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Abstract. Streamflow time series can be decomposed into interannual, seasonal, and irregular components, with regionally
varying contributions of each component. Seasonal variance dominates in many tropical, alpine, and polar regions, while
irregular variance dominates in most other regions. Interannual variability in streamflow is known to strongly influence human
and ecological systems and is likely to increase under the influence of climate change, though we find that historical interannual
variance is usually only a small fraction of the total variance. We show that hydrologic models often simulate one component
well while failing to simulate the others, a fact that is hidden by popular performance metrics such as the Nash-Sutcliffe
Efficiency (NSE) and the Kling-Gupta Efficiency (KGE) which aggregate performance to a single number. We analyse 18
regional and global hydrologic models and find that in highly seasonal catchments where the NSE and KGE are consistently
the highest, the models are almost always worse at simulating interannual variability. The NSE of the interannual component
is lower in highly seasonal catchments, and simulated year-to-year changes in ecologically relevant hydrologic signatures are
less accurate. This is concerning because it indicates that these hydrologic models may struggle to predict long-term responses
to climate change, especially in tropical, alpine, and polar regions, which are some of the most vulnerable regimes regarding

climate change.

Short Summary: Common metrics used to evaluate hydrologic models make it relatively easy to achieve high performance
scores in many tropical, alpine, and polar regions. However, we analysed 18 hydrologic models and found that almost all were
worse at simulating interannual variability and change in these regions. This suggests that the effects of climate change on
streamflow may not be accurately predicted in tropical, alpine, and polar climates, which are highly vulnerable to climate

change.
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1 Introduction

Streamflow time series can be conceptualized as the sum of seasonal, interannual, and irregular variance components, with
very different driving mechanisms for each component. Stochasticity in individual weather events drives irregular variance
while more regular seasonal cycles of temperature and precipitation drive seasonal fluctuations of the hydrograph (Dralle et
al., 2017). Interannual variance, on the other hand, can be driven by climate oscillations, climate change, and other non-
stationarities such as vegetation responses to climate change.

Indeed, the earth’s changing climate is exposing non-stationarities in streamflow regimes that threaten both natural and built
environments (Milly et al., 2008; Ruzzante & Gleeson, 2024; Slater et al., 2021; Taye & Dyer, 2024; Xiong & Yang, 2024).
These interannual changes pose unique threats, since ecosystems can struggle to adapt to new streamflow regimes, and
unpredictable water availability hinders effective water resource management (Hall et al., 2014).

In this non-stationary world, we desire hydrologic models that can accurately predict interannual variability and change (Milly
et al., 2008; Montanari et al., 2013; Wagener et al., 2010). Currently the main way to assess models of climate change impact
is to assess their performance on historical data (Eker et al., 2018). Hydrologists rarely consider the three components of
variability separately and the most popular performance metrics (the Nash-Sutcliffe and Kling-Gupta Efficiencies, NSE and
KGE (Gupta et al., 2009; Kling et al., 2012; Nash & Sutcliffe, 1970)) evaluate all components jointly. These metrics are
sometimes broken up as bias, variance and correlation terms, that can be assessed separately (e.g. Gudmundsson et al., 2012).
However, since the driving mechanisms of interannual, seasonal, and irregular variability are different, good performance on
one variability component does not guarantee good performance on the others. We hypothesize that in catchments where one
component historically dominates variability, the other components will be poorly modelled. Specifically, we aim to test
whether interannual variance is poorly modelled in catchments with a strong seasonal cycle.

The strength of the seasonal cycle has been discussed at some length in the context of climatological benchmark models, which
are typically defined as the interannual mean flow for each calendar day. Garrick et al. (1978) were among the first to propose
that a model should outperform the climatological benchmark, and subsequent authors found that the climatological benchmark
NSE values, here denoted as NSE,, can be very high (sometimes greater than 0.8) in high-mountain catchments (Martinec &
Rango, 1989; Schaefli & Gupta, 2007). Knoben (2024) similarly found that benchmark KGEs are high in snow-dominated
regions. Although still not standard practice, more authors have begun to evaluate their models with reference to the
climatological benchmark (eg. Girons Lopez et al., 2021; Knoben et al., 2020; Nicolle et al., 2014; Towler et al., 2023).

We aim to answer three questions:

1) Where are the interannual, seasonal, and irregular components of streamflow variance dominant. In Section 4.1 we
use time series decomposition on global stream gauge data and calculate the variance fraction for each component.

2) Where is the climatological benchmark NSE high? In Section 4.2 we calculate the climatological benchmark NSE
for 20,338 stream gauges. In Section 2.1 we explain that the climatological benchmark NSE is equivalent to the
seasonal variance fraction.

3) What does this mean for our ability to simulate long-term change in a nonstationary world? We expect that
hydrologic models will be worse at representing interannual variability in highly seasonal catchments because in
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these catchments ‘high’ NSE scores can be achieved without accurately representing the hydrologic processes that
also lead to interannual variability (for example, in the climatological benchmark model). In Section 4.3 we test this
hypothesis with simulations from 18 hydrologic models.

2 Methods
2.1 Time Series Decomposition

To address question 1, we applied time series decomposition techniques to streamflow data from 17,245 gauges. From our
compilation 0of 28,406 daily discharge time series (see section 3.1), we selected the 17,245 with at least 10 years of data without
missing days. We decomposed each time series into seasonal, interannual, and irregular components. First, we calculated the
seasonal component as the mean of each calendar day and subtracted this from the observed time series to extract anomalies.
We calculated the Fast Fourier Transform of the anomalies and separated the Fourier frequencies into interannual components
(frequencies smaller than 2 year') and irregular components (frequencies greater than or equal to 2 year™'). We chose a cutoff
frequency of 2 year™!, or a period of 6 months, in order to classify variations in seasonality (eg., a wetter than normal summer)
as interannual variance.

