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Abstract. The Simplified Cloud-Resolving E3SM Atmosphere Model (SCREAM) is the newest addition to the family of earth

system models capable of explicitly resolving convective systems. SCREAM is a kilometer-scale configuration of the advanced

E3SM Atmosphere Model (EAMxx), designed for heterogeneous systems. While the enhanced accuracy of kilometer-scale

modeling offers significant benefits, it comes with a substantial computational cost, limiting feasible simulation durations

to only a few years, even on the fastest supercomputers. Machine learning presents an opportunity for scientists to achieve5

the high accuracy of storm-resolving models at a significantly reduced cost. Building on the previous success of applying

corrective machine learning (ML) to the FV3 model, this study explores the effects of implementing corrective ML in EAMxx-

SCREAM. We also address the computational challenges of integrating our implementation of corrective ML, which is written

in Python, with the C++/Kokkos EAMxx driver, as well as potential reasons why this approach has not proved as effective for

EAMxx-SCREAM as for the FV3 model.10

1 Introduction

Accurate future climate projections are crucial to a variety of sectors, including agricultural, energy, and public health. For

instance, predicting shifts in growing seasons, optimizing renewable energy sources, and understanding climate-sensitive dis-

eases. Currently, physics-based climate models, also referred to as general circulation models (GCMs), are responsible for

generating these projections and require a massive amount of computing resources in order to produce one climate realization.15

These models need to balance accuracy with feasibility, and most opt to use coarse spatial resolution, typically around 100 km,

allowing them to produce ensembles of climate simulations for decades or centuries. However, the downside of using coarse-

resolution models is their inability to resolve storms, clouds, and complex topography. The Simplified Cloud-Resolving E3SM

Atmosphere Model (SCREAM) addresses the resolution problem by using kilometer-scale resolution, but it is too computa-

tionally expensive to run more than a few years at a time (Caldwell et al., 2021). This project aims to develop a computationally20

efficient machine learning (ML) based emulator for SCREAM, which will maintain the high accuracy of the original model

while significantly reducing computational costs. By leveraging ML techniques, the emulator can be trained to replicate the

behavior of SCREAM at a fraction of the computational expense.
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ML has the potential of revolutionizing how weather forecasts and climate predictions are generated. Within this active area

of research, there are two primary approaches. The first approach relies solely on ML models trained on historical observations,25

reanalysis datasets, or outputs from existing GCMs (Keisler, 2022; Chen et al., 2023; Lam et al., 2023; Price et al., 2023). The

second approach involves a hybrid framework that combines machine learning with traditional GCMs. In this method, ma-

chine learning methods are often used to replace a specific physical process of GCMs (Kochkov et al., 2023; Henn et al.,

2024) or to apply column-wise correction to the coarse-grid model (Bretherton et al., 2022). Both approaches have shown

successful results, often outperforming state-of-the-art GCMs while only using a fraction of the computational resource. This30

study builds on the success of a similar study by the Allen Institute for Artificial Intelligence (Ai2) working with the FV3GFS

model (https://github.com/ai2cm/fv3gfs-fortran). Ai2 was able to improve the predictive accuracy of relatively coarse resolu-

tion global climate simulations using a machine-learning based correction to the model state (Bretherton et al., 2022; Kwa

et al., 2023; Sanford et al., 2023).

This study applies their corrective ML approach to SCREAM. Section 2 provides the recipe for the development of the ML35

training data. Section 3 covers how the corrective ML model was embedded into the SCREAM code base. Section 4 examines

how well the ML corrected coarse model performs with respects to the fine resolution target, followed by discussion of the

results and conclusions of the study in sections 5 and 6.

2 Methods

SCREAM is a configuration of the atmosphere component of the Energy Exascale Earth System Model (E3SM) targeting40

kilometer scale global resolutions. In order to accomplish performant simulations at this scale, the E3SM Atmosphere Model

(EAMxx) was rewritten from the original Fortran code to C++/Kokkos (Donahue et al., 2024). The adoption of Kokkos in

EAMxx unlocks the computational power of mixed CPU/GPU machines and ensures that EAMxx maintains good performance

across a number of high performance computing systems.

