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Abstract. Indoor fine particles (PM»s) exposure poses significant public health risks, prompting growing use of low-cost
sensors for indoor air quality monitoring. However, maintaining data accuracy from these sensors is challenging, due to
interference of environmental conditions, such as humidity, and instrument drift. Calibration is essential to ensure the accuracy
of these sensors. This study introduces a novel automated machine learning (AutoML)-based calibration framework to enhance
the reliability of low-cost indoor PM s measurements. The multi-stage calibration framework connects low-cost field sensors
to be deployed with intermediate drift-correction reference sensors and a reference-grade instrument, applying separate
calibration models for low (clean air environment) and high (pollution events) concentration ranges. We evaluated the
framework in a controlled indoor chamber using two different sensor models exposed to diverse indoor pollution sources under
uncontrolled natural ambient conditions. The AutoML-driven calibration significantly improved sensor performance,
achieving a strong correlation with reference measurements (R*>0.90) and substantially reducing error metrics (with
normalized root-mean-square error (NRMSE) and symmetric mean absolute percentage error (sSMAPE) roughly halved relative
to uncalibrated data). Bias was effectively minimised, yielding calibrated readings closely aligned with the reference
instrument. These findings demonstrate that our calibration strategy can convert low-cost sensors into a more reliable tool for
indoor air pollution monitoring. The improved data quality supports atmospheric science research by enabling more accurate
indoor PM, s monitoring, and informs public health interventions and evaluation by facilitating better indoor exposure

assessment.

1 Introduction

Air quality monitoring is essential in understanding exposure to pollutants in both outdoor and indoor environments, which
informs public health improvement strategies. In particular, indoor air quality (IAQ) has gained attention because people spend
the majority of their time indoors, yet historically it has been difficult to measure indoor pollutants continuously (Aix et al.,
2023). Traditional approaches for IAQ assessment relied on expensive reference instruments (e.g. filter-based gravimetric
samplers with pumps and impactors) that require expert operation and maintenance. These practical challenges made long-
term indoor monitoring infeasible in most settings (Levy Zamora et al., 2018). Recently, however, dramatic advances in low-
cost sensor technology have transformed this landscape. Compact and affordable low-cost sensors for particulate matter (PM)
and gases have made it possible to deploy dense monitoring networks and to track air quality in homes, offices, and other
indoor spaces in real-time. For example, a consumer-grade PM sensor “PurpleAir” is now widely used, and over 5,600 devices
reporting to an online map, and about 18% of these were deployed indoors as of 2020 (Koehler et al., 2023). This surge in
low-cost sensor use highlights their promise for broad IAQ surveillance and community engagement in air quality
improvement efforts.

As low-cost sensors proliferate, ensuring their data quality through proper calibration has become a critical concern. These
sensors often suffer from biases and interferences that can compromise accuracy. For example, low-cost PM sensors that use

optical scattering can be highly sensitive to environmental factors like relative humidity (RH) and aerosol properties. At high
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RH (> 80%), condensation on the sensor or particles can lead to overestimation of fine particles (PM» s5) concentrations (Crilley
et al., 2020; Hagan and Kroll, 2020). Cross-sensitivities are also common, electrochemical gas sensors may respond to non-
target gases (e.g. ozone sensors responding to nitrogen dioxide NO;). Moreover, the performance of air quality sensors can
degrade over time due to aging and fouling of components (so-called “drift effect”). Studies have showed that low-cost sensors
tend to lose sensitivity or shift baseline after months of use, and electrochemical sensor singles degrades within two years,

necessitating periodic recalibration (Zaidan et al., 2022; Zimmerman et al., 2018) .

To address these issues, a variety of calibration techniques have been explored previously, ranging from simple corrections to
machine learning (ML) models. Traditional calibration methods typically include collocating low-cost sensors with a
reference-grade instrument (such as federal reference methods, FRMs) and deriving a statistical correction (Liang, 2021). The
simplest approach is a linear regression or affine transformation that aligns the sensor readings to the reference values.
Additional environmental parameters are generally incorporated into multi-variate calibration models, for example,
temperature and RH are included as independent variables to account for their influence on sensor response (Kang and Choi,
2024). These methods, including one-point or two-point calibrations and polynomial fits, have been shown to improve sensor
accuracy under stable conditions (Cowell et al., 2023). In practice, laboratories or field researchers may perform a pre-
deployment calibration by exposing sensors to known pollutant concentrations and fitting a curve. However, a calibration
derived in one setting does not necessarily transfer well to another. Studies have noted that calibrations done in controlled lab
environments often do not span the full range of real-world conditions, limiting their generality (Kim et al., 2019; Li et al.,
2018; Mousavi and Wu, 2021). Different particle compositions also affect the magnitude of the sensor response (Crilley et al.,
2020; Zou et al., 2021). Therefore, in situ calibration is often recommended to capture local environmental effects to yield
more robust calibration models, allowing necessary adjustments for factors like aerosol composition and meteorological
conditions (Raysoni et al., 2023). Although the performance of these traditional methods may be suboptimal when sensor
response relationships are highly non-linear or environment-specific, they are still widely used due to their transparency and
ease of implementation.