This decomposition is orthogonal so the sum of the variances of the components (62, terannuat + T2asonar + aizrregular) is

equal to the variance of the observed streamflow time series (62). For each catchment we calculated the variance fraction
associated with each component, (eg. 6.2 45onqa1/02). Because the decomposition is orthogonal the three variance fractions sum
to 1. Another result of this orthogonality is that the variance fraction is identical to the NSE for each component. For example,

the seasonal variance fraction is equivalent to the climatological benchmark NSE:

2 2 2 2
o, a5 —0, o,
NS Ecb =1 62 =1 [ se;.sonal — seaszonal’ (1)
O, a, a,
o o [

Where a2 is the error variance of the climatological benchmark model.

We considered other time series decomposition methods, including classical decomposition (Kendall & Stuart, 1966) and
Seasonality and Trend decomposition using Loess (STL, Cleveland et al., 1990). However, classical decomposition does not
allow the interannual component to vary seasonally, which means that the interannual component only represents changes in
mean annual flow. In addition, neither classical nor STL decomposition result in orthogonal components, so the variance

fractions do not necessarily sum to 1.

2.2 Benchmark Performance

The climatological benchmark performance is often calculated to test whether a hydrologic model performs better than simply
using past observations (eg. Girons Lopez et al., 2021; Knoben et al., 2020; Nicolle et al., 2014; Towler et al., 2023). To answer
our second question, we calculated the NSE, for all catchments with at least 10 years of observed daily discharge data; for

this analysis we permitted gaps in the data, as long as each calendar day was observed at least 10 times (20,338 catchments).

3
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We used a leave-one-out cross validation scheme: the discharge for each year was predicted using observed discharge for all
other years. We then concatenated the predictions and calculated the NSE, on the full time series. This cross-validation reduces
NSE such that it is no longer identical to the seasonal variance fraction, and NSE., < 02 45ona/0Z (see SI).

We also calculated the climatological benchmark KGE's, and include these results in Sect. S1. We focus on the NSE, here for
brevity, because the KGE's, and NSE., exhibit similar global patterns, and because the NSE, is so closely related to the
seasonal variance fraction. Lastly we tested the robustness of NSE, to a differential split sample methodology and include

these methods and results in Sect S7.

2.3 Modelling interannual and seasonal variability

Our third question asks how the strength of the seasonal cycle affects the ability of hydrologic models to simulate interannual
change. We analysed the simulated streamflow from 18 regional and global hydrologic models to investigate differences in

interannual performance between highly seasonal and less seasonal catchments. The models are described in section 3.2.

2.3.1 Variance component NSE values

For each model, we calculated the overall NSE for each simulated catchment. We then decomposed both the simulated and
observed time series using the strategy in Sect. 2.1 and calculated the NSE for each variance component. For example:

201 Uo(D=15(1)?
NSE; =] - 2
interannual thv=1(lo(t)—lo(t))2 ( )
Where [, and I are the observed and simulated interannual components. The seasonal and irregular NSEs are calculated
similarly. Section S3 shows that the overall NSE is equal to the weighted sum of the three component NSEs, where the weights

are the variance fractions discussed in Sect. 2.1:

2 2 2
gi o, of 1
— Zinterannual seasonal lrregutar i
NSE = o2 NSEinterannual + o2 NSEseasonal + o2 NSEeregular (3)
[ () o

We wanted to test whether the models perform better or worse in highly seasonal catchments, so for each model we classified
the catchments into highly seasonal (62,5onai/0Z > 0.5) and less seasonal (62,5ona/0Z < 0.5) subsets. We then compared

the NSE values between the highly seasonal and less seasonal subsets using the non-parametric Mann-Whitney U test.

2.3.2 Simulating changes in hydrologic signatures

The NSEs for the interannual, seasonal, and irregular components provide a concise and holistic summary of performance for
each type of variance. However, studies of hydrologic change are often concerned with predicting changes to hydrologic
signatures relevant to ecology or water management, so it is useful to evaluate how well models simulate changes in these
signatures over the historical period. To this end, we compared simulated and observed values of 41 hydrologic signatures
calculated on an annual basis (Table 1). We used the 32 indicators of hydrologic alteration proposed by Richter et al. (1996)

in addition to the total number of days below the 25" percentile (Number of low flow days), the total number of days above
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the 75" percentile (Number of high flow days), the rising and falling limb densities, the streamflow concentration index, the
half flow day, the mean annual flow, the slope of the midsegment of the flow duration curve, and the baseflow index (see
Table 1 for references). These additional metrics have been widely used by hydrologists to characterize hydrologic regimes
and to detect trends.

We are interested in whether the hydrologic models accurately reproduce interannual variability in these 41 signatures, so we
calculated non-parametric correlation coefficients between the simulated and observed annual series of hydrologic signatures,
using Spearman’s p for most metrics. Two metrics (No. high pulses and No. low pulses) frequently have tied ranks, so for
these we used Kendall’s 7.

These non-parametric correlations test if the models correctly predict the direction of change, but not the absolute values of
each signature. We also calculated the NSE of the simulated and observed annual series of hydrologic signatures, but all models
struggle to simulate absolute values of at least some of these signatures: across 738 model-by-metric combinations, the NSE
of the simulated hydrologic signatures is negative for both the highly-seasonal and less-seasonal subsets 48% of the time (Fig.
S6). We view large, positive correlations with historical observations as a minimum requirement to consider a model useful
for simulating hydrologic responses to a changing climate.

We also calculated five other popular performance metrics that evaluate interannual, seasonal, and irregular variance jointly:
the KGE', KGE'(1/Q), and the three components of the KGE": Pearson r, the mean bias [ and the ratio of coefficients of

variation y (Kling et al., 2012). To be consistent with the other metrics (for which values near 1 are better), we transformed 3

and y to the range (—oo, 1] using the transforms (1 - m) and (1 - m) These transforms are analogous to
the use of these terms in the KGE.

We applied the same tests here as for the variance component NSE values (Section 2.3.1): we compared the values of each
metric between the highly seasonal and less seasonal subsets using Mann-Whitney U tests. We also performed the same
analysis after splitting the catchments based on thresholds of 0.4 and 0.6 for the seasonal variance fractions, and splitting on
the streamflow concentration index (Han et al., 2024), the coefficient of variation of the average hydrograph, the aridity
seasonality, and the fraction of precipitation as snow (Knoben et al., 2018).

