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Abstract. Streamflow time series can be decomposed into interannual, seasonal, and irregular components, with regionally 

varying contributions of each component. Seasonal variance dominates in many tropical, alpine, and polar regions, while 

irregular variance dominates in most other regions. Interannual variability in streamflow is known to strongly influence human 

and ecological systems and is likely to increase under the influence of climate change, though we find that historical interannual 

variance is usually only a small fraction of the total variance. We show that hydrologic models often simulate one component 15 

well while failing to simulate the others, a fact that is hidden by popular performance metrics such as the Nash-Sutcliffe 

Efficiency (NSE) and the Kling-Gupta Efficiency (KGE) which aggregate performance to a single number. We analyse 18 

regional and global hydrologic models and find that in highly seasonal catchments where the NSE and KGE are consistently 

the highest, the models are almost always worse at simulating interannual variability. The NSE of the interannual component 

is lower in highly seasonal catchments, and simulated year-to-year changes in ecologically relevant hydrologic signatures are 20 

less accurate. This is concerning because it indicates that these hydrologic models may struggle to predict long-term responses 

to climate change, especially in tropical, alpine, and polar regions, which are some of the most vulnerable regimes regarding 

climate change.  

 

Short Summary: Common metrics used to evaluate hydrologic models make it relatively easy to achieve high performance 25 

scores in many tropical, alpine, and polar regions. However, we analysed 18 hydrologic models and found that almost all were 

worse at simulating interannual variability and change in these regions. This suggests that the effects of climate change on 

streamflow may not be accurately predicted in tropical, alpine, and polar climates, which are highly vulnerable to climate 

change. 
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1 Introduction 30 

Streamflow time series can be conceptualized as the sum of seasonal, interannual, and irregular variance components, with 

very different driving mechanisms for each component. Stochasticity in individual weather events drives irregular variance 

while more regular seasonal cycles of temperature and precipitation drive seasonal fluctuations of the hydrograph (Dralle et 

al., 2017). Interannual variance, on the other hand, can be driven by climate oscillations, climate change, and other non-

stationarities such as vegetation responses to climate change. 35 

Indeed, the earth’s changing climate is exposing non-stationarities in streamflow regimes that threaten both natural and built 

environments (Milly et al., 2008; Ruzzante & Gleeson, 2024; Slater et al., 2021; Taye & Dyer, 2024; Xiong & Yang, 2024). 

These interannual changes pose unique threats, since ecosystems can struggle to adapt to new streamflow regimes, and 

unpredictable water availability hinders effective water resource management (Hall et al., 2014).  

In this non-stationary world, we desire hydrologic models that can accurately predict interannual variability and change (Milly 40 

et al., 2008; Montanari et al., 2013; Wagener et al., 2010). Currently the main way to assess models of climate change impact 

is to assess their performance on historical data (Eker et al., 2018). Hydrologists rarely consider the three components of 

variability separately and the most popular performance metrics (the Nash-Sutcliffe and Kling-Gupta Efficiencies, NSE and 

KGE (Gupta et al., 2009; Kling et al., 2012; Nash & Sutcliffe, 1970)) evaluate all components jointly. These metrics are 

sometimes broken up as bias, variance and correlation terms, that can be assessed separately (e.g. Gudmundsson et al., 2012).  45 

However, since the driving mechanisms of interannual, seasonal, and irregular variability are different, good performance on 

one variability component does not guarantee good performance on the others. We hypothesize that in catchments where one 

component historically dominates variability, the other components will be poorly modelled. Specifically, we aim to test 

whether interannual variance is poorly modelled in catchments with a strong seasonal cycle. 

The strength of the seasonal cycle has been discussed at some length in the context of climatological benchmark models, which 50 

are typically defined as the interannual mean flow for each calendar day. Garrick et al. (1978) were among the first to propose 

that a model should outperform the climatological benchmark, and subsequent authors found that the climatological benchmark 

NSE values, here denoted as NSEcb, can be very high (sometimes greater than 0.8) in high-mountain catchments (Martinec & 

Rango, 1989; Schaefli & Gupta, 2007). Knoben (2024) similarly found that benchmark KGEs are high in snow-dominated 

regions. Although still not standard practice, more authors have begun to evaluate their models with reference to the 55 

climatological benchmark (eg. Girons Lopez et al., 2021; Knoben et al., 2020; Nicolle et al., 2014; Towler et al., 2023). 

We aim to answer three questions: 

1) Where are the interannual, seasonal, and irregular components of streamflow variance dominant. In Section 4.1 we 

use time series decomposition on global stream gauge data and calculate the variance fraction for each component. 

2) Where is the climatological benchmark NSE high? In Section 4.2 we calculate the climatological benchmark NSE 60 

for 20,338 stream gauges. In Section 2.1 we explain that the climatological benchmark NSE is equivalent to the 

seasonal variance fraction. 

3) What does this mean for our ability to simulate long-term change in a nonstationary world? We expect that 

hydrologic models will be worse at representing interannual variability in highly seasonal catchments because in 
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these catchments ‘high’ NSE scores can be achieved without accurately representing the hydrologic processes that 65 

also lead to interannual variability (for example, in the climatological benchmark model). In Section 4.3 we test this 

hypothesis with simulations from 18 hydrologic models. 

2 Methods 

2.1 Time Series Decomposition 

To address question 1, we applied time series decomposition techniques to streamflow data from 17,245 gauges. From our 70 

compilation of 28,406 daily discharge time series (see section 3.1), we selected the 17,245 with at least 10 years of data without 

missing days. We decomposed each time series into seasonal, interannual, and irregular components. First, we calculated the 

seasonal component as the mean of each calendar day and subtracted this from the observed time series to extract anomalies. 

We calculated the Fast Fourier Transform of the anomalies and separated the Fourier frequencies into interannual components 

(frequencies smaller than 2 year-1) and irregular components (frequencies greater than or equal to 2 year-1). We chose a cutoff 75 

frequency of 2 year-1, or a period of 6 months, in order to classify variations in seasonality (eg., a wetter than normal summer) 

as interannual variance.  

