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Abstract. Urban areas play a pivotal role in achieving net-zero emissions to limit global warming to 1.5°C, given their high 

carbon footprint and mitigation potential. Accurate quantification of urban CO2 sources is essential for effective carbon 

budgeting and targeted climate action. While fossil fuel CO2 (CO2ff) emissions are extensively studied, biogenic CO2 (CO2bio) 

dynamics remain poorly constrained. Here, we separate fossil and biogenic contributions to CO2 enhancements above 

background using Δ14C and CO2 measurements in Shenzhen, a humid subtropical Chinese megacity potentially subject to 20 

substantial biomass burning influence. We calculate human/livestock metabolic emissions (CO2HLM) at 9.32 Mt/6.22 kt per 

year from population/livestock data and respiratory/excretory rates, and estimate biomass burning emissions (CO2BB) at 5.05 

Mt/yr using an inventory encompassing both open and domestic combustion. The residual CO2bio component is attributed to 

the terrestrial biosphere (CO2bio'). Integrating Δ14C with multi-source data reveals annual CO2bio contributions relative to 

fossil fluxes: CO2HLM (17.8 ± 3.1%), CO2BB (9.2 ± 1.5%), and CO2bio' (73.0 ± 3.5%). Key findings demonstrate the terrestrial 25 

biosphere component acts as a year-round net carbon sink with significant seasonality (11.5 ppm amplitude; ~1.5 times the 

annual mean CO2ff concentration), driven primarily by atmospheric temperature (1-2 months lag; r = –0.80, p = 0.01) rather 

than precipitation. This study establishes human metabolic emissions as the dominant biogenic CO2 source (17.8% vs. 9.2% 

from biomass burning) in megacities, yet shows that concurrent biospheric sequestration can offset 63% of fossil emissions 

during growing seasons, advancing understanding of urban carbon budgets.  30 
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1 Introduction  

Accelerating global urbanization underscores the critical role of cities, as core hubs of anthropogenic carbon emissions, in 

achieving the 1.5°C climate target (Duren and Miller, 2012; Seto et al., 2021). Given their high carbon footprints and 

significant mitigation potential, accurate quantification of urban CO2 emission sources is essential for effective carbon 

budgeting and climate action. However, current understanding remains heavily skewed toward fossil fuel CO2 (CO2ff) (Levin 35 

et al., 2008; Turnbull et al., 2015; Newman et al., 2016; Wang et al., 2022), while the dynamics of biogenic CO2 (CO2bio)—

encompassing human/livestock metabolism, biomass burning, and terrestrial biosphere fluxes—are poorly constrained. This 

knowledge gap is particularly critical in humid subtropical megacities, where substantial but inadequately quantified biomass 

burning influence may severely hinder comprehensive urban carbon budget assessments and the design of targeted 

mitigation strategies. 40 

Although monitoring and modelling of urban CO2ff emissions have matured (e.g., inventory-based approaches using 

economic statistics, atmospheric CO2 concentration inversions), research on CO2bio components remains nascent. Existing 

studies predominantly focus on temperate cities (e.g., Paris, Los Angeles, Beijing, Xi’an) (Lopez et al., 2013; Miller et al., 

2020; Zhou et al., 2020) or single emission sources (e.g., human respiration, livestock respiration) (Cai et al., 2022; Wang et 

al., 2024b), lacking integrated analysis of biogenic CO2 subcomponents (e.g., human/livestock metabolic emissions, 45 

open/domestic biomass combustion, ecosystem respiration and uptake). Significant gaps persist, especially in humid 

subtropical megacities, regarding the seasonal dynamics, driving mechanisms, and interactions with fossil emissions of 

CO2bio. This may cause underestimation of urban carbon sink potential and creates blind spots in carbon neutrality 

management strategies. 

Addressing these limitations necessitates the development of multi-dimensional observation techniques and multi-source 50 

data fusion. Radiocarbon isotope (Δ14C) analysis serves as a unique tracer for distinguishing fossil from biogenic CO2 (Levin 

et al., 2003; Turnbull et al., 2006), because CO2ff contains no detectable 14C due to complete radioactive decay over 

geological timescales. However, comprehensive resolution of CO2bio components demands integration of Δ14C with CO2 

concentration monitoring, population/livestock metabolic flux calculations (Cai et al., 2022; Miller et al., 2020; Wang et al., 

2024b), and biomass burning emission inventories (Randerson et al., 2017; Van Der Werf et al., 2017; Edgar, 2024). By 55 

coupling Δ14C tracing with respiratory/excretory flux models and biomass burning inventories, a systematic separation of 

metabolic (CO2HLM), biomass burning (CO2BB), and net terrestrial biosphere fluxes (CO2bio') becomes feasible, thereby 

revealing the precise contribution of biogenic CO2 to urban carbon cycling. 

To bridge these gaps, this study focuses on Shenzhen, a representative humid subtropical megacity in China. Using coupled 

Δ14C and CO2 observations (over more than a year at five sites) as the methodological cornerstone, we quantitatively 60 

separate CO2ff and CO2bio. By further integrating multi-source datasets, we determine the absolute concentrations and relative 

contributions of three major biogenic CO2 components: CO2HLM, CO2BB, and CO2bio'. We then analyse the seasonal dynamics, 
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driving factors, and carbon sink effects of CO2bio', clarifying its critical role in urban carbon budgets. This work provides a 

scientific basis for designing carbon-neutral pathways—particularly nature-based solutions—in global megacities. 

2 Data and methods   65 

2.1 Study area and sample collection  

We conducted atmospheric sampling of CO2 and its radiocarbon isotope (Δ14C) in Shenzhen (22.45°N−22.87°N, 

113.77°E−114.62°E), a rapidly developing high-tech megacity in South China (Fig. 1ab). Geographically, Shenzhen lies 

north of Hong Kong and has a monsoon influenced humid subtropical climate. As China’s first “special economic zone” 

established in 1978, Shenzhen has grown into a global economic hub, with a population of 17.66 million and a GDP of 3.248 70 

trillion yuan in 2022 (Smbs, 2024), surpassing the economic output of over half of China’s provinces. As one of the core 

cities in the Guangdong–Hong Kong–Macao Greater Bay Area, the world’s largest urban agglomeration, Shenzhen leads in 

low-carbon development, driven primarily by its computer, communication, and electronic equipment manufacturing sectors.  

Both bottom-up and top-down studies could add to our understanding of Shenzhen’s substantial urban CO2 fluxes. 

According to the near-real-time Global Gridded Daily CO2 Emissions Dataset (GRACED) (Liu et al., 2020), Shenzhen’s 75 

total CO2ff emissions in 2022 were 55.0 TgCO2, primarily from power (55%) and industry (25%); while the bottom-up 

Multi-resolution Emission Inventory for China (MEIC) (Meic, 2023) reported 44.7 TgCO2 in 2020, primarily from industry 

(55%) and transportation (30%). In contrast, the Carnegie Ames Stanford Approach Global Fire Emissions Database Version 

4 (CASA-GFED4s) dataset (Randerson et al., 2017; Van Der Werf et al., 2017) estimates a Net Ecosystem Exchange (NEE) 

flux of −0.19 TgCO2 in 2015, highlighting the city’s significant carbon sink potential. Shenzhen’s land use is dominated by 80 

terrestrial ecosystems (64%), including urban areas (49%), forests (44%), and wetlands (4%) (Ssb, 2024), with marine 

ecosystems covering the remaining 36%. To mitigate urban expansion and preserve natural landscapes, Shenzhen 

implemented a “Basic Ecological Control Line” in 2005, effectively curbing forest loss (Yu et al., 2016) and promoting 

sustainable development.  

From April 2022 to April 2023, we collected air samples once or twice weekly between 13:00 and 17:00 local standard time 85 

at five strategically selected sites (Fig. 1c): 30-m towers in parks in western areas near the Pearl River estuary (SZ1), in 

central suburban areas (SZ4), and in eastern suburban areas (SZ5), as well as 10−12 m masts on building rooftop corners in 

southern downtown (SZ2, 200 m above ground level (m a.g.l.)) and near the city’s northeastern boundary (SZ3, 110 m a.g.l.). 

This sampling design provided uniform spatial coverage across Shenzhen and was assumed statistically representative for 

city-wide analysis (Fig. 1d). Air samples were collected by drawing filtered air through evacuated, pre-purged 6 L SilcoCan 90 

canisters and 3 L borosilicate glass flasks connected in series. Using 12 V micro diaphragm gas pumps, air was drawn at a 

flow rate of 6 L min−1 and pressurized to 25−30 psi. Each sampling session lasted approximately 30 min.  
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Figure 1: (a-c) Geographical distribution of five Shenzhen sites (SZ1–SZ5) and (d) their surface flux sensitivity (FLEXPART 
footprint) during the sampling period (April 2022 – April 2023). White lines in (a) represent continental and province boundaries, 
which were obtained from Natural Earth (https://www.naturalearthdata.com/, last accessed on 9 June 2024). In (b), the circle 
represents the location of Nanling background site. The borders of Guangdong province and the nine Pearl River Delta (PRD) 
cities were marked with white lines, with Shenzhen marked with a bold white line. Shading in (a-c) indicates CO2ff emissions at a 100 
spatial resolution of 1km × 1km from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) (Oda and Maksyutov, 
2024), which share the same color bar. In (d), the domain of the footprints (which go back 30 days) is at a spatial resolution of 0.05° 
× 0.05°.  

