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Dear Referees, 

Thank you for your time and effort put into our manuscript. We appreciate that you provided a 
fair and insightful evaluation of this work and that your comments have led to changes in the 
manuscript that improved the clarity and accuracy of the analysis. Specifically, we have 
provided a detailed table of the machine learning model results for all 12 regions, which shows a 
robust Nd–LWP sensitivity and stable model results across regions. We have also followed the 
referees’ suggestions by moving key figures from the Supplement to the manuscript and adding 
tables to better describe the dataset sources and aspects of the machine learning model so the 
reader can more easily access this information. Finally, we have made this integrated multi-
satellite database publicly available on DataHub so the analysis can be reproduced, and new 
science conducted from it. Overall, the narrative has not changed, but we believe that with these 
changes the conclusions are now stronger. 

Best regards, 
Matt 
--------------------------------------------------------------------------------------------------------------------- 
 
Reviewer #1 
 
General comments: 
In this study, the authors investigate the Nd–LWP relationship (Nd: cloud droplet number 
concentration; LWP: liquid water path) retrieved from satellite observations at grid resolutions 
ranging from 10° to 0.05°. To reduce retrieval errors, they introduce a machine learning (ML) 
random forest model to estimate LWP using relevant cloud-controlling factors. After obtaining 
reliable ML results, the authors re-examine the Nd–LWP relationship and identify the main 
controlling factors that determine its characteristic shapes. They further apply this method to 
evaluate radiative forcing. 
The reviewer is impressed by the methodology developed in this work, particularly the 
application of ML techniques to decompose the dominant controlling factors shaping the Nd–
LWP relationship. The authors test their approach comprehensively across multiple grid 
resolutions (10° to 0.05°) and 12 different oceanic regions, successfully identifying general 
characteristics of the Nd–LWP relationship and its impact on radiative forcing. The reviewer 
finds this study innovative and believes it highlights a promising research direction for analyzing 
high-resolution satellite data. Therefore, the reviewer recommends publication of the paper, 
subject to minor revisions. 
Many supplemental figures are shown in a separate file. In principle, the text should be readable 
without referring to the supplemental material. In this sense, it is better to place Figures S2 and 
S10 in the main text. Please reconsider the choice of the figures in the main text and those of 
the supplemental material. 
>> We agree that the text should be understandable without needing to refer to the 
supplementary material and have therefore moved Figures S2 and S10 to the main text, as you 
suggested, since they are referenced multiple times throughout the manuscript. 



 
Specific comments: 
L75–76: Please explain the names of the filters, Q06 and G18. Do they refer to specific papers? 
>> Thank you for raising this point. The terminology describing the filter names is the same as 
that used in Gryspeerdt et al. (2022). We have clarified the naming conventions explicitly in the 
text as:  

• Q06: Includes all filters from the All composite plus τc > 4 and Re > 4 µm. 
This filter is called Q06 because it uses the same set of constraints as those used in 
Quaas (2006). 

• G18: Includes all properties from the Q06 composite plus 5-km CF > 0.9, solar zenith 
angle (θsolar) < 65°, satellite zenith angle (θsatellite) < 55°, and sunglint pixel index (SPI) < 
30°. This filter is called G18 because it uses the same set of constraints as those used in 
Grosvenor et al. (2018). 
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L140–141: CEP is located in the Eastern Pacific. The naming of this oceanic region could be 
improved. Why was no region in the Western Pacific selected? For example, the Western 
Pacific near the equator at around 160°E. It is a typical convective area. 
>> We agree that the naming for CEP could be improved and have therefore added the word 
“East” to the acronym CEP, so it now stands for “Central East Pacific,” to avoid confusion. We 
did not include a CWP (“Central West Pacific”) region—located near Indonesia—because this 
area is dominated by deep convective clouds, leaving few reliable satellite-retrieved samples of 
low-level boundary layer clouds suitable for analysis. 
 
L149, “Precipitation rates are also large in the tropics (compared to the subtropics).” According 
to Fig. 1e, the precipitation rate is larger in ST compared to TR. 
>> We are not sure where the confusion arises regarding this referee comment. According to 
Fig. 1e, the precipitation rate is larger in the TR region compared to ST (ST: 0.03 ± 0.17; TR: 
0.10 ± 0.48). Thus, precipitation in the TR regions is indeed higher. It is possible that the 
reviewer may have mistakenly referred to panel d instead of panel e for the precipitation rate. 
Therefore, the text remains unmodified. 
 