While EAMxx achieves unprecedented computational performance for a km-scale model (Taylor et al., 2023), its computa-45

tional cost is still prohibitive for global km-scale simulations of a decade or more in length. This limitation makes it attractive

to apply corrective ML to EAMxx in order to represent effects of fine scale features at coarse resolution. We follow Ai2’s ap-

proach with FV3GFS, using a km-scale EAMxx simulation to produce highly accurate training data for a corrective ML model

embedded in coarse resolution EAMxx simulations. The approach is modified to handle technical and architectural differences

between FV3GFS and EAMxx.50

The corrective ML approach described in this study can be represented by four steps (Figure 1). The first step involves

the generation of a fine-grid reference simulation. This simulation serves two purposes: to provide the nudging targets for

the training data set and to provide a validation data set for the ML-corrected solution. The second step involves nudging

an EAMxx simulation at the target coarse resolution to the reference state. ‘Nudging tendencies’ derived from this step are

used for the third step, training of the corrective ML models. Finally, a coarse-grid model is run with added inline corrections55
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Step 1: Produces coarsened output for:

– nudging targets

– model validation

Step 2: Two separate coarse–grid simulations,

– One baseline simulation to be used for model

comparison.

– One nudged to the fine-grid target from step

1, which will produce nudging tendencies for

ML training.

Step 3: Train a ML model on results

from step 2 to predict nudging tendencies

Step 4: Apply corrective ML

– Coarse-grid simulation nudged to fine–grid

target using ML correction from step 3.

– Validate against target coarsened-fine outputs.

– Compare with uncorrected coarse-grid solution

from step 2.

Target fine-grid simulation

Coarse-grid simulation

Offline ML

Nudged-to-fine simulation

Figure 1. Flow diagram for the corrective ML method.

from these ML models; ideally the resulting ML-corrected coarse model will more closely approximate the time evolution and

climate of the target fine-grid model. Each of these steps is described in more detail in the following subsections.

2.1 A km-scale reference solution

For the training and validation discussed in this paper, we used one year of customized outputs from a reference fine-grid

simulation using the default SCREAM configuration of EAMxx (Donahue et al., 2024). This used a cubed–sphere spectral60

element grid for the dynamics calculation which had a number of elements per cube face of 1024×1024. Each element contains

a physics grid with a 2×2 arrangement of columns. Referred to in shorthand as an ‘ne1024pg2’ horizontal grid, this grid has

approximately 3.25 km horizontal resolution, 128 vertical levels, and a physics timestep of 100 seconds. Notably, the SCREAM

configuration omits a deep convection parameterization, regardless of grid resolution.

This was the ‘standard climate’ component of a Cess-style SCREAM simulation pair further discussed by Terai et al. (2025).65

It started on August 1, 2019 and used a climatological seasonal cycle of sea-surface temperature (SST) and sea ice.

Temporally averaged model output was produced every 3 hours. Three-dimensional fields required for our ML study were

vertically interpolated natively in SCREAM onto a set of fixed pressure levels (specified below), then horizontally averaged

(area-weighted) along pressure surfaces to a target ‘ne30pg2’ (≈ 100 km) coarse grid, masking fine-grid points below the sur-

face. Two dimensional ML-relevant fields such as surface precipitation were also horizontally averaged inline to the ‘ne30pg2’70

grid. Only these horizontally coarsened 3D and 2D outputs were stored. See Tables 1 and 2 for a list of output variables.
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The vertical grid used for pressure interpolation has 221 vertical levels. Starting with a lowest level of 1075 hPa, each

subsequent level decreases by 5 hPa until 540 hPa. From 540 hPa to 270 hPa the spacing is 10 hPa, and from 270-145 hPa the

spacing is again 5 hPa. For the remainder of the upper atmosphere the vertical grid uses the upper 60 typical isobaric vertical

layers in an EAMxx grid, for a total of 221 layers. The interpolated data is masked for below-surface pressure levels, which75

is particularly important in mountainous terrain. The horizontal area-weighted averaging from the fine to the coarse grid is

performed using the Tempest remap algorithm (Ullrich and Taylor, 2015; Ullrich et al., 2016), which efficiently redistributes

data across different grid resolutions.