 

2.2 Measurement of CO2  105 

We extracted air from the canisters to determine CO2 mole fractions using a modified gas chromatograph with flame 

ionization detection (GC-FID) system (Agilent 7890B, Agilent Technologies Inc., USA). Samples were introduced by 

flushing a 5 mL sample loop, after which CO2 was separated through a HayeSep Q packed column. The isolated CO2 was 

then converted to CH4 via a nickel catalyst furnace at 375°C and subsequently quantified by FID. Calibration of CO2 mixing 

ratios was conducted using three reference standards, obtained from the National Center for Reference Materials Research, 110 

China Institute of Metrology. These standards are traceable to the X2019 calibration scale maintained by the Central 

Calibration Laboratory of the World Meteorological Organization. The precision of CO2 measurements was better than 0.2 

ppm (Zhou et al., 2024).  

Shenzhen 

(a)  (b)  

Dongguan 

(d)  

Huizhou 

Hong Kong 
(c)  
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2.3 Measurement of Δ14C  

We extracted air from the flasks for Δ14C measurement using established cryogenic techniques. This involved using a cold 115 

trap with a dry ice and ethanol slurry (about −70ºC) to remove water, followed by a liquid nitrogen cold trap (−196ºC) to 

condense CO2 (Xu et al., 2007). The purified CO2 samples were then graphitized using the hydrogen reduction method and 

analyzed for Δ14C content with an NEC 0.5MV 1.5SDH-2 accelerator mass spectrometer (AMS, National Electrostatics 

Corporation, USA) (Zhu et al., 2015). Each measurement wheel typically comprises 13 oxalic acid II as primary standards, 

13 IAEA-C7 as secondary standards, 13 p-phthalic acid as solid process blanks, 6 14C-free CO2 in synthetic air from a 120 

cylinder as gas process blanks, and some authentic air samples. Results are presented as Δ14C, which is the per mill (‰) 

deviation from the absolute radiocarbon reference standard, corrected by fractionation and decay (Stuiver and Polach, 1977): 

∆ 𝐶𝐶14 = [ 𝐴𝐴𝑆𝑆𝑁𝑁
𝐴𝐴𝑂𝑂𝑁𝑁𝑒𝑒𝜆𝜆(𝑦𝑦−1950) − 1] × 1000‰      (1) 

where 𝐴𝐴𝑆𝑆𝑁𝑁 and 𝐴𝐴𝑂𝑂𝑁𝑁 denote the 14C/12C ratios of sample and oxalic acid II reference standard, respectively. 𝜆𝜆 represents the 

decay constant of 14C with a value of 1/8267 yr−1. y is the year of sampling, and 1950 is the reference year for “modern”.  125 

We analyzed 22 paired air samples to evaluate the quality control and quality assurance of the entire sampling and laboratory 

analysis process, including sampling, extraction, graphitization and AMS measurement. The AMS measurement uncertainty 

and average deviation were 2.2 ± 0.4‰ and 1.9 ± 2.4‰, respectively. The one-sigma measurement uncertainty was thus 2.4‰ 

for Δ14C based on repeat measurements of 22 pairs of parallel air samples (Fig. S1).  

2.4 Background  130 

To quantify CO2 enhancements in Shenzhen, we would like to obtain an upwind urban background. However, we found that 

neither any single observational site (e.g., winter upwind background SZ3 or eastern suburban background SZ5) nor the 

monthly Keeling plot background (top-right corner value) (Zhou et al., 2024; Li et al., 2025) could reflect the 

regular monthly variations of CO2bio concentrations. The available background options (Fig. 2) were either: (1) the overall 

background from urban Keeling plots for all months (Kpa; giving 421.4 ± 0.1 ppm and 0.1 ± 0.8 ‰ for CO2 and Δ14C, 135 

respectively, by averaging the highest 2 % top-right corner values), or (2) the nearest regional background monthly means 

from Nanling (NL, 1700 m above sea level (m a.s.l.)).  

Previous studies in megacities often calculated atmospheric CO2 concentrations relative to the regional background (Table 

S1) due to locally emitted CO2 (Newman et al., 2016; Miller et al., 2020; Wang et al., 2022; Zazzeri et al., 2023). In this 

study, to keep the monthly variations of the background, we defined representative background CO2 and Δ14C levels using 140 

measurements from the nearest regional background NL site. The station samples were relatively clean, well-mixed free 

tropospheric air. Background CO2 concentrations were derived from in-situ measurements using a G2301 Gas Concentration 

Analyzer (Picarro Inc., USA) based on the fourth-generation wavelength scanning cavity ring-down spectroscopy. These 
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data were filtered by excluding measurements taken during wind speeds below 2 m s−1, followed by a robust extraction of 

baseline signals (Fig. 2a). A curve from Thoning et al. (1989) was then fitted to the baseline, applying a threshold of less 145 

than two sigma deviations (Zhang et al., 2022). Background Δ14C values were directly measured (Fig. 2b). Quality control 

measures excluded obvious low Δ14C outliers, corresponding to air with extremely high CO2ff values. We obtained a total of 

251 measurements for Δ14C and CO2 at SZ1 (n = 48), SZ2 (n = 52), SZ3 (n = 52), SZ4 (n = 48), and SZ5 (n = 51).  

 

Figure 2: Background curves and data used to construct them at JFJ, WLG, NL, and Kpa for (a) CO2 and (b) Δ14C. JFJ 150 
(Jungfraujoch, 3580 m a.s.l.) CO2 and Δ14C measurements are sourced from the Integrated Carbon Observation System (ICOS) 
(Emmenegger et al., 2024a, b). WLG (Waliguan, 3890 m a.s.l.) CO2 measurements are from the National Oceanic and 
Atmospheric Administration (NOAA) (Lan et al., 2024), while Δ14C is extrapolated from Liu et al. (2024) using a 4.92‰ yr–1 
decline rate, which is interpolated between 2015 (Niu et al., 2016) and 2021–2022 (Liu et al., 2024). NL (Nanling, 1700 m a.s.l.) CO2 
and Δ14C measurements are from this study. Kpa CO2 and Δ14C measurements are determined by averaging the highest 2 % top-155 
right corner samples from the five sites in the Keeling plot.  

 

2.5 CO2ff and CO2bio concentration estimation by mass balance equations  

Recently added atmospheric CO2 (CO2obs) comprises background CO2 (CO2bg) and excess CO2 (CO2xs). CO2xs is dominated 

by contributions from fossil fuel combustion (CO2ff), and biogenic sources (CO2bio). The corresponding Δ14C are denoted as 160 

Δobs (observed), Δbg (background), Δff (−1000 ‰, representing zero 14C content) and Δbio, respectively. The governing mass 

balance equations for atmospheric CO2 and Δ14C are defined as follows:  

𝐶𝐶𝐶𝐶2𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶2𝑏𝑏𝑏𝑏 + 𝐶𝐶𝐶𝐶2𝑥𝑥𝑥𝑥 = 𝐶𝐶𝐶𝐶2𝑏𝑏𝑏𝑏 + 𝐶𝐶𝐶𝐶2𝑓𝑓𝑓𝑓 + 𝐶𝐶𝐶𝐶2𝑏𝑏𝑏𝑏𝑏𝑏                                         (2) 

𝐶𝐶𝐶𝐶2𝑜𝑜𝑜𝑜𝑜𝑜∆𝑜𝑜𝑜𝑜𝑜𝑜= 𝐶𝐶𝐶𝐶2𝑏𝑏𝑏𝑏∆𝑏𝑏𝑏𝑏 + 𝐶𝐶𝐶𝐶2𝑓𝑓𝑓𝑓∆𝑓𝑓𝑓𝑓 + 𝐶𝐶𝐶𝐶2𝑏𝑏𝑏𝑏𝑏𝑏∆𝑏𝑏𝑏𝑏𝑏𝑏                                              (3) 

𝐶𝐶𝐶𝐶2𝑓𝑓𝑓𝑓 = 𝐶𝐶𝐶𝐶2𝑜𝑜𝑜𝑜𝑜𝑜(∆𝑜𝑜𝑜𝑜𝑜𝑜−∆𝑏𝑏𝑏𝑏)

∆𝑓𝑓𝑓𝑓−∆𝑏𝑏𝑏𝑏
− 𝐶𝐶𝐶𝐶2𝑏𝑏𝑏𝑏𝑏𝑏(∆𝑏𝑏𝑏𝑏𝑏𝑏−∆𝑏𝑏𝑏𝑏)

∆𝑓𝑓𝑓𝑓−∆𝑏𝑏𝑏𝑏
= 𝐶𝐶𝐶𝐶2𝑜𝑜𝑜𝑜𝑜𝑜(∆𝑜𝑜𝑜𝑜𝑜𝑜−∆𝑏𝑏𝑏𝑏)

∆𝑓𝑓𝑓𝑓−∆𝑏𝑏𝑏𝑏
− 𝛽𝛽                      (4) 165 

(a)  (b)  
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𝐶𝐶𝐶𝐶2𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐶𝐶𝐶𝐶2𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝐶𝐶2𝑏𝑏𝑏𝑏 − 𝐶𝐶𝐶𝐶2𝑓𝑓𝑓𝑓 ≈ 𝐶𝐶𝐶𝐶2𝐻𝐻𝐻𝐻𝐻𝐻 + 𝐶𝐶𝐶𝐶2𝐵𝐵𝐵𝐵 + (𝐶𝐶𝐶𝐶2𝑟𝑟 − 𝐶𝐶𝐶𝐶2𝑝𝑝)           (5) 

The added CO2ff and CO2bio components were calculated using Eqs. 4 and 5, respectively. Contributions of CO2 and Δ14C 

from non-target sources, including air-sea exchange and nuclear facilities, were excluded from our analysis due to 

documented insignificance (Graven et al., 2018; Li et al., 2025). Specifically, Shenzhen’s nuclear power plants (Daya Bay 

and Ling’ao pressurized water reactors) emit hydrocarbons as their primary effluent (75–95% of total emissions), with 14CO2 170 

releases being orders of magnitude significantly below legal thresholds (Li et al., 2025; Meec, 2021).  

