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S1: Benchmark KGEs

For the climatological benchmark model, the NSE and KGE are closely related. Figure S1
shows the benchmark KGEs for the 20,338 catchments.
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Figure S1: A: Climatological Benchmark KGEs for 20,338 catchments. B: Benchmark KGEs by Koppen-Geiger climate
classification.
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For a climatological benchmark model, where the modelis calculated and tested on the
same data, the KGE is uniquely and monotonically defined by the NSE. The NSE can be
written as:

NSE = 2ra — a? — p? [S1]

Where ris the Pearson correlation coefficient, « is the ratio of standard deviations o in the
simulated (s) and observed (o) time series, and f§ is the bias.

Os
a==> [S2]
Po=" [53]

Since the climatological model is generated by averaging the observed time series, 5, = 0
forthe benchmark NSEg.

NSE,, = 2ra — a? [S4]
The KGE is defined as:

KGE=1—/(r—-1)%+(a—1)2+ (B —1)2 [S5]



Where « is as defined above and:

HUs
== S6
p=1 [56]
Again the bias term f — 1 = 0. We can therefore expand and rearrange the KGE.s:
KGE.,, =1—Vr2+a?2—2r —2a+2 [S7]
Substituting for a? we get KGE as a function of NSE:
KGE., =1—+r2—2r + 2ra — NSE — 2a + 2 [S8]
Now ris defined as:
r= cov(o,s) [89]
0509

Where cov(o,s) is the covariance of observed and simulated (climatological) time series.
Substituting a:

r = o) [S10]

Os

For a climatological model, the covariance of the observed and simulated time series is
equal to the variance in simulated time series. This can be shown as follows' (equations
S11 to S20):

cov(o,s) = % t=1(s¢ — 8)(0; — 0) [S11]

Now consider that the observed time series is the climatological model s; plus some zero-
mean noise €;:

0y = S¢ + € [S12]
And:
§5=0 [S13]
cov(0,5) = =Xty (s — §)(s, + €, — 5) [S14]
Now expanding and simplifying:
cov(0,5) ==Xt ((se — )2 + €,(s. — 9)) [S15]
cov(o,s) = a2 + %Z?:l €(sp — 35) [S16]

Assuming a 365-day year and no missing data for any year, this summation can be written
over d=365 days and y=Y years.

"We used ChatGPT to assist with this derivation: https://chatgpt.com/share/6839f23b-62fc-800c-b18a-
48aa91df2b80



https://chatgpt.com/share/6839f23b-62fc-800c-b18a-48aa91df2b80
https://chatgpt.com/share/6839f23b-62fc-800c-b18a-48aa91df2b80

365 Y

1
_ 2 2 2 _ =
cov(o,s) = a¢ + Y €qy(Sq — )
d=1y=1

Since (s; — 5) depends only on d we can take it out of the right-most summation:

365

Y
1
_ 2 e
cov(o,s) = af + 365 YZ (sq —95) Z €dy
d=1 y=1

By construction the noise is zero-mean, Z§=1 €ay = 0, so:

cov(o,s) = a2

Therefore equation S10 simplifies to:

And equation S4 simplifies to:
NSE., =12 = a?
Equation S8 can then be simplified:

KGE,, =1—+v2+./2 X NSE,

Using leave-one-out cross-validation

[S17]

[S18]

[S19]

[S20]

[S21]

[S22]

In our analysis we used leave-one-out cross-validation to construct the climatological time
series, which means that in equation S17 above we must replace (s; — §) with (sd’y — s_y)
since the climatology changes with each analysed year. The second term in equation S17

is then always less than or equal to zero, since the noise correlates negatively with the

climatology.

In Figure S2 we plot the KGE., against the NSE.; for the 20,338 catchments analyzed. For

long time series The KGE approaches the ideal line (equation S22).
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Figure S2: Scatterplot of benchmark KGE and NSE values. The idealized relationship is shown in blue, which is derived for
a climatological model that is calculated and tested on the same data without cross-validation. For long time series the
points plot near to the idealized line.