This decomposition is orthogonal so the sum of the variances of the components (𝜎𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙
2 +  𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

2 + 𝜎𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟
2 ) is 

equal to the variance of the observed streamflow time series (𝜎𝑜
2).  For each catchment we calculated the variance fraction 

associated with each component, (eg. 𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2 /𝜎𝑜

2). Because the decomposition is orthogonal the three variance fractions sum 80 

to 1. Another result of this orthogonality is that the variance fraction is identical to the NSE for each component. For example, 

the seasonal variance fraction is equivalent to the climatological benchmark NSEcb: 

𝑁𝑆𝐸𝑐𝑏 = 1 −
𝜎𝜖

2

𝜎𝑜
2 = 1 −

𝜎𝑜
2−𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

2

𝜎𝑜
2 =

𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2

𝜎𝑜
2 ,     (1) 

Where 𝜎𝜖
2 is the error variance of the climatological benchmark model. 

We considered other time series decomposition methods, including classical decomposition (Kendall & Stuart, 1966) and 85 

Seasonality and Trend decomposition using Loess (STL, Cleveland et al., 1990). However, classical decomposition does not 

allow the interannual component to vary seasonally, which means that the interannual component only represents changes in 

mean annual flow. In addition, neither classical nor STL decomposition result in orthogonal components, so the variance 

fractions do not necessarily sum to 1. 

2.2 Benchmark Performance 90 

The climatological benchmark performance is often calculated to test whether a hydrologic model performs better than simply 

using past observations (eg. Girons Lopez et al., 2021; Knoben et al., 2020; Nicolle et al., 2014; Towler et al., 2023). To answer 

our second question, we calculated the NSEcb for all catchments with at least 10 years of observed daily discharge data; for 

this analysis we permitted gaps in the data, as long as each calendar day was observed at least 10 times (20,338 catchments). 
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We used a leave-one-out cross validation scheme: the discharge for each year was predicted using observed discharge for all 95 

other years. We then concatenated the predictions and calculated the NSEcb on the full time series. This cross-validation reduces 

NSEcb such that it is no longer identical to the seasonal variance fraction, and  𝑁𝑆𝐸𝑐𝑏 ≤ 𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2 /𝜎𝑜

2 (see SI).  

We also calculated the climatological benchmark KGE'cb and include these results in Sect. S1. We focus on the NSEcb here for 

brevity, because the KGE'cb and NSEcb exhibit similar global patterns, and because the NSEcb is so closely related to the 

seasonal variance fraction. Lastly we tested the robustness of NSEcb to a differential split sample methodology and include 100 

these methods and results in Sect S7. 

2.3 Modelling interannual and seasonal variability 

Our third question asks how the strength of the seasonal cycle affects the ability of hydrologic models to simulate interannual 

change. We analysed the simulated streamflow from 18 regional and global hydrologic models to investigate differences in 

interannual performance between highly seasonal and less seasonal catchments. The models are described in section 3.2. 105 

2.3.1 Variance component NSE values 

For each model, we calculated the overall NSE for each simulated catchment. We then decomposed both the simulated and 

observed time series using the strategy in Sect. 2.1 and calculated the NSE for each variance component. For example: 

𝑁𝑆𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙 = 1 −
∑ (𝐼𝑜(𝑡)−𝐼𝑠(𝑡))2𝑁

𝑡=1

∑ (𝐼𝑜(𝑡)−𝐼𝑜(𝑡)̅̅ ̅̅ ̅̅ ̅)
2𝑁

𝑡=1

      (2) 

Where Io and Is are the observed and simulated interannual components. The seasonal and irregular NSEs are calculated 110 

similarly. Section S3 shows that the overall NSE is equal to the weighted sum of the three component NSEs, where the weights 

are the variance fractions discussed in Sect. 2.1: 

𝑁𝑆𝐸 =
𝜎𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙

2

𝜎𝑜
2 𝑁𝑆𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙 +

𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2

𝜎𝑜
2 𝑁𝑆𝐸𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 +

𝜎𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟
2

𝜎𝑜
2 𝑁𝑆𝐸𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟    (3) 

We wanted to test whether the models perform better or worse in highly seasonal catchments, so for each model we classified 

the catchments into highly seasonal (𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2 𝜎𝑜

2⁄ > 0.5) and less seasonal (𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2 𝜎𝑜

2⁄ ≤ 0.5) subsets. We then compared 115 

the NSE values between the highly seasonal and less seasonal subsets using the non-parametric Mann-Whitney U test. 

2.3.2 Simulating changes in hydrologic signatures 

The NSEs for the interannual, seasonal, and irregular components provide a concise and holistic summary of performance for 

each type of variance.  However, studies of hydrologic change are often concerned with predicting changes to hydrologic 

signatures relevant to ecology or water management, so it is useful to evaluate how well models simulate changes in these 120 

signatures over the historical period. To this end, we compared simulated and observed values of 41 hydrologic signatures 

calculated on an annual basis (Table 1). We used the 32 indicators of hydrologic alteration proposed by Richter et al. (1996) 

in addition to the total number of days below the 25th percentile (Number of low flow days), the total number of days above 
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the 75th percentile (Number of high flow days), the rising and falling limb densities, the streamflow concentration index, the 

half flow day, the mean annual flow, the slope of the midsegment of the flow duration curve, and the baseflow index  (see 125 

Table 1 for references). These additional metrics have been widely used by hydrologists to characterize hydrologic regimes 

and to detect trends.  

We are interested in whether the hydrologic models accurately reproduce interannual variability in these 41 signatures, so we 

calculated non-parametric correlation coefficients between the simulated and observed annual series of hydrologic signatures, 

using Spearman’s 𝜌 for most metrics. Two metrics (No. high pulses and No. low pulses) frequently have tied ranks, so for 130 

these we used Kendall’s 𝜏.  

These non-parametric correlations test if the models correctly predict the direction of change, but not the absolute values of 

each signature. We also calculated the NSE of the simulated and observed annual series of hydrologic signatures, but all models 

struggle to simulate absolute values of at least some of these signatures: across 738 model-by-metric combinations, the NSE 

of the simulated hydrologic signatures is negative for both the highly-seasonal and less-seasonal subsets 48% of the time (Fig. 135 

S6). We view large, positive correlations with historical observations as a minimum requirement to consider a model useful 

for simulating hydrologic responses to a changing climate.  

