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Abstract. Catastrophic mass movements, such as rock avalanches, glacier collapses, and destructive debris flows, are typically

rare events. Their detection is consequently challenging as annotated and verified events used as training data for instrumen-

tation and algorithm tuning are absent or limited. In this work, we explore seismic mass-movement data through the lens of

anomaly detection. The idea is to screen out segments of the data that are unlikely to contain mass movements by focusing

only on anomalous signals, thereby reducing the number of signals to be studied, making downstream tasks such as expert5

labeling and clustering of events easier. To extract anomalous signals, we design a triggering algorithm using an anomaly score

computed from an isolation forest obtained from sliding windows taken from the continuous data. The extracted signals are

subjected to expert labeling and/or further analyzed by dynamic time warping, a popular technique used to evaluate the dissimi-

larity between different types of signals. We illustrate our approach by (a) mining for seismic signals of hazardous debris-flows

in Switzerland’s Illgraben catchment and (b) labeling of seismic mass movement data obtained from a Greenland seismometer10

network.

1 Introduction

Seismic networks record ground unrest and generate large amounts of continuous data in the public domain. As global and

regional earthquakes are the main focus of existing automated processing workflows by national and international seismolog-

ical organizations, important natural phenomena also exciting seismic signals remain hidden in the vast amounts of available15

continuous data. Even though there are ongoing efforts to detect and characterize non-earthquake seismic events (Bahavar

et al., 2019), a big part of the available data remains unexplored. The topic of environmental seismology focuses on these non-

tectonic seismic events using the signals of rock falls, avalanches, debris flows and other mass movements to study underlying

processes (Larose et al., 2015). In this context, past studies have shown the high value of seismic measurements for natural

hazards science (Montagner et al., 2021).20

Conventional algorithms in earthquake seismology, such as the short-term average over long-term average STA-LTA trigger

(Allen, 1978), are not easily transferable to the domain of environmental seismology - especially since discrimination between
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earthquake, noise as well as other transient waveforms and the signals of interest can become difficult. Hence, statistical learn-

ing models are needed to gain more insight into complex phenomena such as hazardous avalanches, debris flows and other25

mass movements (Wenner et al., 2021; Chmiel et al., 2021) and basal sliding of glaciers (Umlauft et al., 2023). In the presence

of limited or no labels, unsupervised or semi-supervised methods are needed to create and refine catalogs of events, see for

example Meyer et al. (2019). These type of analyses are challenging, due to high sampling rates (hundreds to thousands of

Hertz) and the long-term measurements, spanning multiple years across multiple stations and networks.

30

From a data perspective, distinct physical seismic events (including, but not limited to, earthquakes) can be interpreted as

anomalies in a background noise field. From a geophysical perspective, this background field is very complex, transient and

non-stationary (Nakata et al., 2019; Fichtner et al., 2020) - so the term "noise" might be misleading for non-seismologists.

Studying the properties of this seismic noise field has revolutionized passive seismology in the last decade, with applications

ranging from global-scale subsurface tomography (Sager et al., 2020) to noise source location (Igel et al., 2021) and aquifer35

monitoring (Rodríguez Tribaldos and Ajo-Franklin, 2021). Compared to the duration of seismic events from hazardous mass

movements (minutes to hours), the rate of change in the background noise field throughout such events is often negligible,

taking place on diurnal to seasonal time scales. This motivates us to tackle seismic signal detection from an anomaly detection

approach.

40

Here we explore seismic mass-movement data by combining anomaly detection with semi- and unsupervised learning, using

dynamic time warping (DTW) to quantify dissimilarity between signals. The idea is based on the insight that mass-movement

signals represent significant statistical anomalies in the seismic data of instruments well-placed to detect these events. From

this viewpoint, we should be able to screen out large portions of the data unlikely to contain mass movement signals, thereby

reducing the amount of signals to be studied. In this work we consider the isolation forest (IF) algorithm, a simple yet power-45

ful anomaly detection method. We chose this algorithm because of (a) fast training and inference, (b) light-weight storage of

models, and (c) strong empirical performance (Liu et al., 2008, 2012; Bouman et al., 2024).1 Since vanilla anomaly detection

methods cannot discriminate between different types of anomalies, the extracted signals need to be further analyzed, either by

expert labeling or unsupervised/semi-supervised methods. We pursue both approaches in this work, with the latter guided by

measuring dissimilarity between signals using DTW. To illustrate the value of our approach we consider refining an existing50

catalog of hazardous debris flows in Switzerland’s Illgraben catchment, and generate a catalog from scratch for data obtained

from a Greenland seismometer network.
1Although (a) and (b) are not strictly necessary for the applications of this paper, they could be more relevant for future work, such as extensions to the

online setting.
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2 Methodology

2.1 Pre-processing

We use the Scikit-learn (version 1.4.1) (Pedregosa et al., 2011) and ObsPy (version 1.4.0) (Beyreuther et al., 2010) libraries to55

implement the training and signal processing procedures. The pre-processing of the raw mini-seed seismic recordings follows

standard procedures in seismology. In the first step, we identify gaps in the data and discard all recordings with less than 1000

consecutive samples, as gaps in the data indicate issues on the instrumentation side. We then apply a linear de-trending and

de-meaning of each recording to ensure zero-mean recordings without a drift in amplitude, followed by a zero-phase high-pass

filter with a corner frequency of 0.3 Hz. Furthermore, all data are re-sampled to the same sampling rate of 100 Hz. We refer to60

the units of the seismic waveforms after they have been preprocessed as preprocessed counts.

2.2 Isolation forest

An IF consists of an ensemble of decision trees trained in an unsupervised manner where, in contrast to traditional decision

trees and random forests, both the splitting variable and the splitting point are completely decided at random. The argument

is that if we fit a decision tree to a data set D = {xi : i = 1,2, . . . ,n} in this manner, anomalies in D tend to be isolated into65

singleton nodes at fairly low depths of the tree, and this property can be exploited to derive sensible anomaly scores. As in Liu

et al. (2008, 2012) we refer to these random decision trees as isolation trees (iTrees).

