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Summary 11 

ASGM is rapidly expanding and Hg-use in the sector impacts agricultural systems 12 

surrounding these spatially distributed activities. Contamination of crops from ASGM-13 

derived Hg occurs via both uptake from both air and soil/water. In addition to risks to human 14 

consumers, Hg in staple crops can also be passed along to livestock/poultry further 15 

conflating risks. Research in this area requires interdisciplinary, collaborative, and 16 

adaptable approaches to improve our comprehension of these impacts.  17 

Abstract 18 

The escalating global demand for gold has fuelled the rapid expansion of artisanal and 19 

small-scale gold mining (ASGM), which has become the largest source of mercury (Hg) 20 

emissions worldwide. Here we synthesize current research on the pervasive contamination 21 

of agricultural systems by ASGM-derived Hg, identifying the key environmental pathways 22 

and subsequent risks to food security. Within these systems, Hg undergoes complex 23 

biogeochemical transformations, with the methylation of inorganic Hg into its highly 24 

neurotoxic form, methylmercury (MeHg), being a critical process. This is particularly 25 
pronounced in rice paddy systems, where microbial activity and favourable redox 26 
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conditions facilitate Hg methylation, resulting in the bioaccumulation of MeHg in rice 27 

grains—a staple food for billions. However, this synthesis reveals that atmospheric uptake 28 

is important to total Hg loadings in rice, and more so in tissues of crops grown in unsaturated 29 

soils. Indeed, we stress the importance of assessing all potential uptake pathways of Hg in 30 
agricultural systems: foliar assimilation from air, uptake from soils/water (particularly MeHg 31 

in rice), direct deposition to surfaces, and consumption of contaminated crop tissues (by 32 

both humans and livestock/poultry), to delineate the source and ratios of the different pools 33 

of Hg within crops and their consumers. A common shortcoming in past studies of ASGM-34 

derived Hg in agricultural systems is that they have commonly overlooked one or more of 35 

these uptake pathways.  These findings underscore a significant threat to global food chains 36 

and human health through the consumption of Hg contaminated produce. Mitigating these 37 
risks requires an improved understanding of the quantity of emissions/releases from ASGM, 38 

input pathways, and Hg biogeochemical cycling and fate in agricultural landscapes, paving 39 

the way for targeted interventions and sustainable management strategies to protect 40 

vulnerable communities. We suggest that these goals can be achieved through strategic 41 

international and interdisciplinary collaborations, novel and accessible technologies, and 42 

care for the dissemination of scientific information to impacted communities. 43 

1 Introduction 44 

As a transition metal with distinctive physicochemical properties, including unique 45 
relativistic effects, high surface tension, and liquid state at ambient temperature and 46 

pressure, mercury (Hg) is a unique and environmentally significant element (Norby, 1991; 47 

Jasinski, 1995; Fitzgerald and Lamborg, 20057). These unique properties have captivated 48 

many civilizations throughout history, with Hg being used across a range of applications 49 

including paint pigmentation, medicinal, and spiritual ceremonies (Bagley et al., 1987; 50 

Hardy et al., 1995; Jiang et al., 2006). Use of Hg continues into the modern era particularly in 51 

industrial, mining, and medical applications (Finster et al., 2015; Munthe et al., 2019). Hg’s 52 
recognition as a global pollutant relates to its environmental persistence, long-range 53 

transport capabilities, and negative impacts on human and environmental health (i.e., 54 

neurotoxicity) (Durnford et al., 2010; Driscoll et al., 2013; Fitzgerald et al., 2007).  55 

While all forms of Hg are toxic and we are yet to discover a biological function of the element  56 

in the Eukarya domain at least (Peralta-Videa et al., 2009; Cozzolino et al., 2016; Grégoire 57 
and Poulain, 2016), methyl-Hg (MeHg) is the most toxic and bioaccumulative form and the 58 

source of the majority of Hg’s impacts on human and environmental health (Clarkson et al ., 59 
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2003; Bjørklund et al., 2017). The effects of Hg (and particularly MeHg) exposure on children, 60 

both in utero and after birth, are of particular concern due to Hg’s primary toxicological 61 

action being neurological, causing abnormalities during foetal development, 62 

neurodevelopmental delays during childhood, with connections to autism and other mental 63 
disabilities (Schettler, 2001; Bose-O'Reilly et al., 2010; Kern et al., 2016; dos Santos-Lima et 64 

al., 2020). There are also links between Hg exposure and adverse effects on cardiovascular, 65 

gastrointestinal, renal (kidneys), and pulmonary systems (Ha et al., 2017; Basu et al., 2023).  66 

In 2013, a global treaty on Hg, the Minamata Convention, was brought into effect and signed 67 

by 128 nations (UNEP, 2013), with the primary goal of reducing the impacts of Hg on human 68 
and environmental health. The texts and annexes of the Minamata Convention lay out the 69 

scientific and policy means to achieve these goals including a focus on decreasing levels of 70 

Hg emitted to the atmosphere and released to land, water and oceans, from activities such 71 

as artisanal and small-scale gold mining (ASGM) by promoting more sustainable gold mining 72 

practices and controlling the supply and trade of Hg (UNEP, 2013). 73 

1.1 The biogeochemical cycle of mercury 74 

Hg can exist in various oxidation states in the environment. This includes Hg(0) (elemental 75 

or metallic), divalent or mercuric, and Hg(I) (monovalent/mercurous), although the latter is 76 

uncommon and highly unstable in the environment and is rather a short-lived intermediary 77 
between Hg(0) and divalent Hg (Schuster, 1991; Schroeder and Munthe, 1998). Hg(0) 78 

dominates the atmosphere, inorganic divalent Hg (IHg(II)i) is the predominant form in water, 79 

soil, and sediments, and MeHg (organic divalent Hg) is the dominant form in biota (Guzza 80 

and La Porta, 2008; Ulrich et al., 2001; Fitzgerald et al., 2007; USEPA, 1997). IHg(II) 81 

compounds are numerous and exhibit distinct physicochemical properties (i.e., HgCl2 is 82 

highly soluble, while HgS, or cinnabar, is practically insoluble) that govern their behaviour 83 

and cycling in the environment (Schroeder and Munthe, 1998; Ulrich et al., 2001; Clarkson 84 

and Magos, 2006; Park and Zheng, 2012; Barkay and Wagner-Döbler, 2005). While Hg is 85 
found in a wide range of minerals, the most abundant Hg-containing minerals are cinnabar 86 

(α-HgS) and metacinnabar (β-HgS) (Nöller, 20145).   87 

The global distribution of Hg is achieved primarily through the atmosphere as Hg(0)  88 

(Lindberg et al., 2007; Gworek et al., 2020), driven by its high volatility and low solubility 89 

 
i We use the notation IHg(II) throughout to differentiate inorganic and organic divalent Hg (MeHg). We choose 
this approach over the use of IHg, as “IHg” also includes Hg(0), which has distinct physicochemical properties 
and behaviour from all other Hg species.  
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(Henry’s law constant: 2.3 * 10-8 Pa-1; Andersson et al., 2008; Gaffney and Marleyokl, 2014), 90 

which results in a long atmospheric lifetime of ≈4-18 months (Holmes et al., 2010; Horowitz 91 

et al., 2017; Saiz-Lopez et al., 2018). Long-range transport via river systems also contributes, 92 

although it is less important than the atmospheric transport pathway (Ariya et al., 2015; 93 
Dastoor et al., 2022). Removal from the atmosphere occurs via dry deposition of Hg(0) 94 

(dominant pathway in terrestrial systems; see Section 3 below) or oxidation to gas- or 95 

particulate-phase IHg(II) and subsequent wet and dry deposition of these less volatile forms 96 

(Ariya et al., 2015; J. Zhou et al., 2021; Dastoor et al., 2025). These depositional processes 97 

to terrestrial and aquatic systems represent exchanges (negative fluxes), and the reverse 98 

processes (including reduction of IHg(II) back to Hg(0) and subsequent volatilization; 99 

positive fluxes) can also occur (Outridge et al., 2018; Dastoor et al., 2025). It is only through 100 
burial in sedimentary materials (ocean sediments, lake sediments, and subsurface soils) 101 

that Hg is removed from the active biogeochemical cycle (Fitzgerald and Lamborg, 200514; 102 

Outridge et al., 2018).  103 

IHg(II) compounds deposited, produced in situ from Hg(0) oxidation, emitted directly as 104 

IHg(II) to air from some industrial source, or released directly into aquatic environments 105 
such as wetlands, rivers, and lakes can undergo microbially mediated (both enzymatic and 106 

non-enzymatic) processes that catalyse the transfer of methyl groups from donors like 107 

methylcobalamin to IHg(II) species, forming MeHg compounds (Ullrich et al., 20010). 108 

Methylation typically occurs under anoxic conditions in saturated sediments and soils, but 109 

some recent studies suggest that methylation could also proceed under oxic conditions in 110 

certain scenarios (Gallorini and Loizeau, 2021; K. Wang K. et al., 2021). Representatives of 111 

sulphur-reducing bacteria, iron-reducing bacteria, methanogens, diverse firmicutes, and 112 

other fermenting bacteria have been identified to predominantly mediate this process in the 113 
environment (Compeau and Bartha, 1985; Lei et al., 2023). The produced MeHg readily binds 114 

to organic matter (OM; in sediments/particles), can be taken up by consumers, 115 

bioaccumulated, and then biomagnified up food webs (Ariya et al., 2015). MeHg can also be 116 

demethylated biotically and abiotically (Kritee et al., 2007; Barkay and Gu, 2021). Biotic 117 

demethylation has been posited to proceeds via two pathways: (i) reductive or mer-118 

dependent demethylation (taxonomically widely distributed, and common in more 119 

contaminated environments) and (ii) oxidative or mer-independent demethylation (less well 120 
understood) (Barkay and Gu, 2021).  Abiotic demethylation occurs via direct or indirect 121 

photolysis (Barkay and Gu, 2021). 122 
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Study of the Hg biochemical cycle has advanced significantly in the past two decades since 123 

the development of cold-vapour introduction methods for multi-collector, inductively-124 

coupled plasma, mass spectrometers (MCICPMS) that has facilitated high precision 125 

measurement and analyses of natural abundance Hg stable isotopes in samples spanning 126 
a broad range of environmental matrices (Blum and Bergquist and Blum, 2009). There are 127 

seven stable isotopes of Hg and significant mass-dependent (MDF; defined by δ notation) 128 

and mass-independent fractionation (MIF; defined by Δ notation) have been observed 129 

across a broad range of natural and anthropogenically driven processes and reactions 130 

(Bergquist and Blum, 2009; R. Sun R. et al., 2019; Tsui et al., 2020). Tracking Hg sources and 131 

processes with stable isotopes analyses across time and space transcends conventional 132 

concentration analyses by providing unique insights into the intricate behaviour and 133 
transformations of Hg across diverse ecosystems at local, regional and global scales 134 

(Bergquist and Blum, 2009; R. Sun R. et al., 2019; Tsui et al., 2020). Studies applying Hg 135 

spikes of enriched tracer isotopes (typically in lab or heavily controlled field mesocosm 136 

experiments) have been frequently used within the literature and are largely based on the 137 

same theoretical principles used in natural abundance stable isotope analyses but can 138 

exploit less robust/precise instrumentation (i.e., quadrupole ICPMS) due to the applied 139 

artificial isotope enrichments (Hintelmann et al. 2000; Strickman and Mitchell, 2017). 140 

1.2 Sources of mercury to the environment  141 

It is important to distinguish primary emissions of Hg (predominantly to air) that augment 142 

the mass of Hg within the active biogeochemical cycle from reemissions that represent 143 
positive fluxes of Hg from terrestrial and aquatic matrices (i.e., vegetation, soils, water 144 

bodies) to air, but do not alter the actively cycling mass of Hg. Reemissions more 145 

appropriately characterize processes such as biomass burning (including wildfires) and 146 

land use change that drive Hg back to the atmosphere as exchange process (be they 147 

anthropogenically driven or not) rather than emissions sources (Outridge et al., 2018; 148 

Dastoor et al., 2025). Hence, the focus of this section will be on the primary sources of Hg 149 

emissions.  150 

Natural primary emissions of Hg (geogenic activities and weathering of Hg-containing rocks) 151 

are estimated at 76-300 Mg yr-1 and make up a minor component of  total annual emissions 152 

from primary sources (Streets et al., 2019; and references therein). The most recent 153 

inventories of primary anthropogenic emissions of Hg to air are from 2015 by Streets et al. 154 

(2019) and Munthe et al. (2019); these sources estimate annual emissions to be 2390  155 
(+42/-19%) Mg yr-1 and 2220 (+27%/-10%) Mg yr-1, respectively. In addition, Munthe et al. 156 
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(2019), estimated 583 Mg yr-1 (nonspecific uncertainty; described as large for this estimate) 157 

of Hg are released to aquatic systems ii. 158 

1.2.1 Changing anthropogenic sources 159 

Historically, the combustion of fossil fuels (particularly coal) has been considered the 160 

largest anthropogenic source of mercury emissions globally (Pacyna et al., 2006; 2010; 161 

Pirrone et al., 2010; Streets et al., 20112). The high temperatures achieved during fossil fuel 162 

combustion liberate any residual Hg and release it as Hg(0), which typically undergoes 163 

partial oxidation after combustion to gaseous and particulate-bound divalent Hg forms 164 

(Carpi, 1997; Pacyna et al., 2006). More recent assessments indicate that ASGM (defined in 165 

Section 2) is now the largest global source of anthropogenically derived Hg (Streets et al., 166 
2019; Munthe et al., 2019; Yoshimura et al., 2021). Munthe et al. (2019) estimate the total 167 

