Supporting Information

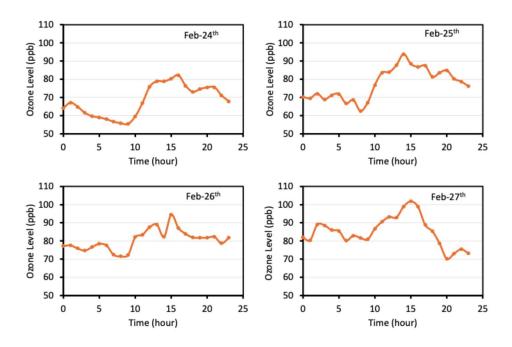


Figure S1: Diurnal variation of hourly average ozone levels during the simulation period (February 24-27, 2019).

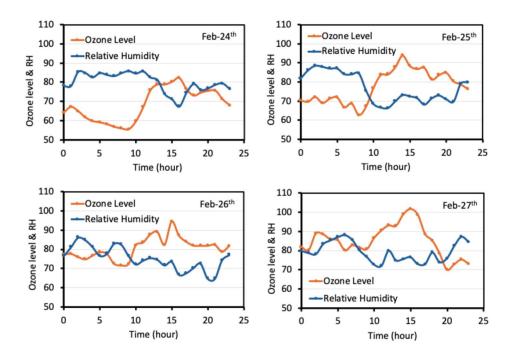


Figure S2: Diurnal trend of ozone level vs relative humidity (RH) during the simulation period.

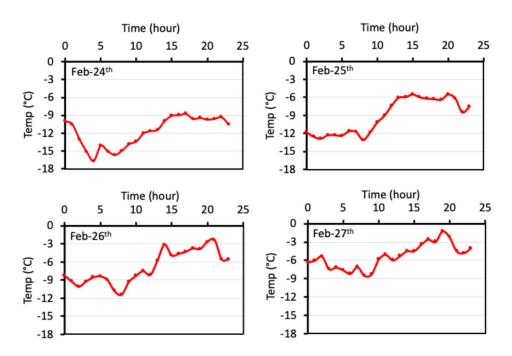


Figure S3: Diurnal trend of atmospheric temperature during the simulation period.

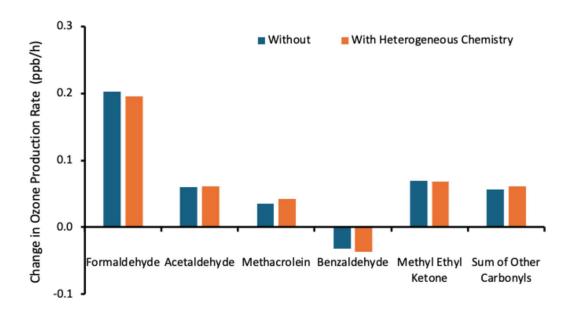


Figure S4: Impacts of specific carbonyl compounds on winter ozone production rates simulated by the F0AM box model with MCMv331, considering scenarios with and without heterogeneous chemistry. Bars represent the changes in ozone production rate resulting from a 50% increase in the mixing ratio of each NMOC group.

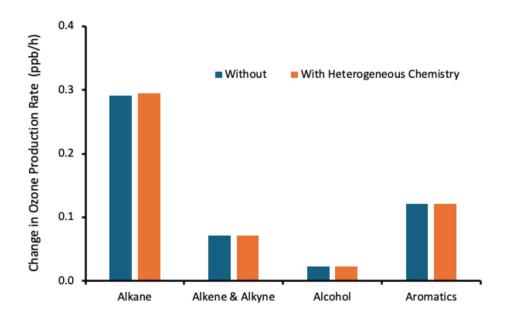


Figure S5: Impacts of the changes in NMOC precursor groups on winter O₃ production rates simulated by the F0AM box model with MCMv331, considering scenarios with and without heterogeneous chemistry. Bars represent the changes in O₃ production rate resulting from a 50% increase in the mixing ratio of each NMOC group.

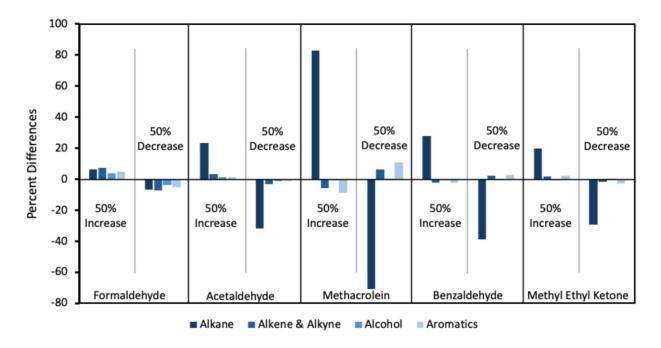


Figure S6: Sensitivity of carbonyl compounds to changes in NMOC precursor groups (MCMv331 Output). Bars represent the changes in carbonyl mixing ratios resulting from a ±50% change in the mixing ratio of each NMOC group.

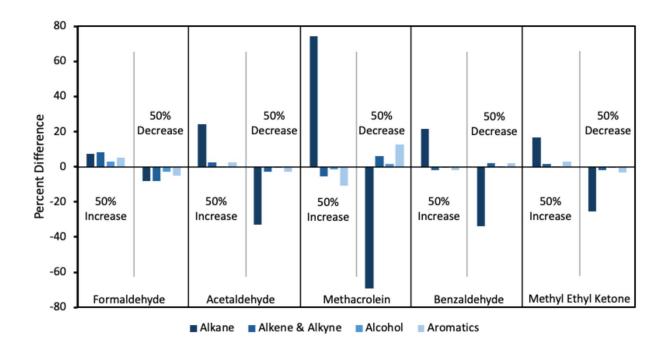


Figure S7: Sensitivity of carbonyl compounds to changes in NMOC precursor groups (SAPRC07 Output). Bars represent the changes in carbonyl mixing ratios resulting from a $\pm 50\%$ change in the mixing ratio of each NMOC group.