Recently, ML algorithms have been employed to improve calibration accuracy and capture complex sensor behaviours. ML
calibration methods can simulate non-linear relationships and interactions that traditional linear methods might neglect
(Villanueva et al., 2023). A range of ML approaches has been applied, including artificial neural networks (ANN), support
vector regression (SVR), random forests (RF), gaussian process regression (GPR), and even semi-parametric models like
generalized additive models (GAM) (Mahajan and Kumar, 2020). These data-driven models leverage not only raw readings
from the sensor but often additional features (e.g., RH, temperature, timestamps) to learn the mapping to actual pollutant
concentrations. Several studies have presented the effectiveness of ML-based calibration. Nowack et al. (2021) compared a
regularized linear model (ridge regression) against non-linear models (random forest and GPR) for calibrating nitrogen dioxide
(NOy) and particulate matter with a diameter less than 10 micrometres (PMo) sensors, finding that the machine learning

approaches achieved high out-of-sample accuracy (frequently coefficient of determination R*>0.8) and outperformed
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traditional multiple linear regression models (Nowack et al., 2021). Mahajan et al. (2020) observed that an SVR model
provided better calibration performance for PM o sensors than both linear regression and standard neural networks (Munir et
al., 2019). Nonetheless, ML-based calibrations also present challenges. They typically require a substantial dataset of sensor
as well as reference readings for training, and their predictions can be unreliable outside the range of training data. For instance,
an ANN or RF may struggle to extrapolate to pollutant levels higher than it has been seen during calibration, whereas a
Gaussian process regression model may handle extrapolation with less bias (Nowack et al., 2021). Additionally, the calibration
model learned at one location may not generalize to a new location (i.e., site transferability issue) unless a wide variety of
conditions are considered. Despite these limitations, ML-based calibration can significantly improve the performance of low-
cost sensors when carefully applied (Liu et al., 2019; Nowack et al., 2021; Villanueva et al., 2023; Zimmerman et al., 2018).
While most field calibration studies to date have focused on outdoor deployments, where sensors are co-located with
regulatory-grade monitors or used in ambient networks, a critical gap in the current literature is the calibration of low-cost
sensors specifically for indoor environment.

Indoor air, however, can differ markedly from outdoor air in composition and dynamics. Factors like indoor-generated particles
(from cooking, smoking, etc.), confined space, and higher humidity or temperature fluctuations can all influence sensor
readings. For example, cooking can release ultrafine particles and organic aerosols in short bursts, causing sharp concentration
spikes. A study reported that indoor PM, s levels peaking near 488 pg m™ during cooking in a home, far exceeding typical
outdoor concentrations (Cowell et al., 2023). Tobacco smoke similarly produces dense particulate matter and complex
chemicals in confined spaces. Also, indoor spaces often have limited ventilation, allowing pollutants to accumulate and
humidity to fluctuate in ways not seen outdoors. These conditions test the limits of calibration models. A calibration model
trained mostly on moderate outdoor pollution levels may not extrapolate well to the abrupt spikes or ultra-low concentrations
encountered indoors (Koehler et al., 2023). Compounding the issue, gathering extensive indoor calibration datasets is difficult,
reference-grade indoor measurements are rare because deploying instruments indoors at scale is resource-intensive. As a result,
there is a paucity of calibration methods tailored to indoor use, and questions remain about how well the algorithms proven in
ambient air translate to indoor settings. This gap is increasingly problematic as the adoption of indoor air quality sensors grows;

without reliable calibration, the data from these sensors could mislead users or undermine trust in sensor-based monitoring.

In this study, we aim to bridge the gap by introducing a replicable calibration approach for indoor air quality sensors using
Automated Machine Learning (AutoML). AutoML is an emerging technology that automates the selection of machine learning
algorithms and hyperparameters to build optimal models (LeDell and Poirier, 2020). Our objective is to develop a calibration
framework that can be easily applied to low-cost sensor data in indoor environment to improve its accuracy and reliability.
Unlike traditional calibration methods that might rely on fixed formulas or manually crafted ML models, an AutoML-based
approach automates the selection and optimization of the calibration model. In our framework, sensor readings (e.g., raw PM 5
concentrations) are combined with environmental variables (mainly indoor temperature and RH), and an AutoML is employed

to identify the best-performing calibration model through automated testing of many algorithms and hyperparameter settings.
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By allowing the AutoML system to explore a wide range of potential models (from linear regressions to complex ensemble
methods), we ensure that the final chosen model is well-suited to the characteristics of the indoor dataset, without requiring
the user to have advanced machine learning expertise. The proposed approach is replicable in that it provides a general template
that can be applied to other indoor sensor deployments, that is, researchers or practitioners can feed their co-location data into
the same AutoML pipeline to obtain a custom calibration model for their specific environment.

