Machine Learning Reveals Strong Grid-Scale Dependence in the Satellite Nd-LWP
Relationship

Referee Comments

Point-by-point responses in blue, additions to manuscript are bold & italicized

Dear Referees,

Thank you for your time and effort put into our manuscript. We appreciate that you provided a
fair and insightful evaluation of this work and that your comments have led to changes in the
manuscript that improved the clarity and accuracy of the analysis. Specifically, we have
provided a detailed table of the machine learning model results for all 12 regions, which shows a
robust Ng—LWP sensitivity and stable model results across regions. We have also followed the
referees’ suggestions by moving key figures from the Supplement to the manuscript and adding
tables to better describe the dataset sources and aspects of the machine learning model so the
reader can more easily access this information. Finally, we have made this integrated multi-
satellite database publicly available on DataHub so the analysis can be reproduced, and new
science conducted from it. Overall, the narrative has not changed, but we believe that with these
changes the conclusions are now stronger.

Best regards,
Matt

Reviewer #1

General comments:

In this study, the authors investigate the Nd—LWP relationship (Nd: cloud droplet number
concentration; LWP: liquid water path) retrieved from satellite observations at grid resolutions
ranging from 10° to 0.05°. To reduce retrieval errors, they introduce a machine learning (ML)
random forest model to estimate LWP using relevant cloud-controlling factors. After obtaining
reliable ML results, the authors re-examine the Nd—LWP relationship and identify the main
controlling factors that determine its characteristic shapes. They further apply this method to
evaluate radiative forcing.

The reviewer is impressed by the methodology developed in this work, particularly the
application of ML techniques to decompose the dominant controlling factors shaping the Nd—
LWP relationship. The authors test their approach comprehensively across multiple grid
resolutions (10° to 0.05°) and 12 different oceanic regions, successfully identifying general
characteristics of the Nd—-LWP relationship and its impact on radiative forcing. The reviewer
finds this study innovative and believes it highlights a promising research direction for analyzing
high-resolution satellite data. Therefore, the reviewer recommends publication of the paper,
subject to minor revisions.

Many supplemental figures are shown in a separate file. In principle, the text should be readable
without referring to the supplemental material. In this sense, it is better to place Figures S2 and
S10 in the main text. Please reconsider the choice of the figures in the main text and those of
the supplemental material.

>> We agree that the text should be understandable without needing to refer to the
supplementary material and have therefore moved Figures S2 and S10 to the main text, as you
suggested, since they are referenced multiple times throughout the manuscript.



Specific comments:

L75-76: Please explain the names of the filters, Q06 and G18. Do they refer to specific papers?
>> Thank you for raising this point. The terminology describing the filter names is the same as
that used in Gryspeerdt et al. (2022). We have clarified the naming conventions explicitly in the
text as:

e QO6: Includes all filters from the All composite plus 1c > 4 and Re > 4 um.

This filter is called Q06 because it uses the same set of constraints as those used in
Quaas (2006).

e G18: Includes all properties from the Q06 composite plus 5-km CF > 0.9, solar zenith
angle (Bsoiar) < 65°, satellite zenith angle (Bsateiite) < 55°, and sunglint pixel index (SPI) <
30°. This filter is called G18 because it uses the same set of constraints as those used in
Grosvenor et al. (2018).
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L140-141: CEP is located in the Eastern Pacific. The naming of this oceanic region could be
improved. Why was no region in the Western Pacific selected? For example, the Western
Pacific near the equator at around 160°E. It is a typical convective area.

>> \We agree that the naming for CEP could be improved and have therefore added the word
“East” to the acronym CEP, so it now stands for “Central East Pacific,” to avoid confusion. We
did not include a CWP (“Central West Pacific”) region—Ilocated near Indonesia—because this
area is dominated by deep convective clouds, leaving few reliable satellite-retrieved samples of
low-level boundary layer clouds suitable for analysis.

L149, “Precipitation rates are also large in the tropics (compared to the subtropics).” According
to Fig. 1e, the precipitation rate is larger in ST compared to TR.