Table 1: Hydrologic signatures used to evaluate models’ ability to reproduce interannual variability

Category Signature Definition Source

Magnitude  of Qjan - Qpec Mean monthly flow for each calendar month (Richter et al,

Seasonal water 1996)

conditions

Magnitude and Max n-day Q Annual maximum flow for 1, 3, 7, 30, and 90 | (Richter et al.,

timing of day rolling averaging 1996)

annual extreme Min n-day Q Annual minimum flow for 1, 3, 7, 30, and 90 | (Richter et al.,
day rolling averaging 1996)
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flow) and below 25" percentile (low flow)

water day of annual maximum Calendar day of annual 1-day maximum flow' | (Richter et al.,
conditions 1996)
day of annual maximum Calendar day of annual 1-day minimum flow! | (Richter et al.,
1996)
Frequency and No. high/low pulses Number of periods with flow above 75" | (Richter et al.,
duration of high percentile (high pulse) or below 25™ percentile | 1996)
and low pulses (low pulse)
High/low pulse duration Average duration of high/low pulse in days (Richter et al.,
1996)
No.of high/low flow days | Annual total days above 75™ percentile (high | Less sensitive

indicator of pulse
duration than the
two above; similar
to Simeone et al
(2024) Yin et al
(2024)

33 and 66™ percentiles

Rate and Mean daily rise/fall Average 1-day difference of all days with | (Richter et al.,
frequency  of positive (rise) and negative (fall) differences 1996)
water condition No.rises (falls) Annual number of rising/falling limbs (Richter et al.,
changes 1996)
rising (falling) limb density | Number of rising (falling) limbs divided by | (Shamir et al.,
total number of days with increasing | 2005)
(decreasing) flow
Other QcCl Streamflow concentration index (Han et al., 2024)
hydrologic half flow day Day of water year at which half of the total | (Court, 1962)
signatures annual streamflow has passed the gauge
Q annual Mean annual streamflow (Doll & Schmied,
2012)
slope FDC Slope of the flow duration curve between the | (Yadav etal.,2007)

! The water year is rotated to begin 183 days before the maximum (minimum) flow day, to prevent artificially large disagreements between
simulated and observed time series arising from maximum or minimum flow dates occurring just before or just after the beginning of the

water year.
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BFI Annual baseflow index, using 3-pass Lyne- | (Ladson et al.,
Hollick filter 2013; Lyne &
Hollick, 1979)

3 Data
3.1 Streamflow Data

We compiled streamflow data from 16 CAMELS-type datasets from Australia, Brazil, Central Europe, Chile, Denmark,
France, Germany, Great Britain, Iceland, India, Isracl/West Bank/Golan Heights, Luxembourg, the United States, North
America, Spain, and Switzerland (Alvarez-Garreton et al., 2018; Arsenault et al., 2020; Casado Rodriguez, 2023; Chagas et
al., 2020; Coxon et al., 2020; Delaigue et al., 2024; Efrat, 2025; Fowler et al., 2024; Helgason & Nijssen, 2024; Hoge et al.,
2023; Klingler et al., 2021; Liu et al., 2024; Loritz et al., 2024; Mangukiya et al., 2025; Newman et al., 2015; Nijzink et al.,
2024). For countries not represented in the above datasets we used streamflow data from the Global Runoff Data Centre

(GRDC, https://grdc.bafg.de/). We also added data from 138 Russian stations (Lammers & Shiklomanov, 2000) and ensured

they were not duplicates of the GRDC stations. In total we compiled records from 28,406 stations worldwide.

3.2 Streamflow Simulations

We searched Google Scholar and used ChatGPT to identify freely available datasets of simulated streamflow at gauged
locations. We required that some of the gauges be in the tropical, alpine, or polar regions where we expect the seasonal variance
fraction to be high. Where publications reported the results of multiple versions of the same or very similar models, we selected
the version identified by the authors as having the best performance.

In total we compiled simulations from 18 models this way: six Long Short-Term Memory Models (LSTMs), eleven process-
based hydrologic models, and one hybrid model. These models are listed in Table 2.

Where possible we included only near-natural catchments in the evaluation of each model, either as defined by the authors or
by referencing other published lists of near-natural catchments (Falcone, 2011; Newman et al., 2015; Pellerin & Nzokou
Tanekou, 2020). For the two Brazilian models, we used only catchments without regulation, with less than 5% impervious
surfaces, and consumptive use less than 5% of annual streamflow. For the two global models published by Nearing et al (2024)

we included all available catchments since we lacked a reliable way to identify near-natural catchments.
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Table 2: 18 models for which we reanalysed simulations to test performance on interannual, seasonal, and irregular variance
components. The number of evaluation catchments indicates the number of catchments that have at least 10 years of continuous
observed and simulated discharge data. The “Percent highly seasonal” column indicates the percentage of evaluation catchments
with a seasonal variance fraction greater than 0.5.

Model Type Training/ Region Number of | Percent Anthropogenic | Model
testing split evaluation highly impacts on | reference
catchments | seasonal catchments
GLOB- Lumped | Ungauged Global 3752 19% Includes human- | (Nearing et al.,
LSTMI LST™M basins influenced 2024)
catchments
GLOB- Lumped | Ungauged Global 3167 9% Low influence | (Yang et al,
LSTM2 LSTM Basins (Yang et al., | 2025)
2025)
BR-LSTM Lumped | Independent | Brazil 176 7% Low influence? | Section S5
LST™ testing
period
CH-LSTM Lumped | Ungauged Switzerla | 98 27% Near-natural (Kraft et al.,
LSTM basins nd (Kraft et al, | 2025)
2025)
ENA-LSTM Lumped | Ungauged Northeas | 79 39% Near-natural (Arsenault et al.,
LST™M basins t  North (Falcone, 2011; | 2023)
America Pellerin &
Nzokou
Tanekou, 2020)
US-LSTM Lumped | Independent | Contermi | 531 9% Near-natural (Kratzert et al.,
LST™M testing nous (Newman et al., | 2024)
period United 2015)
States
US- Hybrid: Some Contermi | 1131 9% Near-natural (Song et al,
6HBV2.0UH Semi- overlap nous (Falcone, 2011) | 2025)
distribute | between United
d training and | States
differenti | testing