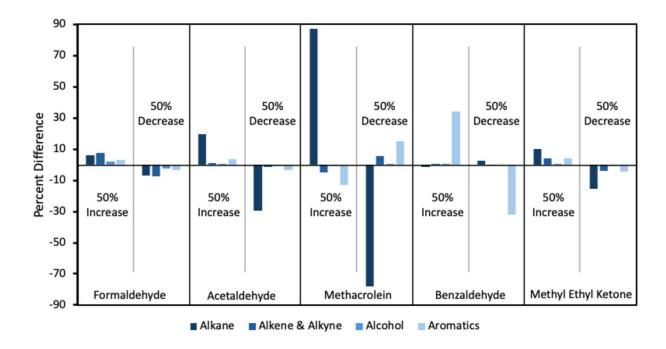


Figure S8: Sensitivity of carbonyl compounds to changes in NMOC precursor groups (RACM2 Output). Bars represent the changes in carbonyl mixing ratios resulting from a $\pm 50\%$ change in the mixing ratio of each NMOC group.

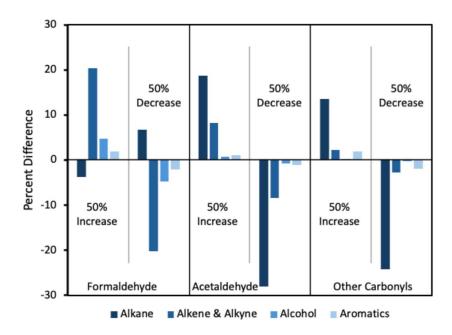


Figure S9: Sensitivity of carbonyl compounds to changes in NMOC precursor groups (CB6 Output). Bars represent the changes in carbonyl mixing ratios resulting from a ±50% change in the mixing ratio of each NMOC group.

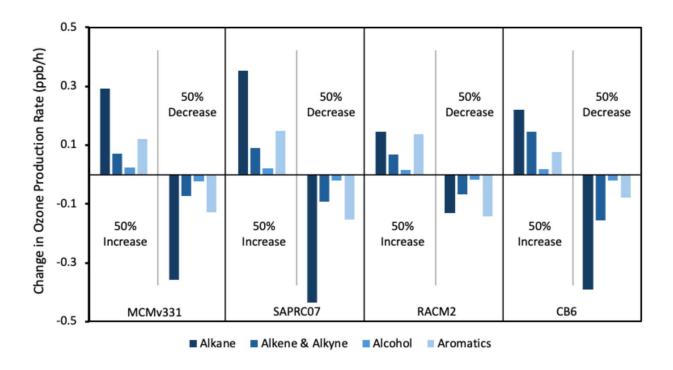


Figure S10: Sensitivity of O₃ production rate to changes in NMOC precursor groups within different chemical mechanisms (MCMv331, SAPCR07, RACM2 & CB6). The bars represent the changes in O₃ production rate due to increase & decrease in NMOC mixing ratio of 50%.

Table S1: Initial and maximum mixing ratio at day 4th of carbonyl species with their emission flux according to MCMv331.

Carbonyl Species	Initial Mixing Ratio (ppb)	Emission Flux (Molecules cm ⁻² s ⁻¹)	Max Mixing Ratio (ppb) at day four.
Formaldehyde	0.9	0.0	1.4
Acetaldehyde	0.6	0.0	2.2
Propionaldehyde	0.0	0.0	0.6
Butyraldehyde	0.4	0.2	0.5
Valeraldehyde	0.0	0.0	0.0
Acrolein	0.4	0.2	0.6
Methacrolein	0.2	0.2	0.4
Crotonaldehyde	0.0	0.0	0.0
Benzaldehyde	1.6	0.1	1.8
Acetone	0.7	0.0	4.7
Methyl ethyl ketone	0.2	0.0	1.6
Cyclohexanone	0.0	0.0	0.3

Table S2: Influence of $\pm 50\%$ changes in the initial mixing ratios of non-methane organic compounds (NMOC) on ozone (O₃) production rates (MCMv331 Output), with ambient mixing ratios for relative importance.

NMOC Group	Species	ΔO ₃ Rate (+50% in NMOC) (ppb/h)	ΔO ₃ Rate (-50% in NMOC) (ppb/h)	Mixing Ratio (ppb)
	Methane	0.043	-0.044	4920.0
	Ethane	0.021	-0.022	123.0
	Propane	0.027	-0.027	63.0
	n-Butane	0.053	-0.055	25.0
	Isobutane	0.084	-0.088	15.0
	n-Pentane	0.022	-0.022	10.0
	Isopentane	0.048	-0.050	11.0
	n-Hexane	0.001	0.000	4.0
Alkane	2-Methylpentane	0.017	-0.017	3.0
	3-Methylpentane	0.013	-0.014	2.0
	2,2-Dimethylbutane	0.001	-0.001	0.3
	2,3-Dimethylbutane	0.008	-0.008	1.6
	n-Heptane	-0.007	0.008	1.9
	2-Methylhexane	0.001	-0.001	0.8
	3-Methylhexane	0.001	-0.001	1.2
	n-Octane	-0.007	0.007	0.8

	n-Nonane	-0.003	0.003	0.2
	n-Decane	-0.004	0.004	0.2
	Cyclohexane	0.000	0.000	1.8
	Ethylene	0.045	-0.046	1.1
Alkenes & alkyne	Propylene	0.023	-0.023	0.1
	Acetylene	0.004	-0.004	1.8
	Methanol	0.016	-0.016	10.0
Alcohol	Ethanol	0.001	-0.001	0.3
	Isopropyl alcohol	0.006	-0.006	2.3
	Benzene	0.007	-0.007	1.2
	Toluene	0.043	-0.044	1.2
	o-Xylene	0.009	-0.010	0.1
Aromatics	m-Xylene	0.031	-0.031	0.2
	p-Xylene	0.011	-0.011	0.1
	Ethylbenzene	0.004	-0.004	0.1
	1,2,3-Trimethylbenzene	0.020	-0.020	0.1

Table S3: Percent change in formaldehyde (HCHO) formation in response to $\pm 50\%$ changes in the initial mixing ratios of NMOC (MCMv331 Output), with ambient mixing ratios for relative importance.