ASGM emissions of Hg to air to be 838 ± 163 Mg yr-1 (37.7% of total global Hg emissions to 168 

air) and total ASGM releases of Hg to water and land to be 1221 (±637) Mg yr-1. However, the 169 

authors caution that the ASGM estimate represents a highly uncertain, “special” case 170 

scenario due to the challenges in estimating emissions/releases from a sector with such 171 

large knowledge gaps (Munthe et al., 2019); therefore, even these large uncertainty ranges 172 

may be underestimates. Most ASGM Hg emissions estimates rely on a bottom-up approach 173 
based on gold production and emission factors rather than actual Hg use (Pfeiffer and 174 

Lacerda, 19898; Seccatore et al., 2014; Streets et al., 2019; Munthe et al., 2019; Yoshimura 175 

et al., 2021). Moreover, there is large variability not only between estimates made by 176 

different groups, but also between different regions where ASGM occurs (Seccatore et al., 177 

2014; Yoshimura et al., 2021). The informal and often illegal nature of ASGM activities, which 178 

have grown rapidly in recent decades (Wagner and Hunter, 2020; Bernet Kempers, 2020; see 179 

also Section 2), present major challenges to Hg use inventorying (Hilson, 2008; Veiga and 180 

Marshall, 2019). 181 

2 ASGMrtisanal Small-scale Gold Mining: a “special 182 

sector” 183 

Hentschel et al. (2002) of the International Institute for Environment and Development (IIED) 184 

define artisanal and small-scale mining as “mining by individuals, groups, families or 185 

 
ii Note the estimate of primary releases of Hg to aquatic systems does not include releases from ASGM 
activities as the lack of information and knowledge regarding these releases is, as yet, too large to produce a 
reliable estimate. 
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cooperatives with minimal or no mechanisation, often in the informal (illegal) sector of the 186 

market”. However, the IIED (and many other organizations and researchers) stress that a 187 

formal definition is still lacking, and an increasing degree of mechanization and larger scale 188 

operations are defined under artisanal and small-scale mining in many jurisdictions 189 
(Hentschel et al., 2002). This review focusses on gold mining (ASGM) alone due to the unique 190 

use of Hg in the gold extraction process. 191 

ASGM encompasses a wide range of techniques used to extract gold and activities range 192 

from legal and regulated to informal to illegal activities (Veiga et al., 2006) and it contributes 193 

≈20–30% of the world’s gold production (Swain et al., 2007; Telmer and Veiga, 2009). 194 
Estimates suggest ≈20 million individuals (including ≈3 million women and children) across 195 

>70 countries (mainly in Africa, Asia, and South and Central America) are directly engaged 196 

in ASGM (Seccatore et al., 2014; UNEP, 2017, Veiga and Gunson, 2020). Participant 197 

numbers increase to at least 100 million when people indirectly dependent upon ASGM for 198 

their livelihood are also considered (Telmer and Veiga, 2009; Veiga and Baker, 2004). The 199 

(near) exponential growth of the ASGM sector in recent years can be attributed to soaring 200 

gold prices, and the ease of entry into the sector and selling gold (Veiga and Hinton, 2002; 201 
Adranyi et al., 2023). For example, the world gold spot price has increased by an order of 202 

magnitude from ≈US$9,000 kg-1 in 2000 to ≈US$1205,000 kg-1 as of 2025 (World Gold 203 

Council, 2025). For many miners, particularly those in rural communities in the Global 204 

South, employment and survival serve as primary motivators and ASGM offers substantial 205 

financial rewards during peak periods (Teschner, 2014; Wilson et al., 2015; Tschakert, 2009). 206 

However, Adranyi et al. (2023) argue that these benefits come at significant social costs, 207 

which include impacts on alternative livelihoods (i.e., loss of income for farmers as ASGM 208 

encroaches on agricultural areas, which turns many individuals to ASGM).  209 

The profitability of ASGM, legislative restrictions on the sector, and its proclivity to be 210 

practiced in remote areas with less police/military presence combine to foster an 211 

environment conducive to criminal activities led by local gangs, domestic and transnational 212 

organized crime syndicates, and illegal armed groups (Diaz et al., 2020; Schwarz et al., 213 
2021). Bugmann et al. (2022) explains how industry forces are exploiting market 214 

opportunities and coercing individuals into mining labour. Nevertheless, neither the 215 

(il)legality nor the awareness of ASGM’s impacts on human and environmental health (albeit 216 

often limited awareness; Osei et al., 2022) have had much impact on the popularity of ASGM 217 

or the use of Hg in the gold extraction and refinement processes (Veiga et al., 2006; Veiga 218 

and Gunson, 2020; Thomas et al., 2019). The allure of substantial financial gains, the 219 
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scarcity of viable alternatives, and the lack of incentives for sustainable practices all 220 

contribute to the complexity of reform within this sector (Veiga and Gunson, 2020; Telmer 221 

and Veiga 2009).  222 

2.1 The ASGM Hg amalgamation process and its impacts 223 

Hg is used to extract gold directly from the entire mined ore (less efficient: 10-25g of Hg per 224 

gram of gold) or from gravity ore concentrate (gold-enriched heavy fraction; more efficient: 225 
1-3g of Hg per gram of gold) by exploiting the natural solid amalgam that forms when gold 226 

and Hg(0) come in contact (Veiga et al., 1995; Veiga et al., 2014; Yoshimura et al., 2021). This 227 

process produces the solid Hg-gold amalgam, tailings (waste), and residual liquid Hg, the 228 

latter of which is reused a few times until it becomes less effective and "dirty" (inefficient), 229 

at which point it is typically discarded into the environment (Telmer and Veiga, 2009). Once 230 

the Hg-gold amalgam is formed (typically ≈60% gold by mass), subsequent gold extraction 231 

is typically accomplished by roasting of amalgam using rudimentary setups in open air, 232 

which results in volatilization of Hg directly into the atmosphere while leaving the gold 233 
behind (Veiga and Hinton et al., 20027; Kiefer et al., 2015; Ogola et al., 2002). This gold 234 

contains ≈2-5% residual Hg (Veiga and Hinton, 2002) and is typically roasted a second time 235 

after purchasing by initial gold traders (Cordy et al., 2011, 2013; Moody et al., 2020; Veiga, 236 

2014). Although retorts allow near complete recovery of Hg during amalgam burning, their 237 

uptake and widespread use are limited due to costs, lack of training, and other social issues 238 

(i.e., desire to visually observe the amalgam burning process) that are well-detailed in 239 

literature (Hinton et al., 2003; Hilson, 2006; Jønsson et al., 2013).  240 

Alternatives to the Hg amalgamation process do exist. These include dissolution of Hg with 241 

nitric acid (Moreno-Brush et al., 2020; Cho et al., 2020) or the use of cyanide in place of Hg 242 

(Marshall et al., 2020). Yet these are not popular methods due to their own inherent social, 243 

financial, and environmental constraints (Telmer and Veiga, 2009; Brüger et al., 2018). In 244 

addition, cyanidation is used in parallel with Hg amalgamation both to improve gold 245 
extraction efficiencies and during transition away from Hg amalgamation (Malone et al., 246 

2023; da Silva and Guimarães, 2024). Concurrent use of these two methods can lead to 247 

synergistic environmental and human health impacts as Hg-cyanide complexes are highly 248 

toxic and increase the solubility, and hence mobility, of Hg in ASGM wastes and tailings 249 

(Seney et al., 2020; da Silva and Guimarães, 2024). Hg amalgamation remains the preferred 250 

method employed by ASGM to extract gold due to its simplicity, efficiency, low cost, 251 

availability, and, ultimately, a greater confidence and trust in the Hg amalgamation process 252 
by miners. This latter point is emphasized by the aptly titled study by Bugmann et al. (2022): 253 
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“Doing ASGM without mercury is like trying to make omelettes without eggs”: Understanding 254 

the persistence of mercury use among artisanal gold miners in Burkina Faso. 255 

While emissions of Hg to air from ASGM activities can undergo long-range transport and 256 

contribute to Hg’s global impacts, much is deposited locally or regionally (Munthe et al., 257 

2019; Szponar et al., 2025). In addition, most direct releases of Hg from ASGM to terrestrial 258 

and aquatic systems are localised (Munthe et al., 2019; Moreno-Brush et al., 2020). Hence, 259 

communities living and working in proximity to ASGM areas are those that suffer the greatest 260 

health impacts from this activity including the miners who can experience both inhalation 261 

and direct dermal exposures when handling Hg(0) for gold extraction or burning amalgams 262 
(Veiga and Baker, 2004; Bose-O'Reilly et al., 2010; Taux et al., 2022).  263 

Another common pathway of exposure is through the ingestion of organic Hg (i.e., MeHg) 264 

from dietary sources (Zahir et al., 2005). Fish, for instance, are exposed to MeHg both 265 

through their environment (water) and food, with diet accounting for approximately 80-90% 266 

of their total intake (Zahir et al., 2005). This is of particular concern for communities 267 
impacted by ASGM activities whose major source of protein is fish (Vieira, 2006). Logically, 268 

research on dietary exposures to Hg in ASGM affected areas is dominated by fish-focussed 269 

studies; there are many examples of elevated concentrations of THg and/or MeHg in fish 270 

sampled in close proximity to ASGM activities (e.g., Barocas et al., 2023; Castilhos et al., 271 

2015; Bose-O'Reilly et al., 2016; Maurice-Bourgoin et al., 1999). Nonetheless, fish is not the 272 

only food consumed in regions impacted by ASGM activities.  273 

3 Impacts of ASGM Hg use in agricultural regions 274 

The surface and/or near-surface mining activities that dominate ASGM are major drivers of 275 

land-cover change. ASGM accounts for ≈7% of deforestation in the Global South  276 

(Hosonuma et al., 2012; Timsina et al., 2022). Additionally, the recovery of forests after 277 

mining activities is slower when compared to other land uses (Timsina et al., 2022). ASGM 278 

increases particle loading to rivers caused by erosion directly from ASGM activities or 279 

indirectly after deforestation (Swenson et al., 2011; Esdaile and Chalker 2018; Moreno-280 

Brush et al., 2020). These issues of mining-driven deforestation and increased riverine 281 

sediment loadings present major environmental health issues in their own rights and are the 282 
focus of many other studies and reviews (e.g., Moreno-Brush et al., 2020; Timsina et al., 283 

2022; Dossou Etui et al., 2024). In addition, anthropogenically modified land-covers such as 284 

lands used for agriculture are increasingly finding themselves in direct competition for 285 

space with ASGM (Achina-Obeng and Aram, 2022; Adranyi et al., 2023; Yu et al., 2024; 286 
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Donkor et al., 2024). In Ghana, Achina-Obeng and Aram (2022) report that most lands 287 

converted from agriculture to ASGM are obtained from legal sales. However, contrary 288 

reports of ASGM “land-grabbing” also exist in Ghana and elsewhere (Gilbert and Albert, 289 

2016; Malone et al., 2021; Adranyi et al., 2024). Indeed, conflicts between miners and 290 
farmers/farming communities (including Indigenous Peoples) are frequent (Mestanza-291 

Ramón et al., 2022; Adranyi et al., 2024). A common conflict arises from the land, water and 292 

soil degradation inflicted by ASGM that typically renders previously arable lands to be less 293 

productive or simply infertile post mining (Gilbert and Albert, 2016; Adranyi et al., 2024). 294 

In many areas, ASGM and agriculture continue to operate alongside each other. A number 295 
of studies cite ASGM and Hg amalgam processing occurring directly adjacent to croplands, 296 

and farmers subsidizing their agricultural livelihood as part-time artisanal miners 297 

(Krisnayanti et al., 2012; Mestanza-Ramón et al., 2022; Adranyi et al., 2023; 2024; Adator et 298 

al., 2023). Hence, consumption of crops and livestock/poultry contaminated by ASGM-299 

derived Hg presents an additional and much less explored potential pathway of human 300 

dietary Hg exposure (Xia et al., 2020; Sanga et al., 2023).  301 

There are three potential pathways of Hg uptake in higher or vascular plants (the majority of  302 

food, feed, and fuel crops are derived from vascular plants): (1) stomatal assimilation of gas-303 

phase Hg (0) during photosynthetic respiration, (2) surface sorption to cuticular (foliage) or 304 

periderm (stems/bole/edible tissues) surfaces, and (3) uptake from roots (J. Zhou et al., 305 

2021; Y. Liu et al., 2022; McLagan et al., 2022a); these processes are summarized in Figure 306 

1. Of these three pathways, stomatal assimilation is now considered to be the dominant 307 
mechanism and reported to be responsible for >90% of all Hg found not only in foliage, but 308 

all above ground plant tissues (Beauford et al., 1977; Graydon et al., 2009; Rutter et al., 309 

2011a; 2011b; Laacouri et al., 2013; J. Zhou et al., 2021; J. Zhou and Obrist, 2021). Moreover, 310 

many crops are also utilized as feed for livestock and poultry. If these feedstocks are 311 

contaminated by Hg, there is potential for accumulation in livestock/poultry and transfer to 312 

humans after meat or animal by-product consumption. Within this section we will explore 313 

each of these exposure mechanisms as they relate to Hg derived from ASGM and discuss 314 
their relevancy and potential impacts on human health. 315 
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 316 

Figure 1: Conceptual model summarizing the uptake and translocation processes of 317 
different Hg species in both saturated (i.e., rice) and unsaturated (i.e., cassava) soil crops 318 
including estimated qualitative rates based on the reviewed literature in sections 3.1 and 319 
Section 3.2. Line colours are associated with colours of species listed on the left (i.e., Hg(0) 320 
is in light blue). We note that plant and plant tissue art was developed with the purposes 321 
presentation and generic representations; hence, they may differ slightly from reality. Plant 322 
and plant tissue images were developed using ChatGPT (OpenAI), but all other parts of the 323 
figure (including labels) were constructed by co-authors. 324 