We also calculated five other popular performance metrics that evaluate interannual, seasonal, and irregular variance jointly: 

the KGE', KGE'(1/Q), and the three components of the KGE': Pearson r, the mean bias  𝛽 and the ratio of coefficients of 

variation 𝛾 (Kling et al., 2012). To be consistent with the other metrics (for which values near 1 are better), we transformed 𝛽 140 

and 𝛾 to the range (−∞, 1] using the transforms (1 − √(𝛽 − 1)2) and (1 − √(𝛾 − 1)2). These transforms are analogous to 

the use of these terms in the KGE.  

We applied the same tests here as for the variance component NSE values (Section 2.3.1): we compared the values of each 

metric between the highly seasonal and less seasonal subsets using Mann-Whitney U tests. We also performed the same 

analysis after splitting the catchments based on thresholds of 0.4 and 0.6 for the seasonal variance fractions, and splitting on 145 

the streamflow concentration index (Han et al., 2024), the coefficient of variation of the average hydrograph, the aridity 

seasonality, and the fraction of precipitation as snow (Knoben et al., 2018). 

Table 1: Hydrologic signatures used to evaluate models’ ability to reproduce interannual variability 

Category Signature Definition Source 

Magnitude of 

Seasonal water 

conditions 

𝑄̅𝐽𝑎𝑛 … 𝑄̅𝐷𝑒𝑐 Mean monthly flow for each calendar month (Richter et al., 

1996) 

Magnitude and 

timing of 

annual extreme 

𝑀𝑎𝑥 n-day 𝑄 

 

Annual maximum flow for 1, 3, 7, 30, and 90 

day rolling averaging 

(Richter et al., 

1996) 

𝑀𝑖𝑛 n-day 𝑄 Annual minimum flow for 1, 3, 7, 30, and 90 

day rolling averaging 

(Richter et al., 

1996) 
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water 

conditions 

 

𝑑𝑎𝑦 𝑜𝑓 𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 Calendar day of annual 1-day maximum flow
1
 (Richter et al., 

1996) 

𝑑𝑎𝑦 𝑜𝑓 𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 Calendar day of annual 1-day minimum flow1 (Richter et al., 

1996) 

Frequency and 

duration of high 

and low pulses 

𝑁𝑜. ℎ𝑖𝑔ℎ/𝑙𝑜𝑤 𝑝𝑢𝑙𝑠𝑒𝑠 Number of periods with flow above 75th 

percentile (high pulse) or below 25th percentile 

(low pulse) 

(Richter et al., 

1996) 

𝐻𝑖𝑔ℎ 𝑙𝑜𝑤⁄ 𝑝𝑢𝑙𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 Average duration of high/low pulse in days (Richter et al., 

1996) 

𝑁𝑜. 𝑜𝑓 ℎ𝑖𝑔ℎ 𝑙𝑜𝑤⁄ 𝑓𝑙𝑜𝑤 𝑑𝑎𝑦𝑠 Annual total days above 75th percentile (high 

flow) and below 25th percentile (low flow) 

Less sensitive 

indicator of pulse 

duration than the 

two above; similar 

to Simeone et al 

(2024) Yin et al 

(2024) 

Rate and 

frequency of 

water condition 

changes 

𝑀𝑒𝑎𝑛 𝑑𝑎𝑖𝑙𝑦 𝑟𝑖𝑠𝑒/𝑓𝑎𝑙𝑙 Average 1-day difference of all days with 

positive (rise) and negative (fall) differences 

(Richter et al., 

1996) 

𝑁𝑜. 𝑟𝑖𝑠𝑒𝑠 (𝑓𝑎𝑙𝑙𝑠) Annual number of rising/falling limbs (Richter et al., 

1996) 

𝑟𝑖𝑠𝑖𝑛𝑔 (𝑓𝑎𝑙𝑙𝑖𝑛𝑔) 𝑙𝑖𝑚𝑏 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 Number of rising (falling) limbs divided by 

total number of days with increasing 

(decreasing) flow  

(Shamir et al., 

2005) 

Other 

hydrologic 

signatures 

𝑄𝐶𝐼 Streamflow concentration index (Han et al., 2024) 

ℎ𝑎𝑙𝑓 𝑓𝑙𝑜𝑤 𝑑𝑎𝑦 Day of water year at which half of the total 

annual streamflow has passed the gauge 

(Court, 1962) 

𝑄̅𝑎𝑛𝑛𝑢𝑎𝑙  Mean annual streamflow (Döll & Schmied, 

2012) 

𝑠𝑙𝑜𝑝𝑒 𝐹𝐷𝐶 Slope of the flow duration curve between the 

33rd and 66th percentiles 

(Yadav et al., 2007) 

 
1 The water year is rotated to begin 183 days before the maximum (minimum) flow day, to prevent artificially large disagreements between 

simulated and observed time series arising from maximum or minimum flow dates occurring just before or just after the beginning of the 

water year.  

https://doi.org/10.5194/egusphere-2025-3851
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



7 

 

𝐵𝐹𝐼 Annual baseflow index, using 3-pass Lyne-

Hollick filter 

(Ladson et al., 

2013; Lyne & 

Hollick, 1979) 

3 Data 

3.1 Streamflow Data 150 

We compiled streamflow data from 16 CAMELS-type datasets from Australia, Brazil, Central Europe, Chile, Denmark, 

France, Germany, Great Britain, Iceland, India, Israel/West Bank/Golan Heights, Luxembourg, the United States, North 

America, Spain, and Switzerland (Alvarez-Garreton et al., 2018; Arsenault et al., 2020; Casado Rodríguez, 2023; Chagas et 

al., 2020; Coxon et al., 2020; Delaigue et al., 2024; Efrat, 2025; Fowler et al., 2024; Helgason & Nijssen, 2024; Höge et al., 

2023; Klingler et al., 2021; Liu et al., 2024; Loritz et al., 2024; Mangukiya et al., 2025; Newman et al., 2015; Nijzink et al., 155 

2024). For countries not represented in the above datasets we used streamflow data from the Global Runoff Data Centre 

(GRDC, https://grdc.bafg.de/). We also added data from 138 Russian stations (Lammers & Shiklomanov, 2000) and ensured 

they were not duplicates of the GRDC stations. In total we compiled records from 28,406 stations worldwide. 