>> \We are not sure where the confusion arises regarding this referee comment. According to
Fig. 1e, the precipitation rate is larger in the TR region compared to ST (ST: 0.03 + 0.17; TR:
0.10 £ 0.48). Thus, precipitation in the TR regions is indeed higher. It is possible that the
reviewer may have mistakenly referred to panel d instead of panel e for the precipitation rate.
Therefore, the text remains unmodified.

L237, “precipitation can also decrease LWP”: What type of case is considered when
precipitation leads to a decrease in LWP?

>> We have further clarified this point in the text (and have also moved content related to
precipitation to section 5.1 for increased readability).

Precipitation (probability and intensity) and Ny are closely associated with LWP, typically
increasing as LWP increases in warm clouds. While LWP and precipitation generally increase
together as clouds deepen, in more developed or heavily drizzling systems, efficient rainout



processes can deplete cloud liquid water, leading to a reduction in LWP and a bidirectional
response in dLWP/dNy (e.g., in CloudSat observations of L’Ecuyer et al. 2008, Lebsock et al.
2008 and Chen et al., 2014).

L304, Section 5.3: According to Fig. 6, relative humidity above PBL is not an important factor
determining LWP. The discussion in Section 5.3 seems redundant.

>> \We appreciate the reviewer's comment. However, this finding—that free-tropospheric
relative humidity is not an important factor controlling LWP—is precisely the key point we wish
to emphasize. Previous studies (e.g., Ackerman et al., 2004; Chen et al., 2014; Gryspeerdt et
al., 2019) have highlighted above-PBL humidity as a major driver of the negative LWP-N,
adjustment, yet our analysis shows this influence to be weak or even opposite in sign under
most conditions. Demonstrating the lack of a strong RH control, despite its presumed
importance, is a meaningful and novel result. To make this clearer, we have revised Section 5.3
to explicitly highlight this interpretation: This analysis is included to explicitly demonstrate that,
contrary to prior expectations, free-tropospheric humidity exerts only a weak influence on LWP.

Section 5.4 is understandable, but it can be improved in terms of readability. Please relate each
cloud and radiative effect listed in Table 2 to the mathematical expression in the text.

>> Thank you for raising this point. We now describe and bolden each term—the Twomey,
liquid water path, and cloud fraction radiative effects—in the text following the presentation of
Equation 5. We also describe the radiative scaling term included in Table 2 as follows:

The three terms in parentheses correspond to the Twomey, liquid water path, and cloud
fraction radiative effects, respectively. These are multiplied by a radiative scaling factor defined

as (—1) x CF x F* x % x AlnAl where the negative sign indicates that an increase in albedo

(from higher Ny) reduces the net downward shortwave flux.

As a final note, during the revision of Table 2 we identified a typo in Equation 1, which
previously omitted the minus sign. The negative sign indicates that an increase in planetary
albedo reduces the net downward (absorbed) shortwave flux, consistent with the convention
that a positive AF represents a warming (increase in absorbed energy).

L454: What does “the rapid adjustments” refer to here?

>> This is an insightful question. As “rapid” adjustments refer to fast cloud and atmospheric
changes occurring before significant surface temperature climate responses manifest, our study
does not actually need to use this climate-related term; therefore, the word “rapid” adjustments
have been removed from the manuscript.



Reviewer #2

General comments:

In the article “Machine Learning Reveals Strong Grid-Scale Dependence in the Satellite Ng —
LWP Relationship”, the authors employ a machine learning model to investigate the relationship
between cloud droplet number concentration and liquid water path, and their connection to
aerosol-cloud interactions, such as the Twomey effect.

With their random forest model, the authors provide highly interesting results for distinct
changes of the N¢-LWP relationship with grid resolution and regional effects. As such, the article
provides an efficient and innovative approach to quantify effects of aerosols on cloud processes,
offering exciting opportunities for Earth system models.

Overall, the authors present their findings clearly and concisely, allowing readers to easily follow
their approach. Hence, | regard this article with its findings on aerosol-cloud interactions and the
introduced machine learning approach as a valuable contribution to the scientific community
and future research. While | recommend this article for publication, | have some minor
comments where additional clarification would be appreciated before publication.