3.1 Hg uptake in crops from air: the breathers 325 

3.1.1 Atmospheric Hg uptake in higher plants 326 

Research on the uptake mechanisms of Hg from air to vegetation is highly contemporary but 327 

contains many uncertainties and knowledge gaps. The surficial sorption pathway of Hg 328 

integration into internal foliar tissue is limited largely due to the potential for Hg sorbed to 329 

the foliar cuticle to be washed off by precipitation (Rea et al., 2000; Rutter et al., 2011a; 330 
2011b; Laacouri et al., 2013) or undergo photoreduction to Hg(0) and subsequently volatilize 331 

(Mowat et al., 2011; Laacouri et al., 2013). Dark/night experiments (when stomata are 332 

closed) have provided mixed results: some studies suggest a negative flux of Hg(0) to 333 

vegetation may occur (Converse et al., 2010; Fu et al., 2016), while other studies are less 334 
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conclusive (Fritsche et al., 2008) or indicate strong correlations between Hg(0) uptake and 335 

stomatal conductance rates (higher uptake when stomata are open; Naharro et al., 2020; 336 

Denzler et al., 2025). While this suggests that a small fraction of gas-phase or surficially 337 

sorbed Hg(0) could diffuse through the cuticle and into the internal mesophyll, this diffusion-338 
based process is mechanistically similar to stomatal uptake and would likely induce a 339 

similarly large, negative (favouring lighter isotopes) fractionation of Hg stable isotopes. As 340 

such, the discussion on atmospheric uptake pathways will focus on the stomatal 341 

assimilation mechanism and assume all Hg within the above ground parts of plants is 342 

derived from this uptake mechanism unless explicitly stated otherwise.  343 

Stomatal assimilation has been directly linked to photosynthetic activity (net primary 344 

productivity; NPP) and consequently plant growth rates (Jiskra et al., 2018; Fu et al., 2019; 345 

Szponar et al., 2023). As such, stomatal assimilation by vegetation has been described as a 346 

global Hg(0) pump and accounts for the largest negative flux of Hg from air to terrestrial 347 

systems (Jiskra et al., 2018). Other factors such as stomatal conductance (itself impacted 348 

by atmospheric/meteorological/hydrological conditions), stomatal density, photosynthetic 349 

mechanism (i.e., C3 vs C4), cuticle thickness, cuticle roughness, plant species, and plant 350 
and foliage life stages also influence Hg(0) uptake (Converse et al., 2010, Laacouri et al., 351 

2013; Wohlgemuth et al., 2020; 2022; Y. Liu et al., 2022; Eboigbe et al., 2025). In addition, 352 

the rate of Hg(0) foliar uptake, and consequently the THg concentration in foliage, is directly 353 

proportional to Hg(0) concentration in air (Navrátil et al., 2017; Manceau et al., 2018; J. Zhou 354 

et al., 2021), which makes the stomatal assimilation method particularly relevant in areas 355 

with substantial Hg(0) emissions to air, including ASGM regions. Confirmation of the 356 

dominance of the stomatal assimilation pathway and links to NPP (and other factors) has 357 

come largely within the last 10-15 years and owes much to advancements in Hg stable 358 
isotope research. Stomatal assimilation favours lighter isotopes and results in a MDF and 359 

shifts in δ202Hg values of between -1 and -3 ‰ compared to gas-phase Hg(0) (J. Zhou et al., 360 

2021, and references therein), which creates an effective (light isotope) tracer for Hg uptake 361 

via this mechanism in plants.  362 

After uptake of Hg(0) into internal foliar tissue, our understanding of the processes 363 

controlling the internal biogeochemical cycling within plants becomes somewhat less 364 

certain. Since foliar THg concentrations increase across the growing season (Rea et al., 365 

2002; Laacouri et al., 2013; Wohlgemuth et al., 2020; 2022), Hg(0) must undergo oxidation 366 

to IHg(II) (Laacouri et al., 2013; Manceau et al., 2018) to maintain the high (air) to low (within 367 

foliage) Hg(0) concentration gradient that drives diffusion of Hg(0) into foliage. Limitations in 368 
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the interpretive power of Hg speciation analysis (McLagan et al., 2022b) restrict our 369 

knowledge of the compounds responsible for this oxidation step, particularly at ambient 370 

concentrations. Nonetheless, Du and Fang (1983) linked foliar Hg uptake rates to enzymatic 371 

(catalase) activity in a high-concentration labelled isotope study, and studies using X-ray 372 
absorption techniques on foliage samples from plants growing under highly contaminated 373 

settings have identified Hg-thiol complexes and sulphur nanoparticles (Carrasco-Gil et al., 374 

2013; Manceau et al., 2018) within foliage. We require more knowledge of the biological 375 

compounds responsible for oxidation and the resulting IHg(II) species, particularly as this 376 

could provide critical insight into the use of vegetation in contaminated site remediation 377 

such as at ASGM impacted areas.  378 

As discussed, the stomatal assimilation pathway represents a net negative flux (Hg 379 

accumulation in vegetation) overall.  However, re-release of Hg(0) taken up by this pathway 380 

has been posited to occur via photochemically-driven reduction of IHg(II) back to Hg(0) and 381 

release back out of the stomata. Using a Hg stable isotope mass balance model, Yuan et al. 382 

(2018) it was estimated that ≈30% of assimilated Hg(0) is re-released from their studied 383 

species (Yuan et al., 2018). 384 

3.1.2 Translocation of Hg from foliage in higher plants 385 

Assessments of the distribution of Hg across different plant tissues consistently indicate 386 

foliage has the highest THg concentrations (J. Zhou et al., 2017; 2021; Y. Liu, Y. et al., 2021). 387 

This accumulation in foliage (driven by stomatal assimilation) results in litterfall 388 

representing the major flux of Hg to soils in vegetated ecosystems (≈1000–1500 Mg yr-1) and 389 

these same estimates have typically also been used for as a proxy for net Hg assimilation 390 
flux into vegetation (X. Wang et al., 2016; Jiskra et al., 2018; J. Zhou et al., 2021). Yet it has 391 

been suggested that the use of litterfall alone likely results in a substantial underestimation 392 

of the net Hg vegetation assimilation flux due to the translocation of Hg from foliage into 393 

other tissues (i.e., branches, stems/boles, roots, seeds, flowers) (J. Zhou and Obrist, 20212). 394 

Indeed, despite bole wood having the lowest THg concentrations of any tree tissues (J. Zhou 395 

et al., 2017; 2021; Y. Liu Y. et al., 2021), they contain the largest pool of Hg by mass of any 396 

tree tissues due to the much greater total biomass of bole wood compared to other tissues 397 
(Y. Liu Y. et al., 2021). Hg storage in bole wood highlights the capacity of vegetation to 398 

translocate assimilated Hg away from foliage. 399 

Phloem, vascular tissue that transports solutes (i.e., nutrients, proteins, and photosynthetic 400 

by-products such as sugars) away from the foliage within phloem sap, is suggested to be 401 

responsible for the downward translocation of Hg (Siwik et al., 2010; J. Zhou et al., 2021; 402 
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Gačnik and Gustin, 2023). Throughout this downward migration, lateral translocation of Hg 403 

from phloem, through the cambium, and into the hydroactive xylem (sapwood) must occur. 404 

Evidence for this process lies in dendrochronological studies that (species/genus 405 

dependent) effectively archive historical Hg(0) concentrations in tree rings (e.g., Siwik et al., 406 
2010, Navrátil et al., 2017, McLagan et al., 2022a; Gačnik and Gustin, 2023). Yanai et al. 407 

(2020) and X. Liu et al. (2024) went further and demonstrated that this translocation from 408 

phloem to xylem slowly reduces the amount of Hg within the phloem sap by observing a 409 

decrease in THg concentrations in tree rings of the same age from the canopy to the ground. 410 

Y. Liu Y. et al. (2021) and McLagan et al. (2022a) analysed tree bark for Hg stable isotopes, 411 
and data were highly negative in MDF (δ202Hg) and similar to xylem samples (tree rings) and 412 

foliage (in the case of Y. Liu Y. et al., 2021). This indicates foliar uptake, phloem transport, 413 

and lateral translocation to periderm or cork (outer bark) is likely an important source of Hg 414 

in bark (we would expect more positive MDF associated with direct deposition from air as 415 

any such Hg would not be negatively fractionated during foliar uptake; Y. Liu Y. et al., 2021; 416 

McLagan et al., 2022a). From our search there have been no studies in the literature 417 

assessing this theory in annual or bi-annual plants, such as agricultural crops. 418 

Belowground tissues have received less attention than aboveground tissues, but Hg stable 419 

isotope data (negative δ202Hg values) from trees and shrubs in a high altitude forest in China 420 

indicated that 44-83% of Hg in roots is derived from the stomatal assimilation pathway (X. 421 

Wang et al., 2020). Such data suggest root Hg storage and/or that plants could potentially 422 

detoxify by releasing Hg taken up from air into soils. Contrary to this, isotope data from 423 
wetland plants (i.e., rice) reflect soil isotope signatures, which is linked to the uptake of 424 

bioaccumulative MeHg that is produced under anoxic conditions prevalent in wetlands (Yin 425 

et al., 2013). The unique case of rice, particularly in ASGM affected areas, is considered 426 

separately in Section 3.2. We will now consider the impacts of ASGM-derived Hg 427 

contamination in crops via stomatal assimilation. 428 

3.1.3 Hg uptake from air in crops impacted by ASGM activities 429 

Eboigbe et al. (2025) assessed both air and soil uptake pathways in cassava (Manihot 430 

esculenta), peanut/groundnut (Arachis hypogaea), and maize (Zea mays) from a 431 

contaminated (≈500m upwind) and a background (≈8km upwind) farm of a ASGM processing 432 

site in Nasarawa State in Nigeria. Foliage was enriched 25-35x in the contaminated farm 433 

(compared to background), and Hg stable isotope analyses revealed highly negative MDF 434 

values in foliage (δ202Hg: cassava: -3.83 ± 0.15 ‰, peanut: -3.77 ± 0.27 ‰, maize: -2.51 ± 435 

0.15 ‰), which are indicative of the negative fractionation associated with stomatal 436 
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assimilation (Eboigbe et al., 2025). Air-to-foliage enrichment factors (ε202Hgiii: -2.89 to  437 

-1.57‰) fell into the aforementioned measured range observed in other higher vegetation 438 

(Eboigbe et al., 2025). A two endmember Hg stable isotope mixing model based on air and 439 

soil uptake pathways revealed 61-100% of THg in edible tubers/nuts/grains and other above 440 
ground tissues and 26-47% of THg in roots were derived from air highlighting the dominance 441 

of the atmospheric uptake pathway in these crops. While The fraction of MeHg out of THg 442 

was <1% (%MeHg) in all measured crop and soil samples (Eboigbe et al., 2025). While, THg 443 

and MeHg concentrations in edible parts were above below dietary guidelines, without any 444 

data for Nigeria, conservative consumption rate estimates were used for and could be 445 

particularly concerning for cassava leaves (320 ± 116 µg kg-1); suggested consumption rates 446 

from other countries would have surpassed dietary intake thresholds, which are consumed 447 
in many countries (including Nigeria) (Eboigbe et al., 2025).  448 

Casagrande et al. (2020) examined ASGM-derived Hg in soy plants (Glycine max) and found 449 

THg concentrations in leaves from plants grown in a ASGM affected area (mean THg: 109 ± 450 

21 µg kg-1) approximately three times higher than soy foliage in more background sites (THg 451 

means: 35-40 µg kg-1). This was despite measuring relatively low soil THg concentrations in 452 
both ASGM (95 µg kg-1) and non-ASGM areas (68 µg kg-1); and indeed, THg concentrations in 453 

other plant tissues (stems, seeds, pods, and roots) were not elevated in the ASGM affected 454 

area (Casagrande et al., 2020). The authors link these results to atmospheric Hg uptake and 455 

used the data to estimate a Hg deposition/accumulation rate of this ASGM affected soy farm 456 

of 33.6 g km-2 yr-1 (Casagrande et al., 2020). This approach provides a novel basis for 457 

calculating Hg accumulation from air in both background and Hg contaminated agricultural 458 

areas. Eboigbe et al. (2025) also applied the Hg accumulation approach and calculated 459 

fluxes of 1070±88, 98±26, 620±140 g km-2 yr-1 to cassava, peanuts (groundnuts), and maize 460 
farms, respectively. These estimates include transfer to other tissues including below 461 

ground edible parts, but Hg storage in foliage makes up the majority of Hg transferred to 462 

crops from air (90-92%), which again raises concerns about consumption of edible foliage, 463 

such as in cassava (Eboigbe et al., 2025). 464 

Several other studies have assessed Hg in crops from ASGM affected areas but did not make 465 

atmospheric Hg(0) measurements due either to logistical challenges or to the assumption 466 

that Hg would derive largely from soil. While less ideal than paired soil and atmosphere 467 

 
iii Epsilon values (i.e., ε202Hg) are indicative of the degree of fractionation between two samples or sample 
matrices. For example, if δ202Hg values for sample A and sample B are 1.00 and -1.00‰, respectively, then the 
ε202Hg would be -2.00‰ from A to B. 