3.2 Streamflow Simulations 

We searched Google Scholar and used ChatGPT to identify freely available datasets of simulated streamflow at gauged 160 

locations. We required that some of the gauges be in the tropical, alpine, or polar regions where we expect the seasonal variance 

fraction to be high. Where publications reported the results of multiple versions of the same or very similar models, we selected 

the version identified by the authors as having the best performance.  

In total we compiled simulations from 18 models this way: six Long Short-Term Memory Models (LSTMs), eleven process-

based hydrologic models, and one hybrid model. These models are listed in Table 2. 165 

Where possible we included only near-natural catchments in the evaluation of each model, either as defined by the authors or 

by referencing other published lists of near-natural catchments (Falcone, 2011; Newman et al., 2015; Pellerin & Nzokou 

Tanekou, 2020). For the two Brazilian models, we used only catchments without regulation, with less than 5% impervious 

surfaces, and consumptive use less than 5% of annual streamflow. For the two global models published by Nearing et al (2024) 

we included all available catchments since we lacked a reliable way to identify near-natural catchments. 170 
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Table 2: 18 models for which we reanalysed simulations to test performance on interannual, seasonal, and irregular variance 

components. The number of evaluation catchments indicates the number of catchments that have at least 10 years of continuous 

observed and simulated discharge data. The “Percent highly seasonal” column indicates the percentage of evaluation catchments 

with a seasonal variance fraction greater than 0.5. 

Model Type Training/ 

testing split 

Region Number of 

evaluation 

catchments 

Percent 

highly 

seasonal 

Anthropogenic 

impacts on 

catchments 

Model 

reference 

GLOB-

LSTM1 

Lumped 

LSTM 

Ungauged 

basins 

Global 3752 19% 

 

Includes human-

influenced 

catchments 

(Nearing et al., 

2024) 

GLOB-

LSTM2 

Lumped 

LSTM 

Ungauged 

Basins 

Global 3167 9% Low influence 

(Yang et al., 

2025) 

(Yang et al., 

2025) 

BR-LSTM Lumped 

LSTM 

Independent 

testing 

period 

Brazil 176 7% Low influence
2 Section S5 

CH-LSTM Lumped 

LSTM 

Ungauged 

basins 

Switzerla

nd 

98 27% Near-natural 

(Kraft et al., 

2025) 

(Kraft et al., 

2025) 

ENA-LSTM Lumped 

LSTM 

Ungauged 

basins 

Northeas

t North 

America 

79 39% Near-natural 

(Falcone, 2011; 

Pellerin & 

Nzokou 

Tanekou, 2020) 

(Arsenault et al., 

2023) 

US-LSTM Lumped 

LSTM 

 

Independent 

testing 

period 

Contermi

nous 

United 

States 

531 9% Near-natural 

(Newman et al., 

2015) 

(Kratzert et al., 

2024) 

US-

δHBV2.0UH 

Hybrid: 

Semi-

distribute

d 

differenti

Some 

overlap 

between 

training and 

testing 

Contermi

nous 

United 

States 

1131 9% Near-natural 

(Falcone, 2011) 

(Song et al., 

2025) 

 
2 Evaluated on catchments with no regulation, <5% impervious surfaces, and consumptive use less than 5% of streamflow.  

https://doi.org/10.5194/egusphere-2025-3851
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

able 

process-

based 

model 

basins and 

periods 

GLOB-

GloFAS 

Distribut

ed 

process-

based 

model 

Some 

overlap 

between 

training and 

testing 

basins 

Global 2741 22% Includes human-

influenced 

catchments 

(Nearing et al., 

2024) 

BR-MGB-SA Semi-

distribute

d 

process-

based 

model 

No split Brazil 33 24% Low influence
3 (Chagas et al., 

2020; Siqueira et 

al., 2018) 

CE-COSERO Lumped 

process-

based 

model 

No split Central 

Europe 

454 9% Near-natural 

(Klingler et al., 

2021) 

(Klingler et al., 

2021) 

CH-PREVAH Distribut

ed 

process-

based 

model 

No split Switzerla

nd 

98 27% Near-natural 

(Kraft et al., 

2025) 

(Kraft et al., 

2025) 

US-NHM Distribut

ed 

process-

based 

model 

No split Contermi

nous 

United 

States 

1340 9% Near-natural 

(Falcone, 2011) 

(Regan et al., 

2019) 

 
3 Evaluated on catchments with no regulation, <5% impervious surfaces, and consumptive use less than 5% of streamflow. 
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US-FUSE Lumped 

process-

based 

model 

Independent 

testing 

period 

Contermi

nous 

United 

States 

576 10% Near-natural 

(Newman et al., 

2015) 

(Kratzert, 2019) 

US-HBV Lumped 

process-

based 

model 

Independent 

testing 

period 

Contermi

nous 

United 

States 

671 10% Near-natural 

(Newman et al., 

2015) 

(Kratzert, 2019; 

Seibert et al., 

2018) 

US-mHM Lumped 

process-

based 

model 

Independent 

testing 

period 

Contermi

nous 

United 

States 

492 8% Near-natural 

(Newman et al., 

2015) 

(Kratzert, 2019; 

Mizukami et al., 

2019) 

US-SAC-

SMA 

Lumped 

process-

based 

model 

Independent 

testing 

period 

Contermi

nous 

United 

States 

671 10% Near-natural 

(Newman et al., 

2015) 

(Kratzert, 2019; 

Newman et al., 

2017) 

US-VIC Lumped 

process-

based 

model 

Independent 

testing 

period 

Contermi

nous 

United 

States 

670 10% Near-natural 

(Newman et al., 

2015) 

(Kratzert, 2019; 

Newman et al., 

2017) 

WNA-VIC-Gl Distribut

ed 

process-

based 

model 

No Split Western 

North 

America 

84 85% Near-natural 

(Falcone, 2011; 

Pellerin & 

Nzokou 

Tanekou, 2020) 

(M. Schnorbus, 

2018, 2020) 

4 Results and Discussion  175 

4.1 Global Distribution of seasonal, interannual and irregular variance  

Figure 1 (a) shows the fraction of variance associated with seasonal, interannual, and irregular variance for 17,245 catchments. 