2 Evaluated on catchments with no regulation, <5% impervious surfaces, and consumptive use less than 5% of streamflow.

8
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able
process-
based

model

basins

periods

and

GLOB-
GloFAS

Distribut
ed
process-
based

model

Some
overlap
between
training
testing

basins

and

Global

2741

22%

Includes human-
influenced

catchments

(Nearing et al.,
2024)

BR-MGB-SA

Semi-
distribute
d
process-
based

model

No split

Brazil

33

24%

. 3
Low influence

(Chagas et al,
2020; Siqueira et
al., 2018)

CE-COSERO

Lumped
process-
based

model

No split

Central

Europe

454

9%

Near-natural
(Klingler et al.,
2021)

(Klingler et al.,
2021)

CH-PREVAH

Distribut
ed
process-
based

model

No split

Switzerla

nd

98

27%

Near-natural
(Kraft et al.,
2025)

(Kraft et al.,
2025)

US-NHM

Distribut
ed
process-
based

model

No split

Contermi
nous
United
States

1340

9%

Near-natural

(Falcone, 2011)

(Regan et al,
2019)

3 Evaluated on catchments with no regulation, <5% impervious surfaces, and consumptive use less than 5% of streamflow.

9
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US-FUSE Lumped | Independent | Contermi | 576 10% Near-natural (Kratzert, 2019)
process- | testing nous (Newman et al.,
based period United 2015)
model States

US-HBV Lumped | Independent | Contermi | 671 10% Near-natural (Kratzert, 2019;
process- | testing nous (Newman et al., | Seibert et al.,
based period United 2015) 2018)
model States

US-mHM Lumped | Independent | Contermi | 492 8% Near-natural (Kratzert, 2019;
process- | testing nous (Newman et al., | Mizukami et al.,
based period United 2015) 2019)
model States

US-SAC- Lumped | Independent | Contermi | 671 10% Near-natural (Kratzert, 2019;

SMA process- | testing nous (Newman et al., | Newman et al.,
based period United 2015) 2017)
model States

US-VIC Lumped | Independent | Contermi | 670 10% Near-natural (Kratzert, 2019;
process- | testing nous (Newman et al., | Newman et al.,
based period United 2015) 2017)
model States

WNA-VIC-GI | Distribut | No Split Western 84 85% Near-natural (M. Schnorbus,
ed North (Falcone, 2011; | 2018, 2020)
process- America Pellerin &
based Nzokou
model Tanekou, 2020)

175 4 Results and Discussion

4.1 Global Distribution of seasonal, interannual and irregular variance

Figure 1 (a) shows the fraction of variance associated with seasonal, interannual, and irregular variance for 17,245 catchments.

Globally, irregular variance dominates: more than half the variance is irregular in 70% of the catchments. Figure S14 shows

histograms of each variance fraction.
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Streams in arid regions (such as the ephemeral Oued Kert in Morocco, Figure 1 (d)) are especially irregular, because the
streamflow time series are composed of infrequent flash floods driven by episodic heavy rainfall (D’Odorico & Bhattachan,
2012; Smith et al., 2015). However, flashy catchments in humid regions can also have high irregular variance fractions.
Additional examples of highly irregular streams are included in Figs. S21-S26, from arid catchments in Telangana (India),
New Mexico (USA), and Kunene (Namibia), and humid catchments in Newfoundland (Canada), Narvik (Norway) and
Westland (New Zealand).

Highly seasonal catchments are found primarily in cold (polar and alpine), and tropical climates, where seasonality is driven
either by snow accumulation and melt or by strong monsoons. Figure 1 (c) shows the Candeias River, a highly seasonal tropical
catchment with some variation from year to year. The seasonal variance fraction is very high (greater than 0.8) in only 1% of
catchments, but these extremely seasonal catchments are found on all continents except Oceania. Extremely seasonal
catchments are found in the Arctic regions of Nunavut, Nunavik, Iceland, Sapmi, and Siberia, the alpine ranges of western
North America, Europe, southern Patagonia, and central Asia, and the tropical Orinoco, Amazon, Niger, Congo, [rrawaddy,
and Mekong basins. Additional examples of decomposed time series from extremely seasonal cold and tropical catchments
are provided in Figures S27-S33.

High interannual variability is also rare and occurs mainly in catchments with large surface or groundwater storage and/or
strong connections to climate oscillations. Figure 1 (b) shows the decomposition for the Sturgeon Weir River in northern
Canada, where strong connections to the Arctic Oscillation drive decadal-scale variability (St. Jacques et al., 2014) and
seasonal as well as irregular variation is dampened by a large lake. Other regions with high interannual variance are: 1) semi-
arid north-central Chile (eg. Fig. S19), where warm phases of El Nifio Southern Oscillation (ENSO) are associated with heavy
rainfall, including major floods in 1997 (Araya et al., 2022), ii) the Paraguay River Basin (eg. Fig S17), where interannual
persistence in dry and wet conditions is linked to the extensive Pantanal (wetland) hydrology as well as ENSO, the Pacific
Decadal Oscillation, and the Atlantic Multidecadal Oscillation (Santos & Slater, 2025), and iii) southeastern England and
northwestern France (eg. Fig S15), where variability is driven by the North Atlantic Oscillation (Rodwell et al., 1999; West et
al., 2022), and the historical record includes record flooding from 2000-2001 (Marsh & Dale, 2002). Anthropogenic impacts
also have the potential to cause interannual variability, such as in the Syr Darya (Kazakhstan) where water abstraction increased
beginning with the expansion of irrigation canals in 1973 (Zou et al., 2019) (Fig S20).