NMOC Group	Species	ΔHCHO Formation (%; +50% NMOC)	ΔHCHO Formation (%; -50% NMOC)	Mixing Ratio (ppb)
	Methane	6.168	-6.141	4920.0
	Ethane	0.743	-0.759	123.0
	Propane	-2.046	2.257	63.0
	n-Butane	-0.700	0.802	25.0
	Isobutane	7.440	-7.543	15.0
	n-Pentane	-0.339	0.369	10.0
	Isopentane	0.169	-0.158	11.0
	n-Hexane	-0.760	0.822	4.0
	2-Methylpentane	-0.300	0.323	3.0
Alkane	3-Methylpentane	0.161	-0.159	2.0
	2,2-Dimethylbutane	0.019	-0.016	0.3
	2,3-Dimethylbutane	-0.433	0.445	1.6
	n-Heptane	-0.806	0.856	1.9
	2-Methylhexane	-0.218	0.226	0.8
	3-Methylhexane	-0.416	0.433	1.2
	n-Octane	-0.582	0.603	0.8
	n-Nonane	-0.179	0.183	0.2
	n-Decane	-0.205	0.210	0.2
	Cyclohexane	-0.712	0.740	1.8
A 11- am ag . Pa . a 11	Ethylene	4.604	-4.568	1.1
Alkenes & alkyne	Propylene	2.486	-2.471	0.1

	Acetylene	0.137	-0.134	1.8
	Methanol	3.096	-3.076	10.0
Alcohol	Ethanol	0.066	-0.065	0.3
	Isopropyl alcohol	0.550	-0.553	2.3
	Benzene	0.177	-0.174	1.2
	Toluene	1.648	-1.658	1.2
	o-Xylene	0.413	-0.411	0.1
Aromatics	m-Xylene	1.232	-1.237	0.2
	p-Xylene	0.428	-0.425	0.1
	Ethylbenzene	0.089	-0.085	0.1
	1,2,3-Trimethylbenzene	1.020	-1.024	0.1

Table S4: Percent change in acetaldehyde (CH₃CHO) formation in response to $\pm 50\%$ changes in the initial mixing ratios of NMOC (MCMv331 Output), with ambient mixing ratios for relative importance.

NMOC Group	Species	ΔCH ₃ CHO Formation (%; +50% NMOC)	ΔCH ₃ CHO Formation (%; -50% NMOC)	Mixing Ratio (ppb)
	Methane	0.072	-0.089	4920.0
	Ethane	10.535	-10.688	123.0
	Propane	0.315	-0.329	63.0
	n-Butane	3.757	-3.886	25.0
	Isobutane	-0.208	0.154	15.0
	n-Pentane	-0.100	0.114	10.0
	Isopentane	11.086	-11.490	11.0
	n-Hexane	-0.072	0.060	4.0
	2-Methylpentane	-0.250	0.262	3.0
Alkane	3-Methylpentane	2.872	-2.907	2.0
	2,2-Dimethylbutane	0.016	-0.017	0.3
	2,3-Dimethylbutane	-0.373	0.378	1.6
	n-Heptane	-0.143	0.133	1.9
	2-Methylhexane	-0.364	0.369	0.8
	3-Methylhexane	0.246	-0.247	1.2
	n-Octane	-0.132	0.131	0.8
	n-Nonane	-0.089	0.089	0.2
	n-Decane	-0.123	0.124	0.2
	Cyclohexane	-0.664	0.679	1.8
	Ethylene	0.359	-0.379	1.1
Alkenes & alkyne	Propylene	2.880	-2.873	0.1
ankyne	Acetylene	0.062	-0.063	1.8

	Methanol	0.115	-0.118	10.0
Alcohol	Ethanol	0.510	-0.511	0.3
	Isopropyl alcohol	0.743	-0.748	2.3
	Benzene	0.060	-0.060	1.2
	Toluene	0.312	-0.341	1.2
	o-Xylene	0.081	-0.083	0.1
Aromatics	m-Xylene	0.277	-0.290	0.2
	p-Xylene	0.117	-0.118	0.1
	Ethylbenzene	0.134	-0.134	0.1
	1,2,3-Trimethylbenzene	0.234	-0.239	0.1

Table S5: Percent change in methacrolein (MACR) formation in response to $\pm 50\%$ changes in the initial mixing ratios of NMOC (MCMv331 Output), with ambient mixing ratios for relative importance.

NMOC Group	Species	ΔMACR Formation (%; +50% NMOC)	ΔMACR Formation (%; - 50% NMOC)	Mixing Ratio (ppb)
	Methane	-1.791	1.900	4920.0
	Ethane	3.490	-3.490	123.0
	Propane	10.293	-10.050	63.0
	n-Butane	10.134	-9.941	25.0
	Isobutane	-1.130	1.498	15.0
	n-Pentane	9.632	-9.439	10.0
	Isopentane	9.322	-9.180	11.0
	n-Hexane	8.385	-8.226	4.0
	2-Methylpentane	4.594	-4.577	3.0
Alkane	3-Methylpentane	2.971	-2.946	2.0
	2,2-Dimethylbutane	0.092	-0.092	0.3
	2,3-Dimethylbutane	2.209	-2.201	1.6
	n-Heptane	6.485	-6.360	1.9
	2-Methylhexane	2.192	-2.184	0.8
	3-Methylhexane	3.824	-3.791	1.2
Ī	n-Octane	3.715	-3.674	0.8
	n-Nonane	1.197	-1.197	0.2
	n-Decane	1.406	-1.389	0.2
	Cyclohexane	3.582	-3.560	1.8
	Ethylene	-3.029	3.213	1.1
Alkenes & alkyne	Propylene	-2.444	2.544	0.1
aikyiic	Acetylene	-0.485	0.485	1.8

	Methanol	-1.247	1.272	10.0
Alcohol	Ethanol	0.109	-0.117	0.3
	Isopropyl alcohol	0.921	-0.921	2.3
	Benzene	-0.527	0.527	1.2
	Toluene	-3.414	3.665	1.2
	o-Xylene	-0.762	0.770	0.1
Aromatics	m-Xylene	-2.444	2.586	0.2
	p-Xylene	-0.962	0.979	0.1
	Ethylbenzene	-0.351	0.343	0.1
	1,2,3-Trimethylbenzene	-1.096	1.146	0.1

Table S6: Percent change in benzaldehyde (Benzal) formation in response to $\pm 50\%$ changes in the initial mixing ratios of NMOC (MCMv331 Output), with ambient mixing ratios for relative importance.