The second term in Eq. 4 represents a small correction (β) to account for the effect of CO2 sources from biospheric exchange 

with a slightly different Δ14C value compared to atmospheric Δ14C. This primarily reflects the influence of heterotrophic 

respiration (Rh) and biomass burning (BB) (Graven et al., 2018; Li et al., 2025), since Δ14C of autotrophic respiration and 

photosynthetic uptake is implicitly assumed to be equal to Δbg (Turnbull et al., 2006; Turnbull et al., 2009). 𝛽𝛽 was quantified 175 

using integrated modeling frameworks developed in Li et al. (2025), with key implementation details provided in the next 

section. The heterotrophic respiration correction (𝛽𝛽𝑅𝑅ℎ, −0.09 ± 0.05 ppm; range: −0.32 to −0.01 ppm) was derived from 

FLEXPART simulations (Pisso et al., 2019) combined with CASA-GFED4s dataset (Randerson et al., 2017; Van Der Werf 

et al., 2017). The biomass burning corrections (𝛽𝛽𝐵𝐵𝐵𝐵, maximum −0.18 ± 0.12 ppm; range: −0.94 to −0.01 ppm) was calculated 

from FLEXPART simulations combined with EDGAR2024 inventory (Edgar, 2024). The combined correction (𝛽𝛽 = 𝛽𝛽𝑅𝑅ℎ +180 

𝛽𝛽𝐵𝐵𝐵𝐵) yielded −0.27 ± 0.16 ppm (range: −1.07 to −0.02 ppm), which is between corrections in summer (−0.5 ± 0.2 ppm) and 

winter (−0.2 ± 0.1 ppm) reported by Turnbull et al. (2009). We used simulated corrections for each sample.  

2.6 Simulation by FLEXPART dispersion model  

Model simulations were performed using the FLEXPART (FLEXible PARTicle) dispersion model, version 10.4 (Pisso et al., 

2019), a Lagrangian particle dispersion tool. This model generates source-receptor relationships, often known as “footprints”, 185 

for atmospheric surface measurements by simulating the transport of air parcels to the sampling sites. The simulations 

account for advection, random diffusion, and atmospheric turbulence, using predefined time intervals and a set number of 

hypothetical particles. They were driven by global meteorological fields from the Climate Forecast System (CFSv2) 

Reanalysis model provided by the National Centers for Environmental Prediction (Saha et al., 2011). We determine the mole 

fraction enhancement above the background at a specific time by multiplying the model-generated footprints with CO2 190 

fluxes derived from spatially gridded fluxes and integrating over the domain. The footprints were calculated by releasing 10 

000 virtual particles from sampling sites and tracking their backward trajectories over 30 days. Covering the domain at 

0.05°×0.05° resolution, these footprints were combined with CO2 inventory emissions to produce simulated concentrations. 

For terrestrial biospheric CO2 simulations, we convolved hourly FLEXPART footprints with terrestrial biospheric CO2 

fluxes. We employed monthly Net Ecosystem Exchange (NEE) fluxes derived from the Carnegie Ames Stanford Approach 195 

Global Fire Emissions Database Version 4 (CASA-GFED4s) model (Randerson et al., 2017; Van Der Werf et al., 2017). 
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These monthly fluxes were resolved into hourly emissions by imposing the diurnal cycle from the CASA-GFED3 model 

(Van Der Werf et al., 2010) onto the nearest CASA-GFED4s monthly fluxes, thus approximating hourly terrestrial biosphere 

fluxes.  

For the heterotrophic respiration correction term (𝛽𝛽𝑅𝑅ℎ ), CO2Rh mole fractions were estimated by convolving hourly 200 

FLEXPART footprints with heterotrophic respiration fluxes from CASA-GFED4s. These fluxes were temporally 

downscaled from monthly resolutions by imposing the CASA-GFED3 diurnal cycle. Notably, heterotrophic respiration in 

CASA-GFED3 was estimated as half of the ecosystem respiration, which is calculated as the difference between NEE and 

gross ecosystem exchange (GEE) fluxes (i.e., [NEE–GEE]/2). The Δ14C signature for heterotrophic respiration was wet to  

40 ± 35‰, derived by applying a secular decline rate of 5‰ yr−1 (Zazzeri et al., 2023) to the 2015 measurement of 75 ± 35‰ 205 

(Graven et al., 2018), extrapolated to our study period.  

For the biomass burning correction term (𝛽𝛽𝐵𝐵𝐵𝐵), CO2BB mole fractions were estimated by convolving FLEXPART footprints 

with biomass burning fluxes from EDGAR2024. This inventory was selected because—unlike alternatives such as CASA-

GFED4s which exclusively quantify satellite-observable open burning (wildfires, agricultural residue burning, and 

savanna/rangeland fires)—EDGAR2024 comprehensively incorporates both open combustion and anthropogenic domestic 210 

emissions (including residential biomass heating and industrial biofuel use). To bound the maximum plausible contribution, 

we conducted FLEXPART simulations under two key assumptions: (1) CO2bio emissions in EDGAR2024 

originate entirely from biomass burning (CO2BB = 100% CO2bio), and (2) Δ14C endmembers represent exclusively multi-year 

biomass. The Δ14CO2 signature for multi-year biomass burning (116.2 ± 17.6‰ in 2022) was adopted from Li et al. (2025). 

This approach allowed quantification of 𝛽𝛽𝐵𝐵𝐵𝐵 under a conservative, upper-limit biomass burning scenario. 215 

3 Results and discussion  

3.1 CO2, Δ14C, CO2ff, and CO2bio concentrations  

Figure 3 shows large and seasonally varying concentrations of CO2 and Δ14C, and the corresponding estimates of CO2ff and 

CO2bio at the five sampling sites across the Shenzhen megacity, along with background values from the nearest regional 

background site. During the study period, the mean CO2 concentration was 431.1 ± 5.9 ppm (Fig. 3a), representing an 220 

enhancement of 5.8 ± 3.0 ppm relative to the background (CO2xs, multisite mean and one-sigma standard deviation). The 

average Δ14C value was –27.7 ± 9.9‰ (Fig. 3b), with a depletion of –17.2 ± 8.0‰ (ΔΔ14C) relative to the background, 

indicating a significant influence of 14C-free CO2 emissions, primarily from fossil fuel combustion.  

The fossil fuel and biogenic contributions to CO2xs, denoted as CO2ff and CO2bio, were estimated through a two end-member 

mixing analysis. This yielded proportions of 93.9% and 6.1% respectively during winter—though the low CO2bio ratio likely 225 

reflects an underestimate due to the inclusion of negative values, implying higher actual biogenic contributions. The average 

CO2ff over the study period was 7.7 ± 3.7 ppm, with values ranging from –5.0 ppm to 26.4 ppm (Note that some negative, 
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nonphysical, CO2ff are expected; Fig. 3c). Mean CO2ff concentrations were higher in winter (December – February; 9.9 ± 0.6 

ppm) compared to summer (May – September; 6.8 ± 4.3 ppm), likely attributable to increased atmospheric trapping of 

emissions within the shallow boundary layer and elevated emissions, as indicated by GRACED (MEIC) inventories, which 230 

show that winter emissions are 22% (25%) higher than summer emissions. CO2ff concentrations in Shenzhen are relatively 

low compared to other cities, such as Paris and Los Angeles (Table S1). This aligns with Shenzhen’s role as a pioneer in 

leading China’s and global low-carbon development. 

CO2bio concentrations (Fig. 3d) are calculated as the difference between CO2xs and CO2ff (Eq. 2). It shows an annual mean 

value of –1.8 ± 4.1 ppm (mean and standard deviation of monthly means), with values ranging from –17.2 ppm to 22.2 ppm. 235 

It also shows a mean wintertime enhancement of –0.4 ± 2.0 ppm and a more pronounced summertime mean enhancement of 

–2.6 ± 5.1 ppm. Notably, 71.7% of all CO2bio measurements were negative, indicating some degree of net CO2 uptake, 

especially in summer. This leads to CO2bio concentrations in Shenzhen relatively low compared to other cities (Table S1). 

They are lower than those in Paris (4.5 to 10.2 ppm in winter 2010) and Los Angeles (−0.3 ± 1.0 ppm in summer 2015), and 

comparable with those in London (−17 to −3 ppm in summer 2020). Noting that the concentration of CO2bio is directly 240 

dependent on background selection. The consistent adoption of a regional background enables the comparison of CO2bio 

concentrations across these cities.  

 

 

(a)  (b)  
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 245 
Figure 3: Time series of (a and b) measured (CO2 and Δ14C) and (c and d) derived quantities (CO2ff and CO2bio) from five different 
sampling sites (SZ1–SZ5). Monthly mean values are overplotted as large black circles with one-sigma standard deviations. Black 
dashed lines and pluses in (a) and (b) are the NL (Nanling background) curves and data.  