S2: Relationship between benchmark NSE and climate indices

We calculated three climate indices for each catchment following Knoben et al. (2018). We
used WorldClim 2.1 data (Fick & Hijmans, 2017) for temperature (T) and precipitation (P)
and the Global Aridity and PET database (Zomer et al., 2022) for potential evaporation
(PET). The resolution of these data are 30 seconds (approximately 1 km at the equator). All
calculations are performed on the raster data and then the indices are averaged over each
catchment.

First, Thornthwaite’s moisture index MI(t) was calculated for each month.

PET(t)

1- TR P(t) = PET(t)
MI(t) = PO [S23]
PETO 1, PET(t) < P(t)
Then the aridity I,,, the seasonality I, ;, and the fraction of precipitation as snow fg are
calculated:

I = — 212, MI(t) [524]

Ipn,r = max(MI(1,2, ...,12)) — min(MI(1,2, ..., 12)) [S25]
__ Y P(T(t)=<0°C)

f, = SE o [S26]

Figure S3 shows scatterplots of the Benchmark NSE against these three climate indices.
Figure S4 shows the benchmark NSE as a function of seasonality and snow fraction. We
binned the catchments by I, . and f; and took the median benchmark NSE for each 2D bin.
Figure S5 shows the benchmark NSE as a function of seasonality and aridity, for snow-free
catchments (f; = 0).
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Figure S3: Scatterplots of the Benchmark NSE against aridity, aridity seasonality, and snow fraction. There is no clear
relationship to aridity. Higher seasonality is associated with higher benchmark NSEs, but the relationship is noisy and
many highly seasonal catchments have near-zero benchmark NSEs . On the other hand, increasing snow fraction (above
about 0.25) is strongly associated with higher benchmark NSEs.
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Figure S4: The median benchmark NSE for each cell in the climate space defined by seasonality Im, and fraction of
precipitation as snow fs. Catchments with higher snow fractions have higher benchmark NSEs. There is a slight gradient in
the seasonality, with more seasonal catchments exhibiting slightly higher benchmark NSEs overall.
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Figure S5: The median benchmark NSE for each cell in the climate space defined by seasonality and aridity, for
catchments where the fraction of precipitation as snow is 0. In general more seasonal catchments have higher
benchmark NSEs, although some very seasonal catchments have low benchmark NSEs.



S3: The overall NSE is the weighted mean of the component NSEs
We begin with the following definition for the NSE:
NSE=1-% [527]

(o]

Where ¢ is the error variance of the o2 is the variance of the observations. Then replace
o2 by its definition:
1 1
NSE =1 —— x——%1(qo — q5)° [S28]
o
Where g,and g, are the observed and simulated discharge. q,and g, can also be written as
the sum of their components: interannual i, and i;, seasonal s, and s, and irregular 1, and
Ts.
NSE =1 -— ? X —Z L (i, + 5, +7, — s —Ss — 5,)? [S29]
o
We can expand the brackets and use the orthogonality of the decomposition to cancel
terms. In particular, all cross-component terms (eg i, X s, ori, X Ss) can be cancelled

because the decomposition (both the Fast Fourier Transform and the calculation of the
seasonal component) is based on orthogonal basis functions?.

595.9 + S% + Sete — S é — SoSs —

N Foly + ¥555 + T2 — #5is — Fo55 — rr+

NSE—l——x t1|

ig + éese + ée’e - iols ‘ S5 é s + \
! [S30]

—igi, —igSe — gty + 12 +isSs +igh+
\_Ssée — 5580 — S5t + 5#5 + Ss + S5ts +/

. . 2

—¥teg — 55 — TsTy + tsts + 555 + rg

NSE =1 -— U— X —Z L (2 = 20,0 +i2 + s2 — 25,55 + s2 + 12 — 21,1, +12)  [S31]
)

NSE =1 = o X 37 St {llo = 15)” + (5o = 5% + (1, = 1)) [$32]

We can define the error variance of the interannual, seasonal, and irregular components as
02, 04, and 6Z,, respectively:

0l = ﬁ t=1(lp — i5)? [S33]

025 =~ Xi=1(s, — 55)? [S34]

0ér = —Z L, —1)? [S35]

Then rewrite equation S32:

2This ignores leap years and assumes an integer number of years of data. In practice when each year does
not have exactly 365 days there can be small deviations from orthogonality. However, we found that these
effects are negligible: across 16988 modeled catchments from the 18 models that we analysed, equation
S39 was always accurate within an error of 3x10°8,



2, 2 2
NSE = 1 — Zeit%s?%r [S36]

Oo

Using the fact that the sum of the variance fractions is 1:

2 2 2 2 2 2
o; +0o. +0; o;;+0és+0
interannual ™ Yseasonal™ Yirregular €iTO€sTO¢r
NSE = - = — : [S37]
o5 002
2 2 2 2 2
_ Ointerannual O¢i Oseasonal Oés Tirregular Iér
NSE = =mtere 1-— + ~seaspnal (] — — + T (1 - — [S38]
o interannual o seasonal o irregular
2 2 2
_ Ointerannual Oseasonal airregular
NSE = ) NSEinterannual + o2 NSEseasonal + o2 NSEirregular [389]
(] [ [

Equation S39 is the weighted sum of the component NSEs, so we are done.

S4: Comparing Goodness-of-fit statistics for models based on
different thresholds and indices

The following figures show alternative versions of Figure 3 in the paper, using different
thresholds (seasonal variance fraction of 0.4 and 0.6) and different indices (the streamflow
concentration index QCI, the coefficient of variation of the streamflow (COV(Q)), the
fraction of precipitation as snow (fs) and the aridity seasonality index In,.

fs and I, ,- are defined above. The streamflow concentration index is defined following Han
et al (2024):

1 =-2=% 100

[==="2-x1 S40
W= o) [540]
Where Q; is the monthly climatological streamflow. QCIl ranges from a theoretical
minimum value of 8.3 (constant streamflow throughout the year) to a maximum of 100 (all
streamflow occurs in one month).

We chose to use the coefficient of variation of the streamflow (COV(Q)) because the COV
has been used to measure seasonality in precipitation (eg. Fick & Hijmans, 2017). We
calculate the COV of the climatological streamflow Q4 (the interannual mean of each
calendar day). For leap years both December 30 and 31 were used as the 365" day of the
year.

cov(Q) = %,d =12, ..,365 [S41]
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Figure S10: Equivalent to Figure 4 in text but catchments are divided by the coefficient of variation of the mean annual
hydrograph (COV(Q)) using a threshold of 1.
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threshold of 1 for the aridity seasonality index (Im,).
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S5: Long Short-Term Memory model for Brazil

Since we identified Brazil as a location with very high benchmark NSE values, as well as a
large amount of good-quality data, we wanted to include some models from Brazil in our
analysis. Unfortunately we were unable to find any freely accessible machine learning
hydrologic models that included catchments from across Brazil, so we created a Long
Short-Term Memory (LSTM)model using the Camels-BR dataset, version 1.2 (Chagas et al.,
2020, 2025)

We created an LSTM using the neuralhydrology package for Python (Kratzert et al., 2022).
We used data from the period 01/01/1980 to 30/12/2020, which represents a compromise
between maximizing record length and maximizing the number of available input datasets.
The Camels-BR dataset includes streamflow and meteorological data for 897 catchments,
and we used all catchments for training, validation, and testing. We trained on data from
2010-2020, validated on data from 1980-1989, and tested on data from 1990-2009. We
reserved a long period (20 years) for testing because the objective here is to analyse
differences in testing performance across catchment types, and not necessarily to
maximize the model performance overall.

We included all available static attributes in the model, in addition to one-hot encoding for
the basin ID.

For dynamic attributes we included all variables that were available for the full 41-year
period. These are summarized in Table S1.
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Table S1: Dynamic Variables used in the LSTM

Variable

Source(s)

Precipitation

CHIRPS', CPC?, ERA5-Land?®, MSWEP*

Minimum Temperature

CPC?, ERA5-Land?®

Maximum Temperature

CPC?, ERA5-Land?®

Mean Temperature

ERA5-Land?®

Actual Evapotranspiration

Gleam®, ERA5-Land?

Potential Evapotranspiration

Gleam, ERA5-Land?®

Soil Moisture (surface) Gleam®
Soil Moisture (root zone) Gleam®
Soil Moisture (layers 1-4) ERA5-Land?®

'(Funk et al., 2015), ?2(Chen & Xie, 2008; NOAA Physical Sciences Laboratory, 2025),

3(Mufoz Sabater, 2019), 4(Beck et al., 2019) ®

The most important hyperparameters are summarized below in table S2.