NMOC Group	Species	ΔMACR Formation (%; +50% NMOC)	ΔMACR Formation (%; - 50% NMOC)	Mixing Ratio (ppb)
	Methane	-0.651	0.685	4920.0
	Ethane	1.411	-1.437	123.0
	Propane	4.036	-4.186	63.0
	n-Butane	3.987	-4.148	25.0
	Isobutane	-0.319	0.461	15.0
	n-Pentane	3.765	-3.905	10.0
	Isopentane	3.689	-3.835	11.0
	n-Hexane	3.260	-3.361	4.0
	2-Methylpentane	1.835	-1.878	3.0
Alkane	3-Methylpentane	1.188	-1.202	2.0
	2,2-Dimethylbutane	0.038	-0.038	0.3
	2,3-Dimethylbutane	0.887	-0.893	1.6
	n-Heptane	2.524	-2.574	1.9
	2-Methylhexane	0.870	-0.875	0.8
	3-Methylhexane	1.503	-1.530	1.2
	n-Octane	1.450	-1.467	0.8
	n-Nonane	0.474	-0.475	0.2
	n-Decane	0.551	-0.553	0.2
	Cyclohexane	1.417	-1.440	1.8
	Ethylene	-1.163	1.207	1.1
Alkenes & alkyne	Propylene	-0.945	0.968	0.1
uncyne	Acetylene	-0.189	0.187	1.8

	Methanol	-0.474	0.479	10.0
Alcohol	Ethanol	0.044	-0.047	0.3
	Isopropyl alcohol	0.375	-0.379	2.3
	Benzene	-0.196	0.195	1.2
	Toluene	-0.090	0.167	1.2
	o-Xylene	-0.287	0.291	0.1
Aromatics	m-Xylene	-0.930	0.964	0.2
	p-Xylene	-0.367	0.370	0.1
	Ethylbenzene	-0.080	0.080	0.1
	1,2,3-Trimethylbenzene	-0.407	0.419	0.1

Table S7: Percent change in methyl ethyl ketone (MEK) formation in response to $\pm 50\%$ changes in the initial mixing ratios of NMOC (MCMv331 Output), with ambient mixing ratios for relative importance.

NMOC Group	Species	ΔΜΕΚ Formation (%; +50% NMOC)	ΔMEK Formation (%; - 50% NMOC)	Mixing Ratio (ppb)
_	Methane	0.424	-0.447	4920.0
	Ethane	-1.183	1.225	123.0
	Propane	-3.216	3.487	63.0
	n-Butane	37.599	-40.113	25.0
	Isobutane	0.091	-0.198	15.0
	n-Pentane	-2.915	3.154	10.0
	Isopentane	-2.050	2.234	11.0
	n-Hexane	-2.498	2.671	4.0
	2-Methylpentane	-1.448	1.510	3.0
Alkane	3-Methylpentane	5.227	-5.322	2.0
	2,2-Dimethylbutane	-0.027	0.028	0.3
	2,3-Dimethylbutane	-0.695	0.706	1.6
	n-Heptane	-1.913	2.006	1.9
	2-Methylhexane	-0.660	0.671	0.8
	3-Methylhexane	-1.089	1.122	1.2
	n-Octane	-1.103	1.133	0.8
	n-Nonane	-0.363	0.368	0.2
	n-Decane	-0.421	0.430	0.2
	Cyclohexane	-1.135	1.170	1.8
	Ethylene	0.892	-0.918	1.1
Alkenes & alkyne	Propylene	0.674	-0.686	0.1
um j no	Acetylene	0.139	-0.137	1.8

	Methanol	0.334	-0.336	10.0
Alcohol	Ethanol	-0.039	0.040	0.3
	Isopropyl alcohol	-0.322	0.325	2.3
	Benzene	0.144	-0.145	1.2
	Toluene	0.852	-0.896	1.2
	o-Xylene	0.193	-0.194	0.1
Aromatics	m-Xylene	0.627	-0.648	0.2
	p-Xylene	0.264	-0.265	0.1
	Ethylbenzene	0.091	-0.091	0.1
	1,2,3-Trimethylbenzene	0.261	-0.270	0.1

Table S8.1: Ozone Production and Loss Budget on Day 4 (MCMv331 Output).

	- ·		
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	$O \rightarrow O_3$	1.25×10^{3}	100
2	$CH_3CO_3 + HO_2 \rightarrow Products + O_3$	2.82×10^{-3}	2.26 × 10 ⁻⁴
3	$C_6H5CO_3 + HO_2 \rightarrow Products + O_3$	9.91 × 10 ⁻⁴	7.93 × 10 ⁻⁵
4	$C_2H5CO_3 + HO_2 \rightarrow Products + O_3$	6.90 × 10 ⁻⁴	5.52 × 10 ⁻⁵
5	$C3H7CO_3 + HO_2 \rightarrow Products + O_3$	4.16 × 10 ⁻⁴	3.33 × 10 ⁻⁵
	Total Production	= 1.25×10^3 molecules cm ⁻³	
Top 5 Rea	ections Contributing to Ozone Loss		
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1	$O_3 + hv \rightarrow O$	9.29 × 10 ²	75.9
2	$NO + O_3 \rightarrow Products$	2.45×10^{2}	20.0
3	$O_3 + hv \rightarrow O^1D$	4.22 × 10 ¹	3.45
4	$NO_2 + O_3 \rightarrow Products$	3.33	0.272
5		2.31	0.189

Table S8.2: Ozone Production and Loss Budget on Day 4 (SAPRC07 Output).

Top 5 Rea	ctions Contributing to Ozone Production		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production (%)
1	$O^3P + O_2 + M \rightarrow O_3$	1.28×10^{3}	100
2	MECO ₃ (Methyl ethyl peroxy radical) + HO ₂ → Products + O ₃	6.89×10^{-3}	5.39 × 10 ⁻⁴
3	RCO ₃ (Acyl peroxy radical)+ HO ₂ → Products + O ₃	2.05×10^{-3}	1.60 × 10 ⁻⁴

4	BZCO ₃ (Benzoyl peroxy radical) +	1.05×10^{-3}	8.22 × 10 ⁻⁵
	$HO_2 \rightarrow Products + O_3$		
5	MACO ₃ (Methacryloyl peroxy	7.13×10^{-4}	5.58×10^{-5}
	radical) + $HO_2 \rightarrow Products + O_3$		
	Total Production	$= 1.28 \times 10^3 \text{ molecules cm}^{-3}$	
Top 5 Read	ctions Contributing to Ozone Loss		
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1	$O_3 + h\nu \rightarrow O^3P$	9.52×10^{2}	76.2
2	$NO + O_3 \rightarrow Products$	2.50×10^{2}	20.0
3	$O_3 + h\nu \rightarrow O^1D$	4.32×10^{1}	3.46
4	$NO_2 + O_3 \rightarrow Products$	3.43	0.275
5	$HO_2 + O_3 \rightarrow Products$	0.940	0.0752
	Total Loss	$= 1.25 \times 10^3 \text{ molecules cm}^{-3}$	

Table S8.3: Ozone Production and Loss Budget on Day 4 (RACM2 Output).