For a test observation x and a given iTree, let us define the path length h(x) as the number of edges from the root to the

terminal node containing x. The more anomalous x, the smaller we expect h(x) to be. An IF aims to estimate ED[h(x)], i.e.,70

the expected path length for a test observation x over iTrees fitted to different datasets D. An estimate ÊD[h(x)] is obtained

by fitting iTrees to sub-samples of the data and averaging the path lengths. The test observation is flagged as anomalous if

ÊD[h(x)] is sufficiently small.

For improved interpretability, the final anomaly score is calculated by normalizing and transforming the quantity ÊD[h(x)]75

to a value in (0,1) with higher values indicative of more anomalous observations. Normalization is achieved with division by

c|D|, a quantity representing the average number of edges from root to terminal node over all possible test observations and data

sets of size |D|. In fact, since a test observation hitting a terminal node can be interpreted as an unsuccessful search in a binary

search tree (BST), we can compute c|D| = 2 ·H|D|−1− 2 · |D|−1
|D| , with H|D|−1 the harmonic number (Liu et al., 2008, 2012).

The final isolation forest anomaly score for a test observation x is given by s(x,D) = 2
− ÊD [h(x)]

c|D| ∈ (0,1).80

2.2.1 Fitting the isolation forest

Fixed-size sliding windows have proven useful in converting time series data to a usable format for machine learning algo-

rithms such as random forests, especially in the context of real-time monitoring (Wenner et al., 2021; Chmiel et al., 2021).
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We follow this convention for the IF by taking sliding windows from the seismic waveforms, after they have been suitably

preprocessed as discussed above. Except if indicated otherwise, by sliding windows, we mean 100 second windows taken with85

with 50 second overlap.

To obtain a sub-sample, we take all sliding windows corresponding to a single raw mini-seed seismic recording after it has been

preprocessed. This means an ensemble of one iTree for each raw seismic mini-seed recording, which typically corresponds to

a calendar day. The number of sliding windows in a sub-sample depends on the duration as well as the number and size of90

gaps in the corresponding recording. For a comparison of the IF anomaly score to the standard deviation of sliding windows

we refer to Appendix A.

2.2.2 Isolation forest trigger

The IF trigger is activated when the IF anomaly score of a sliding window exceeds a specified onset threshold. We continue

sliding windows until the IF anomaly score drops below a specified offset threshold and the flagged segment is marked from95

the starting point of the onset window, until the starting point of the offset window. The maximum IF anomaly score of the

sliding windows taken over this period is the anomaly score associated with the entire segment, which we call the IF segment

anomaly score.

The onset and offset thresholds can be either preset or calibrated to data. In the case where calibration is not possible, we100

recommend using an onset and offset threshold of 0.60 and 0.55, respectively, as a rule of thumb. The segments flagged by the

IF trigger (IF segments) are then ranked by their corresponding IF segment anomaly scores in decreasing order.

2.3 Dynamic time warping

Suppose that we want to align two sequences x1 ∈ ℜT1 and x2 ∈ ℜT2 , possibly of different lengths. We define a path p =

{(ik, jk)}K
k=1 such that (i, j) ∈ p indicates that element i in x1 has been matched with element j in x2. We call a path p valid105

if it satisfies the following conditions:

1. (i1, j1) = (1,1) and (iK , jK) = (T1,T2).

2. ik ≤ ik+1 ≤ ik + 1 and jk ≤ jk+1 ≤ jk + 1.

These conditions ensure that (a) the first and last entry of x1 are matched with the first and last entry of x2 respectively (b) all

the indices of both time series are used and (c) the path respects the flow of time in both sequences; for example if we match110

element 3 in x1 with element 10 in x2 then we are not allowed to match element 20 in x1 with element 2 in x2. The DTW

objective is to find the valid path that minimizes the objective

∑

k

d(x1ik
,x2jk

), (1)
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where d(·, ·) is a chosen distance metric such as the Euclidean distance. The minimizing path determines the DTW alignment

between the sequences, and the corresponding value of (1) is called the DTW distance, although it does not define a proper115

metric since it does not necessarily satisfy the triangle inequality.

The DTW problem can be solved using dynamic programming in O(T1 ·T2) time and storage complexity (Salvador and

Chan, 2007). Since the signals we are studying are relatively long, using all the data at once when performing DTW is compu-

tationally prohibitive. To account for this, we consider the following two approaches for using DTW to measure dissimilarity120

between two signal segments:

1. Template DTW. Take the single sliding window over a segment with the largest IF anomaly score as a segment tem-

plate. The template DTW distance between two segments is computed as the DTW distance between the corresponding

templates.

2. Segment DTW. Take all sliding windows over a segment and compute the corresponding IF anomaly scores. To compare125

two segments, we first compute the DTW alignment between the two time series of anomaly scores. We match a sliding

window from one segment with the sliding window of another if their corresponding anomaly scores were matched in

the alignment, and then compute the DTW distance between each matched pair of sliding windows. The segment DTW

distance is obtained by aggregating these distances into a single statistic using, for example, the mean or median.

The template DTW is preferable computationally, while segment DTW is able to better discriminate between segments and is130

preferable when a smaller number of signals are being studied. In all cases, we use the implementation of Salvador and Chan

(2007) with the Euclidean distance metric, and sliding windows are normalized to zero mean and unit standard deviation before

performing DTW.

3 Case studies

We present two case studies for the application of the methodology described in Sect. 2. The first study aims to refine an135

existing catalog of debris flows in the Illgraben torrent, Switzerland, while the second focuses on generating a catalog of events

from the seismic broadband station KARAT in Greenland. Overviews of these settings and maps of the respective seismic

networks are provided in Fig. 1.