Globally, irregular variance dominates: more than half the variance is irregular in 70% of the catchments. Figure S14 shows 

histograms of each variance fraction.  
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Streams in arid regions (such as the ephemeral Oued Kert in Morocco, Figure 1 (d)) are especially irregular, because the 180 

streamflow time series are composed of infrequent flash floods driven by episodic heavy rainfall (D’Odorico & Bhattachan, 

2012; Smith et al., 2015). However, flashy catchments in humid regions can also have high irregular variance fractions. 

Additional examples of highly irregular streams are included in Figs. S21-S26, from arid catchments in Telangana (India), 

New Mexico (USA), and Kunene (Namibia), and humid catchments in Newfoundland (Canada), Narvik (Norway) and 

Westland (New Zealand). 185 

Highly seasonal catchments are found primarily in cold (polar and alpine), and tropical climates, where seasonality is driven 

either by snow accumulation and melt or by strong monsoons. Figure 1 (c) shows the Candeias River, a highly seasonal tropical 

catchment with some variation from year to year. The seasonal variance fraction is very high (greater than 0.8) in only 1% of 

catchments, but these extremely seasonal catchments are found on all continents except Oceania. Extremely seasonal 

catchments are found in the Arctic regions of Nunavut, Nunavik, Iceland, Sápmi, and Siberia, the alpine ranges of western 190 

North America, Europe, southern Patagonia, and central Asia, and the tropical Orinoco, Amazon, Niger, Congo, Irrawaddy, 

and Mekong basins. Additional examples of decomposed time series from extremely seasonal cold and tropical catchments 

are provided in Figures S27-S33. 

High interannual variability is also rare and occurs mainly in catchments with large surface or groundwater storage and/or 

strong connections to climate oscillations. Figure 1 (b) shows the decomposition for the Sturgeon Weir River in northern 195 

Canada, where strong connections to the Arctic Oscillation drive decadal-scale variability (St. Jacques et al., 2014) and 

seasonal as well as irregular variation is dampened by a large lake. Other regions with high interannual variance are: i) semi-

arid north-central Chile (eg. Fig. S19), where warm phases of El Niño Southern Oscillation (ENSO) are associated with heavy 

rainfall, including major floods in 1997 (Araya et al., 2022), ii) the Paraguay River Basin (eg. Fig S17), where interannual 

persistence in dry and wet conditions is linked to the extensive Pantanal (wetland) hydrology as well as ENSO, the Pacific 200 

Decadal Oscillation, and the Atlantic Multidecadal Oscillation (Santos & Slater, 2025), and iii) southeastern England and 

northwestern France (eg. Fig S15), where variability is driven by the North Atlantic Oscillation (Rodwell et al., 1999; West et 

al., 2022), and the historical record includes record flooding from 2000-2001 (Marsh & Dale, 2002). Anthropogenic impacts 

also have the potential to cause interannual variability, such as in the Syr Darya (Kazakhstan) where water abstraction increased 

beginning with the expansion of irrigation canals in 1973 (Zou et al., 2019) (Fig S20). 205 

Hydrologic models should be capable of simulating all three variance components, but accurate simulation of interannual 

variance is arguably the most important when the objective is to predict long-term changes in statistical properties of 

streamflow, such as for climate change impact research. Accurately simulating interannual variance is probably an easier task 

in catchments that have historically been very interannually variable (such as the Sturgeon Weir River) than it is in catchments 

that have been interannually stationary, because there is more variance with which to calibrate hydrologic models. 210 

Nevertheless, historically stationary regimes are not guaranteed to remain stationary, so we believe this difficult task is 

worthwhile (Gudmundsson, Tallaksen, et al., 2012; Milly et al., 2008; Safeeq et al., 2014). 
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Figure 1: (a) The fraction of variance that is seasonal, interannual, and irregular. To reduce overplotting, gauges have been 

aggregated to 1 per 2500 km2 using the mean of each variance fraction. The three panels (b), (c), and (d) show the decomposed time 215 
series for three example rivers that exhibit high variance fractions for each of the three components. (b) The Sturgeon Weir River 

at the outlet of Amisk Lake (Water Survey of Canada ID 05KG002, catchment area 14,600 km2), an interannually variable stream 

(90% interannual variance). (c) Santa Isabel (Candeias River at Candeias do Jamari, Agência Nacional de Águas e Saneamento 

Básico ID 15550000, catchment area 12,700 km2), a highly seasonal stream (86% seasonal variance). (d) Oued Kert at Driouch, an 

ephemeral stream in Morocco (Global Runoff Data Centre ID 1304800, catchment area 1,353 km2), where 90% of the variance is 220 
irregular. The mapped river network is derived from HydroRIVERS v1.0 (Lehner & Grill, 2013). 
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4.2 Out-of-sample climatological benchmark NSE (NSEcb) 

Figure 2 (a) shows the NSEcb for 20,338 catchments, based on leave-one-out cross-validation. Overall, the median is small 

with a value of 0.11, which implies that streamflow in most catchments is largely unpredictable based only on climatology 

from other years. On the other hand, the NSEcb is high (greater than 0.5) for 10% of the gauges. We argue that special care is 225 

warranted when modelling these catchments to ensure they add information beyond what is contained in the climatology. 

Figure 2 (b) shows that high NSEcb values tend to occur in tropical monsoon and cold/polar Köppen-Geiger climate zones. 

Figure 2 insets (c)-(i) show hydrographs from several catchments with NSEcb>0.8, from arctic, alpine, and tropical locations. 

Very high NSEcb values do rarely occur elsewhere, although we note that some of these catchments are large and cover multiple 

climate zones. For example, the Mekong and Irrawaddy are classified as ‘temperate’ based on catchment average climate data, 230 

but they are more accurately described as a mix of polar climate zones (at their headwaters in the Tibetan Plateau), temperate 

zones through their midsections, and tropical zones nearer to the gauging stations.  