 

16 
 

measurements, soil THg concentrations represent acceptable proxies for general Hg 468 

exposure across Hg(0) contaminated areas, as deposition from air is a major source of soil 469 

Hg, and Hg(0) in air typically correlates well with soil THg concentrations (Fantozzi et al., 470 

2013; Xia et al., 2020). However, we acknowledge that there can be exceptions to this 471 
relationship including in ASGM areas (Gerson et al., 2022); and hence acknowledge the 472 

elevated uncertainty such an assumption creates. 473 

Golow and Adzei (2002) measured THg concentrations up to ≈35 and ≈18 µg kg -1 in cassava 474 

leaves and flesh, respectively, at ≈2-3 km from a mining site in Ghana; concentrations in 475 

tissues and soils decreased with increasing distance from the ASGM site. However, these 476 
concentrations were low compared to most other studies (Table 1). Nyanza et al. (2014) 477 

observed THg concentrations of cassavas up to 167 µg kg-1 in leaves, but only up to 8.3 µg 478 

kg-1 in flesh (little specific information relating to distance from ASGM was given). Adjorololo-479 

Gasokpoh et al. (2012) measured elevated THg concentrations in both cassava leaves (up 480 

to 177 µg kg-1) and flesh (up to 185 µg kg-1) near another ASGM site in Ghana. While leaf THg 481 

concentrations were again reported to decrease with distance from mining sites, there may 482 

have been multiple sources in this study (i.e., former mines; Adjorololo-Gasokpoh et al., 483 
2012). A unique aspect of the Adjorololo-Gasokpoh et al. (2012) study was that they 484 

dissected the cassava into flesh and inner and outer peels of the tuber and data from such 485 

tissue dissection could provide critical information in discerning atmospheric and soil 486 

uptake pathways. Nonetheless, there was little trend with distance from ASGM site in flesh, 487 

inner peel, or outer peel (Adjorololo-Gasokpoh et al., 2012), which could be attributed to  488 

variability in the use/emission of Hg and possible unknown sources. Our own analyses of 489 

data from Nyanza et al. (2014; p = 0.111) and Adjorololo-Gasokpoh et al. (2012; p = 0.136) 490 

indicate there was no correlation between THg concentration in cassava leaves and flesh in 491 
these studies, which is surprising considering that stable isotope data from Eboigbe et al. 492 

(2024) indicated the atmosphere as the source of Hg in cassava flesh. 493 

Addai-Arhin et al. (2022a) measured higher THg concentrations in both the peel (306 – 991 494 

µg kg-1) and flesh (100 – 345 µg kg-1) of cassavas at farms near (specific distance not given)  495 
at three ASGM sites in Ghana. MeHg concentrations were measured in cassava tissues and 496 

were <1% of THg in all samples (Addai-Arhin et al., 2022a). In another study by the same 497 

group, Addai-Arhin et al. (2022b1) measured both THg (and MeHg: <1.1% of THg in all 498 

samples) in plantain (genus: Musa) flesh and peels at the same sites. THg concentrations in 499 

plantains (39 – 50 µg kg-1 in flesh and 41 – 130 µg kg-1 in peels) were close to an order of 500 

magnitude lower (Addai-Arhin et al., 2022b1) than cassava (Addai-Arhin et al., 2022a) at the 501 
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equivalent farms, which highlights the species specificity of Hg uptake in crops. In the 2021 502 

study, much higher THg concentrations were observed in plantain flesh (mean: 580 µg kg -1) 503 

and peels (mean: 275 µg kg-1) at an additional fourth farm (Odumase) adjacent to what is 504 

[presumably] a much larger ASGM operation (Addai-Arhin et al., 2022b1). Interestingly, the 505 
soils at Odumase site had lower THg concentrations than soils at other farms in their study 506 

(Addai-Arhin et al., 2022b1); we speculate that the elevated THg concentration in plantain 507 

tissues at the Odumase farms is caused by greater emissions concentrations of Hg(0) in air 508 

from a potentially newer mine near this farm that may, as yet, not have impacted the soils 509 

as much as has been the case at other farms (no Hg(0) measurements were taken to assess 510 

this). 511 

In both studies by Addai-Arhin et al. (2022a1; 2022b) human health assessments were 512 

included and based on USEPA daily consumption guidelines for THg in food (reference dose: 513 

0.3 µg of Hg per kg of body mass per day; USEPA, 2004) and estimated average daily 514 

consumption rates (adults: 0.37 kg plantain, 0.6 kg cassava; children: 0.2 kg plantain, 0.4 kg 515 

cassava). The Hg consumption via cassava at all farms (measured range: 0.98-3.8 µg kg-1 516 

day-1; Addai-Arhin et al., 2022a) exceeded THg intake guidelines, but plantain only exceeded 517 
at the most contaminated farm (Odumase; 3.0-3.3 µg kg-1 day-1; range at other farms: 0.22-518 

0.28 µg kg-1 day-1; Addai-Arhin et al., 2022b1). While data are concerning, this may be 519 

partially offset by the low fraction of highly toxic and bioaccumulative MeHg, all cassava and 520 

plantain samples being below the USEPA daily MeHg consumption guideline (reference 521 

dose: 0.1 µg kg-1 day-1; measured: <0.026 µg kg-1 day-1; USEPA, 2004; Addai-Arhin et al., 522 

2021a; 2022b).  A third study by the Addai-Arhin et al. (2023) group appears to summarize 523 

these two other works, but it is not considered for further discussion here due to their focus 524 

on cumulative peel and flesh THg concentration data (sum of THg concentration in peels 525 
and flesh), which are not summative data. 526 

Sanga et al. (2023) measured THg concentrations in edible crop foliage (cassava, pumpkin: 527 

Cucurbita moschata, Chinese cabbage: Brassica rapa subsp. pekinensis, and sweet potato: 528 

Ipomea batata) in crop soils indicative of anomalously low Hg contamination, near 529 
background levels (11.4±4.7 µg kg-1), but <2km from an ASGM area in Geita Region of 530 

Tanzania. THg concentrations were elevated and ranged from 96±14 µg kg-1 in Chinese 531 

cabbage to 153±128 µg kg-1 in cassava leaves.iv  532 

 
iv Reporting/method issues could also explain the very high crop/very low soil Hg concentration anomaly, but 
we could not identify any issues from the data provided. 
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A similarly designed study in two villages in North Sumatra Province, Indonesia, Arrazy et al. 533 

(2023), also measured elevated THg in foliage of cassava (mean: 2000±1600 µg kg-1) and 534 

katuk (Sauropus androgynus; mean: 4800±5900 µg kg-1) foliagev; one village had dietary 535 

intakes from these leafy vegetables (0.52-0.93 µg kg-1 day-1) above reference dose levels. 536 
However, the major difference to the Sanga et al. (2023) study was the ≈3 orders of 537 

magnitude higher THg concentrations in crop soils (mean: 19±33 mg kg-1). The elevated THg 538 

concentrations in crops from both studies were hypothesized to be at least partly 539 

associated with atmospheric uptake, though no air measurements were taken (Sanga et al., 540 

2023; Arrazy et al., 2023). Both studies also examined rice, discussed in Section 3.2.2.2. 541 

A recent study in the Madre de Dios Region of Peru, examined the edible parts of six crops 542 

(corn: Z. mays, rice: O. sativa, cassava: M. esculenta, plantain: M. paradisiaca, potato: 543 

Solanum tuberosum, cocona: Solanum sessiliflorum) in areas deemed to be impacted by 544 

mining (Marchese et al., 2024). Concentration levels in crops from areas listed as “impacted 545 

by mining” were lower than in many of the previously mentioned studies ranging from 3.8 µg 546 

kg-1 (n=2) in corn to 27 µg kg-1 (n=2) (Marchese et al., 2024). Even so, four of the 27 samples 547 

exceeded maximum contaminant levels as indicated by the US Dept of Agriculture 548 
(Marchese et al., 2024). However, these crop samples were purchased in local markets 549 

presenting challenges in assessing distance from farms to mining sites and crop exposure 550 

levels to Hg from either soils or air (Marchese et al., 2024). Again, rice data from this study 551 

are interpreted in Section 3.2.2.2.  552 

One other study from South America (Pará State, Brazil) attempted to correlate THg in both 553 
roots and above ground parts from a range of cultivated crops (grouped as produce) with 554 

soil THg (no assessment of Hg(0) in air) at two ASGM impacted communities (Egler et al., 555 

2006). The first community appears to be a village setup around a mine (we assume farms 556 

are very close to mine) and THg concentrations were the highest measured across all 557 

studies examining Hg in crops impacted by ASGM (mean THg concentrations: 2600 ± 3100, 558 

210 ± 310, and 410 ± 300 µg kg-1 in above ground parts, edible parts, and roots, respectively, 559 

across all crops). At the second site (≈15 km from active ASGM sites) THg in produce was 560 
lower (120 ± 110, 10 ± 10,  and 260 ± 250 µg kg-1, respectively)  and only produce roots at this 561 

location were significantly correlated with soil THg, which again suggests that atmospheric 562 

uptake is the dominant uptake mechanism for these crops (Egler et al., 2006). 563 

 
v Several other crops were studied, but each had data of only one sample and were not considered further. 
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Table 1: Information from studies of crops farmed in non-saturated soils in agricultural areas 564 

impacted by ASGM activities. Tissue abbreviations: F – foliage; S – stem; R – root; T – 565 

tuber/fruit; N – nut. [ ] denotes concentration. 566 

Reference Region Country Crop 
type(s) 

Distance 
ASGM-

to-Farm 
(km) 

Farm Soil 
[THg]  

(mg kg-1) 

Farm Air 
[Hg(0)]  
(ng m-3) 

Crop tissue 
[THg]  

(µg kg-1) 

Fraction 
MeHg 
(out of 
[THg]) 

Notes of interest 

Eboigbe et 
al. (2025) 

Nasa-
rawa Nigeria 

1. 
cassava 

2. 
peanuts 

3. maize 

0.5 76.6 ± 59.7 54 ± 19 

1. 
F:320±116  
S: 5.4±6.3  

T: 0.5±10.4 
R: 1.0±36.3 

2.  
F:385±20  
S: 2.1±9.9  

N:6.3±21.3 
R: 84.6± 4.1 

3. F: 82±44 
S:31.7±39.3  
N:1.78±1.22 
R: 202±136 

<1% 
across all 

tissues 
for all 

crops and 
all soil 

samples 

Crop foliage in ASGM 
area 25-35x THg 

enrichment compared to 
background areas.  

Highly negative MDF of 
stable Hg isotopes plant 

tissues (including 
cassava flesh) indicate 

uptake from air 
dominates over uptake 

from soil (N/T: 61-100%, 
R: 26-47% of THg derived 

from air). 
Estimated 1070±88, 

98±26, 620±140 g km-2 
yr-1 taken up by cassava, 

peanut, and maize. 

Casagrande 
et al. (2020) 

Mato 
Grosso 

Brazil soy  0.095 NA F: 109 ± 21 NA 

Soy foliage in ASGM area 
3x THg enrichment 

compared to 
background areas. 

Estimated 33.6 g km-2 yr-1 
taken up by soy. 

Golow 
&and Adzei 

(2002) 
Central Ghana cassava ≈2-3 ≈100-300 NA F: 35 

T: 18 
NA 

Decreasing [THg] in soils 
and crop tissue with 
distance from ASGM 

Nyanze et 
al. (2014) 

Geita Tanz-ania cassava NA 58.4±188 NA F: Up to 167 
T: up to 8.3 

NA Little information on 
distance from site. 

Sanga et al. 
(2023) 

Geita Tanz-ania 

1. cass-
ava,  

2. China 
cabbage 
3. sweet 

potato 
4. Pump-

kin 

<2 0.011±0.005 NA 

1.F:153±128 
2. F: 96±14 

3. F: 117±34 
4. F: 119±79 

NA 

Anomalously low soil 
[THg] so close to ASGM. 

Atmospheric uptake 
pathway linked due to 

low soil [THg].  

Adjorololo-
Gasokpoh 

et al. (2012) 
Western Ghana cassava variable range:  

94-400 
NA 

Ranges:  
F: 93-177 

T(flesh): 84-
185;  

T(peel): 76-
268 

NA 

Dissected cassava tuber 
into peel and flesh; 
potentially variable 

ASGM sources. 

Addai-Arhin 
et al. 

(2022a) 
Ashanti Ghana cassava NA 

range: 
1290-3880 NA 

Ranges:  
T(flesh): 

100-345; 
T(peel): 306-

991 

<1% 
across all 

tissues 

Estimated avg. daily 
intake was above USEPA 

guidelines for THg, but 
below for MeHg. 
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Addai-Arhin 
et al. 

(2022b1) 
Ashanti Ghana plantain NA 

range: 
1290-3880 NA 

Ranges:  
T(flesh): 33-

587 
 T(peel): 33-

292 

<1.1% 
across all 

tissues 

Estimated avg. daily 
intake  below USEPA 

guidelines for THg, and 
MeHg; exception at 

Odumase site with THg 
above guidelines. 

Anomalously high soil 
[THg]. 

Arrazy et al. 
(2023) 

North 
Sumatra 
Province 

Indonesia 
1. 

cassava,  
2. Katuk 

0.1-0.7 19±33 NA 

1. F: 
2000±1600 

2. F: 
4800±5900 

NA 

Daily Hg intake via 
vegetable consumption 

in Nauli Village above 
reference dose. 

Atmospheric and soil 
uptake pathways 

suggested.  

Marchese 
et al. (2024) 

Madre 
de Dios Peru 

assorted 
market 
crops 

NA NA NA 3.8-27 NA 

THg  in range of crops 
purchased in markets of 

towns near ASGM 
activities. No 

information on distance 
from ASGM or Hg in soil 

or air of crops. 

Egllger et 
al. (2006) 

Pará Brazil 
Range of 

crops 
≈<1km 

range:  
290-3840 

NA 

F/S: 
2600±3100 

T/N:210±310 
R: 410±300 

NA 

Crop tissues in ASGM 
area ≈10-20x THg 

enrichment compared to 
background areas. 

