite aux intempéries (15 juillet
921 2021), 2021a.

922 Luxembourg Government: Rapport relatif à la gestion de crise dans le cadre des intempéries des 14 et 15 juillet 2021 depuis
923 la phase de préalerte, Gouvernement du Grand-Duché de Luxembourg, 2021b.

924 Magnusson, L.: ECMWF Severe Event Catalogue for Evaluation of Multi-scale Prediction of Extreme Weather, ECMWF
925 Technical Memoranda, <https://doi.org/10.21957/i2pb6pe>, 2019.

926 Magnusson, L., Simmons, A., Harrigan, S., and Pappenberger, F.: Extreme rain in Germany and Belgium in July 2021,
927 ECMWF Newsletter, 2021.

928 Martin-Moreno, J. M. and Garcia-Lopez, E.: Devastating “DANA” Floods in Valencia: Insights on Resilience, Challenges,
929 and Strategies Addressing Future Disasters, Public Health Review, 2025.

930 McDermott, R., Fraser, A., Ensor, J., and Seddighi, H.: The role of forensic investigation in systemic risk enquiry:
931 Reflections from case studies of disasters in Istanbul, Kathmandu, Nairobi and Quito, Progress in Disaster Science, 2022.

932 McEntire, D. A.: Disaster Response and Recovery: Strategies and Tactics for Resilience, CRC Press, 2021.

933 MeteoLux: Retour sur les pluies diluviennes du 14 et 15 juillet 2021, Administration de la Navigation Aérienne, 2021.

934 Miletic, D. S. and Sorensen, J. H.: Communication of emergency public warnings: A social science perspective and state-of-
935 the-art assessment, Oak Ridge National Laboratory (ORNL), <https://doi.org/10.2172/6137387>, 1990.

936 Ministry of State, Infrastructures, M. du D. durable et des, and l'Intérieur, M. de: Plan d'intervention d'urgence (PIU) en cas
937 d'intempéries « Plan Intempéries », Severe Weather Emergency Intervention Plan, 2015.

938 Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J.,
939 Gattke, C., Hundhausen, M., Knippertz, P., Küpfer, K., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Scheibel, M.,
940 Seidel, F., and Wisotzky, C.: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe –

941 Part 1: Event description and analysis, *Natural Hazards and Earth System Sciences*, 23, 525–551,
942 <https://doi.org/10.5194/nhess-23-525-2023>, 2023.

943 Montanari, A., Merz, B., and Blöschl, G.: HESS Opinions: The sword of Damocles of the impossible flood, *Hydrology and*
944 *Earth System Sciences*, 28, 2603–2610, 2024.

945 Moselle Convention States: Convention on the Canalisation of the Moselle, Convention on the Canalisation of the Moselle,
946 1956.

947 Netherlands Court of Audit: Beyond the Dyke: Flood protection, spatial adaptation and crisis management, *Netherlands*
948 *Court of Audit*, 2024.

949 Oliver-Smith, A.: Disasters and Large-Scale Population Dislocations: International and National Responses, in: *Oxford*
950 *Research Encyclopedia of Natural Hazard Science*, Oxford University Press,
951 <https://doi.org/10.1093/acrefore/9780199389407.013.224>, 2018.

952 Our-Sauer-Moselle: Treaty between the Federal Republic of Germany and the Grand Duchy of Luxembourg on the
953 demarcation of the border between the two States, Treaty between the Federal Republic of Germany and the Grand Duchy of
954 Luxembourg on the demarcation of the border between the two States, 2735, 1984.

955 Pot, W., Ridder, Y. de, and Dewulf, A.: Avoiding future surprises after acute shocks: long-term flood risk lessons catalysed
956 by the 2021 summer flood in the Netherlands, *Environmental Sciences Europe*, 36, 138, <https://doi.org/10.1186/s12302-024-00960-3>, 2024.

957 Reichstein, M., Benson, V., Blunk, J., Camps-Valls, G., Creutzig, F., Fearnley, C. J., Han, B., Kornhuber, K., Rahaman, N.,
958 Schölkopf, B., Tárraga, J. M., Vinuesa, R., Dall, K., Denzler, J., Frank, D., Martini, G., Nganga, N., Maddix, D. C., and
959 Weldemariam, K.: Early warning of complex climate risk with integrated artificial intelligence, *Nat Commun*, 16, 2564,
960 <https://doi.org/10.1038/s41467-025-57640-w>, 2025.

961 Rhein, B. and Kreibich, H.: Causes of the exceptionally high number of fatalities in the Ahr valley, Germany, during the
962 2021 flood, *EGUphere*, 2024, 1–12, <https://doi.org/10.5194/egusphere-2024-2066>, 2024.

963 RTL: De Journal vum 13. Juli 2021, *RTL.lu*, 2021a.

964 RTL: Xavier Bettel: Situatioun ass offiziell als Naturkatastroph agestuuft ginn, *RTL.lu*, 2021b.

965 Šakić Trogrić, R. and Van Den Homberg, M.: Early Warning Systems and Their Role in Disaster Risk Reduction, in:
966 *Forecasting and Early Warning Systems in Disaster Risk Reduction*, Springer, 2022.