 

3.2 CO2bio components 250 

Urban CO2bio components mainly include contributions from human/livestock metabolism (i.e., respiration and excretion; 

CO2HLM), biomass burning (including open and domestic burning; CO2BB), and terrestrial biosphere (i.e., plant and soil 

metabolism = respiration – photosynthesis; CO2bio' = CO2r – CO2p). To isolate the contribution of the terrestrial biosphere to 

CO2bio, we first estimated emissions from biogenic sources, including human/livestock metabolism and biomass burning (Eq. 

5).  255 

3.2.1 CO2bio from human and livestock metabolism (CO2HLM) 

Human and livestock metabolism represent a major category of CO2 emissions in urban areas that is often neglected due to 

its perceived small magnitude compared to fossil fuel emissions (Cai et al., 2022; Wang et al., 2024b). At global and national 

scales, such emissions to atmosphere are offset by photosynthetic CO2 uptake in agricultural systems, which serve as the 

primary source of food (directly) or livestock feed (indirectly via meat production). However, in densely urbanized areas like 260 

Shenzhen, most of the carbon efflux from human beings was originally taken up as CO2 in surrounding rural regions.  

For CO2bio from human and livestock metabolism (CO2HLM), we first calculate the ratio of human and livestock metabolic 

(respiratory plus excretory): fossil emissions using fossil emissions for Shenzhen from emission inventory and derived 

human and livestock emissions. For human metabolic emissions (CO2HM; Table S2), respiratory emission rate were derived 

from basal metabolic rate (BMR) and physical activity ratio (PAR) for different age-sex groups following the work of Wang 265 

et al. (2024b). Excretory emission rates were calculated for different age-sex groups based on an average human mass of 70 

(c)  (d)  
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kg with an excretory emission rate of 128 g C d−1 person−1 (Miller et al., 2020; Prairie and Duarte, 2007). Similarly, for 

livestock metabolic emissions (CO2LM; Table S3), respiratory emission rates were derived for different livestock species 

following the work of Cai et al. (2022). Excretory emission rates were assumed to be zero, as livestock excreta is a 

significant contributor to CH4 and N2O but not to CO2 (Jun et al., 2002). Human and livestock metabolic CO2 emissions 270 

were then calculated as 9.32 Mt (9.38 Mt) and 6.22 kt (3.88 kt), respectively, for 2022 (2023) by multiplying the emission 

rates with permanent resident population of various age-sex groups or livestock production for different species. Noting that 

the livestock metabolic emissions are negligible compared with the human metabolic emissions. The ratios of 

human/livestock emissions to fossil emissions (RHLM; Table S4) were then estimated with the fossil emissions from the near-

real-time Global Gridded Daily CO2 Emissions Dataset (GRACED) (Liu et al., 2020). It is 0.178 ± 0.031 during April 2022 275 

– April 2023, ranging from 0.119 (January 2023) to 0.233 (June 2022). Applying the correction ratios times CO2ff 

concentrations (Wang et al., 2024b), we estimated annual CO2HLM concentrations to be 1.3 ± 0.6 ppm, with values ranging 

from 0.1 ppm to 2.1 ppm (Fig. 4a).  

3.2.2 CO2bio from biomass burning (CO2BB) 

CO2bio from biomass burning (CO2BB) in Shenzhen cannot be overlooked, as the city is close to Southeast Asia, a region 280 

known for high biomass burning emissions (Edgar, 2024). Assuming that CO2BB emissions account for 100 % of CO2bio in 

EDGAR2024 inventory, we calculate Shenzhen BB:fossil emission ratio (RBB; Table S4) by extracted biomass burning and 

fossil emissions from EDGAR2024 (Edgar, 2024) and GRACED, respectively, and then ratioed. The CO2BB emissions are 

estimated as 5.05 Mt and 4.93 Mt in 2022 and 2023, respectively. The RBB ratio is calculated 0.092 ± 0.015 during April 

2022 – April 2023, ranging from 0.069 (August 2022) to 0.115 (February 2023). Applying the correction ratios multiply by 285 

CO2ff concentrations (Wang et al., 2024b; Miller et al., 2020), annual CO2BB concentrations were then estimated as 0.7 ± 0.4 

ppm, with values ranging from 0.04 ppm to 1.1 ppm (Fig. 4a).  

3.2.3 CO2bio from terrestrial biosphere (CO2bio') 

We calculated the overall biogenic:fossil emission ratios (Rbio = RHLM + RBB; Table S4) as 0.270 ± 0.035 during April 2022 – 

April 2023, ranging from 0.203 (January 2023) to 0.325 (June 2022). After applying the overall correction ratios, we isolate 290 

the CO2bio contributions from the urban biosphere, define as CO2bio' = CO2bio – Rbio × CO2ff. This adjustment produces an 

average annual CO2bio' enhancement of –3.8 ± 4.8 ppm using Eq. 5, with mean summertime and wintertime CO2bio' values of 

–4.3 ± 6.1 ppm and –2.7 ± 2.2 ppm, respectively (Fig. 4a). On average, individual CO2bio' values are 2.0 ppm lower than the 

uncorrected CO2bio values, with a 7.2% increase in the proportion of negative values.  

Based on the above calculations, the three biogenic CO2 components: CO2 from human and livestock metabolism (CO2HLM), 295 

biomass burning (CO2BB), and terrestrial biosphere (CO2bio') contribute 17.8 ± 3.1%, 9.2 ± 1.5%, and 73.0 ± 3.5% (relative to 

fossil fuel emissions), respectively (Table S5). CO2 emissions from human and livestock metabolism (CO2HLM) are nearly 
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double those from biomass burning (CO2BB). Shenzhen’s HLM contribution (17.8%) exceeds that of Los Angeles (5.7%), 

Beijing (7.5%), and Paris (15.0%), reflecting its exceptional population density (~9000 km–2) driving intense metabolic 

fluxes. For biomass burning in Shenzhen (9.2%) versus biofuel use in Los Angeles (10.3%), the closely aligned shares 300 

indicate that biomass-related emissions represent a stable source common to these cities. Notably, Shenzhen’s terrestrial 

biosphere contribution (73.0%) is comparable to Los Angeles’ long-term maximum (84.0%). This dominance of natural 

processes in Shenzhen’s carbon emissions is attributable to its subtropical climate, high vegetation cover, and rapid soil 

microbial activity.  

We found that the compositional ratios of CO2bio were sensitive to the choice of emission inventory. To quantify this 305 

uncertainty, we conducted a sensitivity analysis in the calculation of CO2bio' by testing alternative Rbio values of 0.161, 0.215, 

0.253, and 0.322 (see Table S5) derived from ODIAC2022 (2021) (Oda and Maksyutov, 2024), MIXv2 (2017) (Li et al., 

2024b), EDGARv7.0 (2021) (Crippa et al., 2023), and MEICv1.4 (2020) (Crippa et al., 2023) emission inventories, 

respectively (Fig. 4b). The annual mean CO2bio', calculated from monthly averages, increases by 0.8, 0.4, 0.1, and –0.4 ppm, 

respectively. Despite these adjustments, the seasonal cycle amplitude (defined as the difference between January and 310 

September) remains consistent at approximately 11.5 ppm, with a variation of less than 1.4%. This stability is expected, as 

the correction ratios are applied annually for inventories, and CO2ff does not exhibit significant seasonality. Even for the 

uncorrected CO2bio, the seasonal amplitude of 11.0 ppm is within 4.3% of the amplitude calculated for the two CO2bio' 

estimates.  

  315 

(a)  (b)  
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Figure 4: (a) Monthly concentrations of CO2bio components: CO2HLM, CO2BB and CO2bio'. (b) Sensitivity of CO2bio' to biogenic:fossil 
emission ratios. The green line represents the baseline monthly average CO2bio' values (0.270 from GRACED); the purple line 
represents CO2bio' calculated using the modified biogenic:fossil emission ratios (Rbio) of 0.161, 0.215, 0.253, and 0.322 derived from 
the ODIAC2022 (2021), MIXv2 (2017), EDGARv7.0 (2021), and MEICv1.4 (2020) inventories, respectively (see Table S5). (c) 320 
Comparison of CO2bio' derived from Shenzhen Δ14C and CO2 measurements (green lines) with locally added biospheric CO2 
simulated from the CASA-GFED4s NEE (Randerson et al., 2017; Van Der Werf et al., 2017) using the FLEXPART footprint of 
the five sampling sites. The simulated CO2bio' was calculated by convolving the NEE flux field with either individual footprints 
from the five sites and then averaged (light blue lines) or the sum of the monthly mean footprints for each site (blue lines). (d) 
Sensitivity of CO2bio' to backgrounds. The green line represents the baseline monthly average CO2bio' values; the blue lines 325 
represent using WLG (Waliguan), JFJ (Jungfraujoch), and Kpa as the background, respectively, for CO2 and Δ14C instead of NL 
(Nanling).  

 

3.3 Seasonal variations of CO2bio' 

3.3.1 Significant seasonal amplitude 330 

We found that the seasonal amplitude of CO2bio' (CO2 originating from the urban biosphere) in Shenzhen (11.5 ppm) is 

approximately 1.5 times the annual mean fossil fuel contribution (7.7 ppm), a significant proportion for a metropolitan area 

dominated by industrial and transportation emissions. This amplitude in Shenzhen in 2022 is 2.6 times greater than that 

observed in Los Angeles in 2015 (4.3 ppm), a city with a Mediterranean climate (Miller et al., 2020).  