3.1 Illgraben

3.1.1 Study site140

Located in southern Switzerland’s Canton Valais, the Illgraben is one of Europe’s most active debris flow torrents. Its catchment

drains an area of ca. 10 km2 and produces sediments at higher elevation, which are mobilized during heavy precipitation to form

debris flows and sediment-laden torrential floods. Each year, several such flows with volumes of a few tens of thousands m3
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Figure 1. Study sites in Greenland (A) and Switzerland (B). (A) Karrat Fjord with seismic broadband stations (blue triangles), the location

of the 2017 rock avalanche and major calving fronts indicated. White ice debris cover on the tidewater results from disintegrating icebergs.

Inset shows the location of the site in Greenland. (B) Illgraben torrent with debris-flow-producing upper catchment outlined by yellow dashed

lines. Blue arrows indicate flow direction. Yellow triangles represent seismometers. Sources: Copernicus (Sentinel-2 true color image) and

inset from the Generic Mapping Toolbox (A), Swisstopo (B).

reach the Rhône River (Badoux et al., 2009; Hürlimann et al., 2003). Illgraben’s debris flows move at several meters per second

and feature the typical boulder-rich fronts, which are efficient seismic sources that can be detected on local seismic networks145

(Walter et al., 2017). At Illgraben, the Swiss Federal Institute for Forest, Snow and Landscape Research WSL maintains a semi-

permanent seismic network that monitors debris flows and consists primarily of 1 Hz seismometers (Fig. 1). In addition, WSL’s

Illgraben debris flow observatory contains geophone plates, automatic cameras and depth gauges to measure flow arrival times

and flow depths at various points along the torrents, especially at concrete structures stabilizing the channel ("Check Dams";

Badoux et al., 2009).150

3.1.2 Debris-flow catalog

A debris flow signature can be defined to occur when the seismic waveforms of multiple stations are affected in the expected

pattern as a debris flow moves down the torrent. In the case of the Illgraben seismic network we expect a debris flow to affect

the upper stations ILL14-ILL18 first, and subsequently ILL12, ILL13 and ILL11 in order. The existing debris flow catalog

was independently curated by cross-referencing detections made by WSL’s Illgraben debris flow observatory with the seismic155

waveforms of the stations in the network, keeping this definition in mind. Each segment in the catalog consists of a start- and

end-time, coupled with a station and confidence level. The confidence levels are defined as follows:

1. High confidence. The segment is observed during a debris-flow signature and contains a clear signal.
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2. Medium confidence. The segment is observed during a debris-flow signature and contains some signal, although some-

what suppressed. We also include here segments with a clear signal where not enough stations were active to establish if160

a debris-flow signature is present.

3. Low confidence. The segment is observed during a debris-flow signature; however, without the signature present in other

stations it is debatable if this signal is related to a debris flow.

For the remainder of the case study we use “lower-confidence segments” to refer to both low- and medium confidence segments

jointly.165

3.1.3 Mining methods

We develop three different mining methods for debris flows that are not contained in the original catalog using the available la-

bels, i.e., following a semi-supervised approach. A chosen method is applied to each station in the network in order to produce

station-dependent models aimed at recommending segments which are likely debris flows. We refer to these recommended

segments as detections.170

A mining method consists of a triggering algorithm, scoring method, score threshold and minimum detection length. To gener-

ate a list of detections for a station we deploy the triggering algorithm over a period to generate a list of trigger segments. The

scoring method assigns scores to the trigger segments and rank them in order of likelihood of being associated with a debris

flow. Trigger segments that meet the score threshold and minimum detection length are kept as a list of detections and those175

not referenced in the original catalog are subjected to expert labeling as potential undiscovered debris flows. We consider the

following mining methods:

1. STA-LTA. Our baseline method uses the classical STA-LTA trigger and the maximum value of the characteristic function

observed over a segment as its associated score.

2. IF. We use the IF trigger and the IF segment anomaly score to generate and score segments.180

3. IF-DTW. We use the IF trigger and score a segment as the mean of the template DTW distances between the segment

and a subset of high-confidence segments.

For the STA-LTA and IF methods, trigger segments are ranked in decreasing order of the segment scores, and these scores can

be interpreted as quantifying how severe an unknown event has affected the seismic waveforms at a station. These events can

be caused by multiple sources such as debris-flows, earthquakes and anthropogenic noise. The STA-LTA or IF scoring method185

that views debris flows as more severe relative to other sources will achieve better performance. In the case of IF-DTW, trigger

segments are ranked in decreasing order of the DTW score. Assuming that DTW can adequately capture dissimilarity between

templates extracted from segments corresponding to debris-flows and other severe sources, IF-DTW will improve on the IF

mining method.
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3.1.4 Calibration and evaluation of mining methods190

Since it is unclear how to treat the lower-confidence segments, they do represent a challenge from a calibration and evaluation

perspective. Our approach is to design the triggering algorithm for a station to capture the corresponding catalog segments

(lower- and high-confidence) as well as possible, but to not allow lower-confidence segments to affect calibration of the score

threshold and minimum-detection length. In this way the lower-confidence segments are explicitly encouraged to be included

in the trigger segments, and to become detections if they happen to be recovered alongside high-confidence segments.195

A segment in the catalog is labeled a true positive if we can find at least one detection that overlaps with it, otherwise it is

labeled a false negative. A detection that does not overlap with any segment in the catalog is labeled a false positive. Denoting

the number of true positives, false negatives, and false positives by TP, FN, and FP, respectively, we compute

recall =
TP

TP + FP
200

precision =
TP

TP + FN
.

The recall measures the proportion of segments in the catalog found by a specified mining method, while precision measures

the proportion of detections that intersect with segments in the catalog. To quantify the temporal overlap between a list of

detections and catalog segments we use the intersection over union (IoU) metric, or the total time where detections and catalog

segments overlap expressed relative to the total time where a detection or catalog segment is present.205

A mining method is calibrated to data from a station over the training period only which we took as 2018 - 2020. Firstly

we calibrate the triggering algorithm by (a) extracting all mini-seed recordings with at least one catalog segment present (both

lower- or high confidence) over the training period (b) running the triggering algorithm with multiple hyper-parameter config-

urations over these recordings and (c) selecting the hyper-parameter configuration yielding a list of segments with the highest210

IoU with respect to the training catalog segments. Secondly, the calibrated triggering algorithm is deployed over the entirety of

the training period to generate a list of training trigger segments. The training trigger segments are reduced by removing those

that intersect with at least one lower-confidence segment, but no high-confidence segments, before being subjected to the score

threshold and minimum detection length to generate detections. Finally, the score threshold and minimum detection length is

selected as those values yielding the list of detections maximizing the IoU with respect to only high-confidence segments in215

the catalog.

