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Abstract. Amid global climate change, rising atmospheric methane (CH4) concentrations signif-icantly influence the 11 

climate system, contributing to temperature increases and at-mospheric chemistry changes. Accurate monitoring of 12 

these concentrations is essential to support global methane emission reduction goals, such as those outlined in the 13 

Global Methane Pledge targeting a 30% reduction by 2030. Satellite remote sensing, offering high precision and 14 

extensive spatial coverage, has become a critical tool for measuring large-scale atmospheric methane concentrations. 15 

However, traditional physical inversion models face challenges, including high computational complexity, low 16 

processing efficiency, and inadequate incorporation of spatial distribution infor-mation, limiting their effectiveness. 17 

To address these shortcomings, this study proposes a high-precision XCH4 inversion method that integrates the 18 

Convolutional Block At-tention Module (CBAM) with the ResNet18 neural network (CBAM-ResNet18). By 19 

leveraging shortwave infrared spectral data from the Sentinel-5P satellite and the CAMS reanalysis dataset, this 20 

approach achieves rapid and accurate XCH4 inversion. Experimental results demonstrate that the method outperforms 21 

both conventional physical models and existing mainstream techniques in terms of inversion accuracy and 22 

computational efficiency. It achieves an error of less than 2%, meeting the strin-gent precision requirements for XCH4 23 

in atmospheric remote sensing and providing a robust tool for methane monitoring. 24 
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1 Introduction 28 

Amid global climate change, methane (CH4), a potent greenhouse gas, has signifi-cantly influenced the climate 29 

through rising atmospheric concentrations, driving tem-perature increases and altering atmospheric chemistry (Thakur 30 

& Solanki, 2022; Winterstein et al., 2019). Since the Industrial Revolution, extensive fossil fuel use, expanded 31 

agricultural activities, and waste manage-ment practices have markedly elevated methane levels (Wuebbles & Hayhoe, 32 

2002, Hinrich, 2019). As a result, the climate impacts of methane emissions and concentration changes have gained 33 

growing atten-tion. At the 26th United Nations Climate Change Conference (COP26), over 100 coun-tries committed 34 

to the Global Methane Pledge, aiming to reduce global methane emis-sions by at least 30% by 2030 (Vogel, 2022). 35 

To achieve this goal, scientists have recommended enhancing methane emission monitoring and modeling capabilities, 36 

including im-proving process models, expanding wetland flux measurements, extending fossil fuel emission 37 
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measurements, and refining data from waste management systems (Anita et al., 2019). These advancements will 38 

facilitate more accurate quantification of methane emissions and the formulation of effective mitigation strategies. 39 

Among these efforts, effectively monitoring changes in methane concentration serves as the foundation for various 40 

mitigation initiatives. It provides critical information on methane concentration varia-tions and offers precise 41 

quantitative references for methane reduction measures (Erland et al., 2022). Therefore, effective monitoring of 42 

atmospheric methane concentration is essential for mitigating climate change. 43 

To effectively monitor and assess methane emissions, satellite remote sensing technology has become a crucial 44 

tool for obtaining large-scale atmospheric methane concentrations, leveraging its advantages of high precision and 45 

extensive monitoring coverage (Jacob et al., 2022). Methane monitoring satellites typically utilize thermal infrared or 46 

shortwave infrared hyperspectral sensors to capture spectral information reflected from the Earth's surface. Through 47 

inversion algorithms, this spectral information is then converted into XCH4 data (Worden et al., 2015). XCH4, an 48 

essential metric derived from satellite observations, represents the column-averaged dry-air mole fraction of methane 49 

and has been widely used for quantifying atmospheric methane concentrations (Zeng et al., 2021). 50 

Early research on XCH4 inversion methods primarily relied on radiative transfer models, such as the widely used 51 

MODTRAN (MODerate resolution atmospheric TRANsmission) and LBLRTM (Line-By-Line Radiative Transfer 52 

Model) (Rothman et al., 2017; Clough et al., 2005). These models invert XCH4 by performing precise calculations of 53 

atmospheric spectra in con-junction with satellite observation data, such as those from TROPOMI or GOSAT. In 54 

recent years, the CAMS (Copernicus Atmosphere Monitoring Service) reanalysis data provided by the European 55 