Figure S1 in the supplementary material shows the KGE'cb for the 20,338 catchments. The patterns are very similar to those 

seen with the NSEcb, and Sect. S1 shows that KGE'cb and NSEcb are uniquely and monotonically related if no cross-validation 

scheme is used. After implementing the leave-one-out cross-validation scheme, this relationship is modified by the number of 235 

years of data. Thus, in this article we focus on the NSEcb but we point out that the KGE'cb behaves similarly.  

The cross-validation scheme ensures the climatological model is always tested on unseen data, but a more difficult test is the 

differential split sample, where models are tested on data outside of their calibration conditions. This has been widely applied 

and recommended to test models used for climate change impact assessment (Klemeš, 1986; Krysanova et al., 2018; Refsgaard 

et al., 2014; Seibert, 2003). In Sect. S7 we show that the NSEcb remains high in tropical, alpine, and polar catchments when 240 

evaluated using a differential split sample methodology. The climatological benchmark model is, by definition, unable to 

simulate interannual variance or change, so the fact that it can achieve high NSE values when tested on data outside of its 

calibration conditions further reinforces that high NSE values do not guarantee a model is useful for making hydrologic 

predictions under climate change. 

This is, to the best of our knowledge, the largest and most geographically extensive compilation of benchmark performance 245 

values for streamflow gauging stations to date. Figure 2 serves as a reminder the NSE is not an absolute measure of 

performance, and that comparing NSE values across catchments is challenging, because baseline performance varies 

substantially (Knoben, 2024; Martinec & Rango, 1989; Schaefli & Gupta, 2007; Seibert, 2001). Our analysis builds on previous 

work by showing that NSEcb can be high even when evaluated on unseen data. In this work, however, we are primarily 

interested in analysing if the ease of achieving high NSE scores in some catchments jeopardizes the modelling of interannual 250 

variance. This is the subject of the following section. 
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Figure 2 (a): Climatological benchmark Nash Sutcliffe Efficiencies for 20,338 catchments. To reduce overplotting, for panel A gauges 

have been aggregated to 1 per 2500 km2 using the median NSE. (b): Distribution of the climatological benchmark NSE by Köppen-255 
Geiger climate zone. Cold (high alpine and polar) and tropical climates have high benchmark NSE values, often upwards of 0.5 and 

occasionally upwards of 0.8. (c)-(i): Annual hydrographs from catchments with very high benchmarks (BNSE>0.8). The grey lines 

are individual years and the solid black line is the mean flow for each calendar day. The mapped river network is derived from 

HydroRIVERS v1.0 (Lehner & Grill, 2013). 

4.3 High NSEs can hide poor representations of interannual variance 260 

Figure 3 shows that high NSE values often hide inferior simulations of interannual variability. The overall NSE is consistently 

higher in highly seasonal catchments, but this is mainly driven by an improvement in modelling the seasonal component 

(NSEseasonal). NSEinterannual values are lower in highly seasonal catchments for all models except GLOB-GLOFAS (where the 

median NSEinterannual value is near zero for both highly seasonal and less seasonal catchments), CE-COSERO, and WNA-VIC-

Gl. NSEirregular values are also usually lower in highly seasonal catchments. 265 

This behaviour has some similarities to the divide and measure non-conformity (DAMN) described by (Klotz et al., 2024). 

The variance of each component, which appears in the denominator of each component NSE, is smaller than the variance of 

the observations, which appears in the denominator of the overall NSE. However, in contrast to the DAMN, the overall NSE 

here is bounded by the NSEs of the three components: specifically, the overall NSE is equal to the weighted mean of the three 

component NSEs, (equation 3). Therefore, for a given overall NSE, a higher seasonal NSE must be associated with a lower 270 

interannual and/or irregular NSE. 
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One might expect that higher NSEs can be achieved in highly seasonal catchments because seasonal variability is easy to 

model, and there is more of it. However, Fig. 3 suggests this is only part of the story: in highly seasonal catchments there is 

more seasonal variance, and a larger fraction of it is modelled accurately.  

Figure 3 generally confirms our hypothesis that in catchments where seasonality dominates, interannual variability is more 275 

poorly modelled. This occurs despite achieving higher overall NSEs in these catchments. Two models, COSERO and VIC-Gl, 

show the opposite pattern (higher interannual performance in highly seasonal catchments). These models were both developed 

originally for modelling alpine catchments, and include relatively sophisticated representations of snow and ice processes, 

which are a major source of interannual variability in cold regions (Klingler et al., 2021; M. Schnorbus, 2018). This suggests 

that it is possible to accurately model interannual variability in highly seasonal catchments, given an appropriate model setup 280 

and calibration. On the other hand, the better representation of interannual and irregular variance in highly seasonal catchments 

in these two models may also be related to the poor performance in less seasonal catchments, as suggested by the low overall 

NSEs for less seasonal catchments. 
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Figure 3: Comparison of NSE scores between highly seasonal and less seasonal catchments, across 18 hydrologic models (vertical 285 
axis labels correspond to Table 2). For all models the NSEs of the overall time series and of the seasonal component are better in 

highly seasonal catchments, but the NSEs of the interannual and irregular components are usually significantly worse. The arrows 

point from the median value for less-seasonal catchments to the median value for highly seasonal catchments. Significance is 

determined at p<0.05 using the unpaired Mann-Whitney U-test. The median NSE was negative for GLOB-GLOFAS for all 

components and subsets. 290 

Figure 4 shows the expanded analysis for 6 typical performance metrics and 41 interannual signature metrics (see Table 1). 

The typical metrics (top row) are higher in highly seasonal catchments. NSE, KGE', Pearson r, and variance ratio 𝛾 are better 

in highly seasonal catchments across all 13 models, and most of these differences are statistically significant. KGE' (1/Q) 

shows a similar pattern except for some of the process-based models for the United States, which struggle to simulate winter 

low flows in colder regions. The bias 𝛽 is similar between the highly seasonal and less seasonal subsets. 295 

In the seasonal catchments where typical performance metrics are high, we again see that interannual variability is more poorly 

simulated. The correlations between observed and simulated annual values of 41 hydrologic signatures across 13 models are 

worse in highly seasonal catchments for 79% of the cases (62% at a significance level of p=0.05). All models except WNA-

VIC-Gl perform worse in highly seasonal catchments across most (>50%) of the interannual signature metrics, and all but one 

of these metrics are lower in highly seasonal catchments across most of the models. 300 

Some of the differences in performance are quite large. For example, the Spearman rank correlations for monthly flows from 

November to April are close to 1 (perfect) for less seasonal catchments and below 0.5 for some models in highly seasonal 

catchments. The predictions of annual minima, high and low pulses, and rising and falling limbs are also substantially worse 

in highly seasonal catchments. 