Reaction C	ontributing to Ozone Production		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production (%)
1	$O^3P + O_2 \rightarrow O_3$	1.17×10^{3}	100
	Total Production	$= 1.17 \times 10^3 \text{ molecules cm}^{-3}$	
Top 5 Reac	tions Contributing to Ozone Loss		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	$O_3 \rightarrow O^3P + O_2$	8.62×10^{2}	74.9
2	$O_3 + NO \rightarrow Products$	2.45×10^{2}	21.3
3	$O_3 \rightarrow Products$	3.91 × 10 ¹	3.40
4	$NO_2 + O_3 \rightarrow Products$	3.07	0.267
5	$O_3 + HO_2 \rightarrow Products$	0.705	0.0613
	Total Loss	$= 1.15 \times 10^3 \text{ molecules cm}^{-3}$	

Table S8.4: Ozone Production and Loss Budget on Day 4 (CB6 Output).

Reactions C	Contributing to Ozone Production		
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	$O^3P \rightarrow O_3$	1.38×10^{3}	100
2	$C_3O_2 + HO_2 \rightarrow Products + O_3$	6.07×10^{-3}	4.40×10^{-4}
3	CXO ₃ (Acyl peroxy radical) + HO ₂ → Products + O ₃	3.78×10^{-3}	2.74×10^{-4}
4	OPO ₃ (Glyoxyl peroxyacyl radical) + HO ₂ → Products + O ₃	1.09×10^{-3}	7.87 × 10 ⁻⁵
	Total Production	$= 1.38 \times 10^3 \text{ molecules cm}^{-3}$	

Top 5 Rea	ections Contributing to Ozon	e Loss		
No.	Reaction		Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	$O_3 \rightarrow O^3P$		1.05×10^{3}	77.7
2	$NO + O_3 \rightarrow Products$		2.47×10^{2}	18.3
3	$O_3 \rightarrow O^1D$		4.75×10^{1}	3.53
4	$NO_2+O_3 \rightarrow Products$		3.78	0.280
5	$HO_2 + O_3 \rightarrow Products$		1.58	0.117
		Total Loss	$= 1.35 \times 10^3 \text{ molecules cm}^{-3}$	

Table S9.1: Hydrogen oxide radicals (HOx) Production and Loss Budget on Day 4 (MCMv331 Output)

No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	$HO_2NO_2 \rightarrow HO_2 + Products$	4.92	23.2
2	$CH_3O \rightarrow HO_2 + Products$	1.83	8.62
3	$O_1D \rightarrow OH + OH$	1.83	8.62
4	$HCHO + hv \rightarrow HO_2 + HO_2 +$ Products	1.69	7.99
5	$C_2H_5O \rightarrow HO_2 + Products$	1.59	7.48
	Total Production	= 21.2 molecules cm ⁻³	
Top 5 Rea	actions Contributing to HOx Loss	1	
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	$HO_2 + NO_2 \rightarrow Products$	5.21	24.6
2	OH + NC4H10 (n-butane) → Products	1.05	4.95
3	$OH + C_3H_8 \rightarrow Products$	0.949	4.48
3		0.834	3.93
4	$OH + CH_3CHO \rightarrow Products$	0.031	
	OH + CH ₃ CHO → Products OH + BENZAL (Benzaldehyde) → Products	0.609	2.87

Table S9.2: HOx Production and Loss Budget on Day 4 (SAPRC07 Output)

Top 5 Read	ctions Contributing to HOx Production		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production (%)
1	$HNO_4 \rightarrow HO_2 + Products$	8.55	36.0
2	$NO + xHO_2 \rightarrow HO_2 + Products$	8.07	33.9
3	MEO ₂ (Methyl peroxy radical) + NO \rightarrow HO ₂ + Products	1.93	8.11

4	$O^1D + HO_2 \rightarrow OH + OH$	1.78	7.50
5	$HCHO + hv \rightarrow HO_2 + HO_2 +$ Products	1.69	7.13
	Total Production	= 23.7 molecules cm ⁻³	
Top 5 Rea	ctions Contributing to HOx Loss		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	$HO_2 + NO_2 \rightarrow Products$	8.81	37.1
2	ALK4 (2-Methylhexane) + OH → Products	3.39	14.3
3	ALK3 (n-Pentane) + OH → Products	2.10	8.85
4	CCHO (Acetaldehyde) + OH → Products	1.47	6.19
5	ALK5 (n-Octane) + OH → Products	1.17	4.94
	Total Loss	= 23.7 molecules cm ⁻³	

Table S9.3: HOx Production and Loss Budget on Day 4 (RACM2 Output)

No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production (%)
1	$HO_2NO_2 \rightarrow HO_2 + Products$	6.83	30.9
2	HC3P (Peroxy radicals) + NO → HO ₂ + Products	2.52	11.4
3	MO2 (Methyl peroxy radical) + NO → HO ₂ + Products	2.32	10.5
4	$O^1D + HO_2 \rightarrow OH + OH$	2.13	9.62
5	$HCHO \rightarrow HO_2 + HO_2 + Products$	1.99	8.99
	Total Production	= 22.1 molecules cm ⁻³	
Гор 5 Rea	ctions Contributing to HOx Loss		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	$HO_2 + NO_2 \rightarrow Products$	7.11	32.2
2	OH + HC3 → Products	4.16	18.9
3	OH + HC5 → Products	3.02	13.7
	OH + ACD (Acetaldehyde) →	1.52	6.92
4	Products		
5	, ,	0.849	3.84

Table S9.4: HOx Production and Loss Budget on Day 4 (CB6 Output)

No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production (%)
1	PNA (Peroxyacetyl nitrate) → HO ₂ + Products	14.7	37.8
2	ROR (Alkoxy radicals) \rightarrow HO ₂ + Products	7.62	19.7
3	XO2H (Hydroperoxy alkyl radical) + NO \rightarrow HO ₂ + Products	5.79	14.9
4	$O^1D + HO_2 \rightarrow OH + OH$	2.05	5.28
5	FORM (Formaldehyde) \rightarrow HO ₂ + HO ₂ + Products	1.54	3.98
	Total Production	= 38.7 molecules cm ⁻³	
Top 5 Rea	ctions Contributing to HOx Loss		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	$HO_2 + NO_2 \rightarrow Products$	15.3	39.5
2	OH + PAR (Paraffins) → Products	10.7	27.6
3	OH + PRPA (Propionaldehyde) → Products	1.80	4.64
4	OH + ALD2 (Acetaldehyde) → Products	1.40	3.60
5	OH + ALDX (Higher aldehydes)→ Products	1.31	3.39
	Total Loss	= 38.7 molecules cm ⁻³	