For the IF trigger, we select on- and offset thresholds from {0.55,0.6,0.65,0.7} and {0.50,0.55,0.6,0.65} through a grid

search, under the constraint that the onset threshold cannot be lower than the offset threshold. For the classical STA-LTA

trigger, we found it difficult to choose a single grid that worked well on all stations and thus opted for a local search method220

instead. First, we conducted an extensive grid search on ILL11 and found that using a long-term window of 5000 seconds, a

short-term window set to 10% of the long-term window, and onset and offset thresholds of 6.0 and 0.125, respectively, yielded
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Metric IoU (%) Recall (%) Precision (%)

Station STA-LTA IF IF-DTW STA-LTA IF IF-DTW STA-LTA IF IF-DTW

ILL11 53.06 60.32 61.02 86.96 (3) 100.0 (0) 100.0 (0) 83.33 (4) 100.00 (0) 95.83 (1)

ILL12 19.50 51.55 59.11 51.85 (13) 85.19 (4) 81.48 (5) 66.67 (7) 92.00 (2) 91.67 (2)

ILL13 25.03 64.24 74.25 50.00 (12) 75.00 (6) 91.67 (2) 75.0 (4) 100.00 (0) 100.00 (0)

ILL14 7.13 1.54 26.19 8.33 (11) 75.00 (3) 58.33 (5) 100.00 (0) 3.28 (265) 77.78 (2)

ILL15 2.18 0.71 1.67 14.29 (6) 14.29 (6) 14.29 (6) 6.25 (15) 3.85 (25) 50.00 (1)

ILL16 2.20 5.85 50.11 14.29 (12) 57.14 (6) 100.0 (0) 8.33 (22) 19.51 (33) 100.00 (0)

ILL17 10.65 7.76 42.69 5.26 (18) 68.42 (6) 89.47 (2) 100.00 (0) 10.66 (109) 89.47 (2)

ILL18 27.17 54.33 61.34 62.5 (9) 95.83 (1) 95.83 (1) 50.00 (15) 71.88 (9) 92.00 (2)

Table 1. Metrics over the training period after updating the catalog. The numbers in brackets in the recall and precision columns represent

the number of false negatives and false positives, respectively. All percentages are displayed accurately up to two decimals.

a high IoU score. This configuration of hyper-parameters was used as a starting point for all stations. We then performed local

neighborhood searches, with an exponential step size of 2, until no improvement in the IoU metric could be found.

225

To evaluate the detections produced by a mining method for a specified station we separate detections in the list that intersect

with at least one lower-confidence segment, but no high-confidence segments, from the remainder. We then compute the IoU,

recall and precision of the remaining detections relative to the high-confidence segments in the catalog of the corresponding

station. We report the recall of low- and medium-confidence segments separately.

3.1.5 Debris flow detection: results230

Tables 1 and 2 show the metrics for each mining method across all stations over the training and test periods respectively. In the

recall and precision columns, the numbers in brackets indicate the number of false negatives and false positives respectively.

The recall of the lower-confident segments are discussed in Appendix C.

These metrics are computed following three updates of the original catalog made over the training period.2 The updates are235

performed by including those false positive detections which actually correspond to debris flows as newly discovered debris

flows to the catalog, with assigned confidence levels and possibly modified start- and/or end-times, based on expert labeling.

If a new debris flow is discovered from a given station, segments from other stations forming part of the debris-flow signature

is included in the catalog as well. In addition, existing entries in the catalog can be modified, again based on expert labeling,

either in terms of confidence level or of start- and/or end-times. To keep the number of detections to investigate manageable, we240

only investigate detections from stations ILL11, ILL12, ILL13 and ILL18 for the STA-LTA and IF methods, while for IF-DTW

we also include stations ILL14, ILL16 and ILL17. After an update, the score threshold and minimum detection length of the
2These include smaller updates following, for example, experimentation with the hyper-parameter grids.
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Metric IoU (%) Recall (%) Precision (%)

Station STA-LTA IF IF-DTW STA-LTA IF IF-DTW STA-LTA IF IF-DTW

ILL11 41.61 71.74 71.74 87.50 (2) 100.00 (0) 100.0 (0) 87.50 (2) 100.00 (0) 100.00 (0)

ILL12 16.18 52.31 71.70 46.15 (7) 76.92 (3) 100.0 (0) 100.00 (0) 90.91 (1) 92.86 (1)

ILL13 19.76 50.18 66.65 64.71 (6) 76.47 (4) 100.0 (0) 73.33 (4) 100.00 (0) 100.00 (0)

ILL14 0.00 4.37 34.33 0.00 (12) 91.67 (1) 50.00 (6) 0.00 (2) 6.29 (164) 85.71 (1)

ILL15 0.00 0.99 - 0.00 (7) 14.29 (6) 0.00 (7) 0.00 (6) 4.00 (24) - (0)

ILL16 0.00 4.08 56.14 0.00 (9) 55.56 (4) 100.00 (0) 0.00 (21) 23.81 (16) 90.00 (1)

ILL17 - 9.85 39.24 0.00 (12) 83.33 (2) 91.67 (1) - (0) 11.9 (74) 61.11 (7)

ILL18 13.08 52.82 59.37 33.33 (10) 100.00 (0) 100.00 (0) 31.25 (11) 88.24 (2) 100.00 (0)

Table 2. Metrics over the testing period after updating the catalog. The numbers in brackets in the recall and precision columns represent

the number of false negatives and false positives, respectively. All percentages are displayed accurately up to two decimals. The symbol “-”

means that the corresponding metric could not be computed because no detections were made over the testing period.

mining methods are re-calibrated, and deployed again over the training period. Following two rounds of updates we notice that

the upper stations frequently flag segments related to catchment activity as being similar to debris-flows. Such activity includes

events such as rockfalls, landslides, and slope failures. Since we are exploring the data, and because this type of activity could245

related to debris flows, these detections were included as low-confidence debris flow segments in the catalog. After making

these changes, we perform one more round of recalibration and update of the catalog over the training period, before deploying

the mining methods and updating the catalog over the testing period.