Centre for Medium-Range Weather Forecasts (ECMWF) has also offered richer reference information for atmospheric 56 

methane concentration in-version (Inness et al., 2019). However, most current XCH4 inversion methods depend on 57 

physics-based inversion algorithms, which often face challenges such as high computational com-plexity and slow 58 

processing speeds when handling satellite data. Additionally, these methods predominantly rely on single-point 59 

detection data and fail to fully utilize spa-tial distribution information, thereby compromising the accuracy and 60 

efficiency of XCH4 inversion (Jacob et al., 2019; Pandey et al., 2022). 61 

In recent years, with the rapid development of deep learning techniques, da-ta-driven methods based on neural 62 

networks have demonstrated significant ad-vantages in remote sensing data analysis (Zhu et al., 2017). Among these, 63 

the Residual Neural Net-work (ResNet) has been widely applied in fields such as image classification and object 64 

detection due to its powerful feature extraction capabilities in deep layers (He et al., 2016). The Convolutional Block 65 

Attention Module (CBAM), an attention mechanism designed to enhance the performance of convolutional neural 66 

networks (CNNs), selectively focus-es on important feature channels and spatial locations during the feature extraction 67 

process by integrating channel attention and spatial attention modules, thereby im-proving the network’s ability to 68 

perceive critical information (Praharsha & Poulose, 2024). Currently, CBAM has been extensively utilized in various 69 

remote sensing applications, including su-per-resolution reconstruction (Wang et al., 2024), change detection (Wang 70 

et al., 2022), image segmentation (Shun et al., 2022), and image fusion (Liu et al., 2023). Research results indicate 71 

that by incorporating CBAM, the quality and processing accuracy of remote sensing images have been significantly 72 

im-proved, highlighting the immense potential of CBAM in the field of remote sensing. 73 
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To further enhance the efficiency and accuracy of XCH4 inversion, this study pro-poses an XCH4 inversion 74 

method based on the CBAM attention mechanism and the ResNet18 neural network, utilizing shortwave infrared 75 

spectral data from the Senti-nel-5P satellite and the CAMS reanalysis data from the European Centre for Medi-um-76 

Range Weather Forecasts (ECMWF). By integrating spatial distribution infor-mation and spectral features, this 77 

method significantly improves inversion accuracy and accelerates computational speed, achieving the goal of rapidly 78 

and accurately ob-taining atmospheric methane concentrations from satellite data. 79 

The structure of this paper is organized as follows: Section 2 provides a detailed introduction to the sources and 80 

preprocessing methods of the satellite data and me-thane concentration data used in this study, as well as the 81 

construction process of the CBAM-ResNet18 model and its application in XCH4 inversion. Section 3 presents ex-82 

perimental visualizations, validation, and analytical discussions. Finally, Section 4 summarizes the research findings 83 

of this study. 84 

 for the reviewers. The final layout of the typeset paper will not match this template layout.  85 

2 Materials and Methods 86 

2.1 Data preprocessing 87 

High-precision XCH4 inversion requires high-quality data samples. This section outlines the preprocessing 88 

steps for Sentinel-5P L1B spectral data and CAMS XCH4 reanalysis data. 89 

2.1.1 Preprocessing of Satellite L1B Spectral Data 90 

To extract high-quality samples from satellite observation data, this study begins with the L1B-level spectral data 91 

from the Sentinel-5P satellite. The primary data pre-processing steps consist of three parts: data filtering, spatial 92 

cropping, and spectral data normalization. 93 

1. Data Filtering: Since the L2 products have undergone certain data filtering pro-cesses (e.g., quality control, cloud 94 

masking, etc.), the L1B data used in the genera-tion of L2 products can be considered of relatively high quality. 95 

Therefore, based on the valid detection pixels of the L2 products, we extracted the corresponding L1B spectral 96 

data. Observations impacted by clouds or high aerosol optical depth (AOD) were excluded. Clouds significantly 97 

impair satellite detection of surface reflectance, while high AOD disrupts spectral signals. Thus, using the cloud 98 

mask and aerosol optical depth parameters from the L2 products, we set filtering thresholds to retain only 99 

observation pixels with cloud fraction below 0.1 and AOD below 0.2. 100 

2. Spatial Cropping: To leverage the spatial distribution information of methane, we cropped the satellite observation 101 

data into 3×3 data blocks. Each block contains three pixels in both the longitude and latitude directions, resulting 102 

in data blocks with spatial dimensions, thereby enhancing the model's ability to capture spatial correlations. The 103 

corresponding L1B spectral data for each block forms a 3×3×480 three-dimensional tensor during inversion, 104 

where 480 represents the number of channels in the L1B spectrum, as illustrated in Figure 1. This cropping method 105 

allows the model to capture the distribution patterns of methane concentrations within localized spatial ranges, 106 

improving sensitivity to spatial heterogeneity. 107 
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 108 