967 Schanze, J.: Flood Risk Management: Basic Understanding and Integrated Methodologies, in: *Methodologies for Integrated*
968 *Flood Risk Management: Research Advances at European Pilot Sites*, edited by: Schanze, J., Bakonyi, P., Borga, M.,
969 Marchand, M., Jimenez, J. A., and Kaiser, G., *FLOODsite Report T21-09-08*, 3–13, 2009.

970 STATEC: Luxembourg en chiffres 2022, Institut national de la statistique et des études économiques du Grand-Duché de
971 Luxembourg (STATEC), 2022.

972 Szönyi, M., Roezer, V., Deubelli, T., Ulrich, J., MacClune, K., Laurien, F., and Norton, R.: PERC floods following “Bernd,”
973 Zurich Insurance Company, 2022.

975 Tan, M. L., Hoffmann, D., Ebert, E., Cui, A., and Johnston, D.: Exploring the potential role of citizen science in the warning
976 value chain for high impact weather, *Frontiers in Communication*, 7, <https://doi.org/10.3389/fcomm.2022.949949>, 2022.

977 Thielen, A. H., Bubeck, P., Heidenreich, A., Keyserlingk, J. von, Dillenardt, L., and Otto, A.: Performance of the flood
978 warning system in Germany in July 2021 – insights from affected residents, *Natural Hazards and Earth System Sciences*, 23,
979 973–990, <https://doi.org/10.5194/nhess-23-973-2023>, 2023.

980 Thompson, V., Coumou, D., Beyerle, U., and Ommer, J.: Alternative rainfall storylines for the Western European July 2021
981 floods from ensemble boosting, *Communications Earth & Environment*, 2025.

982 Tobias, S.: Wetterwarnungen in Luxemburg Nach Serverpanne Meteolux erwägt Wechsel zu staatlichem Server, *Tageblatt*,
983 2021.

984 Tradowsky, J. S., Philip, S. Y., Kreienkamp, F., Kew, S. F., Lorenz, P., Arrighi, J., Bettmann, T., Caluwaerts, S., Chan, S.
985 C., Cruz, L. D., Vries, H. de, Demuth, N., Ferrone, A., Fischer, E. M., Fowler, H. J., Goergen, K., Heinrich, D., Henrichs, Y.,
986 Kaspar, F., Lenderink, G., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S. I., Singh, R. K., Skålevåg, A., Termonia, P.,
987 Thalheimer, L., Aalst, M. van, Bergh, J. V. den, Vyver, H. V. de, Vannitsem, S., Oldenborgh, G. J. van, Schaeybroeck, B.
988 V., Vautard, R., Vonk, D., and Wanders, N.: Attribution of the heavy rainfall events leading to severe flooding in Western
989 Europe during July 2021, *Climatic Change*, 176, 90, <https://doi.org/10.1007/s10584-023-03502-7>, 2023.

990 Trošelj, J., Lee, H. S., and Hobohm, L.: A real-time flash flood predictive accuracy approach for the development of early
991 warning systems: hydrological ensemble hindcasts and parameterizations, *Sustainability*, 15, 13897, 2023.

992 Tupper, A. C. and Fearnley, C. J.: Disaster early-warning systems can succeed—but collective action is needed, *Nature*, 623,
993 478–482, <https://doi.org/10.1038/d41586-023-03510-8>, 2023.

994 UCL: The UCL Warning Database, 2025.

995 UNDRR: Sendai Framework for Disaster Risk Reduction 2015–2030, *Sendai Framework for Disaster Risk Reduction 2015–*
996 2030, 2015.

997 UNDRR: Global Status Report on Disaster Risk Reduction and Early Warning Systems, 2022.

998 Wilkinson, E.: Transforming Disaster Risk Management: A Political Economy Approach, 2012.

999 WMO: Early Warnings for All: The UN Global Early Warning Initiative for the Implementation of Climate Adaptation -
1000 Executive Action Plan 2023–2027, *Executive Action Plan 2023–2027*, 56, 2022.

1001 WMO: Hydromet Gap Report 2024: Closing the Early Warning Gap by 2027, *Hydromet Gap Report 2024*, 2024a.

1002 WMO: Value Chain Approaches to Describe, Improve, Value and Co-Design Early Warning Systems, *World*
1003 *Meteorological Organization*, 2024b.

1004 Zaiotti, R.: *Cultures of border control: Schengen and the evolution of Europe's frontiers*, University of Chicago Press, 2011.

1005 Zander, K. K., Nguyen, D., Mirbabaie, M., and Garnett, S. T.: Aware but not prepared: understanding situational awareness
1006 during the century flood in Germany in 2021, *International Journal of Disaster Risk Reduction*, 96, 103936,
1007 <https://doi.org/10.1016/j.ijdrr.2023.103936>, 2023.

1008

1009

1010