 567 

Hg concentrations in crops have been assessed in several other studies. However, these 568 

papers lack details of sampling sites/methods and distance from ASGM (i.e., Essumang et 569 

al., 2007), contain unclear or concerning analytical methods (Essumang et al., 2007; 570 

Ahiamadjie et al., 2011), or had potential errors in data reporting (SSenku et al., 2023 vi). 571 

Therefore, these studies are not considered further. 572 

3.2 Hg uptake from roots of saturated soil crops: the drinkers.  573 

While stomatal assimilation of Hg(0) can and does occur in rice (Oryza sativa L.; Qin et al., 574 

20202; B. Tang et al., 2021; Aslam et al., 2022), rice is exceptional in that it also accumulates 575 

significant amounts of Hg from the soil, due to the availability of MeHg which is formed in 576 
the anaerobic paddy soils (Rothenberg et al., 2014). MeHg represents 40-60% of the THg 577 

burden in rice (Rothenberg et al., 2014), which contrasts other crops that usually 578 

accumulate only 0.05-1% MeHg even in contaminated areas (Qiu et al., 2008; T. Sun T. et 579 

al., 202019; Eboigbe et al., 2025). Rice is a staple food crop for >3.5 billion people (L. Zhao 580 

et al., 2020) and, globally, rice represents 10% of total MeHg intake (M. Liu et al., 2019), 581 

 
vi There appears to be inconsistent use of parts-per notation (ppb/ppm). Contact author did not respond to 
inquiries about the potential data reporting issues. 
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emphasizing the considerable public health concerns posed by the consumption of MeHg 582 

and IHg(II) contaminated rice.  583 

3.2.1 Rice paddies: the (de)methylators  584 

Rice paddies are characterized by cyclical flooding and drying cycles. These cycles impact 585 

redox conditions, the forms of carbon (C), sulphur (S), iron (Fe), and manganese (Mn) 586 

cycling, and induce strong mineral weathering (Kögel-Knabner et al., 2010). In addition, rice 587 

paddies usually have abundant organic matter from root exudates and the reincorporation 588 

of rice residues. The soil pool of MeHg is the dominant source of MeHg to the plant, with 589 

multiple studies observing no evidence that in-planta methylation can occur (Aslam et al., 590 

2022; J. Liu et al., 2021; Strickman &and Mitchell, 2017). MeHg in soil is governed by IHg(II) 591 
bioavailability and methylation and demethylation rates, while there are multiple pathways 592 

of MeHg and IHg(II) uptake into the roots and subsequent translocation into the grain, 593 

processes described in detail below. 594 

3.2.1.1 Inorganic Hg (IHg(II)) bioavailability 595 

The rapid redox cycling created by fluctuating water conditions in rice paddies can create 596 

“Hg species resetting” which increases the supply of soluble IHg(II) species (bio)available 597 

for methylation (J. Liu et al., 2021; J. Wang J. et al., 2021). Logically, this supply of 598 

(bio)available, soluble IHg(II) increases in paddies contaminated with Hg from 599 

anthropogenic activities (including ASGM) (Ao et al., 2020; Rothenberg et al., 2014; Xu et al., 600 
2024). Other factors such as lower pH, oxidation of Fe(II) to Fe(III) via radial oxygen loss from 601 

rice roots, and application of N fertilizers, can also free IHg(II) from binding sites and 602 

increase its bioavailability for methylation (Rothenberg et al., 2014; Z. Tang et al., 2020).  603 

3.2.1.2 Methylation 604 

Mercury methylators in rice paddies appear to be dominated by iron reducers (Y.-R. Liu et 605 
al., 2018; Z. Tang et al., 2021), methanogens (Y.-R. Liu et al., 2018, Z. Tang et al., 2021, Wu 606 

et al., 2020), and (in some cases) sulphur reducers (Wu et al., 2020). Several aspects of the 607 

rice paddy system influence methylation rates, with marked differences observed across 608 

geographical and contamination gradients (J. Liu et al., 2021; Rothenberg et al., 2012). 609 

Methylation is stimulated by the availability of labile organic carbon, which originates from 610 

root exudates or rice straw debris (Y.-R. Liu et al., 2016; Windham-Myers et al., 2009; Zhu et 611 

al., 2015). In addition, the draining cycle of paddies facilitates oxic regeneration sulphate 612 
and ferric iron, electron acceptors of sulphur- and iron-reducing bacteria, as well as 613 

promoting dissolution of iron oxyhydroxides and thus release of bound IHg(II) (Rothenberg 614 

et al., 2014; Ullrich et al., 2001; J. Wang J. et al., 2021).   615 
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3.2.1.3 Demethylation 616 

Hg demethylation in rice paddy soil has been seldomly measured, but most studies report 617 

relatively high and consistent demethylation rate constants, suggesting resilience to 618 

different environmental conditions (J. Liu et al., 2021; Windham-Myers et al., 2013; L. Zhao 619 

et al., 2016). The taxonomic diversity of Hg demethylators may explain this, as both mer-620 

dependent and mer-independent demethylation have been observed in paddy soils, with 621 

evidence for demethylation by representatives of Clostridium spp. (J. Wang J. et al., 2021), 622 

Catenulisporaceae, Frankiaceae, Mycobacteriaceae, and Thermomonosporaceae (Y.-R. 623 
Liu et al., 2018). Correlations between MeHg concentrations and methane emissions from 624 

paddies suggest methanogens are important demethylators (Huang et al., 2025). 625 

Demethylation appears to be responsive to labile organic carbon (Marvin-DiPasquale and& 626 

Oremland, 1998; Marvin-DiPasquale et al., 2000; Hamelin et al., 2015; Li and Cai, 2012), but 627 

less so than methylation, based on a comparison of  methylation and demethylation in 628 

vegetated and devegetated plots of rice paddies, which observed concomitant increases in 629 

plant-derived labile organic carbon, MeHg concentrations, and methylation rate. 630 
Demethylation was not measured, but any increases in this process had to have been 631 

outpaced by the increase in methylation rate (Windham-Myers et al., 2013).  632 

3.2.1.4 Uptake and translocation of MeHg, IHg(II), and Hg(0) through the plant-grain system  633 

The uptake routes of MeHg and IHg(II) to rice differ substantially. MeHg is formed in the soil 634 

and then absorbed through the roots; a fraction of this MeHg is retained by iron plaque or 635 

apoplastic barriers on the root tissue, preventing complete transfer of MeHg to internal root 636 

vascular tissues and subsequent translocation (these barriers can also prevent IHg (II) 637 

uptake into internal tissues) (Li et al., 2015; X. Wang et al., 2014;, 2015; X. Zhou &and Y. Li, 638 

2019). The review by Rothenberg et al. (2014) confirmed greater uptake of MeHg in rice by 639 
calculating average bioaccumulation factors from previously published works of 5.5 for 640 

MeHg and 0.32 for IHg(II). While there is uncertainty around the exact mechanisms driving 641 

translocation, it likely occurs through conductive tissues such as (phloem and;  xylem, 642 

(Rothenberg et al. 2015, Hao et al., 2022; B. Meng et al., 2010; 2014; Xu et al., 2016).  643 

Within foliageabove ground tissues, MeHg can be photolytically demethylated via reactive 644 
oxygen species generated by the plant itself (Li et al., 2015; Strickman &and Mitchell, 2017; 645 

Xu et al., 2016). In-planta demethylation can eliminate up to 84% of the MeHg absorbed from 646 

the soil by rice (W. Tang et al. 2025) which is responsible for a protective effect valued at 647 

US$30.7-84.2 billion per year (W. Tang et al. 2024). Translocation of MeHg to the rice grain 648 

appears to occur in complex with cysteine residues and concentrated in the endosperm (the 649 
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“white” core of the rice grain) (B. Meng et al., 2014).  Rice grains are referred to throughout 650 

as either unhulled, once-milled (husk removed, bran not removed; brown rice) or twice-651 

milled (husk and bran both removed; white rice).  #orava 652 

IHg(II) can also be taken up by plants in similar pathways described in Section 3.1. Sorption 653 

of IHg(II) to roots has been observed in rice (Aslam et al., 2022; J. Liu J. et al., 2021; Strickman 654 

and& Mitchell, 2017), but similar to other crops the root epidermis likely restricts 655 

assimilation of IHg(II) into internal root tissues limiting translocation to other tissues via this 656 

uptake pathway. Similar to MeHg, iron plaque coatings on rice roots contribute to the root 657 

barrier  for IHg(II) via adsorption (Li et al., 2015; X. Wang et al., 2014;, 2015; X. Zhou &and Y. 658 
Li, 2019). Stomatal assimilation of Hg(0), subsequent oxidation, and translocation has been 659 

observed as a source of IHg(II) to the developing rice grain (Aslam et al., 2022; J. Liu et al., 660 

2021; Yin et al., 2013) as well as to the roots themselves via reverse translocation (Aslam et 661 

al., 2022). It has also been posited that some IHg(II) could sorbed to the outer layers of the 662 

grain (bran and aleurone layer) directly from the atmosphere (B. Meng et al., 2014).  663 

3.2.2 Hg in rice impacted by ASGM activities 664 

Globally, Hg contamination of rice in contaminated and uncontaminated areas has been 665 

reviewed by Rothenberg et al. (2014) and Z. Tang et al. (2020), and in Indonesia by Arrazy et 666 

al. (2024). Our review integrates the ASGM-related body of this research with newer findings 667 

to update our understanding of ASGM impacts on rice. We note the importance of 668 

understanding ASGM-derived Hg contamination of rice due to prevalence of ASGM in rice 669 

growing areas (i.e., Asia and Africa), the resulting Hg contamination of air, soils, and water, 670 

and the presence of Hg(0), IHg(II), and MeHg in these paddy systems. 671 

3.2.2.1 Assessment of methylmercury production in ASGM impacted paddy systems.  672 

Rates of methylation and demethylation have never been estimated in ASGM environments, 673 
and only one study has measured MeHg levels in paddy soil/sediments. Working in West 674 

Java, Indonesia, Tomiyasu et al. (2020) measured mean MeHg concentrations of 12.3±4.8 675 

µg kg-1 in paddy soils ≈500 m downstream from an ASGM site compared to 6.5±2.12 µg kg-1 676 

in reference paddy soils ≈12 km upstream, which seems to indicate minimal differences in 677 

methylation between ASGM and non-ASGM environments. However, accounting for the THg 678 

concentrations in soils (0.43±0.07 mg kg-1 and 17.4±22.5 mg kg-1 at the reference and ASGM-679 

impacted paddies, respectively), %MeHg levels were highest at the reference site (1.6±>0.1 680 
%) compared to 0.1±0.15 % at the ASGM impacted paddy (Tomiyasu et al., 2020). These 681 

observations suggest that differences in the biogeochemical drivers of 682 

methylation/demethylation could be more important to MeHg concentrations than THg 683 
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concentration in these systems, and that methylation was low and/or demethylation was 684 

high at the ASGM paddy site. Predominant winds and potential atmospheric uptake of Hg(0) 685 

could also be a factor if upstream paddies were downwind, because the speciation of Hg 686 

could alter bioavailability for methylation, but these details were not provided. 687 

3.2.2.2 What do we know about methylmercury accumulation in rice in ASGM areas?  688 

As for other foodstuffs, the tolerable daily intake rate (the reference dose) of THg and MeHg 689 
in rice are related to the composition of the entire diet, other MeHg sources, the duration of 690 

exposure and the weight of the individual. While there are concerns that rice should have a 691 

separate reference dose, because it does not offer the same beneficial micronutrients as 692 

fish (Rothenberg et al. 2014), this work has not been undertaken. For consistency, we 693 

therefore use the same reference doses for THg and MeHg described in Section 3.1.3 (0.3 694 

and 0.1 µg kg-1 day-1 for THg and MeHg (USEPA, 2004)) for studies that discuss estimated 695 

dietary intakes and that presented their intake calculation method. Some authors 696 
incorporated a wet to dry correction factor to their intake calculations, which we report, if 697 

present, since different correction factors can affect final values. alter estimates. For 698 

studies that did not assess dietary intake, did not report their calculation method, or did not 699 

distinguish rice from other sources of MeHg, we contextualize the health risk using the 700 

Chinese maximum allowable concentration (MAC) for THg in rice, set at 20 µg kg-1 (H. Zhao 701 

et al., 2019). As there are no MAC values for MeHg in rice, we apply the same MAC of 20 µg 702 

kg-1 for MeHg; if the more toxic and bioaccumulative MeHg concentrations exceed this 703 
threshold they assuredly present human and environmental health concerns. For context, 704 

the global averages for THg and MeHg levels in rice from uncontaminated areas are 8.2 and 705 

2.5 µg kg-1 respectively (Rothenberg et al. 2014).  706 

Information on MeHg in rice grain in ASGM areas is limited.  Findings vary widely, from 707 

minimally contaminated (1-2 µg kg-1) to levels of high concern (over 100 µg kg-1). These values 708 
are within the same order of magnitude as previous findings of MeHg in rice grains from 709 

contaminated paddies associated with other anthropogenic Hg sources (1.2-63 µg kg-1, 710 

Rothenberg et al. 2014).  711 

Two authors employed a market-basket approach, where rice grains were purchased in 712 

regions around ASGM activities. In addition to data on other crops (see Section 3.1.3), 713 
Marchese et al. (2024) observed similar MeHg and THg levels in rice grain in mining-714 

impacted  (MeHg: 7.9±7.17 µg kg-1, THg: 9.1±2.9 µg kg-1) compared to non-mining-impacted 715 

areas (MeHg: 8.7±7.5 µg kg-1, THg: 15.2±19.9 µg kg-1). However, it was not possible to link 716 

these market basket samples to contamination in individual mining-adjacent paddies, as 717 
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the specific growing location was unknown (Marchese et al., 2024). The same concerns 718 

about unknown paddy locations persisted in a study by Cheng et al. (2013) in Cambodia, 719 

who observed mean MeHg concentrations of 1.54 kg-1 in market rice bought in a mining-720 

intensive district compared to means of 1.44 and 2.34 µg kg-1 in non-mining districts. %MeHg 721 
was not calculated for individual samples, but using overall mean THg and MeHg values, we 722 

estimate that the %MeHg in the ASGM area was low, at ≈12%, and similar to the %MeHg 723 

values from non-mining regions (≈20%; Cheng et al., 2013). These studies suggest that the 724 

local commercial rice supply is relatively homogenous between mining- and non-mining 725 

areas, which limits the effectiveness of market basket studies for determining Hg exposure 726 

of vulnerable populations (miners and local residents) via rice in ASGM regions. 727 