Fig. 1 Schematic Diagram of Spatial Cropping. 109 

3. Spectral Data Normalization: To eliminate scale differences among spectral data from different bands, this study 110 

normalized the spectral data for each pixel. Assuming the original spectral data is I(λ), the normalization is 111 

performed for each channel λ using the following formula:  112 

where 𝜇𝜆   and 𝜎𝜆  represent the mean and standard deviation of channel λ, respectively. Normalization helps 113 

accelerate the model training process and prevents issues such as gradient vanishing or explosion 114 

2.1.2 Preprocessing of CAMS XCH4 Reanalysis Data 115 

This study conducted spatiotemporal matching and interpolation on the CAMS XCH4 reanalysis data. To 116 

effectively correlate the satellite-observed spectral data with surface XCH4, the CAMS reanalysis data were used for 117 

spatiotemporal matching. Specifically, for each satellite observation time and location, the CAMS data were linearly 118 

interpolated to ensure consistency in both temporal and spatial dimensions. Additionally, normalization of the dataset 119 

was performed to eliminate scale differences across different dimensions, thereby enhancing the training efficiency of 120 

the model and the accuracy of the inversion results. 121 

When using deep learning models for inversion, the spatiotemporal consistency between training data and target 122 

data is crucial for ensuring model performance. To guarantee the temporal and spatial alignment between Sentinel-5P 123 

observation data and CAMS XCH4 data, the following processing steps were implemented in this study: 124 

1. Spatiotemporal Matching: The CAMS XCH4 data has a temporal resolution of 3 hours and a spatial 125 

resolution of 0.75° × 0.75°. To align it with Sentinel-5P observation data, the temporal and spatial resolution 126 

of the CAMS data was first adjusted to match that of the satellite data. For temporal matching, assuming a 127 

satellite observation time 𝑡𝑠, and 𝑡1 and 𝑡2 as the two closest time points provided by CAMS (i.e., t1 < ts <128 

t2)), the XCH4 at time ts is calculated through linear interpolation:. 129 

where 𝑋CH4
(𝑡1) and 𝑋CH4

(𝑡2) represent the XCH4 values from CAMS at times 𝑡1 and 𝑡2, respectively. 130 

2. Spatial Interpolation: In the spatial dimension, since the resolution of CAMS data is 0.75°, while Sentinel-5P 131 

observations have a higher resolution (approximately 5.5 km × 7 km), this study employed bilinear 132 

I′(λ) =
I(λ)−μλ

σλ
, (1) 

XCH4
(ts) = XCH4

(t1) +
ts − t1

t2 − t1

⋅ (XCH4
(t2) − XCH4

(t1)) (2) 
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interpolation to align the CAMS data with the geographic locations of the satellite observation points. For a 133 

satellite observation point with longitude 𝜆𝑠  and latitude 𝜙𝑠 , the methane concentration values at the four 134 

nearest CAMS grid points are denoted as X11, X12, X21, and X22. The concentration value at the observation 135 

point is calculated using bilinear interpolation as follows: 136 

where 𝜆1, 𝜆2 and 𝜙1, 𝜙2 represent the longitude and latitude boundaries of the CAMS grid, respectively. 137 

Through this process, the XCH4 data from CAMS are precisely mapped to the observation locations of 138 

Sentinel-5P. 139 

3. Interpolation Error Control: To control potential errors introduced during the interpolation process, this 140 

study compared the interpolated CAMS data with the original resolution observations after interpolation, 141 

ensuring that the interpolation error remained within acceptable limits. Specifically, the Root Mean Square 142 

Error (RMSE) was used to evaluate the interpolation quality, calculated as follows: 143 

where N is the total number of interpolated data points, and 𝑋𝐶𝐻4

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑
interpolated and 𝑋𝐶𝐻4

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 original 144 

represent the interpolated XCH4 and the original data, respectively. 145 

Through these processing steps, this study effectively ensured precise spatiotemporal alignment between 146 

