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S1: Benchmark KGEs 
For the climatological benchmark model, the NSE and KGE are closely related. Figure S1 
shows the benchmark KGEs for the 20,338 catchments. 

 
Figure S1: A: Climatological Benchmark KGEs for 20,338 catchments. B: Benchmark KGEs by Koppen-Geiger climate 
classification. 

For a climatological benchmark model, where the model is calculated and tested on the 
same data, the KGE is uniquely and monotonically defined by the NSE. The NSE can be 
written as: 

𝑁𝑆𝐸 = 2𝑟𝛼 − 𝛼2 − 𝛽2                                                                        [S1] 

Where r is the Pearson correlation coefficient, 𝛼 is the ratio of standard deviations 𝜎 in the 
simulated (s) and observed (o) time series, and 𝛽 is the bias.  

𝛼 =
𝜎𝑠

𝜎𝑜
                                                                                     [S2] 

𝛽𝑛 =
𝜇𝑠−𝜇𝑜

𝜎𝑜
                                                                                [S3] 

 

Since the climatological model is generated by averaging the observed time series, 𝛽𝑛 = 0 
for the benchmark NSEcb.  

𝑁𝑆𝐸𝑐𝑏 = 2𝑟𝛼 − 𝛼
2                                                                       [S4] 

The KGE is defined as: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2                                         [S5] 
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Where 𝛼 is as defined above and: 

𝛽 =
𝜇𝑠

𝜇𝑜
                                                                                      [S6] 

Again the bias term 𝛽 − 1 = 0. We can therefore expand and rearrange the KGEcb: 

𝐾𝐺𝐸𝑐𝑏 = 1 − √𝑟2 + 𝛼2 − 2𝑟 − 2𝛼 + 2                                                     [S7] 

Substituting for 𝛼2 we get KGE as a function of NSE: 

𝐾𝐺𝐸𝑐𝑏 = 1 − √𝑟2 − 2𝑟 + 2𝑟𝛼 − 𝑁𝑆𝐸 − 2𝛼 + 2                                      [S8] 

Now r is defined as: 

𝑟 =
𝑐𝑜𝑣(𝑜,𝑠)

𝜎𝑠𝜎𝑜
                                                                              [S9] 

 
Where cov(o,s) is the covariance of observed and simulated (climatological) time series. 
Substituting 𝛼: 

𝑟 =
𝑐𝑜𝑣(𝑜,𝑠)

𝜎𝑠
2 𝛼                                                                          [S10] 

For a climatological model, the covariance of the observed and simulated time series is 
equal to the variance in simulated time series. This can be shown as follows1 (equations 
S11 to S20): 

𝑐𝑜𝑣(𝑜, 𝑠) =
1

𝑛
∑ (𝑠𝑡 − 𝑠̅)(𝑜𝑡 − 𝑜̅)
𝑛
𝑡=1                                                      [S11] 

Now consider that the observed time series is the climatological model 𝑠𝑡 plus some zero-
mean noise 𝜖𝑡: 

𝑜𝑡 = 𝑠𝑡 + 𝜖𝑡                                                                         [S12] 

And:  

𝑠̅ = 𝑜̅                                                                                 [S13] 

𝑐𝑜𝑣(𝑜, 𝑠) =
1

𝑛
∑ (𝑠𝑡 − 𝑠̅)(𝑠𝑡 + 𝜖𝑡 − 𝑠̅)
𝑛
𝑡=1                                                [S14] 

Now expanding and simplifying: 

𝑐𝑜𝑣(𝑜, 𝑠) =
1

𝑛
∑ ((𝑠𝑡 − 𝑠̅)

2 + 𝜖𝑡(𝑠𝑡 − 𝑠̅))
𝑛
𝑡=1                                           [S15] 

𝑐𝑜𝑣(𝑜, 𝑠) = 𝜎𝑠
2 +

1

𝑛
∑ 𝜖𝑡(𝑠𝑡 − 𝑠̅)
𝑛
𝑡=1                                                     [S16] 

Assuming a 365-day year and no missing data for any year, this summation can be written 
over d=365 days and y=Y years. 