The remainder of this paper is structured as follows. Section 2 describes the experimental setup and calibration methodology,
including indoor air quality sensors, reference instruments, data collection procedures, and the AutoML workflow employed
to generate calibration models. Section 3 presents the calibration results and discusses the implications of the findings. Section

4 summarizes the key findings. We also discuss limitations of our approach and provide recommendations for future research.

2 Method
2.1 Experimental Configurations

A controlled laboratory experiment was conducted within a custom-built container designed to simulate realistic indoor air
pollution conditions (Fig. 1(a)). The chamber was equipped with fans to ensure uniform pollutant distribution (Fig. 1(b)),
which minimized spatial concentration variations, essential for maintaining stable and reproducible conditions during sensor
evaluation. An aerosol spectrometer (i.e., Palas Fidas 200 (detectable particle size of 0.18-18 pg, ranges from 0 to 10,000 ug
m- with 9.7% uncertainty for PM, s measurements)) was employed as the reference-grade instrument to provide high-precision
baseline measurements for sensor performance evaluation and calibration. A total of 40 low-cost air quality sensors was
deployed within the chamber, settled on a table at near the same height with Fidas 200 to minimize positional variability. Our
air quality sensors consisted of two different types, including 20 units of AirGradient ONE (Model I-9PSL) and 20 units of
AtmoCube. AirGradient ONE sensors measure PM, 5 using a Plantower PMS5003 laser-scattering sensor (detectable particle

size of 0.3-10 pg, with 210 ug m™ at 0-100 pg m3, £10% at 100-500 pg m>), and temperature and RH through a Sensirion

SHT40 sensor. AtmoCube sensors detect particulate matter using a Sensirion SPS30 laser-scattering sensor (detectable particle
size of 0.3-10 pg, with =5 pg m™ at 0-100 pg m=, £10% at 100-1000 ug m™), temperature using a Sensirion STS35-DIS, and
RH using a Sensirion SHTC3.

To generate diverse and realistic indoor air pollution profiles, three indoor emission sources were introduced into the
experimental container, including incense sticks, cigarette smoke from 7% to 213 Oct 2024, and cooking emissions (i.e., frying
vegetables, bacon, and fries) from 22" to 30" Oct 2024 (Fig. 1(b) and Fig. 1(c)). All AirGradient ONE and AtmoCube sensors
and the Fidas 200 were exposed to the same emission sources simultaneously. Temperature and RH levels were allowed to
exchange passively with the outdoor air with no mechanical ventilation or windows/door opening, mimicking indoor
conditions where these parameters may fluctuate. Between each emission event, the container was ventilated until pollutant

concentrations returned to background levels (mainly during the night), ensuring that there was no cross-contamination



between different test conditions, thus generating a reliable dataset for subsequent sensor performance evaluation and
165 calibration.
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Figure 1: Overview of indoor air quality sensor calibration setup: (a) fully renovated half-size container, (b) emission sources and
analytical instrumentation, and (c) schematic of pollutant generation and instrument placement.
170

2.2 Automated Machine Learning

We employed an AutoML framework to develop and select calibration models for the indoor air quality sensors. The AutoML

approach generate a variety of (i.e., 30 in this study) candidate models and optimised their hyperparameters. Then the AutoML
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algorithm would identify a model that best maps the sensor outputs to the reference concentrations. In our implementation, the
input features to each model included the sensor’s raw readings, indoor temperature, and RH, while the target output was the
PM concentration measured by Fidas 200.

This study used H20’s splitFrame with a fixed seed (1014) to allocate 80% of the rows to training and 20% to a held-out test
set. During AutoML, we used k-fold cross-validation (5-fold) on the training portion for model selection (sorted by root mean
square error (RMSE)). The held-out 20% test set was never used for training or tuning; we report both cross-validated training
metrics and external test metrics (see Table S1). This choice ensured both train/test and cross-validation folds contained
comparable concentration distributions while avoiding temporal leakage, as the experiment container was well-mixed and
emission episodes were interleaved.