The observed seasonal amplitude of CO2bio' is also higher than those from simulations. Assuming that the monthly mean 335 

NEE from the CASA-GFED4s dataset represents the NEE for all local vegetation cover, we convolved sample footprints at 

each site with NEE maps, and found the resulting simulated CO2bio' amplitudes at our measurement sites are smaller than 

11.5 ppm and CO2bio' minima also showed in different months (Fig. 4c). As noted above, sources from urban vegetation must 

account for the majority of the observed CO2bio' signal, given that sources like human and livestock metabolism (HLM) and 

biomass burning (BB) are purely emissive, while our observations require seasonal carbon sinks. Thus, our results indicate 340 

that the CASA-GFED4s dataset may underestimate the seasonal amplitude of NEE fluxes in Shenzhen.  

(c)  (d)  
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We realized that the amplitude of CO2bio' seasonal variations were highly sensitive to background selection. To quantify this 

effect (Fig. 4d), we analysed CO2 and Δ14C data from two contrasting backgrounds: Kpa (lacking seasonal cycles) and 

Waliguan (WLG) at 3,890 m a.s.l. (showing clear seasonality), located ~1,700 km northwest of Nanling (NL) with 2,200 m 

elevation difference (Lan et al., 2024; Liu et al., 2024). Despite significant CO2/Δ14C differences between NL and these 345 

backgrounds, the CO2bio' seasonal amplitude remained robust at 12.6–13.3 ppm when using either WLG (seasonal) or Kpa 

(non-seasonal) as backgrounds. This stability primarily stems from strong local Δ14C signals at Shenzhen sampling sites. 

Crucially, NL is the optimal background due to: (i) proximity to urban sites, and (ii) effective capture of CO2/Δ14C 

seasonality, a feature absents at Kpa and geographically distant at WLG (>1,700 km distant). 

3.3.2 Dominant driver factors 350 

We attempted to investigate the dominant driver factors of the pronounced seasonal amplitude in CO2bio'. Firstly, we 

confirmed that population flow does not contribute significantly to CO2bio' seasonal cycle, even though Shenzhen has the 

largest population flow in China, accounting for 70.8% of its total population. This is supported by the lower CO2bio' 

observed after the Spring Festival (22 January 2023; 2.8 ± 2.6 ppm > 0.7 ± 1.4 ppm), a period characterized by the highest 

population influx, in contrast to the large outflux observed before the festival (Fig. S2a). Moreover, the lack of significant 355 

correlation between the monthly average CO2bio' and the mobile population further supports this finding (lrl < 0.48, p > 0.39; 

Table 1a).  

Secondly, we verified that the terrestrial biosphere, mainly plant and soil metabolism (i.e., CO2 released from respiration 

minus those uptakes from photosynthesis), is the primary contributor to CO2bio'. The potential contribution of urban 

vegetation to CO2bio' is supported by land surface classification derived from the MODIS Vegetation Continuous Fields 360 

(Dimiceli, 2024), which indicates an average vegetation cover of 73.3% across the Shenzhen area. Additionally, the 

footprint-weighted mean vegetation cover in the upwind fetch of our measurement sites ranges from 65.5% to 78.5% (Fig. 

S3), significantly higher than 14% simulated in Los Angeles (Miller et al., 2020). Analysis of remote sensing and aerial 

imagery indicates that Shenzhen has a vegetation coverage of 56.2% (with tree coverage of 55.6% and grass coverage of 

0.6%) (Qian et al., 2020), while the Shenzhen Statistical Yearbook 2023 reports a greening coverage of 50.8% (Smbs, 2024). 365 

Of the city’s terrestrial vegetation, artificial evergreen broadleaf forest, garden vegetation, and south subtropical evergreen 

broadleaf forest collectively account for 85% (Shu et al., 2020). These data highlight the substantial presence of urban 

vegetation (dominated by trees rather than nontree vegetation; dominated by forest rather than wetland or grassland), 

supporting its significant potential contribution to CO2bio'.  

The contribution of urban vegetation to CO2bio' is further demonstrated by strong correlations between the monthly mean 370 

CO2bio' and commonly used vegetation indices (reflecting vegetation growth status), such as the Normalized Difference 

Vegetation Index (NDVI) and Leaf Area Index (LAI) (Fig. S2b). NDVI, significantly linearly correlated with vegetation 

distribution density, is widely used to reflect changes in ecological land use (ranged from –1 to 1), with changing positive 
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values representing changing vegetation coverage fractions. LAI, an important parameter for describing vegetation structure 

and function, can be used to reflect photosynthesis, water use, and material exchange and energy balance, which 375 

significantly influence vegetation-climate feedback mechanisms (Fang et al., 2019). We observed that the monthly averaged 

CO2bio' shows significant negative correlations with NDVI from both NDVI_China (r = –0.75, p = 0.02) and GIMMS-3G+ (r 

= –0.71, p = 0.03), as well as with LAI from GRDC (r = –0.82, p = 0.007) (Table 1b). These strong correlations between the 

monthly average CO2bio' and vegetation indices further support the role of vegetation dynamics in shaping CO2bio' variations.  

The negative annual sum of CO2bio' indicates that Shenzhen’s terrestrial biosphere serves as a net carbon sink year-round. 380 

This finding aligns with observations from the Dinghushan Biosphere Reserve (DBR), a subtropical evergreen mixed forest 

located 173 km northwest of Shenzhen (Njoroge et al., 2021). Notably, the observed CO2bio' minima occur during July – 

October, whereas simulated minima shift to September – December (Fig. 4c). A similar delay is reflected in DBR’s eddy 

covariance flux tower data, which show NEE minima during October – January. Crucially, Shenzhen’s urban vegetation 

maintains a winter CO2 sink despite cold and dry conditions (Fig. 4a), consistent with DBR’s negative NEE fluxes. It is 385 

worth noting that this sink determination is highly sensitive to background selection (Fig. 4d). Both regional and urban 

background scenarios (NL and Kpa) indicate an annual carbon sink throughout the year. Notably, the biospheric uptake can 

offset ~63% of fossil fuel emissions during growing seasons. 

Thirdly, we identified that the pronounced seasonal amplitude in CO2bio' is primarily driven by atmospheric temperature, 

rather than precipitation, mediated through time-lagged effects and accumulation effects. Southern China’s humid 390 

subtropical monsoon climate features a rainy season from June to September (Fig. S2c), typically inducing peak carbon 

uptake in summer for unmanaged ecosystems. This aligns with the observed CO2bio' minima (indicating peak uptake) from 

July to October (Fig. 4a), nearly coinciding with Shenzhen’s temperature and precipitation maxima (June – September).  

The terrestrial biosphere’s control on CO2bio' is further evidenced by lagged correlations with climate factors. Observed 

CO2bio' shows strong negative correlation with temperature (1–2 months lag; r = –0.80, p = 0.01), weak negative correlation 395 

with precipitation (1 month lag; r = –0.40, p = 0.29), and insignificant correlation with sunshine hours (Table 1c). These 

patterns mirror known vegetation-climate relationships: temperature directly regulate photosynthesis and respiration, while 

precipitation affects soil moisture conditions (Piao et al., 2014; Wu et al., 2015; Ding et al., 2020; Tang et al., 2021). These 

findings suggest that temperature dominates urban vegetation growth and CO2bio' regulation in Shenzhen, overwhelming 

precipitation effects, which is consistent with broader findings for southern China (Ren et al., 2023; Wang et al., 2024a). 400 

Precipitation is no longer a limiting factor for vegetation growth here, as confirmed by Shenzhen’s persistently high 

humidity (FAO/UNEP Aridity Index >1.5 for past nine years; Fig. S4).  

The biospheric CO2 seasonality in Shenzhen (monsoon humid subtropical climate) exhibits fundamentally different drivers 

from Los Angeles (Mediterranean climate) (Miller et al., 2020), as evidenced by their distinct climate-vegetation regimes 

(Table S6). Shenzhen’s dense natural canopy (MODIS VCF: 73%, forest cover: 55.6%) responds strongly to temperature (r 405 
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= –0.80), yielding a large seasonal amplitude (11.5 ppm) with September minima during monsoon warmth. In contrast, Los 

Angeles’ sparse vegetation (VCF: 14%) depends on irrigated lawns (12% land cover; r = –0.77) for summer carbon uptake, 

producing smaller fluctuations (4.3 ppm) peaking in July. This divergence stems from their climatic constraints: Shenzhen’s 

abundant rainfall (>1.5 Aridity Index) eliminates water limitations, allowing temperature to dominate phenology, whereas 

LA’s summer drought necessitates artificial irrigation to sustain biospheric activity. Despite comparable populations (~18 410 

million), these mechanisms explain Shenzhen’s 2.6-fold greater CO2bio' amplitude and delayed minima, highlighting how 

climate background governs urban carbon sink functionality.  