 
1 We used ChatGPT to assist with this derivation: https://chatgpt.com/share/6839f23b-62fc-800c-b18a-
48aa91df2b80  

https://chatgpt.com/share/6839f23b-62fc-800c-b18a-48aa91df2b80
https://chatgpt.com/share/6839f23b-62fc-800c-b18a-48aa91df2b80
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𝑐𝑜𝑣(𝑜, 𝑠) = 𝜎𝑠
2 +

1

365 ∗ 𝑌
∑∑𝜖𝑑,𝑦(𝑠𝑑 − 𝑠̅)

𝑌

𝑦=1

365

𝑑=1

                                  [S17] 

Since (𝑠𝑑 − 𝑠̅) depends only on d we can take it out of the right-most summation: 

𝑐𝑜𝑣(𝑜, 𝑠) = 𝜎𝑠
2 +

1

365 ∗ 𝑌
∑((𝑠𝑑 − 𝑠̅)∑ 𝜖𝑑,𝑦

𝑌

𝑦=1

)

365

𝑑=1

                               [S18] 

By construction the noise is zero-mean,  ∑ 𝜖𝑑,𝑦
𝑌
𝑦=1 = 0, so: 

𝑐𝑜𝑣(𝑜, 𝑠) = 𝜎𝑠
2                                                                   [S19] 

Therefore equation S10 simplifies to: 

𝑟 = 𝛼                                                                              [S20] 

And equation S4 simplifies to: 

𝑁𝑆𝐸𝑐𝑏 = 𝑟
2 = 𝛼2                                                                 [S21] 

Equation S8 can then be simplified: 

𝐾𝐺𝐸𝑐𝑏 = 1 − √2 +√2 × 𝑁𝑆𝐸𝑐𝑏                                                       [S22] 

Using leave-one-out cross-validation 

In our analysis we used leave-one-out cross-validation to construct the climatological time 
series, which means that in equation S17 above we must replace (𝑠𝑑 − 𝑠̅) with (𝑠𝑑,𝑦 − 𝑠𝑦̅) 
since the climatology changes with each analysed year. The second term in equation S17 
is then always less than or equal to zero, since the noise correlates negatively with the 
climatology.  

In Figure S2 we plot the KGEcb against the NSEcb for the 20,338 catchments analyzed. For 
long time series The KGE approaches the ideal line (equation S22).  
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Figure S2: Scatterplot of benchmark KGE and NSE values. The idealized relationship is shown in blue, which is derived for 
a climatological model that is calculated and tested on the same data without cross-validation. For long time series the 
points plot near to the idealized line. 

S2: Relationship between benchmark NSE and climate indices 
We calculated three climate indices for each catchment following Knoben et al. (2018). We 
used WorldClim 2.1 data (Fick & Hijmans, 2017) for temperature (T) and precipitation (P) 
and the Global Aridity and PET database (Zomer et al., 2022) for potential evaporation 
(PET). The resolution of these data are 30 seconds (approximately 1 km at the equator). All 
calculations are performed on the raster data and then the indices are averaged over each 
catchment.  

First, Thornthwaite’s moisture index MI(t) was calculated for each month. 

MI(t) = {
1 −

PET(t)

P(t)
, P(t) ≥ PET(t)

P(t)

PET(t)
− 1, PET(t) < P(t)

                                                     [S23] 

Then the aridity 𝐈𝐦, the seasonality 𝐈𝐦,𝐫, and the fraction of precipitation as snow 𝐟𝐬 are 
calculated: 

Im =
1

12
∑ MI(t)12
𝑡=1                                                        [S24] 

Im,r = max(MI(1,2, … ,12)) − min(MI(1,2, … ,12))                                  [S25] 

fs =
∑P(T(t)≤0°C)

∑ P(t)12
t=1

                                                          [S26] 