Two authors explored MeHg in rice grains derived from farms/paddies situated in close 728 

proximity to ASGM sites. Novirsa et al. (2020) found THg concentrations (mean: 48.5 µg kg-1; 729 

range 13.8-115 µg kg-1) in locally grown rice in active ASGM and farming community 730 

(amalgamation “Hg hotspot” ≈500m from rice paddy) in Lebaksitu, Indonesia that exceeded 731 

the Indonesian standard of 30 µg kg-1 for Hg in foodstuffs; of this, 15-82% (mean: 41%) was 732 

MeHg (mean: 14 µg kg-1). Rice THg concentrations in a second village approximately 2000m 733 
from “Hg hotspot” were lower (mean: 15.9 µg kg-1; range 9.1-23.2 µg kg-1), as was the MeHg 734 

concentration (mean 9.8; range 6.5-11.7 µg kg-1) but %MeHg increased (mean: 65%; range: 735 

51-80%) (Novirsa et al., 2020). The authors intuitively link the difference in %MeHg to greater 736 

proportional uptake of atmospherically deposited inorganic Hg (we suggest predominantly 737 

via stomatal assimilation of Hg(0)) by rice plants grown closer to the “Hg hotspot”(Novirsa 738 

et al., 2020). These authors estimated the probable daily intake (which incorporates an 739 

estimate of bioavailability) of MeHg from rice and found that intake exceeded the reference 740 

dose in the nearer village (0.139 ug/kg bw/day, range 0.079-0.199) while intake in the father 741 
village fell below the threshold (0.063 ug/kg bw/day, range 0.040-0.093). In addition, they 742 

found a significant correlation between hair MeHg levels and exposure via rice, indicating 743 

that the contaminated rice was the source of the residents’ MeHg intake (Novirsa et al., 744 

2020).  745 

In their companion paper in the same area, Novirsa et al. (2019) reported very high THg 746 

concentrations in soils at the “Hg hotspot” (32.1 mg kg-1; n=1). A negative correlation 747 

between THg concentrations and distance from source (three sites between 0.25 and 1.5 748 

km from the hotspot) was also observed in paddy soils (from 2.26 to 0.47 µg kg-1), paddy 749 

waters (from 301 to 30 ng L-1), and rice grains (from 212 to 29 µg kg-1) (full details in Table 2) 750 

(Novirsa et al., 2019). Yet they found no relationship between soil or grain THg and water THg 751 
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levels (Novirsa et al., 2019). Interestingly, this paper identified a positive correlation 752 

between soil THg and grain THg, but the authors did not statistically relate these THg 753 

measurements to MeHg measurements in their later work, limiting conclusions that can be 754 

made about the relationship between THg and MeHg contamination (Novirsa et al., 2019).  755 

Elevated MeHg concentrations were measured in rice grains (mean: 57.7±42.9 µg kg-1), husk 756 

(mean: 28.6±25.3 µg kg-1), and foliage (mean: 36.0±24.9 µg kg-1) from paddy fields directly 757 

adjacent to a very highly Hg contaminated ASGM cyanidation tailings pond (mean THg in 758 

dried solid-phase tailings: 1.63±1.13 g kg-1) in Sekotong area on Lombok Island (Krisnayanti 759 

et al. 2012). THg was not measured in rice grains, and MeHg was not measured in the tailings 760 
ponds, making it difficult to compare estimates of methylation in soil to MeHg accumulation 761 

in grain (Krisnayanti et al. 2012). Nonetheless, the measured mean MeHg concentration in 762 

rice grains far exceeded the Chinese MAC of 20 µg kg-1) (Krisnayanti et al. 2012). The very 763 

high MeHg concentrations observed in these two studies highlight the elevated health risk 764 

associated with consumption of rice grown in areas impacted by ASGM activities. 765 

3.2.2.3 What do we know about total mercury accumulation in rice in ASGM areas?  766 

Given that MeHg is routinely detected in rice samples when sufficiently sensitive 767 

measurement techniques are used (Rothenberg et al. 2014), it is likely that MeHg 768 

contamination of rice grains in ASGM areas is widespread. To help aid with comparison 769 
between studies, we have included estimates of MeHg concentrations for all studies that 770 

have only assessed THg in rice (those discussed in this section) by multiplying the THg 771 

concentrations by the mean %MeHg in rice across both villages (53±12%) from Novirsa et 772 

al. (2020) in Table 2. We emphasize that these estimates have a high uncertainty.  773 

Concentrations of THg in rice grain have been assessed in ASGM areas of South America, 774 
Southeast Asia, and Africa, presented in Table 2. From the studies reviewed here, THg 775 

concentrations in rice in ASGM areas range from 1.0-1810 µg kg-1. This range exceeds that 776 

previously found by Rothenberg et al. (2014), who surveyed Hg in rice in control (mean 8.2 777 

µg kg-1, range 1.0-45 µg kg-1) and contaminated areas (mean 65 µg kg-1; range 2.3 - 510 µg kg-778 
1) impacted by Hg use in e-waste, cement production, and other industrial and mining 779 

activities, including some earlier studies on Hg in rice in ASGM areas. The literature 780 

summarized below excludes studies covered in the Methylmercury section (3.2.2.2.1), 781 
which includes the only work from South America (Marchese et al. 2024). In addition, several 782 

studies were excluded due to issues with quality control reporting or inconsistencies in data 783 

tabulation in text (Hindersah et al 2018, Ramlan et al. 2022, Saragih et al. 2021, Ssenku 784 

2023).  785 



 

27 
 

Southeast Asia, particularly Indonesia, has received more attention than other regions, but 786 

levels of THg contamination were variable and did not always translate to elevated THg in 787 

rice. For instance, surprisingly low rice THg contamination was observed by Appleton et al. 788 

(2006), who studied  Hg in waters, sediments, different types of agricultural soils, mussels, 789 
fish, bananas, and rice prepared in various ways in an irrigated farming area in the Naboc 790 

watershed, downstream of an ASGM site on Mindanao Island, the Philippines. Expectedly, 791 

irrigation of rice paddies with Hg-contaminated water from the mine resulted in significantly 792 

higher THg concentrations in paddy soils (mean: 24, range 0.05-96 mg kg-1) compared to 793 

unirrigated banana and corn field soils (means of 0.12 and 0.27 mg kg-1 respectively) 794 

(Appleton et al., 2006). However, rice Hg levels ranged from an average of 20 µg kg-1 for once-795 

milled rice (range 1-43 µg kg-1), 18 µg kg-1 for twice-milled rice (range 8-50 µg kg-1) and 15 µg 796 
kg-1 for cooked twice-milled rice (range 6-37 µg kg-1) (Appleton et al., 2006). These results 797 

highlight that the preparation method of rice, including cooking, has the potential to 798 

modulate exposure risk. The authors suggested that the surprisingly low THg concentrations 799 

in rice, given the degree of soil contamination, could be the result of the post-harvest 800 

sampling strategy, which combined rice grown in paddies with variable magnitudes of 801 

contamination (Appleton et al., 2006).  802 

In contrast, Pataranawat et al. (2007) conducted THg measurements of paddy waters, soils 803 

and rice (as well as other matrices) around an ASGM facility in Phichit Province, Thailand, 804 

and observed that once-milled rice had very high THg concentrations (228±55 µg kg-1). 805 

However, the surface soil THg concentrations (unclear if this was paddy soil but associated 806 

with the rice samples: 120±80 µg kg-1) were lower compared to other ASGM sites (Table 2) 807 

(Pataranawat et al., 2007). The authors also measured elevated Hg dry deposition rates in 808 

the area (range: 24-139 µg m2 day-1; compared to background dry deposition rates in Japan: 809 
8.0 ± 2.7 µg m2 day-1; Sakata and Marumoto, 2005) and suggested stomatal assimilation of 810 

Hg as the explanation for the elevated rice and low paddy soil THg concentrations. However, 811 

the study lacked both MeHg measurements in rice or paddy soils (a significant fraction of 812 

the THg content of rice), and foliage Hg measurements to more comprehensively assess this 813 

hypothesis (Pataranawat et al., 2007).  814 

Working in three villages within 15 km (specific distance of each village to ASGM site not 815 

listed) of an active ASGM site in North Gorontalo Province, Indonesia, Mallongi et al. (2014) 816 

observed very high THg concentrations in both once-milled (up to 1812 µg kg-1) and twice-817 

milled rice (up to 1080 µg kg-1) (Table 2). Stomatal assimilation was again speculated as a 818 

potential contributor to the high THg concentrations in rice due to high measured dry 819 
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deposition rates (166 – 219 µg m2 day-1) but the authors again lacked the appropriate 820 

analyses to confirm this (Mallongi et al., 2014). They also included a diet-based health 821 

assessment that raised concerns of residents consuming this rice in this area, particularly 822 

brown rice from the village closest the ASGM site (Mallongi et al., 2014).  823 

Giron et al. (2017) surveyed the soil and rice grain THg concentrations on Masbete Island, 824 

the Philippines, at rice fields near an ASGM site, and a reference site ≈37 km away. They 825 

found that paddy soil THg concentrations were extremely elevated in the ASGM site (6880-826 

7810 µg kg-1) compared to the distant region (13-74 µg kg-1). Unhulled and once-milled rice 827 

concentrations were also elevated at the ASGM site in comparison to the control site (117-828 
133 and 1.6-13 µg kg-1, respectively; Giron et al., 2017). The ASGM site was directly adjacent 829 

to a tailings pond and reportedly received tailings contaminated water (Giron et al., 2017). 830 

Arrazy et al. (2023) measured somewhat lower THg concentrations in rice (mean: 50±33 µg 831 

kg-1) from similarly contaminated ASGM-derived Hg paddy soils (mean THg: 5600±12000 µg 832 

kg-1) in rice-growing villages with active amalgamation and amalgam burning North Sumatra 833 
Province, Indonesia. In this study, THg concentrations in rice were correlated with THg in 834 

soils and distance from amalgam burning sources, but all rice sources were 300-600m from 835 

these sites; hence all sites were heavily contaminated (Arrazy et al., 2023). The authors also 836 

calculated average daily intake values of THg from rice for adults (0.30-0.34 µg kg-1 day-1) and 837 

children (0.54-0.63 µg kg-1 day-1) using a wet/dry conversion factor set at 0.91; both adults 838 

and children had exposures above the USEPA reference dose level (Arrazy et al., 2023). 839 

A small epidemiological study exploring the health effects of mercury exposure in an ASGM 840 

village in Indonesia observed that the local rice supply, upon which the villagers depended 841 

entirely, was highly contaminated (68-1186 µg kg-1 of THg in unhusked, once-milled, and 842 

twice milled stored rice of various ages; mean value 301 µg kg-1), and estimated THg intake 843 

rates of 0.14 µg kg-1day-1  for adults and 0.57 µg kg-1day-1 for children (Bose-O’Reilly et al., 844 

2016). Of the 18 villagers examined, 15 were experiencing symptoms of clinical Hg 845 
intoxication (Bose-O’Reilly et al., 2016). These affected individuals had relatively high THg 846 

levels in hair combined with relatively low THg levels in urine, which is indicative of the 847 

manifestations of MeHg exposure rather than inorganic Hg exposure (Bose-O’Reilly et al., 848 

2016).  849 

Shifting to Africa, studies of ASGM impacted rice paddy systems were typically indicative 850 
of lower concentrations of THg in paddy soils compared to studies in SE Asia. This may 851 

reflect more distributed cultivation of rice in Africa, greater competition for the same land 852 

resources in SE Asia, or simply that researchers have not been able to study more heavily 853 
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impacted rice paddies in Africa due to social/geopolitical drivers or funding/capacity issues. 854 

Taylor et al. (2005) explored Hg in rice around a mining area in Nigeria using a market basket 855 

approach combined with a single paired rice-soil sample as part of a more complex survey 856 

of dietary metal contamination across multiple environmental compartments. They found 857 
that rice grown within 5 km of the ASGM site had THg concentrations of 31-35 µg kg-1 and Hg 858 

in these paddy soils had a mean THg concentration of 120 µg kg-1 (Taylor et al., 2005). 859 

However, other paddies that were not sampled for rice had much higher THg levels 860 

concentrations in paddy soils (up to 5100 µg kg-1) (Taylor et al., 2005); hence, the measured 861 

THg concentrations of rice may be on the low end of actual rice concentrations in this ASGM 862 

affected area.  863 

Kinimo et al. (2021) assessed Hg contamination of rice and human exposure at two ASGM 864 

sites in rice-subsistence communities of Ababou and Bonikro, in south-central Cote 865 

d’Ivoire. In once-milled rice, THg concentrations were 20±10 µg kg-1 at Bonikro (53% of 866 

samples exceeded Chinese MAC threshold), and 40±20 µg kg-1 in Agabou (all samples 867 

exceeded) (Kinimo et al., 2021). Nonetheless, calculated average daily intakes of Hg via rice 868 

fell below the USEPA threshold (Bonikro: 0.0075 µg-1 kg-1 day-1, range 0.0029-0.016; Agabou 869 
mean 0.018 µg-1 kg-1 day-1, range 0.0073-0.079). However, their wet/dry conversion factor 870 

was set to 0.085, an order of magnitude lower than that used by other authors here (Arazzy 871 

et al., 2023: 0.91, Sanga et al., 2023: 0.86) and may have biased these estimates (Kinimo et 872 

al., 2021).  873 

Finally, Sanga et al. (2023), measured elevated rice grain THg concentrations (mean: 874 
97.6±34.3 µg kg-1) near (<2 km) an ASGM site in Geita Region of Tanzania and calculated a 875 

daily intake of Hg from rice of 0.429 µg-1 kg-1 day-1 using a wet/dry conversion factor of 0.86; 876 

both rice concentrations and intake rates exceed safe thresholds. Sanga et al. (2023) 877 

observed that rice grain THg concentrations (mean: 75.6±0.005 µg kg-1) at a “background” 878 

site (≈9 km away) were also above the Chinese MAC (EDIs not estimated at this site). Despite 879 

the elevated Hg concentration in rice grains, paddy soil THg concentrations at both the near 880 

mining (mean: 32.1±38.2 µg kg-1) and “background” (mean: 10.6±2.3 µg kg-1) were 881 
anomalously low and near background levels (Sanga et al., 2023). Atmospheric foliar uptake 882 

wasis briefly discussed with relation to other crops examined in this study but not linked 883 
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directly to the observed high rice Hg and low soil Hg data (Sanga et al., 2023). We posit that 884 

foliar uptake and translocation of IHg(II) to rice grains could drive this discrepancy. vii 885 