 

Table 1: Correlations between monthly average CO2bio' and (a) population flow, (b) vegetation indices, and (c) climate factors a 
with a lag of –1 to 3 months  415 

(a) Population flow a Inflow  Outflow Net influx 

r –0.02 –0.20 0.47 

    

(b) Vegetation indices b NDVI from NDVI_China NDVI from GIMMS-3G+ LAI from GRDC 

r –0.75** –0.71** –0.82*** 

    

(c) Climate factors c Temperature (°C) Precipitation (mm) Sunshine (hours) 

Lag –1 0.02 0.32 –0.25 

Lag 0 –0.34 0.02 0.21 

Lag 1 –0.80*** –0.40 –0.15 

Lag 2 –0.80*** –0.37 –0.35 

Lag 3 –0.63* –0.29 –0.18 
a Population flow data in Shenzhen is obtained by crawling the migration scale indexes from the Baidu Migration 
(https://qianxi.baidu.com, last accessed on 20 May 2024) and then using the indexes to divide by a coefficient (k). This is based on 
the assumption that the index is an elementary function mapping the result of the real migrant population. The coefficient k was 
calculated to be 3.24 × 10−5 by combining the Fermat-Euler theorem and parameter estimation with real data (Wang and Yan, 
2021). Net influx = inflow – outflow. b vegetation indices include Normalized Difference Vegetation Index (NDVI) and Leaf Area 420 
Index (LAI), with the former obtained from a daily gap-free NDVI dataset in China (NDVI_China) (Li et al., 2024a; Li, 2024) and 
the Global Inventory Modelling and Mapping Studies-3rd Generation V1.2 (GIMMS-3G+) dataset (Pinzon et al., 2023), and the 
latter obtained from the Global Resources Data Cloud (GRDC, www.gis5g.com, last accessed: September 17, 2024). c monthly 
averaged climate data is obtained from the Meteorological Bureau of Shenzhen Municipality (https://weather.sz.gov.cn, last 
accessed: June 2, 2024).  425 

4 Conclusions and outlook 

This study establishes that urban biogenic CO2 constitutes a significant and quantifiable component of megacity carbon 

budgets. Through atmospheric Δ14CO2 and CO2 observations with rigorous background selection and bias corrections, we 

provide precise estimates of CO2bio contributions—essential for avoiding biases in CO2ff estimates derived solely from CO2 

measurements. By integrating multi-source data, we quantitatively partition monthly urban CO2bio in Shenzhen into three 430 
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distinct components: human/livestock metabolism, biomass burning, and terrestrial biosphere. Our analysis reveals three key 

insights regarding the terrestrial biosphere component: The urban biosphere functions as a year-round net carbon sink, 

maintaining negative CO2bio' values even during dry winters; Temperature dominates seasonal dynamics by lagging 1-2 

months, driving peak carbon uptake from July to October; High vegetation cover and abundant humidity enable temperature-

controlled phenology, generating significant seasonal amplitude. Crucially, this biospheric sink offsets a substantial fraction 435 

of concurrent CO2ff emissions during growing seasons—a natural mitigation mechanism unique to subtropical megacities. 

The predominance of thermal controls over hydrological constraints reveals a distinct bioclimatic regime governing urban 

carbon cycles. 

These findings carry profound global implications: Megacities with extensive vegetation and high humidity—particularly 

those in tropical and subtropical regions like Kolkata, Dhaka, and Ho Chi Minh City (Dangermond and Meriam, 2022))—440 

likely harbour amplified biospheric signals due to enhanced photosynthesis, potentially yielding larger carbon sink 

potential. Critically, in such regions, biomass burning emissions can be substantial due to prevalent agricultural residue 

burning and domestic biofuel use, potentially dominating CO2bio where combustion regulations are weaker. This further 

complicates emission accounting, as undetected biospheric fluxes may introduce significant biases in top-down 

CO2ff estimates across diverse climate zones. Such biases have been robustly evidenced by Δ14C studies from temperate 445 

cities, including Indianapolis (Levin et al., 2003), Los Angeles (Miller et al., 2020), Heidelberg (Turnbull et al., 2015), Paris 

(Lopez et al., 2013), and Krakow (Zimnoch et al., 2012)—confirming that neglecting CO2bio, even during winter dormancy, 

systematically distorts atmospheric CO2ff quantification. Our methodology thus resolves these limitations, providing the 

necessary framework to evaluate urban greening initiatives like Shenzhen’s “Five Year Million Trees” Action Plan (Jiang, 

2023), and advances climate-specific carbon accounting essential for evidence-based policymaking.  450 

Limitations primarily concern inventory scalability: As a preliminary investigation into biomass burning contributions, we 

employed the EDGAR inventory due to its unique incorporates of both open and domestic combustion emissions. However, 

global-scale inventories like EDGAR may be less suitable for city-level applications (Gurney et al., 2019), as localized 

policy interventions—Shenzhen’s 2017 citywide ban on biomass formed fuel combustion and mandated transition of 

industrial biomass boilers to clean energy (Sszd, 2017)—can rapidly decouple emissions from socioeconomic trends. 455 

Consequently, future work must prioritize developing urban-specific inventories that: (1) distinguish combustion types (open 

vs. domestic), (2) integrate real-time policy impacts, and (3) quantify sub-city spatiotemporal heterogeneity in biogenic 

fluxes. Such granular inventories are indispensable for targeted carbon neutrality strategies. 

Building on this foundation, while continuous atmospheric Δ14CO2 campaigns may be impractical for all megacities, 

periodic Δ14C monitoring remains indispensable for resolving seasonal to long-term trends in both CO2ff and CO2bio. To 460 

advance global urban carbon neutrality, we recommend extending observational constraints to diverse climate zones, 

refining biosphere lag-effect mechanisms, and integrating dynamic vegetation models with high-resolution flux maps—an 

integrated framework that will significantly enhance urban emissions assessment and mitigation tracking accuracy.  
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Code availability  

The FLEXPART 10.4 model is available at https://www.flexpart.eu. Commercial software MATLAB R2023a, public 465 

software Python 3.9, and MODIS Reprojection Tool are used for data processing and result visualization.  

Data availability  

The datasets generated in this study are available from the corresponding author on reasonable request. The near-real-time 

Global Gridded Daily CO2 Emissions Dataset (GRACED) is available at https://www.carbonmonitor-graced.com/index.html. 

The Multi-resolution Emission Inventory for China (MEIC) is available at http://meicmodel.org.cn. The Emissions Database 470 

for Global Atmospheric Research (EDGAR) Global Greenhouse Gas Emissions are available at https://edgar.jrc.ec.europa.eu. 

The Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) is available at 

https://db.cger.nies.go.jp/dataset/ODIAC/. The MIXv2 Asian emission inventory (MIXv2) is available at 

https://csl.noaa.gov/groups/csl4/modeldata/data/Li2023. The Carnegie Ames Stanford Approach Global Fire Emissions 

Database Version 4 (CASA-GFED4s) dataset is available at 475 

https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4_R1.html. The CASA-GFED3 dataset is available at 

http://nacp-files.nacarbon.org/nacp-kawa-01/. The Global Inventory Modelling and Mapping Studies-3rd Generation V1.2 

(GIMMS-3G+) NDVI dataset is available at https://doi.org/10.3334/ORNLDAAC/2187. The Moderate Resolution Imaging 

Spectroradiometer Vegetation Continuous Fields (MODIS VCF, product MOD44Bv061) is available at 

https://lpdaac.usgs.gov/products/mod44bv061. The National Centres for Environmental Prediction’s Climate Forecast 480 

System (CFSv2) Reanalysis data that drive the FLEXPART model is available at https://rda.ucar.edu/datasets/ds094.0. 

Supplement 

The link to the supplementary information available at website.  

Author contributions 

G.Z., Z.Z., Jun Li, and P.L. conceived and designed the study. Nearly all authors contributed to field sampling. Sanyuan Zhu 485 

performed accelerator mass spectrometry (AMS) radiocarbon measurements. P.L. and B.L. conducted modeling simulations. 

P.L. led data processing, inventory analysis, and manuscript drafting. G.Z., Jun Li, Jing Li, Z.C., and Z.Z. provided revisions 

to the manuscript. 

https://doi.org/10.5194/egusphere-2025-3882
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



19 
 

Competing interests 

The authors declare no competing interest. 490 

Acknowledgements 

We acknowledge contributions from Professor Zhang’s research group (Jiangtao Li, Menghui Li, Yanmin Sun, Kechang Li, 

Lixin Wang, Yingjian Shao, Ziyang Zhang, Kun He, Chuxin Yao, Run Lin, and Boji Lin) and Mr. Zhou’s group (Zhenqiang 

Huang and Youxin Qiu) for field sampling assistance. Special thanks are extended to Jiangtao Li for sample extraction and 

Run Lin for graphite preparation.  495 

Financial support 

This study was supported by the National Natural Science Foundation of China (NSFC; nos. 42330715, 42103082, and 

42203081), China Postdoctoral Science Foundation (Grant no. 2022T150652), Guangdong Provincial Applied Science and 

Technology Research and Development Program (Grant nos. 2022A1515011271 and 2022A1515011851), Special Research 

Assistant Program of the Chinese Academy of Sciences (CAS), and Director’s Fund of Guangzhou Institute of Geochemistry, 500 

CAS (Grant no. 2021SZJJ-3).  