L237, “precipitation can also decrease LWP”: What type of case is considered when 
precipitation leads to a decrease in LWP? 
>> We have further clarified this point in the text (and have also moved content related to 
precipitation to section 5.1 for increased readability).  
Precipitation (probability and intensity) and Nd are closely associated with LWP, typically 
increasing as LWP increases in warm clouds. While LWP and precipitation generally increase 
together as clouds deepen, in more developed or heavily drizzling systems, efficient rainout 



processes can deplete cloud liquid water, leading to a reduction in LWP and a bidirectional 
response in dLWP/dNd (e.g., in CloudSat observations of L’Ecuyer et al. 2008, Lebsock et al. 
2008 and Chen et al., 2014). 
 
L304, Section 5.3: According to Fig. 6, relative humidity above PBL is not an important factor 
determining LWP. The discussion in Section 5.3 seems redundant. 
>> We appreciate the reviewer’s comment. However, this finding—that free-tropospheric 
relative humidity is not an important factor controlling LWP—is precisely the key point we wish 
to emphasize. Previous studies (e.g., Ackerman et al., 2004; Chen et al., 2014; Gryspeerdt et 
al., 2019) have highlighted above-PBL humidity as a major driver of the negative LWP–Nₙ 
adjustment, yet our analysis shows this influence to be weak or even opposite in sign under 
most conditions. Demonstrating the lack of a strong RH control, despite its presumed 
importance, is a meaningful and novel result. To make this clearer, we have revised Section 5.3 
to explicitly highlight this interpretation: This analysis is included to explicitly demonstrate that, 
contrary to prior expectations, free-tropospheric humidity exerts only a weak influence on LWP.  
 
Section 5.4 is understandable, but it can be improved in terms of readability. Please relate each 
cloud and radiative effect listed in Table 2 to the mathematical expression in the text. 
>> Thank you for raising this point. We now describe and bolden each term—the Twomey, 
liquid water path, and cloud fraction radiative effects—in the text following the presentation of 
Equation 5. We also describe the radiative scaling term included in Table 2 as follows: 
 
The three terms in parentheses correspond to the Twomey, liquid water path, and cloud 
fraction radiative effects, respectively. These are multiplied by a radiative scaling factor defined 
as (−1) × 𝐶𝐹 × 𝐹↓((( × "#$%!

"#$&'
× Δ𝑙𝑛𝐴𝐼(((((((( where the negative sign indicates that an increase in albedo 

(from higher Nd) reduces the net downward shortwave flux.   
 
As a final note, during the revision of Table 2 we identified a typo in Equation 1, which 
previously omitted the minus sign. The negative sign indicates that an increase in planetary 
albedo reduces the net downward (absorbed) shortwave flux, consistent with the convention 
that a positive DF represents a warming (increase in absorbed energy). 
 
 
L454: What does “the rapid adjustments” refer to here? 
>> This is an insightful question. As “rapid” adjustments refer to fast cloud and atmospheric 
changes occurring before significant surface temperature climate responses manifest, our study 
does not actually need to use this climate-related term; therefore, the word “rapid” adjustments 
have been removed from the manuscript.  



Reviewer #2 
General comments: 
In the article “Machine Learning Reveals Strong Grid-Scale Dependence in the Satellite Nd –
LWP Relationship”, the authors employ a machine learning model to investigate the relationship 
between cloud droplet number concentration and liquid water path, and their connection to 
aerosol-cloud interactions, such as the Twomey effect. 
With their random forest model, the authors provide highly interesting results for distinct 
changes of the Nd-LWP relationship with grid resolution and regional effects. As such, the article 
provides an efficient and innovative approach to quantify effects of aerosols on cloud processes, 
offering exciting opportunities for Earth system models. 
Overall, the authors present their findings clearly and concisely, allowing readers to easily follow 
their approach. Hence, I regard this article with its findings on aerosol-cloud interactions and the 
introduced machine learning approach as a valuable contribution to the scientific community 
and future research. While I recommend this article for publication, I have some minor 
comments where additional clarification would be appreciated before publication. 
  