  886 

 
vii Reporting/method issues could also explain the very high rice/very low soil Hg concentration anomaly, but 
we could not identify any issues from the data provided (the same anomaly was noted for other crops in this 
study; footnote iv). 
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Table 2: Summary of studies examining Hg in rice. All data presented in means ± standard 887 
deviation if these data were available or could be calculated from tabulated datasets. If 888 
means ± standard deviations were not provided or could not be calculated, we provide the 889 
values supplied by the authors (means and ranges, mean only, or ranges only). For studies 890 
without measurements of rice grain MeHg, we have provided a coarse estimate of the MeHg 891 
content based on the rice grain THg values and the average %-MeHg value observed by 892 
Novirsa et al. 2020 (53%); these values are marked with an asterisk.     893 

Refer-
ence 

Research 
type 

Region Country 
Rice prepara-

tion type 

Dist. 
ASGM-
to-site 

(km) 

Sub-site 
descript-

tion 

Farm Soil 
[THg]  

(mg kg-1) 

Farm 
Soil 

[MeHg]  
(µg kg-1) 

Rice Grain 
[THg]  

(µg kg-1) 

Rice 
Grain 

[MeHg]  
(µg kg-1) 

%MeHg 
(out of 
[THg]) 

Notes of interest 

                          
Arrazy et 
al. (2023) 

field 
study 

North 
Sumatra 

Indonesia once milled 0.1-0.25  5.6±12 NA 50 ± 33 27 * NA  

Marchese 
et al. 

(2024) 

market 
basket 

Madre 
de Dios 

Peru Un-stated 
Un-

stated 

mined 
regions NA NA 9.1±2.9 7.9±7.1 99±50  

unmined 
regions NA NA 15.2±19 8.7±7.4 88±60  

Sanga et 
al. (2023) 

field 
study 

Geita 
District Tanzania unstated   

0-2 km from 
mining 

0.032 
±0.038 NA 

97.6±34.3 
(75.2-
158.7) 

52 * NA  

>9 km from 
mining 

0.0106 
±0.0035 

NA 
75.6±0.4 

(75.2-
75.9) 

40 * NA  

Kinimo et 
al. (2021) 

field 
study 

South-
Central 
Region 

Cote 
d'Ivoire 

Unclear if 
once or twice 

milled 

0.1-3 Agabou NA NA 20-160 
10.6-84.8 

* 
NA  

0.1-3 Bonikra NA NA 10-30 
5.3-15.9 

* NA 
53% of samples 

exceeded 20 ng/g 

Tomiyasu 
et al. 

(2020) 

paddy soil 
only 

West 
Java 

Indonesia NA 

0.1-2 
paddies 

near ASGM 
sites 

17.4 
±22.5 

12.3 ± 
4.8 NA NA 1.6±0.1 

Values tabulated from 
supplementary data. 
Snail MeHg and THg 

were measured but not 
rice. 

10 
paddies in a 

national 
park 

0.43 
±0.07 

6.5  
± 2.1 

NA NA 0.0015 

Novirsa et 
al. (2020) 

survey of 
home rice 
supplies 

West 
Java 

Indonesia 
Unclear if 

once or twice 
milled 

0.5-2 

village 
adjacent to 

mine 
NA NA 

48  
(13.8-
115) 

14.0  
(4.9-20.7) 

41  
(15-82) 

Hyperlocal rice 
cultivation confirmed in 

survey data; 97% of 
residents grew own rice 
near homes or bought it 

from neighbours. 

village 2km 
from mine 

NA NA 
15.9  

(9.1-23.2) 
9.8  

(6.5-11.7) 
65  

(51-80) 

Novirsa et 
al. (2019) 

field 
study 

West 
Java 

Indonesia once milled 0.5-1.5 

paddy 0.25 
km from 

ball mill and 
mining area 

Soil: 
2.26±0.15  

water: 
301 

±420 ng/L 

NA 211 ± 11 112 * NA  

paddy 0.5-
1km from 

ASGM sites 

Soil: 
0.63±0.34 

Water: 
66± 

100 ng/L 

NA 91 ± 13 48 * NA  

paddy 1-1.5 
km from 

ASGM sites 

Soil: 
0.47±0.12 
Water: 30 
±31 ng/L 

NA 29± 1 15 * NA 
 
 
  

Giron et 
al. (2017) 

field 
study 

 
Masbat
e Island  

Philippine
s 

unhulled and 
once milled 

0.5-1 
ASGM 
mining 
district 

6.888-
7.812 NA 

Unhulled: 
117 1x 
milled: 

133  

Unhulled: 
62 *  

1x milled: 
71 * 

NA 
Mean values only 

reported, no estimates 
of variance/uncertainty 

~37 non-ASGM 
district 

0.013-
0.074 

NA 

Unhulled: 
1.6 1x 

milled: 
13.1  

Unhulled: 
0.8 * 

1x milled: 
6.8 * 

NA  



 

32 
 

Bose-
O'Reilly et 
al. (2016) 

field 
study 

West 
Java 

Indonesia 

unhulled, 
once milled, 

and twice 
milled 

not 
reporte

d 
 NA NA 310 (68-

1186) 
164 * NA 

Local ASGM-impacted 
rice consumed by 

community. Stored rice 
of variable ages &and 

types. Paddies irrigated 
with Hg contaminated 

water, paddy-ASGM 
distances not reported. 

Mallongi 
et al. 

(2014) 

field 
study 

Goront-
alo 

Prov. 
Indonesia 

Once and 
twice milled 

within 
15 km 
radius 

Wubudu 1.52-3.58 NA 
1x mill: 
1042-
1821 

1x mill:  
552-965* NA  

    2x mill:  
603-1084 

 2x mill: 
320-575*  

  

Motihamulo 0.48-2.9 NA 
1x mill: 
795-915 

1x mill: 
421-485* 

NA  

   
2x mill: 
628-754 

2x mill: 
332-400* 

  

Dulukapa  0.88-2.26 NA 
1x mill: 
122-254 

1x mill: 
65-135 * 

NA  

   
2x mill: 
113-183 

2x mill: 
60-97 *   

Cheng et 
al. (2013) 

market 
basket 

Kratie 
Region Cambodia 

not stated; 
likely twice 

milled 

not 
stated 

ASGM 
mining 
district 

NA NA 
12.7  
(9.90-
16.7) 

1.54 
(1.06-
2.31)  

12 
%-MeHg values were 

calculated from mean 
MeHg and THg values 

  

Kamp-
ng 

Cham 
Region 

   
non-mining 

district NA NA 
8.14  
(6.16-
11.7) 

1.44 
(1.17-
1.96) 
 

18  

  Kandal 
Region 

   non-mining 
district 

NA NA 
10.21  
(5.91-
15.1) 

2.34 
(0.48-
5.23) 
 

23  

Krisnaya-
nti et al. 
(2012) 

field 
study 

Lombo-
k Island 

Indonesia one milled 

field 
directly 
adjacen

t to 
cyanida

tion 
tailings 

pond 

 

not 
measured

; THg in 
solid-
phase 

tailings of 
adjacent 

pond was 
1630±113

0 

NA NA 

grain: 
57.7±42.
9 
hull: 
28.6±25.
3 leaf: 
36.0±24.
9  

NA 
Maximum grain MeHg 

concentration of 115 µg 
kg-1 

Patarana-
wat et al. 

(2007) 

field 
study 

Phicit 
Prov. 

Thailand once milled 1-6  0.12±0.8 NA 228±55 121 * NA 

All samples, even those 
further from the mine, 

far exceeded the 
maximum allowable 

concentration. 

Appleton 
et al. 

(2006) 

field 
study 

 

Minda-
nao 

Island 
  

Philippine
s  

once milled 10  24 (0.05-
96) 

NA 20 (1-43) 11 * NA Rice from storage, soils 
from adjacent paddies 

receiving ASGM 
contaminated irrigation 

&and silt tailings 

twice milled    NA 18 (8-50) 10 * NA 
Twice milled 

cooked 
   NA 15 (6-37) 8 * NA 

Taylor et 
al. (2005) 

market 
basket 

Geita 
District Tanzania unhulled <5 km  

0.3 
(0.005-

5.1) 
NA 31-35 17-19 * NA 

Market based, but 
reported to be within 5 

km of ASGM site 

 894 

The literature summarized in this section suggest that both uptake through roots (likely of 895 

MeHg) and Hg(0) uptake through foliage are important determinants of grain THg 896 

concentrations in rice grains in ASGM areas. This conclusion is largely derived from the data 897 

inconsistencies between THg concentrations in paddy soils (and on occasion also distance 898 

from source) and THg concentrations in rice, which indicate that simple soil THg 899 
concentration was not the only control on grain THg concentration in grains (i.e., Appleton 900 
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et al., 2006; Pataranawat et al., 2007; Sanga et al., 2023),  as well as the comprehensively 901 

structured study by Aslam et al. (2022) which strongly suggested an atmospheric route of 902 

Hg(0) uptake is occurring in rice.  This does not discount the importance of uptake from roots 903 

in ASGM areas, as there are studies that have observed a positive rice grain – paddy soil THg 904 
correlation (i.e., Arrazy et al., 2023; Novirsa et al., 2019). While the authors interpreted this 905 

to mean that the soil was the source of grain THg,  we believe it is more likely to be the result 906 

of bioaccumulation of the (unmeasured) methylated fraction of the total Hg pool, given that 907 

MeHg is readily detected in rice grains at high levels in ASGM areas (Krisnayanti et al., 2012; 908 

Novirsa et al., 2020, Rothenberg et al. 2014). While we cannot fully discount the possibility 909 

of direct soil uptake of IHg, the presence of IHg in rice grain could also be explained by the 910 

recently confirmed in-planta demethylation pathway (W. Tang et al. 2024), or stomatal 911 
uptake and subsequent reverse translocation (Aslam et al 2022) followed by loading to the 912 

developing grain. Studies to better understand the local controls over both uptake 913 

mechanisms, and why anomalously low rice Hg occurs in areas with high paddy soil Hg (and 914 

vice versa), should be the focus of future research 915 

3.3 Hg uptake by livestock/poultry: the consumers 916 

Restricting our definition of agriculture to more traditional terrestrial farming practices (fungi 917 

or aquaculture farming are not considered), we must also consider potential Hg exposures 918 

through the consumption of Hg contaminated livestock, poultry, or their egg/dairy by-919 

products; yet research in this area is very limited. Hg in herbivorous, mammalian livestock 920 

(i.e., cattle, sheep) and their milk is suggested to be derived largely from Hg in feedstocks 921 
with inhalation deemed a minor uptake pathway (Vreman et al., 1986; Crout et al., 2004; 922 

Parsaei et al., 20198). Qian et al. (2021) mention that Hg speciation, and specifically the 923 

fraction of MeHg in the contaminated feedstocks is likely to impact the extent of 924 

bioaccumulation in poultry and livestock. Yet the authors did not directly measure any form 925 

of Hg in the animals or animal products (only THg and MeHg in plants) and simply highlight 926 

this potential exposure pathway (Qian et al., 2021). 927 

Vreman et al. (1986) demonstrated that dosing cattle (Bos taurus) for three months with 928 

feedstocks enriched in inorganic Hg (1.2 – 3.1 mg of Hg per day) above control doses (0.2 mg 929 

of Hg per day) can result in accumulation of Hg in the animals, particularly in the liver (9x Hg 930 

enrichment in liver tissue vs control) and kidneys (16x Hg enrichment in kidney tissue vs 931 

control). Similar results (Hg enrichment in kidneys and liver compared to muscle) were 932 

found by Crout et al. (2004) by dosing cattle feedstocks with isotopically labelled inorganic 933 
Hg, but no control cattle were used in this study. These data present livestock health 934 
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implications due to the known impacts of Hg on the gastrointestinal and renal systems in 935 

humans and other mammals (Ha et al., 2017; Basu et al., 2023). Indeed, data demonstrating 936 

the concentration of Hg in the kidneys and liver of terrestrially farmed animals not only stress 937 

the need for caution/avoidance of human consumption of these tissues in regions with 938 
known Hg pollution issues such as ASGM areas, but they also highlight renal and 939 

gastrointestinal health risks in humans consuming of crops contaminated by inorganic Hg 940 

(via the stomatal assimilation pathway).  941 

3.3.1 Hg in terrestrially farmed animals impacted by ASGM activities 942 

Basri et al. (2017) measured significantly higher THg concentrations in hair of cattle living 943 

inside (<2 km from; 11.4 ± 9.5 mg kg-1) compared to outside (>8 km from; 2.9 ± 2.5 mg kg-1) 944 
an ASGM area on the island of Sulawesi. THg concentrations in hair also increased with 945 

cattle age, which suggests Hg is bioaccumulating the cattle (Basri et al., 2017). In a follow-946 

up study of the same area, the authors examined soils and forage grasses (Imperata 947 

cylindrica, Megathyrsus maximus, and Manihot utilissima) that these cattle feed upon; 948 

though THg concentrations in soils were significantly higher inside compared to outside the 949 

mining area, the difference for forage grasses (inside vs outside) was not determined to be 950 

significant (Basri et al., 2020). 951 

A study from Ghana examined liver, kidney, and muscle in sheep (Ovis aries), goat (Capra 952 

hircus), and chicken (Gallus gallus domesticus) and in each case THg concentrations were 953 

greater in kidneys (7 ± 8, 3 ± 2, and 12 ± 8 µg kg-1, respectively) than liver (3 ± 3, 1 ± 1, and 11 954 