The approach to the vertical remapping in this study is somewhat different than in the FV3GFS study. There, fine-grid

data were vertically interpolated to the local pressure levels of the coarse resolution data, masking out fine-grid data at any80

resulting grid points below the surface (since the FV3GFS model levels are terrain-following, these pressure levels differ

between coarse grid cells). They then used the same method for horizontal coarsening as we do. Our coarse-grid ne30pg2

EAMxx configuration has only 72 terrain-following vertical levels, rather than the 128 levels of the fine-grid configuration. In

the FV3GFS application, the coarse and fine-grid model versions had the same set of vertical levels.

To maintain hydrostatic balance and conserve atmospheric mass during the vertical interpolation and horizontal coarsening85

process, the FV3GFS study also applied a small correction to the area-weighted surface elevation, which we neglect. See

section 2.4 in Bretherton et al. (2022) for more details.

For the FV3GFS study, instantaneous 3-hourly snapshots of the prognostic fields were stored, rather than the 3-hour average

fields here. Our approach produces smoother nudging tendencies; the FV3GFS approach has the interpretational advantage

that 3-hourly average tendencies are just differences between successive 3-hourly snapshots.90

Table 1. List of variables used for nudged runs

Variable Common Name EAMxx Variable Name Units Dimension

Temperature T_mid K 3D Nudged

Specific Humidity qv kg/kg 3D Nudged

Eastward Wind U m/s 3D Nudged

Northward Wind V m/s 3D Nudged

Surface near-IR direct flux sfc_flux_dir_nir W/m2 2D Prescribed

Surface UV/visible direct flux sfc_flux_dir_vis W/m2 2D Prescribed

Surface UV/visible diffuse flux sfc_flux_dif_vis W/m2 2D Prescribed

Net (down - up) SW flux at sur-

face

sfc_flux_sw_net W/m2 2D Prescribed

Downwelling LW flux at sur-

face

sfc_flux_lw_dn W/m2 2D Prescribed

Liquid precipitation flux precip_liq_surf_mass_flux kg/m2 2D Prescribed
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Table 2. List of variables used for validation of ML model

Variable Common Name EAMxx Variable Name Units Dimension

Water vapor path VapWaterPath mm 2D

Total precipitation to the sur-

face

precip_liq_surf_mass_flux +

precip_ice_surf_mass_flux

mm/day 2D

Surface temperature surf_radiative_T K 2D

Top of atmosphere upwelling

LW

LW_flux_up_at_model_top W/m2 2D

Top of atmosphere upwelling

SW

SW_flux_up_at_model_top W/m2 2D

Sensible heat flux surf_sens_flux W/m2 2D

Latent heat flux surf_evap W/m2 2D

Surface SW net flux sfc_flux_sw_net W/m2 2D

Surface downwelling LW flux sfc_flux_lw_dn W/m2 2D

2.2 Machine Learning Training Data - Nudged Simulation

Similar to the prior FV3GFS work, our training dataset for corrective ML was constructed from a coarse-resolution ne30pg2

simulation that was nudged to track the vertically interpolated and horizontally coarsened reference solution evolution de-

scribed in section 2.1. At the end of each atmospheric timestep, the model state was adjusted to match the fine-resolution

solution state using data from the reference simulations. As in prior work, the nudging timescale was set to 3 hours. At each95

timestep, the reference data was interpolated to the current model time before nudging.

EAMxx employs a hybrid pressure coordinate system vertically (Dennis et al., 2005), thus the reference data also required

vertical interpolation from its fixed vertical pressure grid onto the model’s pressure coordinates at each timestep. For the train-

ing dataset simulation, only the three-dimensional variables—temperature, specific humidity, and horizontal velocities—were

nudged. The other surface variables, as detailed in Table 1, were directly prescribed at the end of the atmospheric timestep.100

The nudging tendencies from this simulation were averaged every 3 hours and provided as output. In addition, the training data

requires a record of the model state that led to each nudging tendency, recorded at the same 3-hourly times as the tendencies.
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2.3 Training the Model

Following Ai2’s prior work with FV3GFS, the nudging tendencies recorded during the nudged simulation discussed in section

2.2 are used to train three separate corrective ML models for different state variables in EAMxx. All models utilize Ai2 Climate105

Modeling Group’s open-source fv3net Github repo. The training process is column–independent, meaning that each training

data point does not consider neighboring spatial columns in the grid. However, the training dataset does include some grid

location information through the latitude and cosine zenith angle associated with each point. Below, we outline the parameters

for each model.