Sentinel-5P observation data and CAMS reanalysis data, forming high-quality input-output pairs for the CBAM-147 

ResNet18 model to train and perform inversions. 148 

2.2 High-Precision XCH4 Inversion Method 149 

2.2.1 CBAM-ResNet18 150 

Convolutional neural networks (CNNs) excel at extracting high-dimensional features, with their expressive 151 

power and feature extraction capabilities enhancing as network depth increases. However, merely adding layers can 152 

cause performance degradation. ResNet18 addresses this by introducing skip connections to optimize the neural 153 

network architecture, combined with batch normalization, and eliminates the traditional fully connected layer at the 154 

end. The core of deep residual networks is the residual unit, as shown in Figure 2. In traditional neural network 155 

structures, it is often difficult to directly achieve an identity mapping where the output is identical to the input (i.e., 156 

H(x)=x). Residual neural networks, however, allow the residual block to focus on learning the residual value 157 

F(x)=H(x)-x. When the residual F(x) equals zero, it effectively constructs an identity mapping. Compared to directly 158 

learning identity mappings, this simplifies the learning task and reduces its difficulty. By adopting the residual learning 159 

mechanism, deep residual networks effectively mitigate the performance degradation issue that arises when stacking 160 

layers in deep CNNs, theoretically allowing unlimited increases in network depth to enhance model prediction 161 

accuracy. To ensure both the accuracy and real-time performance of XCH4 inversion, ResNet18, with its moderate 162 

depth and faster convergence, was selected as the training model. 163 

XCH4(λs,ϕs) =
1

(λ2−λ1)(ϕ2−ϕ1)
[X11(λ2 − λs)(ϕ2 − ϕs) + X12(λs − λ1)(ϕ2 − ϕs) + X21(λs −

λ1)(ϕ2 − ϕs) + X22(λs − λ1)(ϕs − ϕ1)], 
(3) 

RMSE = √
1

N
∑ (XCH4

interpolated
− XCH4

original
)2N

i=1 , (4) 
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 164 

 165 
Fig. 2 Schematic Diagram of the Residual Unit. 166 

 167 
CBAM (Convolutional Block Attention Module) is a lightweight convolutional attention module that consists of 168 

two sub-modules: CAM (Channel Attention Module) and SAM (Spatial Attention Module), which perform channel 169 

attention and spatial attention, respectively. It can be integrated as a plug-and-play module into existing network 170 

architectures. For an input feature F ∈ RC ∗ H ∗ W, the channel attention module applies a 1D convolution Mc ∈ RC ∗171 

1 ∗ 1, multiplies the convolution result with the original feature map, and uses the CAM output as the input for the 172 

spatial attention module, which applies a 2D convolution Ms ∈ R1 ∗ H ∗ W. The final output feature is obtained by 173 

multiplying the result with the original feature map. The structure of the CBAM attention mechanism is illustrated in 174 

Figure 3. 175 

 176 
 177 

Fig. 3 Schematic Diagram of the CBAM Attention Mechanism. 178 
 179 

In this study, the CBAM module was integrated into the ResNet18 network structure, placed after the residual 180 

module. In the CBAM-ResNet18 architecture, the input data first passes through the residual module for feature 181 

extraction. The extracted features then enter the CBAM module for attention adjustment across spatial and channel 182 

dimensions, generating weights that represent the importance of spatial and channel features. These weights are used 183 

to amplify or reduce the original feature map accordingly, enabling a deep, multi-dimensional understanding and 184 

optimization of features throughout the network, thereby enhancing the performance of ResNet18. The main modules 185 

of CBAM-ResNet18 are illustrated in Figure 4. 186 
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 187 

Fig. 4 Schematic Diagram of the Main Modules of CBAM-ResNet18. 188 

2.2.2 Establishment of XCH4 Inversion Method Based on CBAM-ResNet18 189 

The input data to the model takes the form of 𝑛 × 3 × 3 × 480 (where n is the number of samples), and the model 190 

output is the XCH4 data provided by CAMS, which is spatiotemporally matched with the input data. The training set 191 

consists of 2244 samples, and the test set contains 647 samples. During the model training process, input parameters 192 

are normalized to eliminate the influence of different feature scales and improve training efficiency. This is essentially 193 

a regression task. Therefore, in the ResNet18 model structure, the original softmax layer is removed and replaced with 194 

a combination of a global average pooling layer, a fully connected layer, and a regression layer. During the model 195 

training phase, the loss function quantifies the difference between the network's actual output and the target result, 196 

and this difference is backpropagated through the network to update and optimize all parameters of the neural network. 197 