Table S2: Hyperparameters used in the LSTM

Hyperparameter Value
Hidden size 256
Batch size 256
Sequence length 365
Initial forget bias 3
Output dropout 0.4
Output activation Linear
Optimizer Adam
Loss NSE
Epochs 50

Learning rate

1e-4 (epochs 1-30)
1e-5 (epochs 31-40)
5e-6 (epochs 41-50

These values are typical for LSTMs (eg. Kratzert et al., 2024). We did not tune the
hyperparameters except for the learning rate, which we reduced because with a typical
learning rate of 1e-3, the maximum validation NSE occurred on the first epoch. Even with
the reduced learning rate the maximum validation NSE tended to occur within the first ten
epochs. Further reductions to the learning rate resulted in a lower maximum validation

NSE.

We generated an ensemble of five models with the same hyperparameters, and averaged

the predictions.

The validation and testing NSE or the ensemble model are shown in Figure S10. The
median validation NSE is 0.75, while the median test NSE is 0.72.
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Figure S13: The empirical cumulative density function of NSE values for the ensemble LSTM model.
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S$6: Variance Components

Figure S14 shows histograms of the three variance components for 17,245 catchments.
Figures S15 to S32 show examples of decomposed time series for 18 example catchments
from around the world. Figures $S15-S20 show catchments with high interannual variance,
Figs. S21-S26 show catchments with high irregular variance, and Figs. S27-S32 show
catchments with high seasonal variance. The examples were not chosen systematically
but are intended to represent a broad geographical range.
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Figure S14: The distribution of variance fractions for all 17,245 catchments plotted in Figure 1 of the manuscript.
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S6.1: Examples of interannually variable streams

La Durdent a Vittefleur
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Figure S15: Decomposed time series for La Durdent a Vittefleur (Sandre G600061010), an interannually variable stream in
Normandy, France.

Rhoads Fork near Rochford, SD
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Figure S16: Decomposed time series for Rhoads Fork Near Rochford, SD (USGS 06408700), an interannually variable
stream in South Dakota, United States.
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Ysyry Paraguéi
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Figure S17: Decomposed time series for Ysyry Paraguai (Paraguay River) at Asuncion, Paraguay, (GRDC 3368100) an
interannually variable river.

Rangitaiki River
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Figure S18: Decomposed time series for the Rangitaiki River at Murupara, Aotearoa (New Zealand), (GRDC 5863120) a
river with 62% interannual variance.



Rio Cochiguaz En El Pefion
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Figure S19: Decomposed time series for the Cochiguaz River (El Perion, Chile), (Direccion General de Aguas 4313001) an
interannually variable stream.

Syr Darya at Tyumen-Aryk
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Figure S20: Decomposed time series for the Syr Darya (Tyumen-Aryk, Kazakhstan), (GRDC 2316200) an interannually
variable stream, where interannual variability has been driven largely by water withdrawals for irrigation beginning in 1973
(Zouetal., 2019)
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S6.2: Examples of highly irregular streams

Mawheranui (Grey River) at New Waipuna
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Figure S21: Decomposed time series for the Mawheranui River (New Zealand), (GRDC 5867710), a stream with highly
irregular variance.

Little Barachois River Near Placentia
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Figure S22: Decomposed time series for the Little Barachois River (Newfoundland, Canada), (Water Survey of Canada
02ZK003), a stream with highly irregular variance.



Ugab River
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Figure S23: Decomposed time series for the Ugab River (Namibia), (GRDC 1258202), a stream with highly irregular
variance.

Dark Canyon at Carlsbad, NM
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Figure S24: Decomposed time series for Dark Canyon at Carlsbad (New Mexico, United States), (USGS 08405150), a
stream with highly irregular variance.