1. Thermodynamic Model: This model focuses on the thermodynamic state of the atmosphere. The input variables for110

training include temperature, specific humidity, latitude, surface geopotential, and cosine zenith angle. The training

outputs are the prescribed nudging tendencies for temperature and specific humidity.

2. Momentum Model: This model targets the atmospheric momentum state. The outputs are the eastward and northward

velocity nudging tendencies. The input variables are the same as those used in the thermodynamic model, with the

addition of eastward and northward velocity.115

3. Surface Forcing Model: This model addresses the surface forcing passed to other components of the earth system.

Unlike the other models, it does not use nudging tendencies as input. Instead, it relies on the prescribed surface fluxes

calculated in the reference solution. The inputs for this model match those of the thermodynamic model, while the outputs

are the surface downwelling longwave flux and surface net shortwave flux broken down into near-infrared and visible

direct and diffuse flux fraction. We apply output limiters to ensure physical realizability (e.g., downward near-infrared120

diffuse fraction is between 0-1).

All models are trained for 300 epochs, with an early stopping condition if convergence is detected. Random subsets of dates

from the EAMxx dataset are selected for training and validation.

2.4 Coarse-grid Model

The three machine learning models developed in section 2.3 are integrated into EAMxx to create a coarse-grid model that125

aspirationally produces solutions closer to fine-grid accuracy. For more details on how the ML models were embedded in the

EAMxx code base please refer to the section on Python/C++ coupling, section 3. The corrective ML is applied at the end of

each model timestep, with the thermodynamic and momentum models operating independently but using the same model input

state. The surface forcing model updates the surface fluxes based on the ML-corrected state.

Special care is needed when applying corrections from the thermodynamic model. Nudging specific humidity effectively130

adds or removes water vapor mass from the system, which typically reflects precipitation differences in the fine-resolution

solution compared with the coarse–resolution solution. To account for this, the total change to the column water mass is

calculated after adjusting specific humidity, and this result is then added to or subtracted from the total liquid precipitation. A
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mass clipper is employed to ensure that precipitation values remain non-negative. This correction method does not account for

ice precipitation. Future studies could explore separate ice and liquid precipitation adjustments, depending e.g. on near-surface135

air temperature.

Likewise, the adjustment to specific humidity does not correct the cloud state toward the reference solution. Coarse-model

cloud biases affect the accuracy of coarse-model radiative forcing to the surface models, which could feed back on the atmo-

spheric evolution. Since our corrective ML model directly learns the surface fluxes from the fine-grid reference data rather than

predicting corrective fluxes, we expect it to have surface fluxes consistent with the fine-grid reference simulations given the140

input profiles.

3 Implemention of ML workflow in EAMxx (Python/C++ coupling)

We opted to utilize an existing framework, fv3net, built by Ai2 and used in Bretherton et al. (2022); Clark et al. (2022); Kwa

et al. (2023). fv3net includes all aspects of the ML workflow, including pre-processing native model output, ML training,

offline and online testing, and reporting. fv3net was originally developed for Geophysical Fluid Dynamics Laboratory’s145

(GFDL) FV3GFS model. We made necessary modifications to work with EAMxx’s data, and all updates are available in the

open-source fv3net repository.

One of the main challenges is that fv3net is written in Python whereas EAMxx is in C++. We use pybind11 to bridge

between C++ and Python (W. Jakob, J. Rhinelander, D. Moldovan and others, 2017). The strategies for running on CPU and

GPU are slightly different. On CPU, we utilize pybind11’s numpy bindings to transfer EAMxx’s Kokkos view data to Python150

and declare them as numpy arrays. We do this as a non-copy operation, making the operations relatively cheap. On GPU, the

data passing is different since numpy does not support GPU. In this case we pass EAMxx’s Kokkos view data as pointers to

Python and reconstruct numpy-like arrays from the Cupy package through unmanaged memory access (Okuta et al., 2017). As

in the CPU case, we do not do any memory copies. Once Cupy arrays are constructed on the Python side, we are able to reuse

the same workflow as in the CPU case. For both the CPU and GPU implementation the state variables are directly overwritten155

during the Python calls. The ML workflow adds 10% of overhead for the CPU run and 6% for GPU. There is also a one-time

initialization cost for loading the necessary libraries in Python, which becomes negligible once the simulation is sufficiently

long (e.g., 1 simulation month for the 100km resolution case).