± 7 µg kg-1, respectively), which were higher again than muscle (non-detect, non-detect, and 955 

1 ± 1 µg kg-1, respectively) (Bortey-Sam et al., 2015). While the study did use a robust and 956 
highly sensitive THg analyser (MA3000, NIC), it appears low sample mass impacted the 957 

detectable THg concentration in the results (Bortey-Sam et al., 2015). Furthermore, 958 

chickens were market bought, and sheep and goat were obtained from slaughterhouses; 959 

hence, little specific information on feed and exposures could be determined (Bortey-Sam 960 

et al., 2015). 961 

Marchese et al. (2024) assessed THg in feathers, eggs, and internal tissues (muscles and 962 

organs) and MeHg in eggs and internal tissues of “backyard” chickens from an ASGM 963 

community and an upstream remote community in the Peruvian Amazon (Madre de Dios 964 

Region). Median THg concentrations were 7.3x higher in muscle and organ tissues and 3.6x 965 

higher in feathers from mining areas compared to the background site; there was no 966 

significant difference in egg THg or MeHg between the sites (Marchese et al., 2024). 967 

Interestingly, chicken livers had the highest THg concentration, but lowest fraction of MeHg 968 
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(54%; MeHg fraction was up to 100% in other tissues: spleen and back muscle) and MeHg 969 

fractions were significantly lower in ASGM area than background (Marchese et al., 2024).  970 

The omnivorous nature of chickens and other poultry presents additional dietary variables 971 

to their own and subsequent human (via consumption of meat and eggs) exposures to Hg; 972 

their diets can vary greatly depending on how they are reared (Klasing 2005). Indeed, 973 

Marchese et al. (2024) observed significantly higher δ13C data in chicken feathers in 974 

background area compared to ASGM area, suggesting differences in chicken diets between 975 

the sites. The lack of difference in δ 15N between the sites indicates that this is not associated 976 

with a significant change in trophic feeding level but rather changes in plant food types 977 
(Marchese et al., 2024). Despite these differences authors conclude that differences in 978 

environmental exposure levels drive the observed differences in chicken THg and MeHg 979 

concentrations at the ASGM and background sites (Marchese et al., 2024). In addition to Hg 980 

in chicken and crops, the Marchese et al. (2024) study also examined Hg in fish and 981 

combined all these data to produce probable weekly Hg intake values for humans in these 982 

regions. As expected, fish are the dominant dietary source of Hg make up ≈82% of THg intake 983 

(≈96% of MeHg) compared to ≈17% (≈3%) and ≈1% (≈1%) for crops and chicken, respectively 984 
(Marchese et al., 2024). Although the high THg concentration and lower MeHg fractions 985 

observed in chicken tissues (particularly livers) again raises some concern of inorganic Hg 986 

contamination and potential bioaccumulation in (particularly in detoxifying organs of)  987 

poultry/livestock in ASGM affected areas, the much larger Hg burden from fish consumption 988 

adds crucial perspective to dietary concerns relating to poultry/livestock consumption at 989 

least based on results of the Marchese et al. (2024) study. 990 

Two other studies have examined THg concentrations in poultry blood. Abdulmalik et al. 991 

(2022) measured significantly higher THg blood concentrations (0.08–0.09 µg L-1) in chickens 992 

sampled within 1 km of ASGM compared to control chickens (non-detectable 993 

concentrations). While Aendo et al. (2022) measured much higher THg concentrations in 994 

poultry blood (mean THg range: 20–43 µg L-1), linkages between concentrations and 995 

proximity to mining were less clear. Only free-grazing ducks (specific species not listed) 996 
within a mining area (albeit a large area, within 25km radius, deemed to be impacted by 997 

mining) had significantly higher THg concentrations to those outside the mining area; 998 

chickens and farmed ducks were not significantly different (Aendo et al., 2022). 999 
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4 Implications and future research direction 1000 

The global extent and rapid growth of ASGM places critical emphasis on the need to address 1001 

the serious environmental and human health risks presented by ASGM Hg use. Ideally, such 1002 

efforts should start with improving our understanding of Hg emissions and releases 1003 
associated with ASGM, which are highly uncertain and currently based on poorly 1004 

constrained knowledge of Hg use, gold production, and the sheer scale of the rapidly 1005 

growing and largely informal/illegal sector. The implementation of accessible, low-cost, 1006 

low-tech solutions such as the Hg passive air sampler method utilized by Szponar et al. 1007 

(2025) to assess Hg(0) concentrations, exposures, and emissions to air from ASGM activities 1008 

are needed to generate the robust monitoring data needed to better assess ASGM Hg 1009 

emissions and releases. Efforts to model ASGM emissions and fate remain hampered by our 1010 

limited knowledge of Hg use inventories. Nonetheless, novel ASGM Hg modelling efforts that 1011 
account for the importance of the sink of Hg to terrestrial vegetation (particularly in the more 1012 

heavily vegetated tropics where much ASGM occurs) such as that presented by Hedgecock 1013 

et al. (2024) will undoubtedly improve our understanding of the cross-compartmental 1014 

distribution and air-vegetation dynamics of Hg in ASGM areas. Considering >55% of the 1015 

planet’s ice-free land has been converted to farming or lands for human settlement (Ellis et 1016 

al., 2010), it could be beneficial to adapt such models to include agricultural biomes. 1017 

There have been considerable advancements, paradigm shifts even, in terms of our 1018 

understanding of the importance of Hg(0) uptake (stomatal assimilation) by plants from the 1019 
atmosphere, now understood to be the dominant flux of Hg from air to terrestrial systems. 1020 

However, there needs to be a greater focus on such research from the context of ASGM and 1021 

agricultural crops. The recent work by Eboigbe et al. (2025) using Hg stable isotopes 1022 

analyses of soils, air, and different crop tissues provided critical insight into the importance 1023 

of the stomatal assimilation pathway in staple crops. While many previous studies of Hg in 1024 

crops mention this as a potential uptake mechanism, this research has largely focussed on 1025 

soil contamination as the primary source of crop exposure to Hg. Experimental design of 1026 

future research should not discount soil uptake entirely, definitely not in the context of MeHg 1027 
uptake in rice but assessment of the atmospheric Hg(0) concentration crops are exposed to 1028 

should be an essential component of future studies in this area. Again, more accessible air 1029 

monitoring technologies such as passive sampling are likely the most effective strategy 1030 

considering that most ASGM happens in the Global South. Such data are not only critical for 1031 

assessment crop exposures to atmospheric Hg, but also to assess the magnitude of ASGM 1032 

emissions at specific sites (Szponar et al., 2025). As posited by Arrazy et al. (2024) and 1033 



 

37 
 

Rothenberg et al. (2014) the types of ASGM activities and the intensity and age of those 1034 

activities as influencing factors on crop Hg concentrations and speciation. 1035 

The complexity of MeHg production, and paddy cycling of Hg, have been under appreciated 1036 

in ASGM environments. Including such analyses in future work would improve interpretation 1037 

of studies that observe anomalous data of low soil and high rice THg concentrations (and 1038 

vice versa). Future work should incorporate measurements of Hg(0) at the studied paddies 1039 
to assess atmospheric exposures of rice to Hg(0) and delineate the burden of THg in rice 1040 

coming from air-stomata uptake pathway (and potentially direct sorption of atmospheric Hg 1041 

species to developing grain). Adding measurements of MeHg in soil and grain compartments 1042 

would allow greater capacity to differentiate if anomalous high soil/low rice or low soil/high 1043 

rice THg concentrations are driven more by variable methylation rates in different paddies 1044 

or a greater fraction of THg in rice being derived from the Hg(0) stomatal assimilation 1045 

pathway than previously thought.   1046 

Authors focused on concentration data and seldom measured the biogeochemical factors 1047 

that could help explain and understand methylation in ASGM rice paddies. Data on relevant 1048 
soil and water biogeochemistry is limited to nearby waterways, rather than paddies 1049 

(Appleton et al. 2006; and Pataranawat et al. 2007). Where feasible, measurements of 1050 

methylation and demethylation rate potentials, Hg stable isotopes (or isotope 1051 

enrichments), and complementary biogeochemical analyses (i.e., pH, temperature, redox 1052 

conditions, carbon composition) are also needed. It is important to note that even if 1053 

methylation rates are low, the extremely high supplies of inorganic mercury in ASGM 1054 

environments can still lead to high concentrations of MeHg; this question remains largely 1055 
unexplored. These knowledge gaps of Hg cycling in ASGM impacted paddy soils limit our 1056 

capacity to identify specific drivers of elevated MeHg production and the associated health 1057 

risks. This in turn makes it difficult to identify which agricultural strategies that have 1058 

potential to reduce paddy production of MeHg and accumulation in rice grains (i.e., biochar 1059 

amendment, alternative wetting and drying cultivation, or the use of low-MeHg 1060 

accumulating cultivars; Z. Tang et al., 2020).  1061 

We must consider that the range of crops potentially affected by ASGM activities is broad. 1062 

C3 and C4 plants have different photosynthetic pathways, which as Eboigbe et al. (2025) 1063 

speculate could lead to differing rates of Hg(0) uptake from air. Xia et al. (2020) suggest 1064 
longevity of crops (annuals vs perennials) may also impact Hg uptake rates from air and/or 1065 

soils. Future work should not only broaden the range of crop species exposed to Hg 1066 

contamination from ASGM, but also as many different crop tissues, beyond simply edible 1067 
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parts, as possible, and even different compartments of individual tissues (i.e., tubers: peels 1068 

vs flesh; stems and roots: cortex/epidermis vs vascular bundles vs pith). Such detail is 1069 

crucial for subsurface tissues (i.e., roots) as it has been suggested that the root epidermis 1070 

is an effective barrier preventing uptake of inorganic Hg species (Lomonte et al., 2020). 1071 
Applying Hg stable isotope analyses to the different sections of dissected tissues has the 1072 

potential to identify the source of Hg in each tissue section using two end-member mixing 1073 

models for the air and soil uptake pathways (as applied in Eboigbe et al., 2025) as well as 1074 

elucidate information on the internal translocation of Hg by these crops. Development of a 1075 

process-based vegetation model examining internal Hg cycling using THg, Hg(0), IHg(II), and 1076 

MeHg concentrations and stable isotopes (including fractionation factors) would be a major 1077 

advancement not just for ASGM impacted farming systems, but for all study of Hg in 1078 
vegetation. 1079 

It is a clear from our review that there is a dearth of information relating to Hg in livestock 1080 
and poultry meat and dairy/egg by-products be that in high-risk ASGM areas or otherwise. 1081 

Concerns of inorganic Hg bioaccumulation and health impacts are evidenced by Hg in 1082 

livestock and poultry, particularly in detoxifying organs like the kidney and livers. More study 1083 

is required to understand the health risks to livestock/poultry themselves and humans 1084 

consuming them (and their edible by-products) through the examination of THg and MeHg 1085 

concentrations. Moreover, future work should better examine the transfer of Hg from 1086 

contaminated feedstocks to these animals and determine the role Hg speciation in 1087 
feedstocks plays in this transfer. Adding Hg stable isotopes to such assessments would 1088 

improve our mechanistic understanding of Hg uptake, cycling, and fate within animals 1089 

farmed in areas adjacent to ASGM.  1090 

Another important gap is that the effects of food preparation are not included in estimates 1091 

of daily intake. Understanding of the effects of cooking on Hg and MeHg bioavailability has 1092 

only recently coalesced, and is still limited to in vitro studies, which has been recently 1093 

reviewed by Gong et al. (2025). The bioaccessibility of THg and MeHg vary widely between 1094 

foodstuffs based on the macronutrient composition of food preparation methods (i.e., 1095 

grinding vs. whole grain), , and cooking methods (high temperature cooking can reduce 1096 
MeHg bioaccessibility) (Gong et al., 2025). With this considered, it is essential that there be 1097 

a greater focus of research into the effects of meal composition and preparation and 1098 

cooking methods on Hg concentrations, speciation, and bioavailability in edible crop parts 1099 

and livestock and poultry meats and eggs/dairy. This is particularly so for areas impacted by 1100 

ASGM activities due to greater potential Hg exposure via contaminated foods.  1101 
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Bridging these barriers will require multidisciplinary approaches involving collaboration with 1102 

mine stakeholders, community leaders and engaged citizens, and both local and 1103 

international scientists to conduct safe and effective site assays that effectively address the 1104 

critical knowledge gaps outlined in this work. As highlighted by Moreno-Brush et al. (2020), 1105 
we stress the importance of international collaborations between scientists in areas directly 1106 

impacted by ASGM that possess key local partnerships and knowledges of geographies, 1107 

customs, and cultures, and those from the Global North with access to greater funding 1108 

opportunities and advanced methodologies (i.e., Hg stable isotope instrumentation, global 1109 

fate and transport models) critical to generating the scientific robustness and impact 1110 

needed to assess the impacts of ASGM Hg use on terrestrial agricultural communities. 1111 

Equally vital is also ensuring knowledge translation to impacted communities post-research 1112 
by promoting respectful engagement, avoiding exploitation (parachute/colonial science), 1113 

and fostering lasting collaborations (Kukkonen and Copper, 2019). The production of 1114 

knowledge alone should not be the sole motivator in such efforts. Growth of ASGM is driven 1115 

by demand for gold in the Global North and rapidly developing economies in Asia (Verbrugge 1116 

and Geenen, 2020; Prescott et al., 2022); hence, there is responsibility that this global issue 1117 

(and its impacts) requires global solutions.  1118 
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