Figure S3 shows scatterplots of the Benchmark NSE against these three climate indices. 
Figure S4 shows the benchmark NSE as a function of seasonality and snow fraction. We 
binned the catchments by Im,r and fs and took the median benchmark NSE for each 2D bin. 
Figure S5 shows the benchmark NSE as a function of seasonality and aridity, for snow-free 
catchments (fs = 0).  
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Figure S3: Scatterplots of the Benchmark NSE against aridity, aridity seasonality, and snow fraction. There is no clear 
relationship to aridity. Higher seasonality is associated with higher benchmark NSEs, but the relationship is noisy and 
many highly seasonal catchments have near-zero benchmark NSEs . On the other hand, increasing snow fraction (above 
about 0.25) is strongly associated with higher benchmark NSEs. 
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Figure S4: The median benchmark NSE for each cell in the climate space defined by seasonality Im,r  and fraction of 
precipitation as snow fs. Catchments with higher snow fractions have higher benchmark NSEs. There is a slight gradient in 
the seasonality, with more seasonal catchments exhibiting slightly higher benchmark NSEs overall. 

 

 
Figure S5: The median benchmark NSE for each cell in the climate space defined by seasonality and aridity, for 
catchments where the fraction of precipitation as snow is 0. In general more seasonal catchments have higher 
benchmark NSEs, although some very seasonal catchments have low benchmark NSEs. 
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S3: The overall NSE is the weighted mean of the component NSEs 
We begin with the following definition for the NSE: 

𝑁𝑆𝐸 = 1 −
𝜎𝜖
2

𝜎𝑜
2                                                       [S27] 

Where 𝜎𝜖2 is the error variance of the 𝜎𝑜2 is the variance of the observations. Then replace 
𝜎𝜖
2 by its definition: 

𝑁𝑆𝐸 = 1 −
1

𝜎𝑜
2 ×

1

𝑁−1
∑ (𝑞𝑜 − 𝑞𝑠)

2𝑁
𝑡=1                                                  [S28] 

Where 𝑞𝑜and 𝑞𝑠 are the observed and simulated discharge. 𝑞𝑜and 𝑞𝑠 can also be written as 
the sum of their components: interannual 𝑖𝑜 and 𝑖𝑠, seasonal 𝑠𝑜 and 𝑠𝑠, and irregular 𝑟𝑜 and 
𝑟𝑠. 

𝑁𝑆𝐸 = 1 −
1

𝜎𝑜
2 ×

1

𝑁−1
∑ (𝑖𝑜 + 𝑠𝑜 + 𝑟𝑜 − 𝑖𝑠 − 𝑠𝑠 − 𝑠𝑟)

2𝑁
𝑡=1                           [S29] 

 
We can expand the brackets and use the orthogonality of the decomposition to cancel 
terms. In particular, all cross-component terms (eg 𝑖𝑜 × 𝑠𝑜 or 𝑖𝑜 × 𝑠𝑠) can be cancelled 
because the decomposition (both the Fast Fourier Transform and the calculation of the 
seasonal component) is based on orthogonal basis functions2.  
 

𝑁𝑆𝐸 = 1 −
1

𝜎𝑜
2 ×

1

𝑁−1
∑

(

 
 
 
 

𝒊𝒐
𝟐 + 𝑖𝑜𝑠𝑜 + 𝑖𝑜𝑟𝑜 − 𝒊𝒐𝒊𝒔 − 𝑖𝑜𝑠𝑠 − 𝑖𝑜𝑟𝑠 +

𝑠𝑜𝑖𝑜 + 𝒔𝒐
𝟐 + 𝑠𝑜𝑟𝑜 − 𝑠𝑜𝑖𝑠 − 𝒔𝒐𝒔𝒔 − 𝑠𝑜𝑟𝑠 +

𝑟𝑜𝑖𝑜 + 𝑟𝑜𝑠𝑜 + 𝒓𝒐
𝟐 − 𝑟𝑜𝑖𝑠 − 𝑟𝑜𝑠𝑠 − 𝒓𝒐𝒓𝒔 +

−𝒊𝒔𝒊𝒐 − 𝑖𝑠𝑠𝑜 − 𝑖𝑠𝑟𝑜 + 𝒊𝒔
𝟐 + 𝑖𝑠𝑠𝑠 + 𝑖𝑠𝑟𝑠 +

−𝑠𝑠𝑖𝑜 − 𝒔𝒔𝒔𝒐 − 𝑠𝑠𝑟𝑜 + 𝑠𝑠𝑖𝑠 + 𝒔𝒔
𝟐 + 𝑠𝑠𝑟𝑠 +

−𝑟𝑠𝑖𝑜 − 𝑟𝑠𝑠𝑜 − 𝒓𝒔𝒓𝒐 + 𝑟𝑠𝑖𝑠 + 𝑟𝑠𝑠𝑠 + 𝒓𝒔
𝟐 )