In Section S4 we present various robustness tests of these results. In Fig. S6 we repeat the analysis in Fig. 4 but calculate the 305 

goodness-of-fit of the hydrologic signatures using the NSE, rather than the Spearman rank correlation. The patterns are similar 

to Fig. 4, but many of the NSE values of the hydrologic signatures are negative. For example, NSE(Q̅Feb) is negative in 15 of 

18 models for highly seasonal catchments versus only 2 models in less-seasonal catchments. In Figs. S7 and S8 we changed 

the splitting threshold (seasonal variance fractions of 0.4 and 0.6, instead of 0.5). We find that our analysis and conclusions 

are insensitive to these changes. In Figures S9-S12 we split the catchments based on four different indices (the streamflow 310 

concentration index QCI, the coefficient of variation of the mean annual hydrograph COV(Q), the aridity seasonality index 

Im,r, and the fraction of precipitation as snow fs). For fs, the snowier catchments generally displayed higher NSE and KGE' 

values, but lower scores on interannual metrics, consistent with the pattern shown in Fig. 4. For QCI and COV(Q), the 

interannual performance was worse but NSE and KGE' values were neither uniformly higher nor lower in the more-seasonal 

group. For the aridity seasonality index Im,r no clear patterns emerged. 315 

Our analysis does not directly identify the causes of poor interannual performance in highly seasonal catchments, but we 

hypothesize that model optimization algorithms, model structures, and data quality and quantity all play a role.  

First, model optimization algorithms may bias training away from highly seasonal catchments. Seasonal variance is predictable 

and can be reproduced quite accurately with models of low complexity (Knoben, 2024). Where models are optimized 

simultaneously across many catchments, optimization algorithms may therefore greedily simulate the seasonal variance in 320 
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seasonal catchments and neglect interannual and irregular variance. When seasonal variance is well-simulated, algorithms will 

prioritize improvements to modelling the irregular and interannual components in less-seasonal catchments where these 

improvements result in the largest increase to the average NSE. Learned human biases for what a ‘good’ simulation looks like 

could also bias modellers to neglect catchments where errors appear small compared to the seasonal pattern, since expert 

opinions and current quantitative metrics have been shown to be mostly consistent (Gauch et al., 2023). However, several of 325 

the models that we analysed were calibrated individually to each catchment, so this explanation is not sufficient on its own.  

Second, model structures often do not include important hydrologic components for highly seasonal catchments, such as glacier 

change, avalanching, and vegetation-moisture feedbacks (D’Odorico et al., 2007; Köplin et al., 2013; Staal et al., 2020). We 

note that the two models in Fig. 3 that were explicitly developed for alpine regions (WNA-VIC-Gl and CE-COSERO, which 

both include glacier modules) were the only models to have higher interannual NSEs in highly seasonal catchments. This 330 

suggests that there may be considerable scope for improving the simulation of interannual variability in highly seasonal 

catchments by improving model structures. 

Third, data quality and quantity are often lower in remote polar, alpine, and tropical regions. Long-term weather stations tend 

to be scarce in these regions, which means that the gridded meteorological data used to run models may not accurately capture 

interannual climate variability (Burton et al., 2018), and therefore interannual streamflow variability will also be poorly 335 

modelled. There are also few gauged streams in highly seasonal regimes globally (Krabbenhoft et al., 2022), and optimization 

algorithms that aim to maximize the average performance across many catchments will not prioritize improving simulations 

for a small number of highly seasonal catchments. 
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 340 

Figure 4: Catchments in high-benchmark NSE regions generally perform better than low-benchmark catchments on typical 

performance metrics which combine intra and interannual variance (top row) but are significantly worse when evaluated on other 

metrics that focus on interannual variability. The arrows point from the median value for low-benchmark catchments to the median 

value for high-benchmark catchments. Significance is determined at p<0.05 using the unpaired Mann-Whitney U-test. Note that the 

median NSE, KGE', and KGE' (1/Q) are negative for GLOB-GLOFAS in both highly seasonal and less seasonal catchments. 345 
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Indeed, the global distribution of stream gauges is very biased (Krabbenhoft et al., 2022), and highly seasonal catchments are 

underrepresented in the datasets we analysed. Cold climates with cold or very cold winters (as defined in the Köppen-Geiger 

climate classification by Beck et al., 2018) represent 15% of global non-frozen lands (excluding perennially ice-covered 

regions) but only 10% of the catchments in our selected datasets, and polar tundra occupies 6.7% of global land and just 2.4% 

of catchments. The tropical zone is even more underrepresented: tropical rainforest and tropical monsoon climates represent 350 

6.2% and 4% of global lands, and collectively generate 39% of global runoff (based on Beck et al., 2018 and Ghiggi et al., 

2019), but only 0.9% and 0.8% of catchments in our datasets are located in these zones, respectively. 

Other compilations of streamflow data are even more biased, particularly in underrepresenting tropical regions. Caravan, a 

popular compilation of 6830 catchments (Kratzert et al., 2023), includes only 8 tropical rainforest and 5 tropical monsoon 

catchments. Another initiative, the Reference Observatory of Basins for INternational hydrological climate change detection 355 

(ROBIN), includes streamflow data and catchment polygons for 2265 near-natural streams worldwide, but only 19 tropical 

rainforest and 6 tropical monsoon catchments (Turner et al., 2025).  

Our understanding of hydrologic processes and change in highly seasonal regimes is thus impeded not just by poor modelling 

of interannual variability, but also by the underrepresentation of these regimes in the datasets that are currently available and 

widely used in the hydrological modelling community. Efforts to increase the representation of these regimes could include 360 

making existing data publicly available (eg. Lin et al., 2023), digitizing paper records (eg. Bathelemy et al., 2024; Henck et 

al., 2011), or installing new stream gauges. However, we acknowledge that at least some of the causes of global gauge biases 

are not easily overcome (Krabbenhoft et al., 2022). 