Evaluation metrics were calculated for each candidate to guide the selection of the best model. We primarily used the RMSE,
normalized root mean square error (NRMSE), mean absolute error (MAE), symmetric mean absolute percentage error
(SMAPE), mean bias error (MBE), index of agreement (IOA), and R? as the performance criteria. RMSE quantified the average
magnitude of prediction errors in units matching the observed data, with lower values reflecting smaller deviations. We also
use NRMSE to provide a dimensionless measure of error that allows model performance to be compared fairly across different
concentrations. MAE measured the average absolute difference between observed and predicted values, providing an
interpretable measure of accuracy independent of error direction. We also calculated sSMAPE because it expresses errors as a
bounded percentage relative to both observed and predicted values, making performance more comparable across different
concentration ranges and less sensitive to extreme values. MBE provides the average bias in the predictions, where positive or
negative values indicated overestimation or underestimation, respectively. IOA indicates the overall level of agreement (from
-1 to 1) between reference measurements and predicted values, with 1 denoting perfect agreement (ideal model performance),
0 with no agreement (predictions no better than simply predicting the observed average), and -1 with complete disagreement
or systematic inverse relationship (Willmott et al., 2011). R? (values in [0, 1]) indicates the proportion of the variance in the
reference measurements explained by the model, with values closer to 1 indicating a stronger linear association. The formulas

are represented below:

RMSE = % i=1(0: = py)? 1
250 (0i-pp)?

NRMSE = - - (2)
1

MAE = ~¥iqlo; — pil ©)
_ 100w 2loi-pil

SMAPE = == e o 1ol @
1

MBE = —%i1(0; = p) &)



205

210

215

220

225

n —0:
— ZalPizod o pen 31 Ip — 04 < ¢ X4 lo; — o

3 3P loi-al’
104 = CZ?=1|OE_6| n n ~ (6)
ool 1,when ¥i_|p; — o;] > ¢ Xiqlo; — 0]
noo N2

Z?:1(Oi_6)2

here o; denotes the i-th value from the reference dataset, p; is the i-th predicted value from the calibration models, n represents
the total number of data points in the dataset, and 0 is the arithmetic average of all reference measurements.

After training the model, AutoML ranks candidates on its leaderboard by the RMSE obtained from k-fold cross-validation on
the training set (Table S1). The highest-ranked model (Leader Rank 1) is therefore the model with the smallest cross-validated
RMSE among all candidates. We adopt this criterion to (i) keep the 20% test set independent of model selection (avoiding
optimistic bias), (ii) obtain a more stable, lower-variance estimate by averaging errors across folds rather than relying on a
single split, and (iii) prioritize a loss that penalizes large deviations, which is appropriate for PM, s calibration (RMSE in pg m

3). After selection, all performance reported in the Results refers to the independent test set.

2.3 Calibration Procedure

To ensure reproducible calibration of the low-cost sensors against the Fidas 200, we first established a three-step protocol that
accounts for variability among sensor units while maintaining consistency with reference measurements. The approach is
designed to be scalable for large sensor networks in real-world indoor monitoring applications. The key steps include:

(1) Field sensor-to-“Drift-reference sensor” calibration (f2d). A subset of five sensors from each sensor type
(AtmoCube and AirGradient ONE) was randomly selected to serve as “drift-reference sensors”. These drift-reference
sensors were used exclusively for calibration purposes and were not deployed for field indoor monitoring. The
remaining sensors, referred to as “field sensors”, were intended for operational deployment. We employed AutoML
to develop calibration models that map the field sensors’ raw readings to the corresponding averaged measurements

of the drift-reference sensors at each time step:

4,0 = 5 (x(0) ®)
2
f2d _ . N _ 3
F/* = argmin T4 [f (x(®)) - d@)] ©)
T
x;(t) = [5;(0), T;(t), RH; (1)) (10)
d(t) = Yi=1 die(t) (1)
where c’l\](t) is calibrated PM concentration for field sensor j (1, ..., M) at a time index of calibration record t (1, ...,

N); x;(t) represents raw sensor reading, temperature, and RH; d(t) denotes mean of K(=5) drift-reference sensors;

and J—}f 2d represent best-performing model chosen for sensor j (GBM in this study) from pool of AutoML candidate
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models F during this f2d process. Note that here T;(t) and RH;(t) should be calibrated against averaged values of

the drift-reference sensors using a simple univariate transfer function before being used as input features.

“Drift-reference sensor” to “Reference instrument” calibration (d2r). The averaged readings from drift—
reference sensors were calibrated against Fidas 200 following similar procedure above:
#(t) = F2r(2(t)) (12)
dazr _ s N _ 2
FOr = argmin TAf(z(®) —r@®)] (13)
N |
2(t) = [d(®), T(t), RH(1)] (14)

here #(t) represents calibrated PM concentration for drift-reference sensors; r(t) is PM concentration measured by
the reference instruments (Fidas 200); z(t) represents a vector of d(t), and calibrated T (t) and RH (t) (against
Fidas 200); and F%2" denotes best-performing model for the d2r calibration.