 
 
 
 

 𝑁
𝑡=1    [S30]       

                                             
𝑁𝑆𝐸 = 1 −

1

𝜎𝑜
2 ×

1

𝑁−1
∑ (𝑖𝑜

2 − 2𝑖𝑜𝑖𝑠 + 𝑖𝑠
2 + 𝑠𝑜

2 − 2𝑠𝑜𝑠𝑠 + 𝑠𝑠
2 + 𝑟𝑜

2 − 2𝑟𝑜𝑟𝑠 + 𝑟𝑠
2)𝑁

𝑡=1      [S31] 

 
𝑁𝑆𝐸 = 1 −

1

𝜎𝑜
2 ×

1

𝑁−1
∑ {(𝑖𝑜 − 𝑖𝑠)

2 + (𝑠𝑜 − 𝑠𝑠)
2 + (𝑟𝑜 − 𝑟𝑠)

2} 𝑁
𝑡=1                     [S32] 

 
We can define the error variance of the interannual, seasonal, and irregular components as 
𝜎𝜖,𝑖
2 , 𝜎𝜖,𝑠2 , and 𝜎𝜖,𝑟2 , respectively: 

𝜎𝜖,𝑖
2 =

1

𝑁−1
∑ (𝑖𝑜 − 𝑖𝑠)

2𝑁
𝑡=1           [S33] 

𝜎𝜖,𝑠
2 =

1

𝑁−1
∑ (𝑠𝑜 − 𝑠𝑠)

2𝑁
𝑡=1          [S34] 

𝜎𝜖,𝑟
2 =

1

𝑁−1
∑ (𝑟𝑜 − 𝑟𝑠)

2𝑁
𝑡=1        [S35] 

Then rewrite equation S32: 

 
2 This ignores leap years and assumes an integer number of years of data. In practice when each year does 
not have exactly 365 days there can be small deviations from orthogonality. However, we found that these 
effects are negligible: across 16988 modeled catchments from the 18 models that we analysed, equation 
S39 was always accurate within an error of 3×10-8. 
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𝑁𝑆𝐸 = 1 −
𝜎𝜖,𝑖
2 +𝜎𝜖,𝑠

2 +𝜎𝜖,𝑟
2

𝜎𝑜
2          [S36] 

 
Using the fact that the sum of the variance fractions is 1: 

𝑁𝑆𝐸 =
𝜎𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙
2 +𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

2 +𝜎𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟
2

𝜎𝑜
2 −

𝜎𝜖,𝑖
2 +𝜎𝜖,𝑠

2 +𝜎𝜖,𝑟
2

𝜎𝑜
2                   [S37] 

𝑁𝑆𝐸 =
𝜎𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙
2

𝜎𝑜 
2 (1 −

𝜎𝜖,𝑖
2

𝜎𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙
2 ) +

𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2

𝜎𝑜 
2 (1 −

𝜎𝜖,𝑠
2

𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2 ) +

𝜎𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟
2

𝜎𝑜 
2 (1 −

𝜎𝜖,𝑟
2

𝜎𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟
2 )   [S38] 

𝑁𝑆𝐸 =
𝜎𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙
2

𝜎𝑜
2 𝑁𝑆𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙 +

𝜎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
2

𝜎𝑜
2 𝑁𝑆𝐸𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 +

𝜎𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟
2

𝜎𝑜
2 𝑁𝑆𝐸𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟            [3S9] 

 
Equation S39 is the weighted sum of the component NSEs, so we are done. 
 