Specific Comments:

L. 51-52: “We have generated a series of collocated global datasets at a series of spatial
resolutions from 10° x 10° down to 0.05° x 0.05°”. Could you specify your resolutions in this
section? The information can be found in Section 3.1, but it would be helpful to include a list of
resolutions here.

>> Good point. We now list all six spatial resolutions up front in our study.

L. 74-77: The naming of the filters (Q06, G18) does not seem intuitive to me. What do Q06 and
G18 stand for? Please add either a reference or introduce the acronyms.

>> Thank you for raising this point. The terminology describing the filter names is the same as
that used in Gryspeerdt et al. (2022). We have clarified the naming conventions explicitly in the
text as:

e QO6: Includes all filters from the All composite plus 1c > 4 and Re > 4 pm.

This filter is called Q06 because it uses the same set of constraints as those used in
Quaas (2006).

e G18: Includes all properties from the Q06 composite plus 5-km CF > 0.9, solar zenith
angle (Bsolar) < 65°, satellite zenith angle (Bsateiite) < 55°, and sunglint pixel index (SPI) <
30°. This filter is called G18 because it uses the same set of constraints as those used in
Grosvenor et al. (2018).

References
Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M. D., Bennartz, R., Boers, R., Cairns, B., Chiu, J. C.,

Christensen, M., Deneke, H., Diamond, M., Feingold, G., Fridlind, A., Hiinerbein, A., Knist, C., Kollias, P., Marshak, A., McCoy, D.,
Merk, D., Painemal, D., Rausch, J., Rosenfeld, D., Russchenberg, H., Seifert, P., Sinclair, K., Stier, P., van
Diedenhoven, B., Wendisch, M., Werner, F., Wood, R., Zhang, Z. B., and Quaas, J.: Remote Sensing of Droplet Number
Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives, Reviews of Geophysics,
56, 409-453, https://doi.org/10.1029/2017rg000593, 2018.

Gryspeerdt, E., McCoy, D. T., Crosbie, E., Moore, R. H., Nott, G. J., Painemal, D., Small-Griswold, J., Sorooshian, A., and Ziemba,
L.: The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data,
Atmospheric Measurement Techniques, 15, 3875-3892, https://doi.org/10.5194/amt-15-3875-2022, 2022.

Quaas, J., Boucher, O., and Lohmann, U.: Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using
MODIS satellite data, Atmospheric Chemistry and Physics, 6, 947—-955, https://doi.org/10.5194/acp-6-947-2006, 2006.

L. 126: “following 13 predictor variables”: Instead of only naming all variables, you could help
the reader by providing an overview table for included predictors and their respective sources.



>> Thank you for this suggestion. We have added a table of each predictor variable and its
respective source to the supplement file.

Table S1. Overview of predictor variables and their respective data sources.

Predictor Variable Source / Dataset
Planetary Boundary Layer Height (PBLH) Reanalysis data
Lifted Condensation Level (LCL) Calculated from reanalysis data

Relative Humidity above PBL Height Calculated from reanalysis data

(rhAbovePBL)

Estimated Inversion Strength (EIS) Calculated from reanalysis data
Surface Temperature Advection (Tadv) Calculated from reanalysis data
Surface Latent Heat Flux (LH) Reanalysis data

Total Column Water Vapor (tqv) Reanalysis data

10-m Surface Wind Speed (ws10) Reanalysis data

Surface Precipitation AMSR-E satellite retrieval
Cloud Top Height (CTH) MODIS satellite retrieval
Cloud Fraction (CF) MODIS satellite retrieval
Cloud Albedo (Aciq) CERES satellite retrieval
Cloud Droplet Number Concentration (Ng) Calculated from MODIS satellite retrieval

L. 131-132: “Each tree is trained on approximately 60% of the training dataset with replacement,
utilizing the remaining 40% as out-of-bag observations to test tree performance”. Please
describe how you split the dataset (random, temporal, spatial). Did you use the same dataset for
validation and test? Ideally, you would have three datasets to ensure evaluating on an
independent test set the model has not seen before.