Specific Comments: 
L. 51-52: “We have generated a series of collocated global datasets at a series of spatial 
resolutions from 10° × 10° down to 0.05° × 0.05°”. Could you specify your resolutions in this 
section? The information can be found in Section 3.1, but it would be helpful to include a list of 
resolutions here.  
>> Good point. We now list all six spatial resolutions up front in our study. 
 
L. 74-77: The naming of the filters (Q06, G18) does not seem intuitive to me. What do Q06 and 
G18 stand for? Please add either a reference or introduce the acronyms. 
>> Thank you for raising this point. The terminology describing the filter names is the same as 
that used in Gryspeerdt et al. (2022). We have clarified the naming conventions explicitly in the 
text as:  

• Q06: Includes all filters from the All composite plus τc > 4 and Re > 4 µm. 
This filter is called Q06 because it uses the same set of constraints as those used in 
Quaas (2006). 

• G18: Includes all properties from the Q06 composite plus 5-km CF > 0.9, solar zenith 
angle (θsolar) < 65°, satellite zenith angle (θsatellite) < 55°, and sunglint pixel index (SPI) < 
30°. This filter is called G18 because it uses the same set of constraints as those used in 
Grosvenor et al. (2018). 
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L. 126: “following 13 predictor variables”: Instead of only naming all variables, you could help 
the reader by providing an overview table for included predictors and their respective sources. 



>> Thank you for this suggestion. We have added a table of each predictor variable and its 
respective source to the supplement file. 

 
 
L. 131-132: “Each tree is trained on approximately 60% of the training dataset with replacement, 
utilizing the remaining 40% as out-of-bag observations to test tree performance”. Please 
describe how you split the dataset (random, temporal, spatial). Did you use the same dataset for 
validation and test? Ideally, you would have three datasets to ensure evaluating on an 
independent test set the model has not seen before. 
>> We thank the reviewer for noting this important detail. We have clarified the following in the 
manuscript based on your comment:  
The full dataset was randomly partitioned into three independent subsets: 65% for training, 25% 
for testing, and 10% for validation. Randomized sampling partitions, as opposed to sequential 
(e.g., yearly) splits, did not have a significant impact on the model’s outcomes. Within the 
training set, each decision tree in the random forest is trained on approximately 60% of the 
training data (sampled with replacement), while the remaining 40% serves as out-of-bag data 
for internal performance evaluation. The validation set was used for tuning model 
hyperparameters described in Table S2. After hyperparameter tuning, the model was retrained 
using both the training and validation data (75% total) to optimize performance, ensuring that 
the test set remained unseen and provided an unbiased assessment of model accuracy. 
 
 
L. 133-134:” evaluated using different hyperparameter values, such as the number of trees and 
the minimum number of samples per leaf”. It would be great to have an overview table for all 
hyperparameters. 
>> A new table of the hyperparameters and their description used in the ML model have been 
added to the supplement file for the manuscript.  



 
 
L. 217: I found it a bit difficult to follow the results in this section. They mostly relate to different 
regional characteristics (i.e., California), but I miss a more general evaluation of the Nd-LWP 
relationship and a comparison across regions. Do you have the same number of samples in all 
regions? If not, it would be interesting to compare the findings between regions in connection to 
their robustness. 
>> We appreciate your comment and agree that the manuscript would benefit from including an 
ML comparison across all 12 regions. To better evaluate the robustness of the ML-derived Nd-
LWP relationship across regions, we have added a new summary table (Table S3) to the 
Supplement (also shown below).  

 
The following has been added to the main manuscript in section 5 
 
Section 5: The model also shows robust and stable performance in terms of r2, mean 
percentage error, and the ranking of variable importance across all 12 regions in our study 
(Table S3). 
 
Section 5.1: The random forest model performs consistently well across all 12 regions, 
exhibiting a similar pattern of small positive or negative dLWP/dNd sensitivities for non-
precipitating clouds and larger positive sensitivities for raining clouds (Table S3). 



 
 
 
Figure 1: Add ENA and WNP in the figure caption. 
>> Done 
 
Figure 7: Is this also for California, or averaged over all regions? 
>> The caption has been clarified that this is for the California region. 