Initializing the parameters of a neural network is one of the critical steps in the deep learning training process. 198 

The rationality of their settings directly affects whether the model can effectively learn and fit the training data. Batch 199 

size refers to the size of the data subset used for each gradient update. A reasonable batch size can effectively balance 200 

the model's convergence speed and optimization performance. While a smaller batch size may accelerate convergence, 201 

it can also introduce more noise, making the training process less stable. The learning rate is also a crucial 202 

hyperparameter. If the learning rate is too large, it may cause the model to oscillate during training, making it difficult 203 

to converge. Conversely, if the learning rate is too small, the training process may become slow or even get trapped 204 

in a local optimum. In this study, the model training employed the Adam adaptive optimization algorithm, with the 205 

batch size set to 150 and the initial learning rate set to 0.01. 206 

3 EXPERIMENT AND ANALYSIS 207 

3.1 Experimental environment 208 

The experiment was run in the following hardware environment: Intel Xeon(R) Gold 6226R@2.90GHz 2.89GHz 209 

CPU, 256GB RAM, NVIDIA Quadro RTX 6000 GPU, Windows 10 Professional Edition, MATLAB R2022a. 210 
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3.2 Experimental environment 211 

3.2.1 Sentinel-5P satellite data 212 

The European Space Agency launched the Sentinel-5P satellite, equipped with the Tropospheric Monitoring 213 

Instrument (TROPOMI), into space on October 13, 2017. As a satellite deployed in a near-polar sun-synchronous 214 

orbit, Sentinel-5P undertakes the critical mission of atmospheric composition monitoring. Its primary goal is to 215 

achieve high spatiotemporal resolution remote sensing, accurately measuring key components of Earth's atmosphere, 216 

such as methane (CH₄), nitrogen dioxide (NO₂), ozone (O₃), and aerosols, as well as monitoring ultraviolet radiation 217 

intensity. These data are of significant importance for air quality assessment, climate change research, and the 218 

improvement of climate prediction models. Leveraging its unique orbital characteristics, Sentinel-5P provides a wide 219 

swath imaging capability of approximately 2600 kilometers, enabling daily global coverage. The satellite completes 220 

a precise global revisit every 16 days. The spectrometer onboard TROPOMI performs push-broom observations across 221 

multiple spectral bands, covering seven bands from ultraviolet to shortwave infrared. In the shortwave infrared band, 222 

the spatial resolution can reach 5.5 km × 7 km. The Sentinel-5P official website distributes Level 1B and Level 2 223 

products to users. Level 1B products consist of spectral data, while Level 2 products include XCH₄, XCO, and cloud 224 

mask data, among others. This study will focus on the inversion of XCH₄ based on the L1B_RA_BD7 spectral data, 225 

combined with aerosol optical depth and cloud mask parameters from the Level 2 XCH₄ product. 226 

3.2.2 CAMS Reanalysis Data 227 

The model output utilizes XCH₄ reanalysis data provided by CAMS (Copernicus Atmosphere Monitoring 228 

Service). The CAMS reanalysis dataset includes estimates of greenhouse gases and other variables from 2003 to 2020, 229 

with a temporal resolution of 3 hours and a spatial resolution of 0.75° × 0.75°. 230 

3.2.3 TCCON Site Data 231 

TCCON (Total Carbon Column Observing Network) is a global ground-based ob-servation network that uses 232 

Fourier Transform Spectroscopy (FTS) to measure spectral data in the near-infrared band of solar radiation. By 233 

applying a nonlinear least squares fitting algorithm, TCCON precisely retrieves the column-averaged dry-air mole 234 

frac-tions of atmospheric components, such as CH₄ (XCH₄), from the observed spectral data. TCCON sites exhibit 235 

extremely high retrieval accuracy, and all site data are inde-pendently validated, ensuring their reliability. Using 236 

TCCON site observation data to validate inversion results is currently a mainstream practice. 237 

To facilitate the validation of inversion results, 15 orbital data sets covering North and South America between 238 

June 1, 2020, and June 15, 2020, were selected. This region was chosen due to its higher density of TCCON sites. 239 