>> We thank the reviewer for noting this important detail. We have clarified the following in the
manuscript based on your comment:

The full dataset was randomly partitioned into three independent subsets: 65% for training, 25%
for testing, and 10% for validation. Randomized sampling partitions, as opposed to sequential
(e.g., vearly) splits, did not have a significant impact on the model’s outcomes. Within the
training set, each decision tree in the random forest is trained on approximately 60% of the
training data (sampled with replacement), while the remaining 40% serves as out-of-bag data
for internal performance evaluation. The validation set was used for tuning model
hyperparameters described in Table S2. After hyperparameter tuning, the model was retrained
using both the training and validation data (75% total) to optimize performance, ensuring that
the test set remained unseen and provided an unbiased assessment of model accuracy.

L. 133-134:” evaluated using different hyperparameter values, such as the number of trees and
the minimum number of samples per leaf”. It would be great to have an overview table for all
hyperparameters.

>> A new table of the hyperparameters and their description used in the ML model have been
added to the supplement file for the manuscript.



Table S2. Overview of random forest hyperparameters and associated values used in this study.

Hyperparameter Value Description

Number of trees 100 Total number of decision trees in the random forest ensemble. A larger number
improves stability and accuracy but increases computational cost.

Minimum leaf size 7 Minimum number of samples required to form a terminal leaf node. Controls
model complexity; smaller values allow deeper trees that may capture finer vari-
ability but risk overfitting.

Sample fraction 0.6 Fraction of the training data randomly sampled (with replacement) to train each

tree, defining the bootstrap sample size and influencing model diversity.

L. 217: | found it a bit difficult to follow the results in this section. They mostly relate to different
regional characteristics (i.e., California), but | miss a more general evaluation of the Nd-LWP
relationship and a comparison across regions. Do you have the same number of samples in all
regions? If not, it would be interesting to compare the findings between regions in connection to
their robustness.
>> \We appreciate your comment and agree that the manuscript would benefit from including an
ML comparison across all 12 regions. To better evaluate the robustness of the ML-derived Ng-
LWP relationship across regions, we have added a new summary table (Table S3) to the
Supplement (also shown below).
Table S3. Random forest predictions of LWP for each region using the 0.1°-resolution dataset. Shown are the number of samples
(Nsamples), the linear least-squares fit of dLWP/dNd for non-raining and raining conditions, the Pearson correlation coefficient (R?),

the mean percentage error (MPE), and the top three predictor variables ranked by importance (from highest to lowest).

Region  Neampies dLWP/dINNg  dLWP/dInNg R? MPE (%) Importance Order

(non-raining) (raining)
CAL 2.26e+07 -0.003 0.24 0.75 22.0 Pr,Ac1a,Ng
PER 2.32e+07 -0.06 0.33 0.71 26.0 Pr,Ac4,CTH
NAM 2.34e+07 0.04 0.24 0.74 20.7 Pr,Ac4,CTH
AUS 2.03e+07 -0.08 0.29 0.74 27.7 Pr,CTH,Nq4
CEA 1.04e+07 -0.02 0.29 0.71 31.2 Pr,CTH,Nq4
WEI 5.19e+06 -0.06 0.15 0.68 325 Pr,CTH,Nq4
CEP 1.32e+07 -0.03 0.16 0.75 29.5 Pr,CTH,Nq4
ENA 1.42e+07 0.08 0.31 0.73 32.7 Pr,Ac4,CTH
WNP 9.64e+06 0.24 0.33 0.78 26.0 Pr,A.4,Cy
CNP 1.16e+07 0.12 0.30 0.77 25.2 Pr,Ac1a,TQV
ESA 6.77e+06 0.07 0.29 0.80 23.3 Pr,Aci4,Cy
ESI 1.02e+07 0.10 0.34 0.75 29.5 Pr,A.4,CTH

The following has been added to the main manuscript in section 5

Section 5: The model also shows robust and stable performance in terms of r, mean
percentage error, and the ranking of variable importance across all 12 regions in our study
(Table S3).

Section 5.1: The random forest model performs consistently well across all 12 regions,
exhibiting a similar pattern of small positive or negative dLWP/dNy sensitivities for non-
precipitating clouds and larger positive sensitivities for raining clouds (Table S3).



Figure 1: Add ENA and WNP in the figure caption.
>> Done

Figure 7: Is this also for California, or averaged over all regions?
>> The caption has been clarified that this is for the California region.