Table S10.1: Carbonyl Production and Loss Budget on Day 4 (MCMv331 Output)

No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	CH ₃ O → HCHO + Products	1.83	55.3
2	CH ₃ OH + OH → HCHO + Products	0.189	5.70
	HOCH ₂ CH ₂ O → HCHO + HCHO +	0.162	4.89
3	Products		
4	$C_2H_4 + O_3 \rightarrow HCHO + Products$	0.111	3.35
5	$CH_3COCH_2O \rightarrow HCHO + Products$	0.0912	2.76
	Total Production	= 3.31 molecules cm ⁻³	
Reactions Co	ontributing to Formaldehyde (HCHO) Loss		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	HCHO + hv → Products	2.35	88.3
2	OH + HCHO → Products	0.309	11.6
3	$NO_3 + HCHO \rightarrow Products$	1.30×10^{-3}	0.0491
	Total Loss	= 2.66 molecules cm ⁻³	

No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production
1	$C_2H_5O \rightarrow CH_3CHO + Products$	1.59	(%) 74.9
1	HYPROPO (1-Hydroxypropane-2-	1.39	74.9
2	yloxy radical) \rightarrow CH ₃ CHO + Products	0.0689	3.25
2	IPROPOLO (2-Hydroxypropoxy	0.0007	3.23
3	radical) \rightarrow CH ₃ CHO + Products	0.0610	2.88
	SC ₄ H ₉ O (sec-Butoxy radical) →	3,0010	2.00
4	CH ₃ CHO + Products	0.0576	2.72
	$C_3H_7CHO + hv \rightarrow CH_3CHO +$		
5	Products	0.0556	2.62
	Total Production	= 2.12 molecules cm ⁻³	
Reactions Con	tributing to Acetaldehyde (CH ₃ CHO) Los	S	
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	OH + CH ₃ CHO → Products	0.878	83.8
2	CH ₃ CHO + hv → Products	0.164	15.8
3	NO ₃ + CH ₃ CHO → Products	0.00455	0.435
-	Total Loss	= 1.05 molecules cm ⁻³	
	1		1
Reaction Cont	ributing to Methacrolein (MACR) Product	ion	
No.	Reaction	Integrated Reaction Rate	Percent of Production
1.0.	1333511511	(molecules cm ⁻³)	(%)
1	Emis = MACR	0.511	100
_	Total Production	$= 0.510 \text{ molecules cm}^{-3}$	
Top 5 Reaction	ns Contributing to Methacrolein (MACR)		
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
110.	reaction	(molecules cm ⁻³)	Tereent of Loss (70)
1	OH + MACR → Products	0.122	37.4
2	OH + MACR → Products	0.117	35.9
3	$O_3 + MACR \rightarrow Products$	0.0258	7.91
4	OH + MACR → Products	0.0207	6.36
5	$MACR + hv \rightarrow Products$	0.0178	5.48
	Total Loss	$= 0.330 \text{ molecules cm}^{-3}$	5
Top 5 Reaction	ns Contributing to Benzaldehyde (BENZA	L.) Production	1
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	Emis → BENZAL	1.69	99.3
2	$C_6H_5CH_2O \rightarrow BENZAL + Products$	0.0117	0.688
	$C_6H_5CH_2OOH + OH \rightarrow BENZAL +$	3.07×10^{-4}	
3	Products		0.0181
	$C_6H_5CH_2NO_3 + OH \rightarrow BENZAL +$	2.81×10^{-4}	
4	Products		0.0165
5	$C_6H_5CH_2O_2 + RO_2 = BENZAL$	4.53×10^{-5}	0.00267
	Total Production	= 1.70 molecules cm ⁻³	
Reactions Con	tributing to Benzaldehyde (BENZAL) Los		
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1 1			
1	OH + BENZAL → Products	0.609	74.3
2	$OH + BENZAL \rightarrow Products$ $BENZAL + hv \rightarrow Products$	0.609 0.203	74.3 24.9

Top 5 Reactio	ns Contributing to Methyl Ethyl Ketone (N	MEK) Production	
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	$SC_4H_9O \rightarrow MEK + Products$	0.876	84.4
	M ₃ PECO (1-Methyl-1-	0.123	
	ethylpropoxyradical) → MEK +		
2	Products		11.9
	OH + SC ₄ H ₉ OOH (sec-butyl	0.0282	
3	hydroperoxide) → MEK + Products		2.72
4	$M_2BKBO \rightarrow MEK + Products$	0.00358	0.345
	OH + SC ₄ H ₉ NO ₃ (sec-Butyl	0.00313	
5	Nitrate)→ MEK + Products		0.301
	Total Production	= 1.04 molecules cm ⁻³	
Reactions Cor	ntributing to Methyl Ethyl Ketone (MEK)	Loss	
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1	$MEK + hv \rightarrow Products$	0.111	72.0
2	$MEK + OH \rightarrow Products$	0.0199	12.9
3	MEK + OH → Products	0.0197	12.9
4	MEK + OH → Products	0.00340	2.21
	Total Production	= 0.150 molecules cm ⁻³	

Table S10.2: Carbonyl Production and Loss Budget on Day 4 (SAPRC07 Output)

Top 5 Reaction	ons Contributing to Formaldehyde (HCHO)	Production	
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
	MEO ₂ (Methyl peroxy radical) + NO		
1	→ HCHO + Products	1.91	59.2
2	$NO + xHCHO \rightarrow HCHO + Products$	0.738	22.7
3	$MEOH + OH \rightarrow HCHO + Products$	0.167	5.15
4	MACO ₃ (Methacryloyl peroxy radical) + NO → HCHO + Products	0.114	3.51
	ETHE (Ethene) + $O_3 \rightarrow HCHO +$		
5	Products	0.114	3.51
	Total Production	= 3.25 molecules cm ⁻³	
Reactions Co.	ntributing to Formaldehyde (HCHO) Loss		•
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	$HCHO + hv \rightarrow Products$	2.35	89.5
2	OH + HCHO → Products	0.275	10.5
3	$NO_3 + HCHO \rightarrow Products$	0.00144	0.0550
	Total Loss	= 2.62 molecules cm ⁻³	
			•
Top 5 Reaction	ons Contributing to Acetaldehyde (CCHO)	Production	
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	NO + xCCHO = CCHO + Products	3.71	98.3
2	$NO_3 + xCCHO = CCHO + Products$	0.0183	0.485
3	$RNO_3 + hv = 0.21 CCHO + Products$	0.0157	0.415
4	OLE1 (Terminal alkene) + O ₃ = 0.15 CCHO + Products	0.0145	0.385