3.3 XCH4 Inversion Results and Validation Analysis 240 

To intuitively display and validate the inversion results from multiple perspectives, this section selects 15 241 

Sentinel-5P orbital spectral datasets covering North and South America between June 1, 2020, and June 15, 2020, for 242 
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inversion. The results are presented in the form of spatial distribution maps and compared with XCH₄ reanalysis data 243 

from CAMS, observational data from TCCON sites, and inversion results from other mainstream methods. 244 

3.3.1 Visualization of XCH4 Inversion Results 245 

To more clearly and intuitively observe the spatial distribution characteristics of the inversion results, this section 246 

utilizes the CBAM-ResNet18 inversion model to conduct XCH₄ concentration inversion for the complete regions of 247 

Oklahoma on June 11, 2020, and Wisconsin on June 14, 2020. The spatial distribution maps of the inversion results 248 

are generated and shown in Figure 5. These maps illustrate the variations in XCH₄ within the selected areas. The XCH₄ 249 

data processed by the CBAM-ResNet18 model can reflect the heterogeneity of methane concentrations across different 250 

geographical locations, such as urban areas, industrial zones, and natural wetlands, which are potential sources of 251 

methane emissions. 252 

 253 

 254 

 255 

(a) Spatial Distribution Map of Inversion 

Results for Oklahoma on June 11, 2020 

(b) Spatial Distribution Map of Inversion Results 

for Wisconsin on June 14, 2020 

 256 
Fig. 5 Spatial Distribution Maps of XCH4 Inversion Results from the CBAM-ResNet18 Model. 257 

 258 
Figure 5(a) reveals a pronounced spatial gradient in XCH4 concentrations, rising from 1840–1842 ppb in the west 259 

(102°W to 100°W) to 1848–1850 ppb in the east (98°W to 94°W). The model successfully captures this west-to-east 260 

concentration gradient, demonstrating its strong spatial resolution capability over large spatial scales (state-level, 261 

approximately 400 km × 600 km). Additionally, the concentration changes across grid cells appear smooth, without 262 

noticeable abrupt transitions or noise, indicating the stable performance of the inversion method across different 263 

locations. In Figure 5(b), the XCH₄ concentration increases from lower values (1840-1844 ppb) in the west (94°W to 264 

90°W) to higher values (approaching 1850 ppb) in the east (88°W to 84°W). The model also captures this spatial 265 

gradient, particularly in the eastern region near Lake Michigan, where the concentration changes are more nuanced 266 

and transitions between grid cells are natural. This suggests that the inversion method effectively resolves the spatial 267 

distribution characteristics of XCH₄ concentration across different geographical environments (the flat terrain of 268 

Oklahoma versus the lake and forest terrain of Wisconsin). 269 
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From Figure 5, it can be observed that the XCH₄ concentration range (1840-1850 ppb) in both maps indicates 270 

that the model exhibits high sensitivity to small-scale concentration variations (10 ppb). For example, in eastern 271 

Oklahoma, the model can distinguish subtle differences between localized high-value areas (1848-1850 ppb) and 272 

surrounding regions (1846-1848 ppb). Similarly, in eastern Wisconsin, the model captures the concentration peak near 273 

Lake Michigan. This sensitivity demonstrates that the inversion method can effectively extract minor variations in 274 

XCH₄ concentration when processing high-resolution satellite data, making it suitable for identifying potential 275 

methane emission hotspots. 276 

The above visualization results preliminarily indicate that the CBAM-ResNet18 model performs well in XCH₄ 277 

inversion using satellite spectral data and spatial information. Additionally, the resolution and detail retention of the 278 

inversion results benefit from the model's ability to extract spatial features from 3×3 data blocks, enabling effective 279 

identification of local methane concentration variations. 280 

3.3.2 Visualization of XCH4 Inversion Results 281 

This study employs Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) to evaluate the accuracy 282 

of the inverted XCH₄. The formulas for the relevant evaluation metrics are as follows: 283 

where N is the number of samples, 𝑓𝑖 is the predicted value, and 𝑦𝑖  is the true value. 284 

Using the proposed XCH₄ inversion method, Sentinel-5P satellite observation data were inverted to obtain XCH₄. 285 

This study first validated the inversion results using CAMS reanalysis data. The validation results are shown in Figure 286 