We see that the IF mining method generally outperforms its STA-LTA counterpart with the comparison particularly strik-250

ing at stations ILL12, ILL13 and ILL18. We found that the STA-LTA method tends to prefer exceedingly long window sizes

(see Table B2) to manage sensitivity towards amplitude (see Fig. D1). However, these long window sizes leads to event mask-

ing, where a first event will suppress the characteristic function over a neighboring subsequent event. In the case of debris

flows, this can lead to false negatives, particularly at more active stations. We provide concrete examples in Appendix D. The

results further show that detecting debris flows from stations ILL11, ILL12, ILL13 and ILL18 is relatively easy, because good255

quality detectors can be obtained here by simply thresholding the IF segment anomaly score. Detection at ILL16 and ILL17 is

more difficult and template DTW is needed to discriminate between debris flows and events arising from other sources such as

those of an anthropogenic nature. A similar remark applies to ILL14, although the improvement is not as striking. Detection at

ILL15 remains difficult.
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3.2 Greenland260

3.2.1 Study site

Our Greenlandic site locates on the western coast at the Karrat Fjord (Fig. 1). In this fjord system a 35− 58 million m3 rock

avalanche occurred on 17 June 2017 generating a tsunami wave that destroyed parts of the nearby village Nuugaatsiaq and

claimed 4 fatalities (Svennevig et al., 2020). The rock avalanche and precursory slip events left clear seismic signatures on

the nearby broadband station NUUG, installed in the village Nuugaatsiaq (Poli, 2017; Seydoux et al., 2020). To investigate265

the detectability of the 17 June 2017 rock avalanche and comparable signals, we focus on station NUUG as well as KARAT,

a broadband seismometer that was installed in summer 2022 about 6 km west of the avalanche epicenter. Finally, we also use

the broadband station ILULI, which has been operating since 2009 in the village of Ilulissat, approximately 280 km south of

Karrat Fjord.

3.2.2 Exploration procedure270

We consider generating a catalog from scratch for a specified target seismic station. We first fit the IF to the seismic data of the

station and deploy the IF trigger with rule-of-thumb onset and offset thresholds. The top 50 IF segments are then subjected to

expert labeling. To aid in this task:

1. We fit an IF to a control station in order to obtain the control IF. The control station should be sufficiently far from the

target station so that local events at the latter do not effect the former at the same time, and sufficiently close so that275

regional/global events effect both stations at around the same time. The argument is that if we observe two high anomaly

scores at both stations, this is likely caused by a regional/global event, which in most cases is an earthquake.

2. To compute the control anomaly score for a IF segment of the target station we first limit the segment to 30 minutes. This

is achieved by identifying the sliding window with the highest IF anomaly score and iteratively expanding by adding the

sliding window in the direction of the larger score. We then compute the maximum IF anomaly score of sliding windows280

taken from the corresponding segment in the control seismic data using the control IF.

3. We perform DTW between pairs of the top 50 IF segments using the segment DTW approach described in Sect. 2,

with the segment length limited as before. Distances are aggregated into a single statistic using the median. Finally, an

agglomerative clustering of the top 50 IF segments is performed using the computed pairwise segment DTW distances

under complete linkage. We note that the height at which segments merge into a cluster quantifies the diversity of the285

segments with larger height corresponding to more diversity.

Before considering KARAT, we illustrate the proposed methodology by applying it to seismic data from the NUUG station

in the Greenland seismic network in 2017, and summarize the results in Fig. 2. The most anomalous segment of the seismic

waveforms according to the IF trigger corresponds to the infamous rock avalanche of 2017 and the uniqueness of this destructive

mass movement is further emphasized by the agglomerative clustering.290

11

https://doi.org/10.5194/egusphere-2025-3864
Preprint. Discussion started: 9 September 2025
c© Author(s) 2025. CC BY 4.0 License.



0 500 1000 1500 2000 2500 3000 3500
Time after 2017-06-17 23:30:00 (UTC) [s]

50000

0

50000

Pr
ep

ro
ce

ss
ed

 c
ou

nt
s A NUUG

IF

0.4

0.5

0.6

0.7

IF
 a

no
m

al
y 

sc
or

e

Trigger ON

Trigger OFF

Rock avalanche

3000

4000

5000

6000

7000

8000

9000

Se
gm

en
t 

D
TW

 s
co

re

B
Rock

avalanche

Figure 2. Seismic waveform observed at the NUUG station overlaid with the IF anomaly scores close to the 2017 Rock Avalanche (panel

A). The segment represented by the onset- and offset triggers indicated on the plot represents the most anomalous segment flagged in 2017.

Panel B shows a box-plot summarizing an agglomerative clustering of the highest 50 anomalous segments flagged by the IF trigger, based

on the segment DTW scoring method discussed in Sect. 2.3, under complete linkage. For each of these anomalous segments, we compute

the DTW score at which it merges with an existing cluster of segments. The box-plot was constructed from these scores.

3.2.3 KARAT results

We analyze data obtained from the KARAT station in the Greenland seismic network during 2022 and 2023, and use the nearby

ILULI station as a control. Details of the expert labeling procedure is given in Appendix E and the results are illustrated in

Fig. 3 in the form of a dendrogram constructed from the agglomerative clustering. The first, second, and third columns of the

segment labels correspond to the source of the event, rank and control anomaly score respectively. The dendrogram is split into295

4 clusters which we describe in increasing order of diversity:

– Cluster A. Consists entirely of teleseismic earthquakes.

– Cluster B. Consists predominantly of calving events alongside a regional earthquake, iceberg disintegration and a seg-

ment we were not able to label.