Hydrologic models should be capable of simulating all three variance components, but accurate simulation of interannual
variance is arguably the most important when the objective is to predict long-term changes in statistical properties of
streamflow, such as for climate change impact research. Accurately simulating interannual variance is probably an easier task
in catchments that have historically been very interannually variable (such as the Sturgeon Weir River) than it is in catchments
that have been interannually stationary, because there is more variance with which to calibrate hydrologic models.
Nevertheless, historically stationary regimes are not guaranteed to remain stationary, so we believe this difficult task is

worthwhile (Gudmundsson, Tallaksen, et al., 2012; Milly et al., 2008; Safeeq et al., 2014).
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Figure 1: (a) The fraction of variance that is seasonal, interannual, and irregular. To reduce overplotting, gauges have been
aggregated to 1 per 2500 km? using the mean of each variance fraction. The three panels (b), (c), and (d) show the decomposed time
series for three example rivers that exhibit high variance fractions for each of the three components. (b) The Sturgeon Weir River
at the outlet of Amisk Lake (Water Survey of Canada ID 05KG002, catchment area 14,600 km?), an interannually variable stream
(90% interannual variance). (¢) Santa Isabel (Candeias River at Candeias do Jamari, Agéncia Nacional de Aguas e Saneamento
Basico ID 15550000, catchment area 12,700 km?), a highly seasonal stream (86% seasonal variance). (d) Oued Kert at Driouch, an
ephemeral stream in Morocco (Global Runoff Data Centre ID 1304800, catchment area 1,353 km?), where 90% of the variance is
irregular. The mapped river network is derived from HydroRIVERS v1.0 (Lehner & Grill, 2013).
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4.2 Out-of-sample climatological benchmark NSE (NSE.»)

Figure 2 (a) shows the NSE, for 20,338 catchments, based on leave-one-out cross-validation. Overall, the median is small
with a value of 0.11, which implies that streamflow in most catchments is largely unpredictable based only on climatology
from other years. On the other hand, the NSE is high (greater than 0.5) for 10% of the gauges. We argue that special care is
warranted when modelling these catchments to ensure they add information beyond what is contained in the climatology.
Figure 2 (b) shows that high NSE, values tend to occur in tropical monsoon and cold/polar Képpen-Geiger climate zones.
Figure 2 insets (c¢)-(i) show hydrographs from several catchments with NSE«,>0.8, from arctic, alpine, and tropical locations.
Very high NSE, values do rarely occur elsewhere, although we note that some of these catchments are large and cover multiple
climate zones. For example, the Mekong and Irrawaddy are classified as ‘temperate’ based on catchment average climate data,
but they are more accurately described as a mix of polar climate zones (at their headwaters in the Tibetan Plateau), temperate
zones through their midsections, and tropical zones nearer to the gauging stations.

Figure S1 in the supplementary material shows the KGE's, for the 20,338 catchments. The patterns are very similar to those
seen with the NSE, and Sect. S1 shows that KGE'¢p, and NSE, are uniquely and monotonically related if no cross-validation
scheme is used. After implementing the leave-one-out cross-validation scheme, this relationship is modified by the number of
years of data. Thus, in this article we focus on the NSE, but we point out that the KGE'¢, behaves similarly.

The cross-validation scheme ensures the climatological model is always tested on unseen data, but a more difficult test is the
differential split sample, where models are tested on data outside of their calibration conditions. This has been widely applied
and recommended to test models used for climate change impact assessment (Klemes, 1986; Krysanova et al., 2018; Refsgaard
et al., 2014; Seibert, 2003). In Sect. S7 we show that the NSE, remains high in tropical, alpine, and polar catchments when
evaluated using a differential split sample methodology. The climatological benchmark model is, by definition, unable to
simulate interannual variance or change, so the fact that it can achieve high NSE values when tested on data outside of its
calibration conditions further reinforces that high NSE values do not guarantee a model is useful for making hydrologic
predictions under climate change.

This is, to the best of our knowledge, the largest and most geographically extensive compilation of benchmark performance
values for streamflow gauging stations to date. Figure 2 serves as a reminder the NSE is not an absolute measure of
performance, and that comparing NSE values across catchments is challenging, because baseline performance varies
substantially (Knoben, 2024; Martinec & Rango, 1989; Schaefli & Gupta, 2007; Seibert, 2001). Our analysis builds on previous
work by showing that NSE, can be high even when evaluated on unseen data. In this work, however, we are primarily
interested in analysing if the ease of achieving high NSE scores in some catchments jeopardizes the modelling of interannual

variance. This is the subject of the following section.
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Figure 2 (a): Climatological benchmark Nash Sutcliffe Efficiencies for 20,338 catchments. To reduce overplotting, for panel A gauges
have been aggregated to 1 per 2500 km? using the median NSE. (b): Distribution of the climatological benchmark NSE by Koppen-
Geiger climate zone. Cold (high alpine and polar) and tropical climates have high benchmark NSE values, often upwards of 0.5 and
occasionally upwards of 0.8. (¢)-(i): Annual hydrographs from catchments with very high benchmarks (BNSE>0.8). The grey lines
are individual years and the solid black line is the mean flow for each calendar day. The mapped river network is derived from
HydroRIVERS v1.0 (Lehner & Grill, 2013).

4.3 High NSEs can hide poor representations of interannual variance

Figure 3 shows that high NSE values often hide inferior simulations of interannual variability. The overall NSE is consistently
higher in highly seasonal catchments, but this is mainly driven by an improvement in modelling the seasonal component
(NSEscasonal)- NSEinterannual Values are lower in highly seasonal catchments for all models except GLOB-GLOFAS (where the
median NSEintcrannual Value is near zero for both highly seasonal and less seasonal catchments), CE-COSERO, and WNA-VIC-
GI. NSEireguiar values are also usually lower in highly seasonal catchments.

This behaviour has some similarities to the divide and measure non-conformity (DAMN) described by (Klotz et al., 2024).
The variance of each component, which appears in the denominator of each component NSE, is smaller than the variance of
the observations, which appears in the denominator of the overall NSE. However, in contrast to the DAMN, the overall NSE
here is bounded by the NSEs of the three components: specifically, the overall NSE is equal to the weighted mean of the three
component NSEs, (equation 3). Therefore, for a given overall NSE, a higher seasonal NSE must be associated with a lower

interannual and/or irregular NSE.
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One might expect that higher NSEs can be achieved in highly seasonal catchments because seasonal variability is easy to
model, and there is more of it. However, Fig. 3 suggests this is only part of the story: in highly seasonal catchments there is
more seasonal variance, and a larger fraction of it is modelled accurately.