Gieddejohka River, Norway
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Figure S25: Decomposed time series for the Gieddejohka River (Leirpoldvatn, Norway), (GRDC 6731750), a stream with

highly irregular variance.
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Figure S26: Decomposed time series for the Haliya River (Telangana, India), (Camels-IND 04012), a stream with highly
irregular variance.
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S6.3: Examples of highly seasonal streams

Niger River at Dire
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Figure S27: Decomposed time series for the Niger River at Dire (Mali), (GRDC 1134700), a highly seasonal river.

Rio Orinoco at Puente Angostura
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Figure S28: Decomposed time series for the Orinoco River at Puente Angostura (Venezuela), (GRDC 3206720), a highly
seasonalriver.
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Ubangi River at Bangui
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Figure S29: Decomposed time series for the Ubangi River at Bangui (Central African Republic), (GRDC 1749100), a highly
seasonalriver.

Irrawaddy River at Pyay
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Figure S30: Decomposed time series for the Irrawaddy River at Pyay, Myanmar, (GRDC 2260700), a highly seasonal river.
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Talgar River, Kazakhstan
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Figure S31: Decomposed time series for the Talgar River at Talgar (Kazakhstan), (GRDC 2314400), a highly seasonal river.

Takhini River near Whitehorse
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Figure S32: Decomposed time series for the Takhini River near Whitehorse (Yukon, Canada), (Water Survey of Canada
09AC001), a highly seasonal river.
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Rio Santa Cruz at Charles Fuhr

— 1500 = GZ(Q) — 1et05
o
£ | 1000 -
= 500 =
600 =
_ — ——
§ 300 = [G (interannual)/a*(Q) = 0_111
]
3 07
£ | -z00 -
g 12007 o*(seasonal)/o*(Q) = 0.87
5 | 9004
o
& | s00 -
300
% 300 5 [Oz(ifregu|al’),"02(Q) =0.02 |
=
g | °7
- -300 =

T T T T T
1995 2000 2005 2010 2015

Figure S33: Decomposed time series for the Santa Cruz River at Charles Fuhr station (Santa Cruz, Argentina), (GRDC
3276800), a highly seasonal river.
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S7: Climatological NSE., based on differential split samples

When hydrologic models are intended to be used for climate change projection, a popular
technique is the differential split sample, where the dataset is split to maximize the
difference in some climate variable between the training and testing periods (Klemes,
1986). If the model achieves a high NSE when evaluated on a climate that is warmer,
colder, wetter, or drier than it was trained on, then itis assumed to be good at extrapolating
to a future climate.

We tested for split sample robustness using catchments in Brazil, Switzerland, and North
America. For all catchments with at least 20 years of data, we split the years into
warm/cold and wet/dry differential split samples. We used water years beginning October
1°t, which is consistent with standard practices in each location (Almagro et al., 2021;
Hoge et al., 2023; United States Geologic Survey, 2016).

To determine the warm/cold and wet/dry splits we used ERA5-Land data for Brazil and
North America and gridded daily precipitation and temperature products from Meteo-
Swiss for Switzerland (Hoge et al., 2023). We evaluated the benchmark NSE when ‘trained’
on one half of each differential split sample and tested on the other half, and averaged the
NSE across the two splits.

For comparison, we also randomly split the years into two equal sets, repeated the random
split 10 times, and took the median benchmark NSE across the 10 splits.

Figure S34 shows the benchmark NSE for three sample splitting routines: random, a
warm/cold differential split, and wet/dry differential split. These benchmark NSE values
are shown for three datasets, covering Brazil, Switzerland, and North America. We find that
in general, differential splitting of the sample reduces the benchmark NSE, as expected.

However, the reduction in benchmark NSE is smallest for the arctic, alpine, and tropical
regions that have the highest benchmark NSEs to begin with. In other words, in these
regions it is not necessary to accurately account for interannual climatic variability to
achieve a ‘high’ NSE under a differential split sample. Since changes to temperature and
precipitation in these regions over the next century may be much larger than historical
climate variability, the NSE is unreliable judge of a model’s suitability for climate change
projection.
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Figure S34: Splitting sampleé into warm/cold and wet/dry yeafs reduces the performance of the climatological
benchmark model, as expected. However, the reduction is smallest for the catchments that have the highest benchmark
NSE under a random split.