– Cluster C. Consists predominantly of calving events alongside a regional earthquake and some noise signals. Cluster is300

more diverse compared to cluster B.

– Cluster D. Mostly populated by segments flagged before 2022-08-15 when the instrument was streaming sporadically

and with high amplitudes (see Fig. 4). Since these likely correspond to issues on the instrumentation side, these segments

are labeled as instrument noise. The other two segments in this cluster are caused by helicopters arriving/departing from

the station.305

Our analysis show that 21 out of the top 50 IF segments corresponds to calving events showcasing the ability of the IF trigger to

flag mass movements. The dendrogram shows that segment DTW is able to discriminate well between teleseismic earthquakes,

calving events and instrument noise.

The segment DTW does detect diversity in the signals generated by calving events, as indicated by the splitting of these310
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Figure 3. Dendrogram of the top 50 anomalies detected at KARAT. We use IN, HEL, AN, CAL, REQ, TEQ and ID for instrument noise,

helicopter, anthropogenic noise, calving events, regional earthquakes, teleseismic earthquakes and iceberg disintegration respectively.
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events into two clusters. Such signals can be diverse due to several reasons. The location of the calving front with respect to the

recording station likely plays an important role. High-frequency signals decay are subject to most attenuation, and thus tend

to be missing for large source-station distances. Moreover, for relatively small calving events, ground tilt of calving-induced

fjord water oscillations ("seiches") can only be detected in the vicinity of the respective fjord (Amundson et al., 2012). Finally,

energy partitioning between different > 1 Hz frequency bands may change in response to altered calving front geometries315

(Walter et al., 2010).

The dendrogram suggests that the segment DTW distance struggles to discriminate between regional earthquake and calving

event signals, although it is not clear if enough signals of the former is available to establish a cluster. However, discrimina-

tion between these two event sources can be improved by considering the control anomaly scores with high values (≈ 0.70)320

indicative of a regional earthquake. This works almost perfectly, but for one major calving event that reached the ILULI station.

Fig. 4 suggests both higher amplitudes and IF anomaly scores during the months of September-January. Wind noise, ocean

swell, snow cover and other meteorological conditions may explain this observation. To remove the effect of these phenomena

on the anomaly scores one can consider training seasonal IF models.325
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4 Discussion and further research

We have showcased the ability of the IF trigger to flag mass movements in seismic waveforms to the degree that the method

should be considered as an alternative to conventional algorithms when mining seismic data for such events. In particular, we

applied IF and STA-LTA triggers to continuous seismic records from a debris flow catchment, which had been subjected to

minimal pre-proccessing, and showed that the IF trigger can improve over the classical STA-LTA trigger up to 4 times in terms330

of the IoU metric. The performance of the STA-LTA trigger could likely be improved by further data processing like band-pass

filtering to focus on the most relevant frequencies. However, this requires prior knowledge as source-station distances affect

peak frequencies of debris flow seismograms and background noise may pollute certain frequency bands rendering them less

suitable for seismic monitoring (Walter et al., 2017; Lai et al., 2018). It was the goal of this study to mine for mass movements

without such prior knowledge, and our results show that in this regard the IF trigger is better suited than the STA-LTA trigger.335

Since reasonable mass movement detectors can be obtained at some stations just by thresholding the IF anomaly score, this

score could serve as a useful feature when building more sophisticated classifiers in addition to those, for example, used in

Chmiel et al. (2021); Zhou et al. (2025). Furthermore, running the IF trigger over a network of seismic stations can provide

insights into how the network responds to mass-movements and other sources of events. Such insights could include (a) dif-340

ficulty of detecting mass-movements from different stations (b) identification of other sources significantly effecting stations

and (c) examples of how these sources manifest in the seismic waveforms. Within this context, we have shown the ability of

DTW-based dissimilarity scores to discriminate between signals arising from various event sources, and to quantify diversity

of signals associated with specific sources.

345

There is a rich literature surrounding anomaly detection that could provide reasonable alternatives to the IF. For example,

we could consider extensions of the IF (Hariri et al., 2019; Staerman et al., 2019; Xu et al., 2023) or more broadly anomaly

detection methods in the time series context (Blázquez-García et al., 2021; Schmidl et al., 2022). Another avenue for future

research is to extend the IF and IF-DTW mining methods of Sect. 3.1 to be online so that they can be used for debris flow

detection in real time. In fact, assuming appropriate pre-processing, the IF method is already online since a detection can be350

labeled as a debris flow the moment the IF anomaly score hits the score threshold, subject to the minimum detection length

requirement. The IF-DTW strategy can be made online by streaming the DTW distances of sliding windows relative to the

templates the moment the IF trigger activates. Care should be taken in terms of the computational cost associated with this

approach. A more lightweight alternative is to only update the DTW distances if a new sliding window is the most anomalous

window observed since the trigger activated. An alternative to using the mean of the DTW distances for scoring segments is to355

use the distances as features for a machine learning model, possibly including templates from other events as well (Wu et al.,

2018). Finally, it is not clear if DTW is the most appropriate method for measuring dissimilarity between signals. A promising

alternative is to use contrastive approaches (Franceschi et al., 2019; Yue et al., 2022) which has been applied within the context

of seismology (Meyer et al., 2021). Contrastive learning and DTW hybrids are also a possibility.
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Figure A1. Plots of the IF anomaly score vs the log standard deviation of sliding windows taken from 2018 for ILL11-ILL14. The plots are

restricted to show only those sliding windows with an anomaly score exceeding 0.5.