Figure 3 generally confirms our hypothesis that in catchments where seasonality dominates, interannual variability is more
poorly modelled. This occurs despite achieving higher overall NSEs in these catchments. Two models, COSERO and VIC-GI,
show the opposite pattern (higher interannual performance in highly seasonal catchments). These models were both developed
originally for modelling alpine catchments, and include relatively sophisticated representations of snow and ice processes,
which are a major source of interannual variability in cold regions (Klingler et al., 2021; M. Schnorbus, 2018). This suggests
that it is possible to accurately model interannual variability in highly seasonal catchments, given an appropriate model setup
and calibration. On the other hand, the better representation of interannual and irregular variance in highly seasonal catchments
in these two models may also be related to the poor performance in less seasonal catchments, as suggested by the low overall

NSEs for less seasonal catchments.
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Figure 3: Comparison of NSE scores between highly seasonal and less seasonal catchments, across 18 hydrologic models (vertical
axis labels correspond to Table 2). For all models the NSEs of the overall time series and of the seasonal component are better in
highly seasonal catchments, but the NSEs of the interannual and irregular components are usually significantly worse. The arrows
point from the median value for less-seasonal catchments to the median value for highly seasonal catchments. Significance is
determined at p<0.05 using the unpaired Mann-Whitney U-test. The median NSE was negative for GLOB-GLOFAS for all
components and subsets.

Figure 4 shows the expanded analysis for 6 typical performance metrics and 41 interannual signature metrics (see Table 1).
The typical metrics (top row) are higher in highly seasonal catchments. NSE, KGE', Pearson r, and variance ratio y are better
in highly seasonal catchments across all 13 models, and most of these differences are statistically significant. KGE' (1/Q)
shows a similar pattern except for some of the process-based models for the United States, which struggle to simulate winter
low flows in colder regions. The bias £ is similar between the highly seasonal and less seasonal subsets.

In the seasonal catchments where typical performance metrics are high, we again see that interannual variability is more poorly
simulated. The correlations between observed and simulated annual values of 41 hydrologic signatures across 13 models are
worse in highly seasonal catchments for 79% of the cases (62% at a significance level of p=0.05). All models except WNA-
VIC-Gl perform worse in highly seasonal catchments across most (>50%) of the interannual signature metrics, and all but one
of these metrics are lower in highly seasonal catchments across most of the models.

Some of the differences in performance are quite large. For example, the Spearman rank correlations for monthly flows from
November to April are close to 1 (perfect) for less seasonal catchments and below 0.5 for some models in highly seasonal
catchments. The predictions of annual minima, high and low pulses, and rising and falling limbs are also substantially worse
in highly seasonal catchments.

In Section S4 we present various robustness tests of these results. In Fig. S6 we repeat the analysis in Fig. 4 but calculate the
goodness-of-fit of the hydrologic signatures using the NSE, rather than the Spearman rank correlation. The patterns are similar
to Fig. 4, but many of the NSE values of the hydrologic signatures are negative. For example, NSE(Qpep,) is negative in 15 of
18 models for highly seasonal catchments versus only 2 models in less-seasonal catchments. In Figs. S7 and S8 we changed
the splitting threshold (seasonal variance fractions of 0.4 and 0.6, instead of 0.5). We find that our analysis and conclusions
are insensitive to these changes. In Figures S9-S12 we split the catchments based on four different indices (the streamflow
concentration index QCI, the coefficient of variation of the mean annual hydrograph COV(Q), the aridity seasonality index
Imr, and the fraction of precipitation as snow f;). For f;, the snowier catchments generally displayed higher NSE and KGE'
values, but lower scores on interannual metrics, consistent with the pattern shown in Fig. 4. For QCI and COV(Q), the
interannual performance was worse but NSE and KGE' values were neither uniformly higher nor lower in the more-seasonal
group. For the aridity seasonality index I no clear patterns emerged.

Our analysis does not directly identify the causes of poor interannual performance in highly seasonal catchments, but we
hypothesize that model optimization algorithms, model structures, and data quality and quantity all play a role.

First, model optimization algorithms may bias training away from highly seasonal catchments. Seasonal variance is predictable
and can be reproduced quite accurately with models of low complexity (Knoben, 2024). Where models are optimized
simultaneously across many catchments, optimization algorithms may therefore greedily simulate the seasonal variance in
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seasonal catchments and neglect interannual and irregular variance. When seasonal variance is well-simulated, algorithms will
prioritize improvements to modelling the irregular and interannual components in less-seasonal catchments where these
improvements result in the largest increase to the average NSE. Learned human biases for what a ‘good’ simulation looks like
could also bias modellers to neglect catchments where errors appear small compared to the seasonal pattern, since expert
opinions and current quantitative metrics have been shown to be mostly consistent (Gauch et al., 2023). However, several of
the models that we analysed were calibrated individually to each catchment, so this explanation is not sufficient on its own.
Second, model structures often do not include important hydrologic components for highly seasonal catchments, such as glacier
change, avalanching, and vegetation-moisture feedbacks (D’Odorico et al., 2007; Koplin et al., 2013; Staal et al., 2020). We
note that the two models in Fig. 3 that were explicitly developed for alpine regions (WNA-VIC-GI and CE-COSERO, which
both include glacier modules) were the only models to have higher interannual NSEs in highly seasonal catchments. This
suggests that there may be considerable scope for improving the simulation of interannual variability in highly seasonal
catchments by improving model structures.

Third, data quality and quantity are often lower in remote polar, alpine, and tropical regions. Long-term weather stations tend
to be scarce in these regions, which means that the gridded meteorological data used to run models may not accurately capture
interannual climate variability (Burton et al., 2018), and therefore interannual streamflow variability will also be poorly
modelled. There are also few gauged streams in highly seasonal regimes globally (Krabbenhoft et al., 2022), and optimization
algorithms that aim to maximize the average performance across many catchments will not prioritize improving simulations

for a small number of highly seasonal catchments.