References 

Cai, Q., Zeng, N., Zhao, F., Han, P., Liu, D., Lin, X., and Chen, J.: The impact of human and livestock respiration on CO2 
emissions from 14 global cities, Carbon Balance Manag., 17, 17, 10.1186/s13021-022-00217-7, 2022. 
Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., E., S., Becker, W., Monforti-Ferrario, F., Quadrelli, R., 505 
Risquez Martin, A., Taghavi-Moharamli, P., Köykkä, J., Grassi, G., Rossi, S., Brandao De Melo, J., Oom, D., Branco, A., 
San-Miguel, J., and Vignati, E.: GHG emissions of all world countries, Publications Office of the European Union, 
LuxembourgJRC134504, 10.2760/953322, 2023. 
The world's most populated and greenest megacities (and how we found out): https://www.esri.com/arcgis-
blog/products/arcgis-living-atlas/mapping/worlds-greenest-megacities/, last  510 
DiMiceli, C.: MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V061 [Data set] 
[dataset], https://doi.org/10.5067/MODIS/MOD44B.061, 2024. 
Ding, Y., Li, Z., and Peng, S.: Global analysis of time-lag and -accumulation effects of climate on vegetation growth, 
International Journal of Applied Earth Observation and Geoinformation, 92, 102179, 
https://doi.org/10.1016/j.jag.2020.102179, 2020. 515 
Duren, R. M. and Miller, C. E.: Measuring the carbon emissions of megacities, Nature Clim. Change, 2, 560–562, 
10.1038/nclimate1629, 2012. 
Emissions Database for Global Atmospheric Research (EDGAR_2024_GHG): 
https://edgar.jrc.ec.europa.eu/dataset_ghg2024, last  
ICOS ATC/CAL 14C Release, Jungfraujoch (6.0 m), 2015-09-21–2023-10-02, ICOS RI: 520 
https://hdl.handle.net/11676/6c_RZ7NHc2dnZv7d84BMY_YY (last accessed: 28 July 2024) last  
ICOS ATC CO2 Release, Jungfraujoch (13.9 m), 2016-12-12–2024-03-31, ICOS RI: https://hdl.handle.net/11676/4-
Kot58QX1b5u-e8SGD8XTPy (last accessed: 28 July 2024) last  

https://doi.org/10.5194/egusphere-2025-3882
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



20 
 

Fang, H., Baret, F., Plummer, S., and Schaepman-Strub, G.: An Overview of Global Leaf Area Index (LAI): Methods, 
Products, Validation, and Applications, Reviews of Geophysics, 57, 739-799, https://doi.org/10.1029/2018RG000608, 2019. 525 
Graven, H., Fischer, M. L., Lueker, T., Jeong, S., Guilderson, T. P., Keeling, R. F., Bambha, R., Brophy, K., Callahan, W., 
Cui, X., Frankenberg, C., Gurney, K. R., LaFranchi, B. W., Lehman, S. J., Michelsen, H., Miller, J. B., Newman, S., 
Paplawsky, W., Parazoo, N. C., Sloop, C., and Walker, S. J.: Assessing fossil fuel CO2 emissions in California using 
atmospheric observations and models, Environ. Res. Lett., 13, 065007, 10.1088/1748-9326/aabd43, 2018. 
Gurney, K. R., Liang, J., O'Keeffe, D., Patarasuk, R., Hutchins, M., Huang, J., Rao, P., and Song, Y.: Comparison of Global 530 
Downscaled Versus Bottom-Up Fossil Fuel CO2 Emissions at the Urban Scale in Four U.S. Urban Areas, J. Geophys. Res. 
Atmos., 124, 2823-2840, https://doi.org/10.1029/2018JD028859, 2019. 
Jiang, X.: Shenzhen launches the "Five Year Million Trees" Action Plan (in Chinese), 10.28251/n.cnki.ngdjs.2023.000330,  
2023. 
Jun, P., Gibbs, M., and Gaffney, K.: CH4 and N2O emissions from livestock manure, Good practice guidance and uncertainty 535 
management in national greenhouse gas inventories, 2002. 
Lan, X., Mund, J. W., Crotwell, A. M., Thoning, K. W., Moglia, E., Madronich, M., Baugh, K., Petron, G., Crotwell, M. J., 
Neff, D., Wolter, S., Mefford, T., and DeVogel, S.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA 
GML Carbon Cycle Cooperative Global Air Sampling Network, 1968-2023, Version: 2024-07-30 2024. 
Levin, I., Hammer, S., Kromer, B., and Meinhardt, F.: Radiocarbon observations in atmospheric CO2: Determining fossil 540 
fuel CO2 over Europe using Jungfraujoch observations as background, Sci. Total Environ., 391, 211-216, 
https://doi.org/10.1016/j.scitotenv.2007.10.019, 2008. 
Levin, I., Kromer, B., Schmidt, M., and Sartorius, H.: A novel approach for independent budgeting of fossil fuel CO2 over 
Europe by 14CO2 observations, Geophys. Res. Lett., 30, 2194, 2003. 
Li, H.: A daily gap-free normalized difference vegetation index product from 1981 to 2023 in China. figshare. Collection. 545 
https://doi.org/10.6084/m9.figshare.c.7002225.v1, 2024. 
Li, H., Cao, Y., Xiao, J., Yuan, Z., Hao, Z., Bai, X., Wu, Y., and Liu, Y.: A daily gap-free normalized difference vegetation 
index dataset from 1981 to 2023 in China, Scientific Data, 11, 527, 10.1038/s41597-024-03364-3, 2024a. 
Li, M., Kurokawa, J., Zhang, Q., Woo, J. H., Morikawa, T., Chatani, S., Lu, Z., Song, Y., Geng, G., Hu, H., Kim, J., Cooper, 
O. R., and McDonald, B. C.: MIXv2: a long-term mosaic emission inventory for Asia (2010–2017), Atmos. Chem. Phys., 24, 550 
3925–3952, 10.5194/acp-24-3925-2024, 2024b. 
Li, P., Lin, B., Cheng, Z., Li, J., Li, J., Chen, D., Zhang, T., Lin, R., Zhu, S., Liu, J., Lin, Y., Zhao, S., Zhong, G., Niu, Z., 
Ding, P., and Zhang, G.: Drivers and implications of declining fossil fuel CO2 in Chinese cities revealed by radiocarbon 
measurements, EGUsphere, 2025, 1-44, 10.5194/egusphere-2025-1931, 2025. 
Liu, W., Niu, Z., Feng, X., Zhou, W., Liang, D., Lyu, M., Wang, G., Lu, X., Liu, L., and Turnbull, J. C.: Atmospheric CO2 555 
and 14CO2 observations at the northern foot of the Qinling Mountains in China: Temporal characteristics and source 
quantification, Sci. Total Environ., 920, 170682, https://doi.org/10.1016/j.scitotenv.2024.170682, 2024. 
Liu, Z., Ciais, P., Deng, Z., Davis, S. J., Zheng, B., Wang, Y., Cui, D., Zhu, B., Dou, X., Ke, P., Sun, T., Guo, R., Zhong, H., 
Boucher, O., Bréon, F.-M., Lu, C., Guo, R., Xue, J., Boucher, E., Tanaka, K., and Chevallier, F.: Carbon Monitor, a near-
real-time daily dataset of global CO2 emission from fossil fuel and cement production, Scientific Data, 7, 392, 560 
10.1038/s41597-020-00708-7, 2020. 
Lopez, M., Schmidt, M., Delmotte, M., Colomb, A., Gros, V., Janssen, C., Lehman, S. J., Mondelain, D., Perrussel, O., 
Ramonet, M., Xueref-Remy, I., and Bousquet, P.: CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot 
study in Paris during winter 2010, Atmos. Chem. Phys., 13, 7343–7358, 10.5194/acp-13-7343-2013, 2013. 
(Ministry of Ecology and Environment of China), China Ecological Environment Statistical Annual Report in 2019 (in 565 
Chinese): https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202108/W020210827611248993188.pdf (last accessed: 14 March 
2025) last  
Multi-resolution Emission Inventory model for China: http://meicmodel.org.cn (last accessed: 14 March 2024) last  
Miller, J. B., Lehman, S. J., Verhulst, K. R., Miller, C. E., Duren, R. M., Yadav, V., Newman, S., and Sloop, C. D.: Large 
and seasonally varying biospheric CO2 fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon, Proc. Natl. 570 
Acad. Sci., 117, 26681–26687, 2020. 
Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R., Wong, 
K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up CO2 emissions and top-

https://doi.org/10.5194/egusphere-2025-3882
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