Appendix A: Isolation forest anomaly score

Figure A1 and A2 shows the IF anomaly score plotted against log standard deviation for each station in the Illgraben seismic470

network for 2018. Sliding windows overlapping with catalog segments (all confidence levels) are indicated by star marks. The

relationship forms a non-linear wave-like pattern, with the IF anomaly scores of debris flow segments at stations ILL11, ILL12,

ILL13 and ILL18 highly ranked. Interestingly, even though the IF anomaly score of debris-flow segments at the other stations

do not rank as highly, they are fairly highly rank in the log standard deviation bands in which they appear.
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Figure A2. Plots of the IF anomaly score vs the log standard deviation of sliding windows taken from 2018 for ILL15-ILL18. The plots are

restricted to show only those sliding windows with an anomaly score exceeding 0.5.
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IF Trigger IF IF-DTW

Station
Onset

Threshold

Offset

Threshold

Score

Threshold

Minimum

Detection

Length

Score

Threshold

Minimum

Detection

Length

ILL11 0.65 0.65 0.73 3.33 8313.60 10.00

ILL12 0.70 0.65 0.76 14.17 7223.35 34.17

ILL13 0.65 0.65 0.75 6.67 6792.46 11.67

ILL14 0.55 0.50 0.61 14.17 6774.87 2.50

ILL15 0.55 0.50 0.69 24.17 6645.90 3.33

ILL16 0.60 0.50 0.68 11.67 6714.87 10.83

ILL17 0.55 0.50 0.61 27.50 7278.21 15.00

ILL18 0.65 0.65 0.75 13.33 7496.32 22.50

Table B1. Hyper parameters selected for the IF and IF-DTW mining methods. The minimum detection lengths are given in minutes. All

values displayed are accurate up to two decimals.

Station
Onset

Threshold

Offset

Threshold

Short-term

Window Size

Long-term

Window Size

Score

Threshold

Minimum

Detection

Length

ILL11 6.00 0.12 8.33 83.33 8.09 32.38

ILL12 12.00 0.06 8.33 166.67 19.91 33.21

ILL13 12.00 0.06 4.17 83.33 17.26 22.09

ILL14 3.00 0.50 33.33 166.67 3.85 274.29

ILL15 3.00 2.00 16.67 333.33 6.81 119.15

ILL16 12.00 0.50 4.17 333.33 32.45 76.83

ILL17 3.00 0.50 33.33 666.67 13.70 355.72

ILL18 24.00 0.50 8.33 666.67 41.13 39.44

Table B2. Hyper parameters selected for STA-LTA mining method. The minimum detection lengths, short- and long-term windows are given

in minutes. All values displayed are accurate up to two decimals.

Appendix B: Mining methods hyper-parameters475

Table B1 contain the hyper parameters selected by the calibration procedure for the IF and IF-DTW mining methods, while

Table B2 contains those selected for the STA-LTA method.
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Number of events Low-confidence recall (%) Medium-confidence recall (%)

Station
Low

Confidence

Medium

Confidence
STA-LTA IF IF-DTW STA-LTA IF IF-DTW

ILL11 9 2 22.22 66.67 100.00 50.00 0.00 50.00

ILL12 2 3 0.00 0.00 0.00 0.00 33.33 66.67

ILL13 2 2 0.00 0.00 0.00 0.00 0.00 0.00

ILL14 5 5 20.00 20.00 40.00 0.00 40.00 0.00

ILL15 4 3 0.00 0.00 0.00 0.00 33.33 0.00

ILL16 11 3 0.00 9.09 45.45 0.00 33.33 0.00

ILL17 8 6 0.00 37.50 62.50 16.67 16.67 33.33

ILL18 9 6 0.00 22.22 44.44 50.00 50.00 50.00

Overall 50 30 5.28 19.43 36.55 14.58 25.83 25.00

Table C1. Number of events for each confidence class and recall of lower-confidence segments for the different mining strategies over the

training period. All values displayed are accurate up to two decimals.

Number of events Low-confidence recall (%) Medium-confidence recall (%)

Station
Low

Confidence

Medium

Confidence
STA-LTA IF IF-DTW STA-LTA IF IF-DTW

ILL11 4 2 0.00 0.00 75.00 0.00 50.00 50.00

ILL12 3 1 0.00 33.33 33.33 0.00 0.00 100.00

ILL13 1 2 0.00 0.00 0.00 0.00 0.00 50.00

ILL14 47 0 0.00 8.51 72.34 0.00 0.00 0.00

ILL15 4 0 0.00 0.00 0.00 0.00 0.00 0.00

ILL16 3 3 0.00 0.00 33.33 0.00 33.33 66.67

ILL17 24 2 0.00 33.33 45.83 0.00 100.00 100.00

ILL18 24 3 20.83 50.00 20.83 33.33 100.00 100.00

Overall 110 13 2.60 15.65 35.08 4.17 35.42 58.33

Table C2. Number of events for each confidence class and recall of lower-confidence segments for the different mining strategies over the

testing period. All values displayed are accurate up to two decimals.

Appendix C: Recall of lower-confidence segments

Table C1 and C2 show the recall achieved by the various mining strategies for the lower-confidence segments over the training

and test period respectively. There are more lower- than medium-confidence debris flow segments partly due to the inclusion480

of catchment and other activity in the lower-confidence class. Overall, the IF-DTW strategy exhibit the highest recall, followed

by IF and then STA-LTA.
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Figure D1. Illustration of the effect of the window sizes on the characteristic function of the STA-LTA trigger.

Appendix D: STA-LTA examples

STA-LTA triggers are known to be sensitive to changes in the amplitude of seismic waveforms. To better capture debris flows,

the STA-LTA trigger accommodates for this by taking exceedingly long window lengths, sometimes spanning hours (see Table485
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Figure D2. Illustration of the behavior of the STA-LTA characteristic function relative to the IF anomaly score at ILL11 on 2020-08-30.

Debris flows are represented by the shaded regions.

B2). We illustrate this in Fig. D1, where we study the behavior of the STA-LTA trigger in relation to the seismic waveform

observed at ILL11 on 2018-06-12, which contains a debris flow. In all plots, the debris flow is represented by the shaded re-

gion. The top graph shows the preprocessed waveform, and the second graph shows the characteristic function of the STA-LTA

trigger with the short- and long-term windows given in Table B2. In the remaining plots the window sizes of the STA-LTA

trigger are successively divided by two as we proceed towards the bottom. As the window sizes become smaller, it becomes490

harder to see where the debris flow manifests in the characteristic function.