17



https://doi.org/10.5194/egusphere-2025-3851

Preprint. Discussion started: 20 October 2025 EG U h

© Author(s) 2025. CC BY 4.0 License. spnere
[CHON

GLOB-LSTW1 { 0—05- ﬂzgn' ﬂ‘ ?- T D% | n—oﬂ_‘ T T -
- om | ©
> - ' o 2z 3 |=ziz
= - = = o = —n o} m | @257
s 7] © = = g — = £33
o m o m 1 S = oo Q
—3h o L E < = o w 5 QD
?.‘_{’ x |~g = ?":“ B ~ =]
o b — ®
o— o— — o—pa _
5 i 5 i 5 i ) ] 3 i 5 7
S = == 2 % e 3 T 7
C q4 4—~9 4—*: 4—0‘ Cd o
=2 - |z —— |z =2 o =z o
=\ =1r =% = 3~ == | 8
>
————o -—
— — — — - * 3
=5 ' ] T TS ] -]
w1 4 I [ [ o ] E3
] - ] ad =
‘f ~;‘l— ue o o £ — ‘;
] o o o —
up “ |o D &£ | & o = o == o o
=41 =% @ = ol = on o ‘m B -1-‘.:_ ;a L" = g
an ] - M—c § o | & oo |§ o I —
i £ £ 8 g 13
G- £ = |& ol = < = = <
e &+ =3 =
L < = - =
WIC-Gl | o—ph =
o 1 a ] 1 0 1 0 1 0 1 -
- o % [0 % [o o [ o 2 ] ]
- |37 = |3 2 3 = 13 "% 3 = | =
2 ® ) - |8 - |8 % 3g = >
= » o - ) ™ @ F 2 g‘; o 3
! i | L 1 :;;‘ ) e 2s| [ 5§ ¢
‘ o v o|g & e = |a % a 33 3
= < < 2 = TE o
o = o = =
£ |2 i |2 i |8 I =5
o—pm o—ph o—ph S= o—ph = o—ph _ —
H a 1 ) 1 o 1 0 1 0 H 2_
— @
T ™ © e ™ o e o -2 =
2ol =L = = = o
= 3 = 3 ~ 3 — (2 “= |2 - 2 3
= |5 &5 & | = |2 = = .2 £z 2
g = w ~ b3 o — g=1 L 33 [ D
FEman] , ® : - : e | o ||| % e g 5c s
s = = oo = = o o g “= g E 3 2 [ §
] .,5 \.5 B ﬂ < df—o = ni =
] E‘ = E ° M=o ) . is] | — D
=t Tl e T e e e e IS =
i 1 il 1 0 1 o 1 o 1 =3
S _ 2
i % = [Pt = = A % ® —-
13 g —t o ::: .2 — z — - — | 5
b= = —— g‘? Z| | — L ] = [ P— 3= 2 o)
G | 59| w— =] g r3 Eg - 25 =
o = =, 20 o . B — s ~
%o 2 = |32 B3 e o " g2 - 22 S o Catchment Subset
2—o £ — =a ."_".(g_ = g -~ =3 =2 o o 4 Highly Seasonal
= & = = = R i (0 asonal0°:>0.5)
5 i 5 i 3 ] S ] } i - ° Lzess Seaézonﬁl
— <[
o [ % 3 ol % ™ § (07 sas0nalf 07,50.5)
S z g2 B8 | s = 28 | C@ — .
g - 23 —, |a o — ;%‘3 - g_ Q0 erformance in
8 = @, = .
S g | gs P AR g .‘% = & o highly seasonal
: w a:: = N
z = = ‘g b = i - 5 catchments is:
— = — — —c (=] P
—— Significantly Better
o 7 3 T ) T 3 T i T — g y
% S o Better
= B e < B @ Equal
Mo | D « | D L (2R ;—c
2 = o ol = * s on 2 H Q Worse
8 g T |3 o i —n g £3 Significantly W
(9] E 3 - ul c @ +— Significantly Worse
= = = |5 = 5 5 \ J
g = |— e g -2 o
5= £ s = = @
p— pa— —— = ]

] i H i i & i [

Median value of performance metric

340

Figure 4: Catchments in high-benchmark NSE regions generally perform better than low-benchmark catchments on typical

performance metrics which combine intra and interannual variance (top row) but are significantly worse when evaluated on other

metrics that focus on interannual variability. The arrows point from the median value for low-benchmark catchments to the median

value for high-benchmark catchments. Significance is determined at p<0.05 using the unpaired Mann-Whitney U-test. Note that the
345 median NSE, KGE', and KGE' (1/Q) are negative for GLOB-GLOFAS in both highly seasonal and less seasonal catchments.
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Indeed, the global distribution of stream gauges is very biased (Krabbenhoft et al., 2022), and highly seasonal catchments are
underrepresented in the datasets we analysed. Cold climates with cold or very cold winters (as defined in the Képpen-Geiger
climate classification by Beck et al., 2018) represent 15% of global non-frozen lands (excluding perennially ice-covered
regions) but only 10% of the catchments in our selected datasets, and polar tundra occupies 6.7% of global land and just 2.4%
of catchments. The tropical zone is even more underrepresented: tropical rainforest and tropical monsoon climates represent
6.2% and 4% of global lands, and collectively generate 39% of global runoff (based on Beck et al., 2018 and Ghiggi et al.,
2019), but only 0.9% and 0.8% of catchments in our datasets are located in these zones, respectively.

Other compilations of streamflow data are even more biased, particularly in underrepresenting tropical regions. Caravan, a
popular compilation of 6830 catchments (Kratzert et al., 2023), includes only 8 tropical rainforest and 5 tropical monsoon
catchments. Another initiative, the Reference Observatory of Basins for INternational hydrological climate change detection
(ROBIN), includes streamflow data and catchment polygons for 2265 near-natural streams worldwide, but only 19 tropical
rainforest and 6 tropical monsoon catchments (Turner et al., 2025).

Our understanding of hydrologic processes and change in highly seasonal regimes is thus impeded not just by poor modelling
of interannual variability, but also by the underrepresentation of these regimes in the datasets that are currently available and
widely used in the hydrological modelling community. Efforts to increase the representation of these regimes could include
making existing data publicly available (eg. Lin et al., 2023), digitizing paper records (eg. Bathelemy et al., 2024; Henck et
al., 2011), or installing new stream gauges. However, we acknowledge that at least some of the causes of global gauge biases

are not easily overcome (Krabbenhoft et al., 2022).