	MECO ₃ (2-butanoyl peroxy radical) +	0.00782	0.207
5	xCCHO = CCHO + Products		
	Total Production	$= 3.77 \text{ molecules cm}^{-3}$	
	tributing to Acetaldehyde (CCHO) Loss		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	OH + CCHO → Products	1.47	81.6
2	CCHO + $h\nu \rightarrow Products$	0.308	17.1
3	$NO_3 + CCHO \rightarrow Products$	0.0247	1.37
	Total Loss	= 1.80 molecules cm ⁻³	
•	ns Contributing to Methacrolein (MACR)		T
No.	Reaction	Integrated Reaction Rate	Percent of Production
	T . 14.65	(molecules cm ⁻³)	(%)
1	Emis → MACR	1.02	99.8
2	$NO + xMACR \rightarrow MACR + Products$	0.00215	0.210
2	AFG3 (Aromatic dicarbonyl	0.000187	0.0183
3	fragment) + $O_3 \rightarrow MACR + Products$ $NO_3 + xMACR \rightarrow MACR + Products$	1.20 × 10 ⁻⁵	0.00117
4		1.20×10^{-6} 4.45×10^{-6}	0.00117 0.000434
5	MECO ₃ + xMACR → MACR + Products	4.43 × 10 °	0.000434
	Total Production	= 1.03 molecules cm ⁻³	
Ton 5 Reaction	ns Contributing to Methacrolein (MACR)		
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
110.	reaction	(molecules cm ⁻³)	referred Edss (70)
1	MACR + OH → Products	0.513	76.7
2	$MACR + hv \rightarrow Products$	0.0809	12.1
3	$MACR + O_3 \rightarrow Products$	0.0678	10.1
4	$MACR + NO_3 \rightarrow Products$	0.00551	0.823
5	$MACR + O^3P \rightarrow Products$	0.00158	0.236
	Total Loss	= 0.670 molecules cm ⁻³	
Top 5 Reaction	ns Contributing to Benzaldehyde (BALD)		
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	Emis → BALD	1.50	98.8
2	$NO + xBALD \rightarrow BALD + Products$	0.0183	1.20
3	$NO_3 + xBALD \rightarrow BALD + Products$	0.000100	0.00660
,	$MECO3 + xBALD \rightarrow BALD +$	3.84×10^{-5}	0.00252
5	Products	1 20 10-5	0.000005
5	$RCO_3 + xBALD \rightarrow BALD + Products$	1.38 × 10 ⁻⁵	0.000905
D 4' C	Total Production	= 1.52 molecules cm ⁻³	
	tributing to Benzaldehyde (BALD) Loss	I to the time to	D 4 CI (0/)
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	OH + BALD → Products	0.515	97.0
2	$NO_3 + BALD \rightarrow Products$	0.0119	2.25
3	$BALD + hv \rightarrow Products$	0.00379	0.714
	Total Loss	= 0.530 molecules cm ⁻³	
Top 5 Reaction	ns Contributing to Methyl Ethyl Ketone (N	MEK) Production	

No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	$NO + xMEK \rightarrow MEK + Products$	1.43	98.1
2	$RNO_3 + hv \rightarrow 0.12 MEK + Products$	0.00908	0.623
3	$NO_3 + xMEK \rightarrow MEK + Products$	0.00772	0.530
4	$MECO_3 + xMEK \rightarrow MEK + Products$	0.00294	0.202
5	$RNO_3 + OH \rightarrow 0.01 \text{ MEK} + \text{Products}$	0.00287	0.197
	Total Production	= 1.46 molecules cm ⁻³	
Reactions Con	tributing to Methyl Ethyl Ketone (MEK) l	Loss	
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1	$MEK + OH \rightarrow Products$	0.0507	63.5
2	$MEK + hv \rightarrow Products$	0.0291	36.5
	Total Production	$= 0.0800 \text{ molecules cm}^{-3}$	

Table S10.3: Carbonyl Production and Loss Budget on Day 4 (RACM2 Output)

Top 5 Reacti	ions Contributing to Formaldehyde (HCHO)	Production	
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
	MO2 (Methyl peroxy radical) + NO		
1	→ HCHO + Products	2.32	59.8
	ETEP (Peroxy radicals formed from		
	ethene) + NO \rightarrow 1.6 HCHO +		
2	Products	0.354	9.10
3	HKET → HCHO + Products	0.328	8.46
4	$MCP + NO \rightarrow 0.5 HCHO + Products$	0.173	4.47
5	$OH + MOH \rightarrow HCHO + Products$	0.165	4.25
	Total Production	= 3.88 molecules cm ⁻³	
Reactions Co	ontributing to Formaldehyde (HCHO) Loss		
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1	HCHO → Products	2.75	89.8
2	OH + HCHO → Products	0.312	10.2
3	$NO_3 + HCHO \rightarrow Products$	0.00160	0.0521
	Total Loss	= 3.06 molecules cm ⁻³	
Top 5 Reacti	ions Contributing to Acetaldehyde (ACD) Pr	roduction	
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	$ETHP + NO \rightarrow ACD + Products$	1.93	48.0
	HC3P (Peroxy radicals) + NO →		
2	ACD + Products	1.92	47.9
	HC5P (Peroxy radicals) + NO →		
3	ACD + Products	0.12	3.00
4	$OH + EOH \rightarrow ACD + Products$	0.0176	0.438
5	$OH + ROH \rightarrow 0.18 ACD + Products$	0.0110	0.273
	Total Production	= 4.02 molecules cm ⁻³	
D	ontributing to Acetaldehyde (ACD) Loss		
Reactions Co			1
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
			Percent of Loss (%) 81.5