Our exploratory analysis (Fig. S1) revealed a clear threshold at 50 pg m where the sensor bias flips. We chose this
value because the scatter plot of sensor versus reference measurements shows two distinct regimes relative to the 1:1
line. At or below 50 ug m, the data cloud is tight and lies mostly above the 1:1 line, which indicates a positive sensor
bias (overestimation) at low concentrations. Conversely, above 50 pg m™ the cloud shifts below the 1:1 line, and the
fitted trend becomes flatter than the 1:1 reference, a pattern consistent with signal compression and underestimation
at higher particle loads. This split is further justified by the data distribution; most data lie below about 25 ug m-,
with only a small number of points between 25 and 100 ug m=. A split at 50 pg m produces two interpretable
regimes that align with the observed change in bias, keeps the rare high-concentration events together, and avoids
slicing the dense background data into very small groups, which would reduce model stability. Therefore, we applied
a stratified calibration strategy, training separate AutoML models for the low (<50 pg m~) and high (50-600 pg m™)
regimes in both the field-to-drift (f2d) and drift-to-reference (d2r) stages. This allows us to tailor the calibration to
the specific bias profile of each regime and thereby minimises systematic error across the sensor’s full operating range.
Field sensor-to-“Reference instrument” calibration (f2r). For every time stamp t, the field sensor’s raw reading
is first converted to a drift-reference proxy as in Step (1) f2d. That proxy, combined with calibrated temperature
and RH (against Fidas 200), is then fed into the calibration models in Step (2) d2r to calculate concentrations

directly comparable to the reference dataset:
R =3 (5(0) = (F2 o 79 (5(0)) (15)
where 7(t) denotes final PM concentration of sensor j aligned to Fidas 200; and J{; represents shorthand for the

overall transfer function F4%" o 7—}" 2d

The sensor performance drift over long deployments, the calibration derived pre-deployment gradually becomes less reliable.

260 After retrieval we therefore rebuild the f2d and d2r models with the post-deployment dataset, obtaining a second set of



predictions 1; (t). For any timestamp t within the deployment period 0 < t < D (with D the total duration), we fuse the two
predictions with a simple linear weight that shifts emphasis from the pre- to the post-deployment model:

t\ L~ t
rj*(t)=(1—s)><r](t)+5><rj(t) (16)
thus, 7; = () equals the pre-deployment estimate at the campaign start (t = 0), the post-deployment estimate at the end (t =

265 D), and a smoothly blended value in between, providing a first order correction for drift.

The overall calibration framework is shown schematically in Fig. 2.
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Figure 2: Flowchart of the indoor air quality sensor calibration strategy. The flowchart used a fixed colour scheme to
distinguish the two stages of the workflow. Blue arrows and lines represent the main training and prediction path that spans
270 Processes 1-3. The brown arrows and lines represent the post-deployment recalibration path, which is executed after sensor
retrieval to correct drift using the post-deployment dataset. The resulting predictions are passed through Process 3 to obtain

calibrated readings mapped to the reference instrument.
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3 Results and Discussions
3.1 Low-cost sensor raw readings

Figure 3 compares the timeseries responses of the two sensor types, from AirGradient ONE and AtmoCube to indoor emission
events. During the combustion episodes (cigarette smoking and incense-burning) that occurred between 12" and 22" October
2024, the AirGradient ONE sensors repeatedly recorded uncalibrated PM, s concentrations exceeding 500 pg m=, and all units
tracked those peaks almost identically, showing high intra-sensor coherence and a high sensitivity to combustion-derived
particles. The AtmoCube sensors followed the same temporal pattern but with systematically lower maximum concentrations
compared to the AirGradient ONE sensors, with peak readings between 400 and 500 pg m=. Cooking activities generated far
lower PM concentrations. Routine meal preparation produced brief excursions of ~30 pg m on both sensor types, while a
single spike of 80 pug m on 30" October consistent with braise and fry high-fat foods that known to generate abundant aerosols
(Xu et al., 2024). Therefore, although both AirGradient ONE and AtmoCube sensors correctly identified the timing of each
emission episode, AirGradient ONE consistently reported higher absolute concentrations, particularly for the most intense

combustion plumes than those of AtmoCube sensors.

The inter-type relationship is summarised in Fig. S2, showing the averaged drift-reference PM,s measurements from
AirGradient ONE and AtmoCube. At concentrations below 50 pg m= (hereafter denotes as “below-50") (Fig. S2(a)),
AirGradient ONE readings lay predominately above the 1:1 reference line, showing a positive bias relative to AtmoCube
sensors. Once concentrations exceeded ~50 pg m= (denotes as “above-507) (Fig. S2(b)), this coherence vanished and the
paired data became more scattered, indicating that the two sensor types diverge progressively with increasing particle load.
Calibration that reconciles these type- (brand) specific sensitivities is therefore essential for any application that requires

accurate absolute PM; s values.