5 Conclusions & Recommendations 

Streamflow time series are made up of interannual, seasonal, and irregular components, and models can perform very 365 

differently with respect to these three components. We recommend that authors evaluate how well models simulate each 

component to understand how well a model may extrapolate to different locations or climate conditions. This recommendation 

is separate from, but complementary to, the recommendation to study the constituent components of the KGE (Cinkus et al., 

2023; Gudmundsson, Wagener, et al., 2012; Gupta et al., 2009). Our findings have several relevant consequences. 

First, we provide further evidence that using the same performance thresholds to judge hydrological models across catchments 370 

is ill advised. Especially in tropical, alpine, and polar climates it is generally easier to achieve high NSE values: the 

climatological benchmark NSEcb is often higher than 0.5 and occasionally even higher than 0.8. We observe, in Figures 3 and 

4, that hydrologic models do achieve higher NSE and KGE values in these highly seasonal, high-benchmark catchments. It is 

therefore important to contextualize model performance with climatological and other benchmark models (Knoben, 2024).  

Second, since many studies use performance assessments on historical observations to judge the model’s utility for climate 375 

projections, it is critical to choose evaluation metrics that are suitable for both the study location and model purpose. We show 

that high NSE values often hide inferior simulations of interannual variance, including changes in ecologically relevant 
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hydrologic signatures. This is most evident in tropical, alpine, and polar regions, where most of the variance in streamflow is 

seasonal. Poor interannual performance in these regions (and in some cases almost complete failure to simulate year-to-year 

variability) raises concerns about the ability of these models to accurately simulate nonstationary hydrologic processes and 380 

responses to climate change. This is especially worrying because these regions may be some of the most vulnerable to climate 

change (Flores et al., 2024; Pepin et al., 2022; Rantanen et al., 2022) and are historically less-well studied regarding hydrologic 

extremes (Stein et al., 2024). 

We encourage the community to pay more attention to interannual variance and to the highly seasonal regimes where it is most 

poorly modelled. This could include developing new calibration targets and objective functions to train models that improve 385 

the representation of interannual variance. Some suitable calibration targets include the interannual NSE introduced in section 

2.3, and the correlations of the hydrologic signatures in Table 1. Lastly, we stress the need to collect and publish observations 

from more tropical, alpine, and polar catchments. 

 

Code availability: Codes necessary to reproduce the analyses in this study are available at 390 

https://doi.org/10.5281/zenodo.16761320  

 

Data availability: All data used in this study are available from their original sources. Streamflow data are available from 

CAMELS-AUS v2 (https://doi.org/10.5281/zenodo.14289037) (Fowler et al., 2024);, CAMELS-BR 

(https://doi.org/10.5281/zenodo.3709337) (Chagas et al., 2020), LamaH-CE (https://doi.org/10.5281/zenodo.4525244) 395 

(Klingler et al., 2021), CAMELS-CL (https://doi.pangaea.de/10.1594/PANGAEA.894885) (Alvarez-Garreton et al., 2018), 

CAMELS-DK (https://doi.org/10.22008/FK2/AZXSYP) (Liu et al., 2024), CAMELS-DE 

(https://doi.org/10.5281/zenodo.12733967) (Loritz et al., 2024),  CAMELS-FR (https://doi.org/10.57745/WH7FJR) (Delaigue 

et al., 2024), CAMELS-GB (https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9) (Coxon et al., 2020), LamaH-

ICE (https://doi.org/10.4211/hs.86117a5f36cc4b7c90a5d54e18161c91) (Helgason & Nijssen, 2024), CAMELS-IND 400 

(https://doi.org/10.5281/zenodo.14005378) (Mangukiya et al., 2025), CAMELS-LUX 

(https://doi.org/10.5281/zenodo.13846619) (Nijzink et al., 2024),  CAMELS (https://doi.org/10.5065/D6G73C3Q) (Newman 

et al., 2015), HYSETS (https://doi.org/10.17605/OSF.IO/RPC3W) (Arsenault et al., 2020), CAMELS-CH 

(https://doi.org/10.5281/zenodo.7784632) (Höge et al., 2023), R-ArcticNET (https://www.r-

arcticnet.sr.unh.edu/v4.0/index.html) (Lammers & Shiklomanov, 2000), the Global Runoff Data Centre 405 

(https://grdc.bafg.de/), and three Caravan community extensions not associated with peer-reviewed publications 

(https://doi.org/10.5281/zenodo.15181680, https://doi.org/10.5281/zenodo.13320514, and 

https://doi.org/10.5281/zenodo.15040948). 

Model simulations are available from GLOB-LSTM1 and GloFAS (https://doi.org/10.5281/zenodo.8139379)  (Nearing et al., 

2024), GLOB-LSTM2 (https://doi.org/10.5281/zenodo.15272903) (Yang et al., 2025), BR-LSTM 410 

(https://github.com/sruzzante/NSE-and-Variance-Components), CH-LSTM and CH-PREVAH (Basil Kraft, personal 
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communication) (Kraft et al., 2025), ENA-LSTM (https://doi.org/10.17605/OSF.IO/3S2PQ) (Arsenault et al., 2023), US-

LSTM (https://doi.org/10.5281/zenodo.10139248) (Kratzert et al., 2024),  US-δHBV2.0UH 

(https://doi.org/10.5281/zenodo.13774373) (Song et al., 2025), BR-MGB-SA (https://doi.org/10.5281/zenodo.15025488) 

(Chagas et al., 2020; Siqueira et al., 2018),  CE-COSERO (https://doi.org/10.5281/zenodo.4525244) (Klingler et al., 2021), 415 

the US-NHM (https://doi.org/10.5066/P9PGZE0S) (Regan et al., 2019), WNA-VIC-Gl 

(https://data.pacificclimate.org/portal/hydro_stn_cmip5/map/) (M. Schnorbus, 2018), and  US-FUSE, US-HBV, US-

mHM,US-SAC-SMA, and US-VIC (https://doi.org/10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1) (Kratzert, 2019; 

Mizukami et al., 2019; Newman et al., 2017; Seibert et al., 2018). 
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