3	$NO_3 + ACD \rightarrow Products$	0.0221	1.18
-	Total Loss	= 1.88 molecules cm ⁻³	
Reaction Co	ntributing to Methacrolein (MACR) Product	tion	
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production (%)
1	Emis → MACR	1.78	100
	Total Production	= 1.78 molecules cm ⁻³	
Top 5 Reacti	ions Contributing to Methacrolein (MACR)	Loss	1
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1	MACR + OH → Products	0.513	76.721
2	MACR → Products	0.0809	12.1
3	$MACR + O_3 \rightarrow Products$	0.0678	10.1
4	$MACR + NO_3 \rightarrow Products$	0.00551	0.823
	Total Loss	= 1.10 molecules cm ⁻³	
Top 5 Reacti	ions Contributing to Benzaldehyde (BALD)	Production	•
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
	EPX (Epoxide) + $O_3 \rightarrow BALD +$		
1	Products	0.107	72.1
	PER1 (Peroxy intermediate formed from toluene) + NO \rightarrow 0.5 BALD +		
2	Products	0.0199	13.4
	TLP1 (Peroxy radicals) + NO →		
3	BALD + Products	0.0103	6.90
4	XYL1 (Peroxy radicals) + NO → BALD + Products	0.00945	6.36
	OLT (Terminal alkenes) + $O_3 \rightarrow$		
5	BALD + Products	0.00169	1.14
	Total Production	= 0.150 molecules cm ⁻³	
Reactions Co	ontributing to Benzaldehyde (BALD) Loss		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	$OH + BALD \rightarrow Products$	0.0810	89.9
2	$BALD \rightarrow HO_2 + Products$	0.00913	10.1
	Total Loss	$= 0.0900 \text{ molecules cm}^{-3}$	
	ions Contributing to Methyl Ethyl Ketone (M		
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	$HC3P + NO \rightarrow MEK + Products$	0.160	60.5
2	$HC5P + NO \rightarrow MEK + Products$	0.0883	33.3
3	$OLTP + NO \rightarrow MEK + Products$	0.00901	3.40
4	$OLT + O_3 \rightarrow MEK + Products$	0.00507	1.91
	DCB2 (Unsaturated dicarbonyl) + OH		
5	→ MEK + Products	0.00106	0.399
	Total Production	$= 0.270 \text{ molecules cm}^{-3}$	
	ontributing to Methyl Ethyl Ketone (MEK) l		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	MEK → Products	0.0285	72.6
			•

2	$MEK + OH \rightarrow Products$	0.0108	27.4
	Total Production	$= 0.040 \text{ molecules cm}^{-3}$	

Table S10.4: Carbonyl Production and Loss Budget on Day 4 (CB6 Output)

Top 5 Reacti	ions Contributing to Formaldehyde (FORM)	Production	
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production (%)
1	MEO2 (Methyl peroxy radical) + NO → FORM + Products	1.54	36.0
2	HCO3 (Formyl peroxy radical) → FORM + Products	1.12	26.2
3	OH + ETH → 1.56 FORM + Products	0.500	11.7
4	$OH + OLE \rightarrow 0.78 \text{ FORM} + Products$	0.335	7.83
5	MEOH (Methanol) + OH → FORM + Products	0.263	6.14
	Total Production	= 4.28 molecules cm ⁻³	
Reactions Co	ontributing to Formaldehyde (FORM) Loss		1
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	FORM → Products	2.14	58.39
2	$FORM + HO_2 \rightarrow Products$	1.13	30.76
3	FORM + OH → Products	0.393	10.74
4	$FORM + NO_3 \rightarrow Products$	0.00401	0.110
5	$FORM + O^3P \rightarrow Products$	4.09×10^{-5}	0.00112
	Total Loss	= 3.66 molecules cm ⁻³	
No.	ions Contributing to Acetaldehyde (ALD2) I Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Production (%)
1	OH + ETHA → 0.991 ALD2 + Products	0.668	23.3
2	CXO3 (Acyl peroxy radical) + NO → ALD2 + Products	0.536	18.7
3	$KET \rightarrow 0.58 \text{ ALD2} + \text{ Products}$	0.479	16.7
4	$ROR \rightarrow 0.74 \text{ ALD2} + Products$	0.385	13.4
5	$ALDX \rightarrow ALD2 + Products$	0.260	9.07
	Total Production	= 2.86 molecules cm ⁻³	7.10
Reactions Co	ontributing to Acetaldehyde (ALD2) Loss		
No.	Reaction	Integrated Reaction Rate (molecules cm ⁻³)	Percent of Loss (%)
1	ALD2 + OH → Products	1.39	87.2
2	$ALD2 \rightarrow Products$	0.188	11.7
3	ALD2 + NO ₃ → Products	0.0162	1.01
4	$ALD2 + O^3P \rightarrow Products$	0.000264	0.0165
	Total Loss	= 1.60 molecules cm ⁻³	
Ton 5 Reacts	ions Contributing to the Production of Aldeh	wdes with Three or More Carbon	Atoms (ALDY)
No.	Reaction	Integrated Reaction Rate	Percent of Production
1	OH + DAD - , O 11 ALDV + D 1 .	(molecules cm ⁻³)	(%)
1	$OH + PAR \rightarrow 0.11 ALDX + Products$	1.18	48.1

2	OH + PRPA (Propionaldehyde) →	0.467	19.1
	0.26 ALDX + Products		
3	$KET \rightarrow 0.58 \text{ ALD2} + \text{ Products}$	0.281	11.5
4	$OH + OLE \rightarrow 0.488 \text{ ALDX} +$	0.210	8.57
	Products		
5	ROR (Alkoxy radical) \rightarrow 0.37 ALDX	0.192	7.87
	+ Products		
	Total Production	= 2.44 molecules cm ⁻³	
Reactions Con	tributing to the Loss of Aldehydes with Tl	nree or More Carbon Atoms (ALD	OX)
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1	$ALDX + OH \rightarrow Products$	1.31	80.3
2	$ALDX \rightarrow Products$	0.260	15.9
3	$ALDX + NO_3 \rightarrow Products$	0.0610	3.74
4	$ALDX + O^3P \rightarrow Products$	0.000324	0.0198
	Total Loss	= 1.63 molecules cm ⁻³	
Top 5 Reaction	ns Contributing to Ketone Species (KET)	Production	
No.	Reaction	Integrated Reaction Rate	Percent of Production
		(molecules cm ⁻³)	(%)
1	$ROR \rightarrow KET + Products$	7.62	98.7
2	$ROR \rightarrow 0.2 \text{ KET} + \text{ Products}$	0.104	1.35
	Total Production	= 7.72 molecules cm ⁻³	
Reactions Con	tributing to Ketone Species (KET) Loss		
No.	Reaction	Integrated Reaction Rate	Percent of Loss (%)
		(molecules cm ⁻³)	
1	KET → Products	0.827	100
	Total Loss	$= 0.827 \text{ molecules cm}^{-3}$	