S4: Comparing Goodness-of-fit statistics for models based on 
different thresholds and indices 
The following figures show alternative versions of Figure 3 in the paper, using different 
thresholds (seasonal variance fraction of 0.4 and 0.6) and different indices (the streamflow 
concentration index QCI, the coefficient of variation of the streamflow (COV(Q)), the 
fraction of precipitation as snow (fs) and the aridity seasonality index Im,r. 

𝑓𝑠 and 𝐼𝑚,𝑟 are defined above. The streamflow concentration index is defined following Han 
et al (2024): 

QCI =
∑ Qi

212
i=1

(∑ Qi
12
i=1 )

2 × 100         [S40] 

Where QI is the monthly climatological streamflow. QCI ranges from a theoretical 
minimum value of 8.3 (constant streamflow throughout the year) to a maximum of 100 (all 
streamflow occurs in one month).  

We chose to use the coefficient of variation of the streamflow (COV(Q)) because the COV 
has been used to measure seasonality in precipitation (eg. Fick & Hijmans, 2017). We 
calculate the COV of the climatological streamflow Qd (the interannual mean of each 
calendar day). For leap years both December 30 and 31 were used as the 365th day of the 
year.  

𝐶𝑂𝑉(𝑄) =
𝜎(𝑄̅𝑑)

𝜇(𝑄̅𝑑)
, 𝑑 = 1,2, … ,365       [S41] 
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NSE calculated for each interannual signature metric 

 
Figure S6: Equivalent to Figure 4 in text but using the NSE of each interannual metric, rather than the correlation. Note 
that many values are negative, but the overall pattern is similar. 
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Comparison: Seasonal Variance Fraction >/≤ 0.4 

 
Figure S7: Equivalent to Figure 4 in text but using a threshold of 0.4 for the benchmark NSE to divide catchments into high-
benchmark and low-benchmark groups.  
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Comparison: Seasonal Variance Fraction >/≤ 0.6 

 
Figure S8: Equivalent to Figure 4 in text but using a threshold of 0.6 for the benchmark NSE to divide catchments into high-
benchmark and low-benchmark groups.  
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Comparison: QCI >/≤ 15 

 
Figure S9: Equivalent to Figure 4 in text but catchments are divided by the streamflow concentration index (QCI) using a 
threshold of 15.  
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Comparison: COV(Q) >/≤ 1 

 
Figure S10: Equivalent to Figure 4 in text but catchments are divided by the coefficient of variation of the mean annual 
hydrograph (COV(Q)) using a threshold of 1.  
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Comparison: fs >/≤ 0.5 

 
Figure S11: Equivalent to Figure 4 in text but catchments are divided into snowier and less snowy groups using a threshold 
of 0.5 for the snow fraction (fs).  

 
  



16 
 

Comparison: Im,r>/≤ 1 

 
Figure S12: Equivalent to Figure 4 in text but catchments are divided more seasonal and less seasonal groups using a 
threshold of 1 for the aridity seasonality index (Im,r). 
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S5: Long Short-Term Memory model for Brazil 
Since we identified Brazil as a location with very high benchmark NSE values, as well as a 
large amount of good-quality data, we wanted to include some models from Brazil in our 
analysis. Unfortunately we were unable to find any freely accessible machine learning 
hydrologic models that included catchments from across Brazil, so we created a Long 
Short-Term Memory (LSTM)model using the Camels-BR dataset, version 1.2 (Chagas et al., 
2020, 2025) 

We created an LSTM using the neuralhydrology package for Python (Kratzert et al., 2022). 
We used data from the period 01/01/1980 to 30/12/2020, which represents a compromise 
between maximizing record length and maximizing the number of available input datasets. 
The Camels-BR dataset includes streamflow and meteorological data for 897 catchments, 
and we used all catchments for training, validation, and testing. We trained on data from 
2010-2020, validated on data from 1980-1989, and tested on data from 1990-2009. We 
reserved a long period (20 years) for testing because the objective here is to analyse 
differences in testing performance across catchment types, and not necessarily to 
maximize the model performance overall.  

We included all available static attributes in the model, in addition to one-hot encoding for 
the basin ID.  