While it is possible avoid Python and instead directly interface with a trained ML model in C++ (e.g. via Tensorflow’s C++

interface), our approach allowed us to take advantage of the existing fv3net package’s robustness and stability. For example,160

we are able to take advantage of safeguards built into fv3net to ensure ML has physically-consistent output. Since fv3net is

an end-to-end ML workflow, we also utilize its reporting for data analysis and visualization. Overall, using fv3net drastically

reduced development time in every step of the ML workflow.
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4 Results from km-scale experiment

Results from a one-year free-running coarse-grid simulation including ‘online’ ML correction toward the fine-grid reference165

are shown (Donahue and Wu, 2025). We use an uncorrected ne30pg2 run as a baseline comparison. ML correction tends to

underpredict nudging tendencies for both temperature and specific humidity. Figures 2 and 3 show the annual-mean bias and

root mean square error (RMSE) of baseline and ML-corrected runs from the reference data (3.25 km coarsened to 100 km, also

used as ML training data). For this experiment, we found the largest improvement in surface downwelling longwave flux, with

16% improvement in global RMSE when compared to the baseline. Additionally, we found marginal improvement (5-10%)170

for net shortwave flux at the surface, precipitation, and surface pressure. However, RMSE was worse for surface temperature

(24%) and total water path (43%) in the ML-corrected run.

To evaluate the stability and robustness of the corrective ML approach, we conducted a series of trainings using different

random seeds in the neural networks. During the online prognostic runs, some seeds crashed due to the inputs being out-of-

sample. To address this issue, we adopted the method outlined in Sanford et al. (2023), training a separate out-of-sample novelty175

detector to complement the existing neural networks for temperature and specific humidity modeling. This approach proved

reliable, allowing all random seeds to successfully complete a full-year simulation. A sample of these trainings is presented in

Figure 4. As shown, the solution exhibits some dependence on the random seed and the use of novelty detection. Clear regional

differences are evident between models trained with and without novelty detection. For instance, models trained with novelty

detection produced higher overall longwave downwelling fluxes.180

5 Discussion

While we adopted the same strategy as Ai2, applying the workflow to a different atmospheric model, it quickly became clear

that implementation would be challenging due to the different details in each model. Each step in the corrective ML workflow—

nudging from coarse to fine resolution simulation, prescribing surface fluxes for the coarse simulation, integrating ML, and

diagnostics— is tightly coupled to the specifics of the underlying model, making generalization difficult. Even though this185

project was a collaboration between the team that developed EAMxx and the team that successfully applied this corrective ML

approach to fv3gfs, the end result fell short of the desired improvement from corrective ML.

There are several possibilities for why corrective ML was less successful for EAMxx than it was for FY3GFS. The most

obvious difference between the 2 modeling frameworks is that the ML-corrected version of EAMxx doesn’t include a deep

convective parameterization and hence looks less realistic. As a result, more is being asked of corrective ML in EAMxx than190

in FV3GFS. Our initial expectation was that larger differences between the nudged and free-running low-resolution simulation

would provide more signal for training the ML. But in such an environment, imperfections in the corrective ML will also

stand out more. It may be that improvements in ML due to stronger signal are too small to overcome the increased need

for corrections in EAMxx. Future work will address this hypothesis when EAMxx is enhanced to support a low-resolution

configuration with parameterized deep convection.195
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Figure 2. Spatial pattern of annual mean simulation error with respect to the coarsened fine-grid reference simulation. As compared with the

uncorrected coarse-resolution baseline (left column), the coarse simulation including corrective ML (right column) reduces the RMSE for

several surface variables, such as precipitation and surface pressure.