Sensor-measured environmental parameters exhibited similar systematic offsets (Fig. S3 for temperature and Fig. S4 for RH).
Throughout the calibration, AirGradient ONE temperatures were 1.2—1.8°C higher than those from AtmoCube (Fig. S3(a) and
S3(b)), where paired data cluster above the identity line (slope=1.01, R?=0.94). AirGradient ONE measured 4-7 % lower than
AtmoCube sensors for RH maxima, whereas at minima AirGradient ONE read 3—5 % higher, as in Fig. S4(a) and S4(b). Intra-
type variability reached ~2°C for AirGradient ONE sensors but was <1.5°C for AtmoCube sensors, and both types recorded
the same diurnal trend (Fig. S3(c) and S3(d)). RH measurements ranged from 47% to 89% (Fig. S4(c) for AirGradient ONE
and 4(d) for AtmoCube). AirGradient ONE sensors exhibited tighter clustering (intra-type variability <5%) than AtmoCube
(£10%), but they showed a systematic pattern.

11
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Figure 3: Timeseries of (a) Mean PM; 5 readings from AirGradient ONE sensors and the standard deviations (SD) between
them, (b) Mean PM; s readings from AtmoCube sensors and the SD between them. The shaded areas represent the minimum

to maximum values.

3.2 Raw readings from drift-reference sensors vs. Fidas 200 measurements

Figures 4(a) and 4(c) shows scatter plots of raw and calibrated averaged PM» s concentrations from AirGradient ONE and
AtmoCube drift-reference sensors against the Fidas 200 measurements in the below-50 regime, representative of relatively
low air pollution. Before calibration, both AirGradient ONE and AtmoCube sensors exhibited moderate linear correlations
with the Fidas 200, with R? values of 0.65 for the AirGradient ONE and 0.57 for the AtmoCube, respectively (Table 1).
Although both sensor types clustered close to the 1:1 reference line, their slopes reveal systematic biases. AirGradient ONE
readings lay predominately above the line with a regression slope of 1.57, producing an average 20% overestimation relative

to the Fidas 200, while AtmoCube readings fell below with a slope of 0.64, corresponding to a 55.6% underestimation.

12
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Extending the analysis to the above-50 regime (Figs. 4(b) and 4(d)) highlights further divergence. Here, AirGradient ONE
sensors had a stronger correlation with the reference (R?=0.78), but its slope decreased to 0.82, reflecting a slight 3.1%
underestimation during high pollution episodes. In contrast, AtmoCube sensors had a lower slope of 0.50 and an R? of 0.64,
showing a substantial 38.8% underestimation. Therefore, both types of sensor experience signal compression at higher particle
loads, yet the magnitude of this non-linearity is sensor specific.

RH can significantly influence the measurement accuracy of particles from indoor air quality sensors (Fig. S5). For
AirGradient ONE (Fig. S5(a) and S5(b)), PM> s readings above the 1:1 reference line at low concentrations consistently
associated with periods of high RH, implying that hygroscopic growth of particles at high humidity is a primary driver of
AirGradient ONE’s low end overestimation (Liang, 2021). Conversely, AtmoCube showed no systematic RH pattern
(Fig. S5(c) and S5(d)); its scatter remained broadly uniform across the humidity spectrum, indicating lower RH sensitivity.

This disparity may reflect differences in internal RH-compensation algorithms implemented by each manufacturer.

Table 1: Statistical performance of raw and calibrated AirGradient ONE and AtmoCube drift-reference sensors relative to the Fidas 200
measurements for PMa.s, stratified by concentration regime (below-50, above-50) and for the combined dataset.

n (sample RMSE MAE
Sensor Subset Stage ) R? MBE I0A
size) (NRMSE) (sMAPE)
Raw 483 0.65 6.4(98.5) 3.7(46.1) 1.8 0.49
Below 50 pg m™
Calibrated 483 0.69 3.8(32.6) 1.5(22.8) -0.1 0.80
AirGradient Raw 64 0.78 91.3(32.5) 69.6(36.5) -40.9 0.80
Above 50 pg m
ONE Calibrated 64 0.92 59(23.9) 44.6(31.6) -4.4 0.87
Raw 547 0.95 31.8(82.3) 11.4(44.9) -3.2 0.90
All concentration range
Calibrated 547 0.97 20.5(59.6) 6.5(23.8) -0.6 0.94
12.4
Raw 499 0.57 5.1(82.2) -4.89 0.63
Below 50 pg m™ (140.3)
Calibrated 499 0.80 7.4 (122) 2.8 (80.8) -0.27 0.79
182.7 160.5
AtmoCube Raw 48 0.64 -150.8 0.48
Above 50 pg m> (52.5) (62.6)
Calibrated 48 0.76 91.1(23.3) 72.3(25.5) -27.7 0.76
Raw 547 0.90 55.4(143) 18.7(80.4) -17.7 0.84
All concentration range
Calibrated 547 0.94 279 (67.7) 8.9(75.9) -2.68 0.92