5 Conclusions & Recommendations

Streamflow time series are made up of interannual, seasonal, and irregular components, and models can perform very
differently with respect to these three components. We recommend that authors evaluate how well models simulate each
component to understand how well a model may extrapolate to different locations or climate conditions. This recommendation
is separate from, but complementary to, the recommendation to study the constituent components of the KGE (Cinkus et al.,
2023; Gudmundsson, Wagener, et al., 2012; Gupta et al., 2009). Our findings have several relevant consequences.

First, we provide further evidence that using the same performance thresholds to judge hydrological models across catchments
is ill advised. Especially in tropical, alpine, and polar climates it is generally easier to achieve high NSE values: the
climatological benchmark NSE, is often higher than 0.5 and occasionally even higher than 0.8. We observe, in Figures 3 and
4, that hydrologic models do achieve higher NSE and KGE values in these highly seasonal, high-benchmark catchments. It is
therefore important to contextualize model performance with climatological and other benchmark models (Knoben, 2024).
Second, since many studies use performance assessments on historical observations to judge the model’s utility for climate
projections, it is critical to choose evaluation metrics that are suitable for both the study location and model purpose. We show

that high NSE values often hide inferior simulations of interannual variance, including changes in ecologically relevant
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hydrologic signatures. This is most evident in tropical, alpine, and polar regions, where most of the variance in streamflow is
seasonal. Poor interannual performance in these regions (and in some cases almost complete failure to simulate year-to-year
variability) raises concerns about the ability of these models to accurately simulate nonstationary hydrologic processes and
responses to climate change. This is especially worrying because these regions may be some of the most vulnerable to climate
change (Flores et al., 2024; Pepin et al., 2022; Rantanen et al., 2022) and are historically less-well studied regarding hydrologic
extremes (Stein et al., 2024).

We encourage the community to pay more attention to interannual variance and to the highly seasonal regimes where it is most
poorly modelled. This could include developing new calibration targets and objective functions to train models that improve
the representation of interannual variance. Some suitable calibration targets include the interannual NSE introduced in section
2.3, and the correlations of the hydrologic signatures in Table 1. Lastly, we stress the need to collect and publish observations

from more tropical, alpine, and polar catchments.

Code availability: Codes necessary to reproduce the analyses in this study are available at

https://doi.org/10.5281/zenodo.16761320

Data availability: All data used in this study are available from their original sources. Streamflow data are available from
CAMELS-AUS v2 (https://doi.org/10.5281/zenodo.14289037) (Fowler et al., 2024);, CAMELS-BR
(https://doi.org/10.5281/zen0d0.3709337) (Chagas et al., 2020), LamaH-CE (https://doi.org/10.5281/zenodo.4525244)
(Klingler et al., 2021), CAMELS-CL (https://doi.pangaea.de/10.1594/PANGAEA.894885) (Alvarez-Garreton et al., 2018),
CAMELS-DK (https://doi.org/10.22008/FK2/AZXSYP) (Liu et al., 2024), CAMELS-DE
(https://doi.org/10.5281/zenodo.12733967) (Loritz et al., 2024), CAMELS-FR (https://doi.org/10.57745/WH7FJR) (Delaigue
et al., 2024), CAMELS-GB (https://doi.org/10.5285/8344¢4f3-d2eca-44f5-8afa-86d2987543a9) (Coxon et al., 2020), LamaH-
ICE (https://doi.org/10.4211/hs.86117a5f36¢cc4b7c90a5d54e18161c91) (Helgason & Nijssen, 2024), CAMELS-IND
(https://doi.org/10.5281/zenodo.14005378) (Mangukiya et al., 2025), CAMELS-LUX
(https://doi.org/10.5281/zenodo.13846619) (Nijzink et al., 2024), CAMELS (https://doi.org/10.5065/D6G73C3Q) (Newman
et al., 2015), HYSETS (https:/doi.org/10.17605/OSF.IO/RPC3W) (Arsenault et al., 2020), CAMELS-CH
(https://doi.org/10.5281/zenodo.7784632) (Hoge et al., 2023), R-ArcticNET (https://www.r-

arcticnet.sr.unh.edu/v4.0/index.html) (Lammers & Shiklomanov, 2000), the Global Runoff Data Centre

(https://grdc.bafg.de/), and three Caravan community extensions not associated with peer-reviewed publications
(https://doi.org/10.5281/zenodo.15181680, https://doi.org/10.5281/zenodo.13320514, and
https://doi.org/10.5281/zenodo.15040948).

Model simulations are available from GLOB-LSTM1 and GloFAS (https://doi.org/10.5281/zenodo.8139379) (Nearing et al.,
2024), GLOB-LSTM2 (https://doi.org/10.5281/zenodo.15272903) (Yang et  al, 2025), BR-LSTM
(https://github.com/sruzzante/NSE-and-Variance-Components), CH-LSTM and CH-PREVAH (Basil Kraft, personal
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communication) (Kraft et al., 2025), ENA-LSTM (https://doi.org/10.17605/OSF.10/3S2PQ) (Arsenault et al., 2023), US-
LSTM (https://doi.org/10.5281/zenodo.10139248) (Kratzert et al., 2024), US-6HBV2.0UH
(https://doi.org/10.5281/zenodo.13774373) (Song et al., 2025), BR-MGB-SA (https://doi.org/10.5281/zenodo.15025488)
(Chagas et al., 2020; Siqueira et al., 2018), CE-COSERO (https://doi.org/10.5281/zenodo.4525244) (Klingler et al., 2021),
the US-NHM (https://doi.org/10.5066/P9PGZEOQS) (Regan et al., 2019), WNA-VIC-GI
(https://data.pacificclimate.org/portal/hydro_stn_cmip5/map/) (M. Schnorbus, 2018), and US-FUSE, US-HBV, US-
mHM,US-SAC-SMA, and US-VIC (https://doi.org/10.4211/hs.474ecc37¢7db45baad25¢cdb4fcibblel) (Kratzert, 2019;
Mizukami et al., 2019; Newman et al., 2017; Seibert et al., 2018).
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