Having longer window sizes is not without consequence. One particular issue arises when there is increased amplitude (for

whatever reason) in the seismic waveform within the long-term or short-term window before a debris flow occurs. Here, the

averaging suppresses the characteristic function over the debris-flow period relative to the case if the increase in amplitude did495

not occur. Managing the trade-off between this phenomenon and the sensitivity towards amplitude can be difficult, particularly

in more active stations. We give three examples in Figs. D2, D3 and D4 where two debris-flows occur relatively close in time.

The characteristic function over the period associated with the second debris flow is suppressed by the increased amplitude in

the seismic waveform over the period associated with the first, leading to false negatives. The IF anomaly score does not suffer

from this issue.500
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Figure D3. Illustration of the behavior of the STA-LTA characteristic function relative to the IF anomaly score at ILL12 on 2020-06-08.

Debris flows are represented by the shaded regions.

Appendix E: Greenland labeling

We provide some insight into how events were labeled in the Greenland data. First the seismic waveforms and corresponding

spectograms around the segment flagged by the IF trigger is investigated by a domain scientist and a label is recommended

based on well-known characteristics of calving seismograms (see Fig. E1). Once a label is recommended additional verification

are performed if possible. For example:505

1. Calving events. Satellite images such as those depicted in Fig. E2.

2. Teleseismic earthquakes. USGS earthquake catalog (U.S. Geological Survey, 2023), see Table E1.

3. Regional earthquakes. GEUS earthquake catalog (Geological Survey of Denmark and Greenland, 2025), see Table E2.

Satellite image availability is contingent upon cloud-free conditions and thus often does not allow for a ground-truth check.

For this study we focused on Rink Glacier, the most active calving front near station KARAT 1. Figures E1, E2, E3 and E4510

contain examples of a well-constrained calving event and an iceberg capsizing event. The regional and teleseismic earthquake

catalogs are considered reliable ground-truth sources.
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Figure D4. Illustration of the behavior of the STA-LTA characteristic function relative to the IF anomaly score at ILL18 on 2021-07-31.

Debris flows are represented by the shaded regions.

Rank Start Stop Remarks

21 2022-09-19T18:14:59.410000Z 2022-09-19T18:18:19.410000Z M 7.6 - 35 km SSW of Aguililla, Mexico

24 2023-09-08T22:19:10.000000Z 2023-09-08T22:28:20.000000Z M 6.8 - Al Haouz, Morocco

26 2022-09-19T18:35:16.365000Z 2022-09-19T18:41:06.365000Z M 7.6 - 35 km SSW of Aguililla, Mexico

32 2023-07-16T06:55:42.320000Z 2023-07-16T07:04:52.320000Z M 7.2 - 106 km S of Sand Point, Alaska

33 2023-03-21T16:57:30.000000Z 2023-03-21T17:05:50.000000Z M 6.5 - 40 km SSE of Jurm, Afghanistan

48 2023-10-16T09:47:30.000000Z 2023-10-16T15:35:50.000000Z M 6.4 - 78 km NNW of Adak, Alaska

50 2023-05-19T03:15:42.320000Z 2023-05-19T03:23:12.320000Z M 7.7 - southeast of the Loyalty Islands

Table E1. Teleseismic earthquakes in cluster A of Fig. 3.

Rank Start Stop Remarks

36 2023-03-21T06:57:30.000000Z 2023-03-21T07:01:40.000000Z M: 3.9. Latitude: 69.088°N. Longitude: 53.429°W.

38 2023-04-19T01:34:02.320000Z 2023-04-19T01:38:12.320000Z M: 4.1. Latitude: 65.913°N. Longitude: 37.537°W.

Table E2. Regional earthquakes in clusters B and C of Fig. 3.
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Figure E1. Seismic waveforms and corresponding spectograms around the segment flagged by the IF trigger on 2022-10-10. One horizontal

component (HH2) and the vertical component (HHZ) are shown for KARAT and the vertical component is shown for ILULI. The spec-

trograms show the continuous energy of the secondary microseism generated by standing waves in ocean basins (Longuet-Higgins, 1950;

McNamara and Buland, 2004). Moreover, the IF trigger flags a typical calving seismogram with broadband signals representing the iceberg

detachment (Walter et al., 2012) and a low-frequency (<0.01 Hz) signal generated by calving-induced water oscillations within the fjord

("seiche"; Amundson et al., 2012).

28

https://doi.org/10.5194/egusphere-2025-3864
Preprint. Discussion started: 9 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure E2. Satellite image pair of Rink Glacier calving front (Fig. 1) on 2022-10-07 (A) and 2022-10-12 (B) before and after the calving

event 2022-10-10, respectively. The black dashed line represents the before-calving terminus and the missing area indicates a calving volume

of about 0.5 km3 assuming a terminus thickness of 500−600 m (Medrzycka et al., 2016). Source: Sources: Copernicus (Sentinel-2 true color

image).
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Figure E3. Similar to Fig. E1, except that it shows the IF detection of a seismic event, which according to satellite images constitutes the

capsizing of a tabular iceberg (Fig. E4). The tabular iceberg was within 500 m of the calving front and thus likely contacted the calving

front as it capsized. This generated a broadband signal similar to iceberg detachment (Fig. E1). Shortly after the capsizing, both KARAT

and ILULI recorded a teleseismic earthquake (M5.9, 266 km South of Burica, Panama, UTC time: 2023-08-03 01:25:21, location 5.640 ◦N

82.606 ◦W) (U.S. Geological Survey, 2023)).
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Figure E4. Satellite image pair of Rink Glacier calving front (Fig. 1) on 2023-08-01 (A) and 2023-08-03 (B) before and after the IF trigger

segment on 2023-08-02, respectively. Assuming a full-thickness iceberg with a depth of 500− 600 m (Medrzycka et al., 2016), the iceberg

had a volume of about 0.5 km3 and may have contacted the terminus during capsize. Source: Copernicus (Sentinel-2 true color image).
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