As discussed in the Methods section, there are three independent ML models that make up the full corrective ML imple-

mentation, each with its own set of parameters to train on. In this study we focused on training the models following the same

approach as with the fv3gfs test case. Given the differences between EAMxx and fv3gfs it is possible that a successfully

trained model may require an adjustment to the training hyperparameters. An anecdotal example is the use of latitude as an

input into the ML training data set. We found that the inclusion of latitude in the training input improved the accuracy of the200

model, presumably as a proxy for physical variables that correlate strongly with latitude but are not well represented in the

coarse model. A subsequent study could investigate what other parameters and input variables improve the performance of the

models.

9

https://doi.org/10.5194/egusphere-2025-3883
Preprint. Discussion started: 17 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Baseline
Mean: 0.03 RMSE: 0.88

2

1

0

1

2

K

ML-corrected
Mean: -0.03 RMSE: 1.09

2

0

2

K

Mean: 0.57 RMSE: 1.96

4

2

0

2

4

W
/m

2

Mean: -0.31 RMSE: 2.81

5.0

2.5

0.0

2.5

5.0

W
/m

2

Su
rfa

ce
 te

m
pe

ra
tu

re
W

at
er

 v
ap

or
 p

at
h

Figure 3. As compared with the uncorrected coarse-resolution baseline (left column), the coarse corrective ML simulation (right column)

increases the RMSE of annual-mean spatial patterns for surface temperature and total integrated water vapor.

Adoption of the corrective ML framework involved the development of several new features in EAMxx. EAMxx is heavily

unit tested, but there is always a chance that a difficult bug or untested edge case is able to make it past the testing. There are205

three major developments that were added to EAMxx as part of this effort; Python to C++ bridging for ML, ability to nudge

the model state, and prescribed atmospheric surface fluxes. While significant effort went into developing and testing these new

features, future work may want to revisit their implementation as a potential source of error in the ML implementation.

Finally, as outlined in the Methods section, the fine-resolution solution was coarsened to the target resolution both hori-

zontally and vertically. The decision to map onto fixed vertical pressure coordinates resulted in situations where grid points210

over topography could lead to many or all data points being masked. This could create either masked data in the target state

or grid points with disproportionate weighting based on only a few source columns. To investigate this hypothesis, a separate

lightweight study was conducted using a 25 km fine-resolution simulation, comparing two corrective ML models. One model

utilized the approach described in this study, while the other did not apply vertical interpolation for the target state. The latter

model showed slightly better performance. Unfortunately, due to the high cost of 3.25 km simulations, it was not feasible215

within the scope of this project to repeat this study using horizontal-only interpolation.

6 Conclusions

Although this work did not achieve the anticipated accuracy of the corrective ML version of EAMxx, it did have several

beneficial effects. In particular, this study marked the first time Python packages were integrated into EAMxx, providing a

blueprint for future hybrid ML without degrading EAMxx performance on either CPU or GPU architectures. This work also220
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Figure 4. Yearly averaged downwelling longwave flux at the surface bias between ML corrected runs and coarsened-fine target (3.25km to

100km). Three random seeds shown, seed 1 and 3 use an additional novelty detection model, while seed 2 does not.

led to the development of new infrastructure within EAMxx to support prescribed surface fluxes and model nudging. While the

latter was already a planned milestone for the regionally-refined configuration of EAMxx, this effort expanded that capability.

The introduction of prescribed surface fluxes is important for some doubly-periodic use cases and is useful for debugging and

hypothesis testing. Finally, the fact that EAMxx obtained less benefit from corrective ML than FV3GFS is a useful data point

in the quest to understand generalizability of ML approaches in climate modeling.225

There is increasing interest in the earth system modeling community in utilizing differentiable algorithms and software.

This strategy has already been successfully applied to NeuralGCM, which marries a spectral dycore coded in the Jax machine
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learning language with a learned ML representation of the combined physical parameterizations of a global model, trained

to evolve following a gridded reanalysis (Kochkov et al., 2024). In this setting, the ML model can be trained end-to-end

including feedbacks with other model components within this differentiable framework, dramatically improving the prognostic230

performance of this hybrid model such that it has highly accurate weather forecast and climate skill. In principle, an analogous

approach could be implemented to dramatically improve the prognostic skill of corrective ML within EAMxx. However,

refactoring EAMxx to enable such a capability while retaining leadership-class performance would be a substantial software

engineering challenge.
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