Supplement of Ecological and environmental controls on plant wax production and stable isotope fractionation in modern terrestrial Arctic vegetation

Kurt R. Lindberg 1 , Elizabeth K. Thomas 1 , Martha K. Raynolds 2 , Helga Bültmann 3 , and Jonathan H. Raberg 4

Correspondence: Kurt R. Lindberg (kurtrlindberg@gmail.com)

¹Department of Earth Sciences, University at Buffalo, Buffalo, NY, 14260, USA

²Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA

³Institute of Landscape Ecology, University of Münster, Münster, D-48149, Germany

⁴Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming, 82072, USA

1 Introduction

This supplement contains Figures S1-S3 and Table S1.

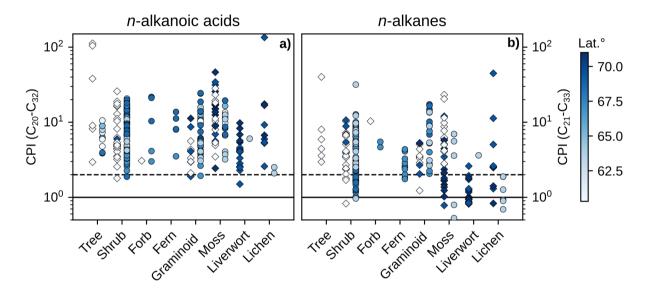


Figure S1. Scatterplots of plant wax Carbon Preference Index (CPI) results from this study (diamonds) and the pan-Arctic literature compilation (circles) grouped by plant growth form. (a) n-alkanoic acid CPI for carbon chain-lengths C_{20} through C_{32} . (b) n-alkano CPI for carbon chain-lengths C_{21} through C_{33} . Data points are shaded by sampling site latitude. Solid and dashed horizontal lines mark CPI values of 1 and 2, respectively.

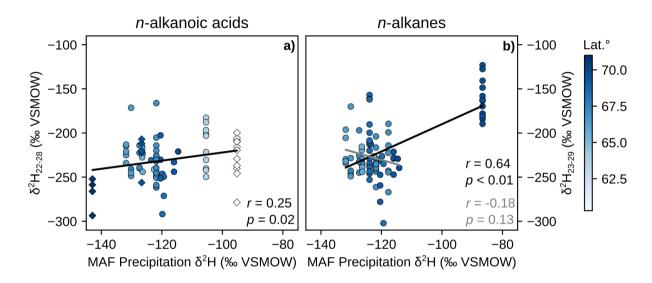
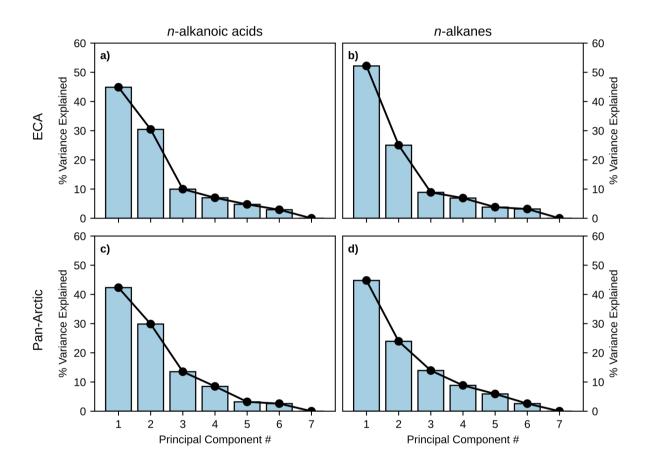



Figure S2. Scatterplots of plant wax δ^2 H from this study (diamonds) and the pan-Arctic data compilation (circles) vs. sample site MAF amount-weighted precipitation δ^2 H. (a) n-alkanoic acid δ^2 H (C_{22} - C_{28}). (b) n-alkano δ^2 H (C_{23} - C_{29}). Pearson correlation r and p values are shown in the bottom-right corner of each panel. Black lines represent linear regressions fit for all data points. The grey line in panel b represents the linear regression fit without the data from Hollabåttjønnen Bog in northern Norway (Balascio et al., 2018). Data points are shaded by sampling site latitude.

Figure S3. Scree plots of the percent variance explained by each principal component number. (a) ECA *n*-alkanoic acid PCA, (b) ECA *n*-alkano PCA, (c) pan-Arctic *n*-alkanoic acid PCA, (d) pan-Arctic *n*-alkane PCA. Panel lettering corresponds to that shown in Fig. 5.

Table S1. *P*-values of Shapiro-Wilk tests performed on each plant growth form for each plant wax data type by compound class. *P*-values \geq 0.05 indicate that measurements within a plant growth form are normally distributed. Missing values (-) are due to a plant growth form not having enough measurements (n < 3) of a plant wax data type.

n-alkanoic acids				n-alkanes				
Growth Form	log Conc.	ACL	δ^{13} C	ϵ_{app}	log Conc.	ACL	δ^{13} C	ϵ_{app}
Tree	0.260	0.376	-	-	0.957	0.664	-	-
Shrub	< 0.001	< 0.001	0.972	0.049	0.389	0.023	0.926	< 0.001
Forb	0.475	0.593	-	0.527	0.833	0.234	-	0.404
Fern	0.538	0.342	-	-	0.043	0.011	-	0.778
Graminoid	0.118	0.859	0.421	0.059	0.376	0.004	0.946	0.279
Moss	0.976	0.628	0.593	0.596	0.748	0.540	-	0.946
Liverwort	0.857	0.875	0.247	0.705	0.752	0.114	-	-
Lichen	0.745	0.309	-	- 0.074	0.018	-	-	

References

Balascio, N. L., D'Andrea, W. J., Anderson, R. S., and Wickler, S.: Influence of vegetation type on n-alkane composition and hydrogen isotope values from a high latitude ombrotrophic bog, Organic Geochemistry, 121, 48–57, https://doi.org/10.1016/j.orggeochem.2018.03.008, 2018.