For dynamic attributes we included all variables that were available for the full 41-year 
period. These are summarized in Table S1. 
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Table S1: Dynamic Variables used in the LSTM 

Variable Source(s) 
Precipitation CHIRPS1, CPC2, ERA5-Land3, MSWEP4 

Minimum Temperature CPC2, ERA5-Land3 
Maximum Temperature CPC2, ERA5-Land3 
Mean Temperature ERA5-Land3 
Actual Evapotranspiration Gleam5, ERA5-Land3 
Potential Evapotranspiration Gleam, ERA5-Land3 
Soil Moisture (surface) Gleam5 
Soil Moisture (root zone) Gleam5 
Soil Moisture (layers 1-4) ERA5-Land3 

1(Funk et al., 2015), 2(Chen & Xie, 2008; NOAA Physical Sciences Laboratory, 2025), 
3(Muñoz Sabater, 2019), 4(Beck et al., 2019) 5 

 

The most important hyperparameters are summarized below in table S2. 
Table S2: Hyperparameters used in the LSTM 

Hyperparameter Value 
Hidden size 256 
Batch size 256 
Sequence length 365 
Initial forget bias 3 
Output dropout 0.4 
Output activation Linear 
Optimizer Adam 
Loss NSE 
Epochs 50 
Learning rate 1e-4 (epochs 1-30) 

1e-5 (epochs 31-40) 
5e-6 (epochs 41-50 

 
These values are typical for LSTMs (eg. Kratzert et al., 2024). We did not tune the 
hyperparameters except for the learning rate, which we reduced because with a typical 
learning rate of 1e-3, the maximum validation NSE occurred on the first epoch. Even with 
the reduced learning rate the maximum validation NSE tended to occur within the first ten 
epochs. Further reductions to the learning rate resulted in a lower maximum validation 
NSE. 

We generated an ensemble of five models with the same hyperparameters, and averaged 
the predictions. 

The  validation and testing NSE or the ensemble model are shown in Figure S10. The 
median validation NSE is 0.75, while the median test NSE is 0.72. 



19 
 

 

Figure S13: The empirical cumulative density function of NSE values for the ensemble LSTM model. 
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S6: Variance Components 
Figure S14 shows histograms of the three variance components for 17,245 catchments. 
Figures S15 to S32 show examples of decomposed time series for 18 example catchments 
from around the world. Figures S15-S20 show catchments with high interannual variance, 
Figs. S21-S26 show catchments with high irregular variance, and Figs. S27-S32 show 
catchments with high seasonal variance. The examples were not chosen systematically 
but are intended to represent a broad geographical range.  
 

 
Figure S14: The distribution of variance fractions for all 17,245 catchments plotted in Figure 1 of the manuscript.  
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S6.1: Examples of interannually variable streams 

 
Figure S15: Decomposed time series for La Durdent à Vittefleur (Sandre G600061010), an interannually variable stream in 
Normandy, France. 

 
Figure S16: Decomposed time series for Rhoads Fork Near Rochford, SD  (USGS 06408700), an interannually variable 
stream in South Dakota, United States. 
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Figure S17: Decomposed time series for Ysyry Paraguái (Paraguay River) at Asunción, Paraguay, (GRDC 3368100) an 
interannually variable river. 

 
Figure S18: Decomposed time series for the Rangitaiki River at  Murupara, Aotearoa (New Zealand), (GRDC 5863120) a 
river with 62% interannual variance. 
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Figure S19: Decomposed time series for the Cochiguaz River (El Peñon, Chile), (Dirección General de Aguas 4313001) an 
interannually variable stream. 

 
Figure S20: Decomposed time series for the Syr Darya (Tyumen-Aryk, Kazakhstan), (GRDC 2316200) an interannually 
variable stream, where interannual variability has been driven largely by water withdrawals for irrigation beginning in 1973 
(Zou et al., 2019) 
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S6.2: Examples of highly irregular streams 

 
Figure S21: Decomposed time series for the Māwheranui River (New Zealand), (GRDC 5867710), a stream with highly 
irregular variance.  