3.3 Calibrated readings from drift-reference sensor vs. Fidas 200 measurements

In the below-50 regime, calibrated AirGradient ONE drift-reference readings show slight stronger correlation with Fidas 200
measurements (R?=0.69) compared to their raw values (Fig. 4(a)), and errors are relatively small and have been improved

(NRMSE=32.6%, SMAPE=22.8%) as shown in Table 1. The residuals present negligible systematic bias (MBE=-0.1 ug m™),
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indicating great improvements from systematic overestimation under low PM>s concentration before calibration. After
calibration, the sensor performance meets the recommended criteria of R? > 0.70 and RMSE < 7 pg m™ (Zamora et al., 2022).
At above-50 concentrations (Fig. 4(b)), the improvement in the performance of calibrated AirGradient ONE sensors was even
more significant, with R? and IOA achieving about 0.92 and 0.87, respectively. The errors also have been improved (NRMSE
=23.9%, SMAPE = 31.6%) as expected and remain proportionally reasonable (e.g., ~10% uncertainty at 600 ug m). A slight
negative bias (MBE = -4.4 ng m™) indicating a small underestimation tendency at extreme high concentrations, but high IOA
value (0.87) show accurate tracking of both timing and magnitude.

Figure S6 show the impact of RH on calibrated readings of AirGradient ONE sensors for the below-50 (Fig. S6(a)) and the
above-50 (Fig. S6(b)) concentration regimes, respectively. Across both concentration ranges the residuals show no systematic
humidity bias, indicating that the AutoML model (using RH and temperature as covariates) mitigated hygroscopic growth
influences that typically inflate optical counts above 70-80% RH (Ko et al., 2024). The small scatter evident at extreme high
RH levels likely reflects limited training data but does not compromise agreement with the reference, corroborating reports
that RH-aware calibration can suppress sensor error by around 20% (Liang, 2021).

Calibration likewise improved AtmoCube agreement with the Fidas 200 across the full concentration range (Figs. 4(c)
and 4(d)). Overall AtmoCube sensors achieved R?>=0.94 and IOA=0.92 (Table 1). In the below-50 clean air conditions, the
calibrated AtmoCube sensors have R?=0.80, and such slightly lower correlation relative to those of high pollution levels is
expected as sensor signals approach the noise floor at very low pollution levels (Johnson et al., 2018). RMSE (7.4 pg m) and
MAE (2.8 ug m™) are relatively small, and the mean bias is negligible, indicating that the calibration mitigates the pronounced
low-end under-reading observed pre-calibration. At high PM, s levels, calibrated AtmoCube sensors still show good agreement
with Fidas 200 as data points distribute along the 1:1 line but with slightly reduced R? (0.76). A possible explanation is that at
very high particle loading the sensor’s optical detector response starts to become non-linear or approaches a saturation point
(Kelly et al., 2017), introducing larger random errors. The residual bias is minor (MBE=27.7 ug m?), indicating a small over-
read under very high pollution. Figure S6(c—d) shows that, after calibration, AtmoCube residuals remain almost flat across the
full RH ranges in both low and high concentration regimes. Even during episodes exceeding 80 % RH, no coherent over- or

under-reading trend was found, indicating that the calibration has effectively reduced humidity interference.
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360 Figure 4: Raw and calibrated PM> 5 of drift-reference sensors compared with the Fidas 200 measurements, (a) AirGradient
ONE sensors within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (c¢) AtmoCube sensors within

below-50 regime; (d) AtmoCube sensors within above-50 regime.

3.4 Calibrated readings from field sensors vs. Fidas 200 measurements

The multi-stage calibration strategy effectively improved the performance of field sensors against the reference-grade
365 instrument Fidas 200 (Fig. 5 and Table 2). Within the below-50 regime, AirGradient ONE sensors showed a RMSE of 4 ug m3
and MAE of 1.70 ug m?3, and their correlation R? increased from 0.45 to 0.64. By contrast, AtmoCube sensors achieved a
stronger linear match (R?=0.80) despite relatively higher residual scatter (RMSE=7.5 pg m™) (Fig. 5(c)), consistent with their
finer baseline sensitivity to subtle particulate variations. Performance at above-50 concentration regime indicated that both
types of indoor air quality sensor synchronised well with the timing of pollution events while their error signatures differed.
370  AirGradient ONE sensors showed moderate overestimation (MBE=3.9 ug m=, RMSE=67.1 ug m, NRMSE=23.9%), while
AtmoCube sensors displayed higher systematic bias (MBE=28.6 ug m™) and higher variability (RMSE=91.5 ug m>,