6. 287 

 288 
 289 

Fig. 6 Comparison of Inversion Results and CAMS Reanalysis Data. 290 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑓𝑖 − 𝑦𝑖)2𝑁

𝑖=1 ., (5) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑓𝑖 − 𝑦𝑖|𝑁

𝑖=1 , (6) 
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From the scatter plot comparing the CBAM-ResNet18 inversion results with CAMS reanalysis data in Figure 6, 291 

it can be observed that the Mean Absolute Error (MAE) is 8.05 ppb, and the Root Mean Square Error (RMSE) is 9.96 292 

ppb. This demonstrates that the proposed CBAM-ResNet18-based inversion method for Sentinel-5P satellite 293 

observation data meets the requirement of XCH₄ accuracy being less than 2% in the field of atmospheric remote 294 

sensing. 295 

3.3.3 Validation of Inversion Results Based on TCCON Site Observation Data 296 

To further validate the accuracy of the inversion results, the inversion results were verified based on TCCON 297 

observation data from two sites. The information of the TCCON sites used is shown in Table 1, and the validation 298 

results are presented in Figure 6. 299 

Table 1. TCCON site information. 300 

Number Site Longitude / °W Latitude / °N 

1 Lamont (US) -97.49 36.6 

2 Park Falls (US) -90.27 45.94 

 301 

 302 
(a) Validation Results of Inversion Based on 

Lamont (US) Site 

(b) Validation Results of Inversion Based on Park 

Falls (US) Site 

Figure 7. Comparison of Inversion Results and TCCON Site Observation Data. 303 

From the scatter plots in Figure 7, which compare the CBAM-ResNet18 inversion results with ground-based site 304 

observation data, it can be observed that: 305 

1. The Mean Absolute Error (MAE) between the CBAM-ResNet18 inversion results and the XCH₄ 306 

observations from the Lamont (US) site is 16 ppb, and the Root Mean Square Error (RMSE) is 17.6 ppb. 307 

2. The MAE between the CBAM-ResNet18 inversion results and the XCH₄ observations from the Park Falls 308 

(US) site is 4.93 ppb, and the RMSE is 5.68 ppb. 309 

Based on these statistical parameters, it is evident that the proposed CBAM-ResNet18-based inversion method 310 

for Sentinel-5P satellite observation data meets the requirement of XCH₄ accuracy being less than 2% in the field of 311 

atmospheric remote sensing. 312 
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3.3.4 Comparative Analysis with Mainstream Methods 313 

To comprehensively evaluate the performance of the proposed CBAM-ResNet18 model in XCH₄ inversion, this 314 

section compares it with ResNet18, an improved spatial inversion method (Chen, 2023), the optimal estimation 315 

method, and the XCH₄ data product from Sentinel-5P satellite (European Space Agency, 2021). The experiment aims 316 

to demonstrate the advantages of the CBAM-ResNet18 model in terms of inversion accuracy and computational 317 

efficiency through quantitative and qualitative analysis. 318 

1. Comparison of Inversion Accuracy 319 

This comparative experiment involves the following five methods, which are compared with the CBAM-320 

ResNet18 model. The specific information is shown in Table 2. 321 

Table 2. overview of comparative methods. 322 

Method Description 

CBAM-ResNet18 

Based on ResNet18, the CBAM attention 

mechanism is integrated to enhance feature 

extraction capabilities through spatial and 

channel attention. 

ResNet18 

The baseline ResNet18 model, without 

CBAM, is used to evaluate the improvement 

brought by the attention mechanism. 

Improved spatial inversion 

An improved spatial inversion method that 

enhances spatial resolution and accuracy by 

optimizing spatial interpolation algorithms. 

Optimal estimation 

Based on Bayesian theory, the optimal 

inversion results are calculated by weighting 

prior information and observational data. 

Sentinel-5P 
The XCH₄ data product provided by the 

European Space Agency's Sentinel-5P satellite. 

 323 
To quantitatively evaluate the inversion accuracy of each method, the same evaluation metrics as before are used. 324 

The CBAM-ResNet18 model is compared with the four methods at the Lamont (US) and Park Falls (US) sites, 325 

respectively. The monitoring values from the two sites are used as reference values to calculate the average XCH₄ 326 

inversion accuracy of each method. The experimental results are shown in Table 3. 327 

Table 3. compare of inversion accuracy among different method. 328 

Method RMSE / ppb MAE / ppb 

CBAM-ResNet18 11.64 10.465 

ResNet18 21.25 15.75 

Improved spatial inversion 14.89 12.49 

Optimal estimation 21.19 15.95 

Sentinel-5P 17.18 13.93 

https://doi.org/10.5194/egusphere-2025-3885
Preprint. Discussion started: 20 August 2025
c© Author(s) 2025. CC BY 4.0 License.