21 
 

down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16, 3843–3863, 10.5194/acp-16-3843-
2016, 2016. 575 
Niu, Z. C., Zhou, W. J., Cheng, P., Wu, S., Lu, X., Xiong, X., Du, H., and Fu, Y.: Observations of atmospheric Δ14CO2 at the 
global and regional background sites in China: implication for fossil fuel CO2 inputs, Environ. Sci. Technol., 50, 12122–
12128, 2016. 
Njoroge, B., Li, Y., Wei, S., Meng, Z., Liu, S., Zhang, Q., Tang, X., Zhang, D., Liu, J., and Chu, G.: An Interannual 
Comparative Study on Ecosystem Carbon Exchange Characteristics in the Dinghushan Biosphere Reserve, a Dominant 580 
Subtropical Evergreen Forest Ecosystem, Frontiers in Plant Science, 12, 10.3389/fpls.2021.715340, 2021. 
ODIAC Fossil Fuel CO2 Emissions Dataset (Version name: ODIAC2022), Center for Global Environmental Research, 
National Institute for Environmental Studies. (Reference date: 2024/01/22): https://db.cger.nies.go.jp/dataset/ODIAC/, last  
Piao, S., Nan, H., Huntingford, C., Ciais, P., Friedlingstein, P., Sitch, S., Peng, S., Ahlström, A., Canadell, J. G., Cong, N., 
Levis, S., Levy, P. E., Liu, L., Lomas, M. R., Mao, J., Myneni, R. B., Peylin, P., Poulter, B., Shi, X., Yin, G., Viovy, N., 585 
Wang, T., Wang, X., Zaehle, S., Zeng, N., Zeng, Z., and Chen, A.: Evidence for a weakening relationship between 
interannual temperature variability and northern vegetation activity, Nat. Commun., 5, 5018, 10.1038/ncomms6018, 2014. 
Pinzon, J., Pak, E., Tucker, C., Bhatt, U., Frost, G., and Macander, M.: Global Vegetation Greenness (NDVI) from AVHRR 
GIMMS-3G+, 1981–2022, ORNL DAAC, Oak Ridge, Tennessee, USA,  2023. 
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., 590 
Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, 
A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, 
Geosci. Model Dev., 12, 4955–4997, 10.5194/gmd-12-4955-2019, 2019. 
Prairie, Y. T. and Duarte, C. M.: Direct and indirect metabolic CO2 release by humanity, Biogeosciences, 4, 215-217, 
10.5194/bg-4-215-2007, 2007. 595 
Qian, Y., Zhou, W., Pickett, S. T. A., Yu, W., Xiong, D., Wang, W., and Jing, C.: Integrating structure and function: 
mapping the hierarchical spatial heterogeneity of urban landscapes, Ecol. Process., 9, 59, 10.1186/s13717-020-00266-1, 
2020. 
Global Fire Emissions Database, Version 4.1 (GFEDv4): https://doi.org/10.3334/ORNLDAAC/1293, last  
Ren, H., Wen, Z., Liu, Y., Lin, Z., Han, P., Shi, H., Wang, Z., and Su, T.: Vegetation response to changes in climate across 600 
different climate zones in China, Ecological Indicators, 155, 110932, https://doi.org/10.1016/j.ecolind.2023.110932, 2023. 
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-y., Iredell, M., Ek, M., 
Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP Climate 
Forecast System Version 2 (CFSv2) Selected Hourly Time-Series Products, Research Data Archive at the National Center 
for Atmospheric Research, Computational and Information Systems Laboratory [dataset], 2011. 605 
Seto, K. C., Churkina, G., Hsu, A., Keller, M., Newman, P. W. G., Qin, B., and Ramaswami, A.: From Low- to Net-Zero 
Carbon Cities: The Next Global Agenda, Annual Review of Environment and Resources, 46, 377-415, 
https://doi.org/10.1146/annurev-environ-050120-113117, 2021. 
Shu, C., Cai, W., Han, B., Li, X., Jiang, N., and Ouyang, Z.: A study on the characteristics of the dominant vegetation 
species in Shenzhen based on a rapid-census method (in Chinese), Acta Ecologica Sinica, 40, 8516-8527, 2020. 610 
(Shenzhen Municipal Bureau of Statistics), Shenzhen Statistical Yearbook 2023: 
https://tjj.sz.gov.cn/gkmlpt/content/11/11182/post_11182604.html#4219 (last accessed: 14 March 2024), last  
(Shenzhen Ecology and Environment Bureau), 2020-2023 report on the state of the ecology and environment in Shenzhen, 
last  
SSZD: Shenzhen to Ban Burning of Biomass Formed Fuel (in Chinese),  2017. 615 
Stuiver, M. and Polach, H. A.: Discussion reporting of 14C data, Radiocarbon, 19, 355–363, 1977. 
Tang, W., Liu, S., Kang, P., Peng, X., Li, Y., Guo, R., Jia, J., Liu, M., and Zhu, L.: Quantifying the lagged effects of climate 
factors on vegetation growth in 32 major cities of China, Ecological Indicators, 132, 108290, 
https://doi.org/10.1016/j.ecolind.2021.108290, 2021. 
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the 620 
NOAA GMCC data, 1974–1985, J. Geophys. Res. Atmos., 94, 8549-8565, https://doi.org/10.1029/JD094iD06p08549, 1989. 
Turnbull, J., Rayner, P., Miller, J., Naegler, T., Ciais, P., and Cozic, A.: On the use of 14CO2 as a tracer for fossil fuel CO2: 
Quantifying uncertainties using an atmospheric transport model, J. Geophys. Res. Atmos., 114, D22302, 2009. 

https://doi.org/10.5194/egusphere-2025-3882
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



22 
 

Turnbull, J. C., Miller, J., Lehman, S., Tans, P., Sparks, R., and Southon, J.: Comparison of 14CO2, CO, and SF6 as tracers for 
recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange, Geophys. Res. Lett., 33, 625 
L01817, 2006. 
Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., Lauvaux, T., Miles, N. L., 
Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., Patarasuk, R., and Razlivanov, I.: Toward quantification 
and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment, J. 
Geophys. Res. Atmos., 120, 292–312, https://doi.org/10.1002/2014JD022555, 2015. 630 
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, 
Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and 
peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707-11735, 10.5194/acp-10-11707-2010, 2010. 
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., 
Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, 635 
Earth Syst. Sci. Data, 9, 697-720, 10.5194/essd-9-697-2017, 2017. 
Wang, C. and Yan, J.: An Inversion of the Constitution of the Baidu Migration Scale Index (in Chinese), 
Journal of University of Electronic Science and Technology of China 50, 616-626, 2021. 
Wang, L., Yue, Y., Cui, J., Liu, H., Shi, L., Liang, B., Li, Q., and Wang, K.: Precipitation sensitivity of vegetation growth in 
southern China depends on geological settings, Journal of Hydrology, 643, 131916, 640 
https://doi.org/10.1016/j.jhydrol.2024.131916, 2024a. 
Wang, P., Zhou, W., Niu, Z., Huo, D., Zhou, J., Li, H., Cheng, P., Wu, S., Xiong, X., and Chen, N.: An Approach for 
Assessing Human Respiration CO2 Emissions Using Radiocarbon Measurements and Bottom-Up Data Sets, J. Geophys. Res. 
Atmos., 129, e2023JD040578, https://doi.org/10.1029/2023JD040578, 2024b. 
Wang, P., Zhou, W., Xiong, X., Wu, S., Niu, Z., Yu, Y., Liu, J., Feng, T., Cheng, P., Du, H., Lu, X., Chen, N., and Hou, Y.: 645 
Source attribution of atmospheric CO2 using 14C and 13C as tracers in two Chinese megacities during winter, J. Geophys. Res. 
Atmos., 127, e2022JD036504, https://doi.org/10.1029/2022JD036504, 2022. 
Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., and Zhao, W.: Time-lag effects of global vegetation responses to 
climate change, Global Change Biology, 21, 3520-3531, https://doi.org/10.1111/gcb.12945, 2015. 
Xu, X., Trumbore, S. E., Zheng, S., Southon, J. R., McDuffee, K. E., Luttgen, M., and Liu, J. C.: Modifying a sealed tube 650 
zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision, Nuclear 
Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259, 320–329, 
https://doi.org/10.1016/j.nimb.2007.01.175, 2007. 
Yu, W., Zhou, W., Qian, Y., and Yan, J.: A new approach for land cover classification and change analysis: Integrating 
backdating and an object-based method, Remote Sensing of Environment, 177, 37-47, 655 
https://doi.org/10.1016/j.rse.2016.02.030, 2016. 
Zazzeri, G., Graven, H., Xu, X., Saboya, E., Blyth, L., Manning, A., Chawner, H., Wu, D., and Hammer, S.: Radiocarbon 
Measurements Reveal Underestimated Fossil CH4 and CO2 Emissions in London, Geophys. Res. Lett., 50, e2023GL103834, 
10.1029/2023GL103834, 2023. 
Zhang, C. L., Wu, G. C., Wang, H., Wang, Y., Gong, D., and Wang, B.: Regional effect as a probe of atmospheric carbon 660 
dioxide reduction in southern China, J. Clean. Prod., 340, 130713, https://doi.org/10.1016/j.jclepro.2022.130713, 2022. 
Zhou, W. J., Niu, Z. C., Wu, S. G., Xiong, X., Hou, Y., Wang, P., Feng, T., Cheng, P., Du, H., and Lu, X.: Fossil fuel CO2 
traced by radiocarbon in fifteen Chinese cities, Sci. Total Environ., 729, 138639, 2020. 
Zhou, Z., Li, P., Cheng, Z., Li, J., Li, J., Chen, D., Zhang, T., Xiong, X., Sa, R., Ma, S., and Zhang, G.: Selection of 
background stations and values for urban atmospheric Δ14CO2 observation: a case study in Shenzhen (in Chinese), 665 
Geochimica, 53, 309–319, 2024. 
Zhu, S., Ding, P., Wang, N., Shen, C., Jia, G., and Zhang, G.: The compact AMS facility at Guangzhou Institute of 
Geochemistry, Chinese Academy of Sciences, Nuclear Instruments and Methods in Physics Research Section B: Beam 
Interactions with Materials and Atoms, 361, 72–75, 2015. 
Zimnoch, M., Jelen, D., Galkowski, M., Kuc, T., Necki, J., Chmura, L., Gorczyca, Z., Jasek, A., and Rozanski, K.: 670 
Partitioning of atmospheric carbon dioxide over Central Europe: insights from combined measurements of CO2 mixing ratios 
and their carbon isotope composition, Isot. Environ. Health Stud., 48, 421–433, 10.1080/10256016.2012.663368, 2012. 
 

https://doi.org/10.5194/egusphere-2025-3882
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.