32



References
Almagro, A., Oliveira, P. T. S., Meira Neto, A. A., Roy, T., & Troch, P. (2021). CABra: A novel

large-sample dataset for Brazilian catchments. Hydrology and Earth System
Sciences, 25(6), 3105-3135. https://doi.org/10.5194/hess-25-3105-2021

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Dijk, A. l. J. M. van, McVicar,
T. R., & Adler, R. F. (2019). MSWEP V2 Global 3-Hourly 0.1° Precipitation:
Methodology and Quantitative Assessment. https://doi.org/10.1175/BAMS-D-17-
0138.1

Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C.D.,
& Siqueira, V. A. (2020). CAMELS-BR: Hydrometeorological time series and
landscape attributes for 897 catchments in Brazil. Earth System Science Data,
12(3), 2075-2096. https://doi.org/10.5194/essd-12-2075-2020

Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C.D.,
& Siqueira, V. A. (2025). CAMELS-BR: Hydrometeorological time series and
landscape attributes for 897 catchments in Brazil - link to files. (Version 1.2)
[Dataset]. Zenodo. https://doi.org/10.5281/zenodo.15025488

Chen, M., & Xie, P. (2008, January 8). CPC unified gauge-based analysis of global daily
precipitation. Western Pacific Geophysics Meeting, Cairns, Australia.

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate
surfaces for global land areas. International Journal of Climatology, 37(12), 4302—-

4315. https://doi.org/10.1002/joc.5086

33



Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G.,
Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards
infrared precipitation with stations—A new environmental record for monitoring
extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66

Han, J., Liu, Z., Woods, R., McVicar, T. R, Yang, D., Wang, T., Hou, Y., Guo, Y, Li, C., &
Yang, Y. (2024). Streamflow seasonality in a snow-dwindling world. Nature,
629(8014), 1075-1081. https://doi.org/10.1038/s41586-024-07299-y

Hoge, M., Kauzlaric, M., Siber, R., Schonenberger, U., Horton, P., Schwanbeck, J.,
Floriancic, M. G., Viviroli, D., Wilhelm, S., Sikorska-Senoner, A. E., Addor, N.,
Brunner, M., Pool, S., Zappa, M., & Fenicia, F. (2023). CAMELS-CH: Hydro-
meteorological time series and landscape attributes for 331 catchments in
hydrologic Switzerland. Earth System Science Data, 15(12), 5755-5784.
https://doi.org/10.5194/essd-15-5755-2023

Klemes, V. (1986). Operational testing of hydrological simulation models. Hydrological
Sciences Journal, 31(1), 13-24. https://doi.org/10.1080/02626668609491024

Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). A Quantitative Hydrological Climate
Classification Evaluated With Independent Streamflow Data. Water Resources
Research, 54(7), 5088-5109. https://doi.org/10.1029/2018WR022913

Kratzert, F., Gauch, M., Klotz, D., & Nearing, G. (2024). HESS Opinions: Never train a Long
Short-Term Memory (LSTM) network on a single basin. Hydrology and Earth System

Sciences, 28(17), 4187-4201. https://doi.org/10.5194/hess-28-4187-2024

34



Kratzert, F., Gauch, M., Nearing, G., & Klotz, D. (2022). NeuralHydrology—A Python library
for Deep Learning research in hydrology. Journal of Open Source Software, 7(71),
4050. https://doi.org/10.21105/joss.04050

Mufioz Sabater, J. (2019). ERA5-Land monthly averaged data from 1950 to present
[Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
https://doi.org/10.24381/cds.68d2bb30

NOAA Physical Sciences Laboratory. (2025). CPC Global Unified Temperature.
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html

United States Geologic Survey. (2016). What is a Water Year? Water Resources of the
United States. https://water.usgs.gov/nwc/explain_data.html

Zomer, R. J., Xu, J., & Trabucco, A. (2022). Version 3 of the Global Aridity Index and
Potential Evapotranspiration Database. Scientific Data, 9(1), Article 1.
https://doi.org/10.1038/s41597-022-01493-1

Zou, S., lilili, A., Duan, W., Maeyer, P. D., & de Voorde, T. V. (2019). Human and Natural
Impacts on the Water Resources in the Syr Darya River Basin, Central Asia.

Sustainability, 11(11), Article 11. https://doi.org/10.3390/su11113084

35