 
Figure S22: Decomposed time series for the Little Barachois River (Newfoundland, Canada), (Water Survey of Canada 
02ZK003), a stream with highly irregular variance.  
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Figure S23: Decomposed time series for the Ugab River (Namibia), (GRDC 1258202), a stream with highly irregular 
variance.  

 
Figure S24: Decomposed time series for Dark Canyon at Carlsbad (New Mexico, United States), (USGS 08405150), a 
stream with highly irregular variance.  
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Figure S25: Decomposed time series for the Gieddejohka River (Leirpoldvatn, Norway), (GRDC 6731750), a stream with 
highly irregular variance.  

 
Figure S26: Decomposed time series for the Haliya River (Telangana, India), (Camels-IND  04012), a stream with highly 
irregular variance.  
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S6.3: Examples of highly seasonal streams 

 
Figure S27: Decomposed time series for the Niger River at Dire (Mali), (GRDC  1134700), a highly seasonal river. 

 
Figure S28: Decomposed time series for the Orinoco River at Puente Angostura (Venezuela), (GRDC  3206720), a highly 
seasonal river.  



28 
 

 
Figure S29: Decomposed time series for the Ubangi River at Bangui (Central African Republic), (GRDC  1749100), a highly 
seasonal river.  

 
Figure S30: Decomposed time series for the Irrawaddy River at Pyay, Myanmar, (GRDC 2260700), a highly seasonal river.  
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Figure S31: Decomposed time series for the Talgar River at Talgar (Kazakhstan), (GRDC  2314400), a highly seasonal river.  

 
Figure S32: Decomposed time series for the Takhini River near Whitehorse (Yukon, Canada), (Water Survey of Canada 
09AC001), a highly seasonal river.  
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Figure S33: Decomposed time series for the Santa Cruz River at Charles Fuhr station (Santa Cruz, Argentina), (GRDC 
3276800), a highly seasonal river.  
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S7: Climatological NSEcb based on differential split samples 
When hydrologic models are intended to be used for climate change projection, a popular 
technique is the differential split sample, where the dataset is split to maximize the 
difference in some climate variable between the training and testing periods (Klemeš, 
1986). If the model achieves a high NSE when evaluated on a climate that is warmer, 
colder, wetter, or drier than it was trained on, then it is assumed to be good at extrapolating 
to a future climate.  

We tested for split sample robustness using catchments in Brazil, Switzerland, and North 
America. For all catchments with at least 20 years of data, we split the years into 
warm/cold and wet/dry differential split samples. We used water years beginning October 
1st, which is consistent with standard practices in each location (Almagro et al., 2021; 
Höge et al., 2023; United States Geologic Survey, 2016). 

To determine the warm/cold and wet/dry splits we used ERA5-Land data for Brazil and 
North America and gridded daily precipitation and temperature products from Meteo-
Swiss for Switzerland (Höge et al., 2023). We evaluated the benchmark NSE when ‘trained’ 
on one half of each differential split sample and tested on the other half, and averaged the 
NSE across the two splits. 

For comparison, we also randomly split the years into two equal sets, repeated the random 
split 10 times, and took the median benchmark NSE across the 10 splits. 

Figure S34 shows the benchmark NSE for three sample splitting routines: random, a 
warm/cold differential split, and wet/dry differential split. These benchmark NSE values 
are shown for three datasets, covering Brazil, Switzerland, and North America. We find that 
in general, differential splitting of the sample reduces the benchmark NSE, as expected.  

However, the reduction in benchmark NSE is smallest for the arctic, alpine, and tropical 
regions that have the highest benchmark NSEs to begin with. In other words, in these 
regions it is not necessary to accurately account for interannual climatic variability to 
achieve a ‘high’ NSE under a differential split sample. Since changes to temperature and 
precipitation in these regions over the next century may be much larger than historical 
climate variability, the NSE is unreliable judge of a model’s suitability for climate change 
projection.  
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Figure S34: Splitting samples into warm/cold and wet/dry years reduces the performance of the climatological 
benchmark model, as expected. However, the reduction is smallest for the catchments that have the highest benchmark 
NSE under a random split.   
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