13 

 329 
From Table 3, it can be seen that the CBAM-ResNet18 model exhibits excellent average inversion accuracy at 330 

both TCCON sites. Its average RMSE is 11.64 ppb, and its average MAE is 10.465 ppb, which is well below the 331 

requirement of XCH₄ accuracy being less than 2% in the field of atmospheric remote sensing. This result indicates 332 

that the CBAM-ResNet18 model can effectively utilize the spatial distribution information and spectral features of 333 

Sentinel-5P satellite data, significantly improving the accuracy of XCH₄ inversion. Compared to the model using only 334 

ResNet18, the introduction of CBAM significantly enhances inversion accuracy, demonstrating the crucial role of its 335 

attention mechanism in feature extraction and spatial information fusion. Additionally, compared to the improved 336 

spatial inversion method, the optimal estimation method, and the official Sentinel-5P XCH₄ product, the CBAM-337 

ResNet18 model also shows significant advantages in accuracy. 338 

2. Comparison of Computational Efficiency 339 

Computational efficiency is an important metric for evaluating the practicality of inversion methods. Therefore, 340 

the single inversion time of XCH₄ for the aforementioned five methods is compared, as shown in Table 4. The 341 

computation time for Sentinel-5P is derived from the official algorithm documentation. 342 

Table 4. compare of computational efficiency among different methods 343 

Method Computation Time / s 

CBAM-ResNet18 1.77 

ResNet18 1.65 

Improved spatial inversion 1.95 

Optimal estimation 7.62 

Sentinel-5P 8.50 

 344 
From Table 4, it can be observed that the CBAM-ResNet18 method also demonstrates significant advantages in 345 

computational efficiency. Compared to traditional methods (such as the optimal estimation method and the method 346 

used by Sentinel-5P), its computation time is reduced by approximately 76.8% and 79.2%, respectively. This 347 

improvement is primarily attributed to the fast inference capability of the CBAM-ResNet18 neural network, which 348 

directly derives XCH₄ data from satellite spectral data without the need for methane profile calculations required by 349 

traditional methods. The improved spatial inversion method has a computation time of 1.95 seconds, slightly slower 350 

than CBAM-ResNet18, which may be due to the additional computational overhead introduced by spatial correlation 351 

calculations. However, compared to the baseline ResNet18 model, the computation time of CBAM-ResNet18 is 352 

slightly increased (approximately 6.8%), likely due to the additional computational steps introduced by the CBAM 353 

module. 354 

In summary, the CBAM-ResNet18 model achieves a good balance between computational efficiency and model 355 

complexity. While ensuring high inversion accuracy, it also reduces the computation time required for inversion, 356 

enabling efficient and high-precision inversion of satellite spectral data to XCH₄. 357 
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4 CONCLUSION 358 

This study presents a high-precision satellite XCH4 inversion method using CBAM-ResNet18, integrating the 359 

CBAM attention mechanism with ResNet18 to deliver rapid, accurate atmospheric XCH4 inversion, markedly 360 

enhancing both accuracy and efficiency. The method fully leverages the advantages of deep learning in feature 361 

extraction and spatial information fusion, providing an efficient and precise new approach for monitoring atmospheric 362 

methane concentrations. Experimental results demonstrate that the model exhibits high accuracy in comparative 363 

validations against CAMS reanalysis data and TCCON site data, with both Mean Absolute Error (MAE) and Root 364 

Mean Square Error (RMSE) within acceptable ranges, meeting the requirement of XCH₄ accuracy being less than 2% 365 

in the field of atmospheric remote sensing. Moreover, compared to ResNet18, the improved spatial inversion method, 366 

the optimal estimation method, and the official Sentinel-5P XCH₄ product, CBAM-ResNet18 shows significant 367 

advantages in inversion accuracy while also excelling in computational efficiency. The proposed method not only 368 

contributes to more accurate quantification of methane emissions but also provides essential data and technical support 369 

for global methane reduction efforts. 370 
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