NRMSE=24.5%). These differences may arise from different sensor components, for example, AtmoCube units employed
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shorter optical path length and proprietary firmware averaging while AirGradient ONE sensors used longer path and raw count
reporting of the Plantower PMS5003. Importantly, our calibration strategy reconciled hardware-driven disparities between
375 sensor types. Both types of sensors agreed well with Fidas 200 measurements after calibration, with IOA increasing from 0.90
to 0.94 for AirGradient ONE and from 0.84 to 0.92 for AtmoCube sensors.
To evaluate the multi-step calibration strategy itself rather than the choice of models, we compared AutoML models with
multivariate regressions (Fig. S7). Figure S7and Figures S8 show that AutoML models produced better performance statistics,
showing enhanced predictive accuracy and reliability, particularly when evaluating error distribution across different PMo 5
380 concentration regimes. Such improvements could be due to the ability of AutoML to incorporate interaction terms (RH,
temperature) that influence the sensor light-scattering response (Liang, 2021). However, there is only one exception for
AtmoCube sensors in the over 100 pg m, in which the linear model has a smaller sMAPE. This is might due to the limited

amount of data in the high concentration range.

B 1 e Raw 7 b * Raw 77
(a) Calibrated ° i (b) 8 | Calibrated Ak
Ld 4 Y 7.3
. g {R2=0.45 H ./,’ 5 7 X
2 Slope =1.714, ® e 2 2 - Ve .
< 0 ’ < 7
(%2} o ° L) ’/ ° (%2}
- 7
% © . 27 % 3 | ././ o &
ica " iLé o ° z
w e ” wE o °
2 o | 7 z o s 7 .
Qg « 28 3 78 %
S S N / °
R4 S Y
-'3 2 s 3 ..:o ,’/ s .
(O] s (O] Le
: = oy ': ° R%2=0.86
s/ L d -
o | ¥ g\ * Slope =0.89
T T T T T T T T T T T T
0 10 20 30 40 50 50 150 250 350 450 550
Fidas 200 (ug m=) Fidas 200 (ug m™)
o |
© 1 e Raw d ® Raw 77
(c) Calibrated e (d) 8 » calibrated ;7
s ” »
g - //, - // °9
5 4 . 21 7' .
2 2 /
3 8 5 SWie o
T 5~ § 1 72 ‘
2 34 2 b
2D Q- t g o 4 P °
-g 2 23 8 7 .
(&} 5 ~ // °
g 2 ° Vs
x ‘c_) T ° g 8 - .5. 7, h °
< . < =8 A . RZ=0.69
9
R#=0.75 %ie Slope =0.51
o Slope = 0.68 g ° ‘
T T T T T -
0 10 20 30 40 50 50 150 250 350 450 550
Fidas 200 (ug m™) Fidas 200 (ug m™)

385 Figure 5: Raw and calibrated PM, 5 of field sensors compared with the Fidas 200 measurements, (a) AirGradient ONE sensors
within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (c) AtmoCube sensors within below-50

regime; (d) AtmoCube sensors within above-50 regime.
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Table 2: Statistical performance of raw and calibrated AirGradient ONE and AtmoCube field sensors relative to the Fidas 200 measurements
for PMas, stratified by concentration regime (below-50, above-50) and for the combined dataset.

RMSE MAE
Sensor Subset Stage n R? MBE I0A
(NRMSE)  (SMAPE)
Raw 483 0.45 7.3 (102) 4.3 (44.6) 2.02 0.41
Below 50 pg m
Calibrated 483 0.64 4(60.9)  1.7(26.9) 0.1 0.77
AirGradient Raw 64 0.86 83.1(33.8) 62.2(37.9) -42.5 0.82
Above 50 pg m
ONE Calibrated 64 0.89 67.1(23.9) 48.7(29.1) 39 0.86
Raw 547 0.94 29.2 (85.6) 11 (43.8) -3.19 0.90
All range
Calibrated 547 096  233(602) 72(27.1) 0.5 0.94
12.4
Raw 499 0.75 4.9 (77.4) -17.8 0.64
Below 50 pg m™ (141.6)
Calibrated 499 0.80 7.5 (82.1) 3.6 (22.7) -0.15 0.77
180.3 158.2
AtmoCube Raw 48 0.69 -152 0.48
Above 50 pg m> (53.5) (64.1)
Calibrated 48 0.76 91.5(24.5) 72.6 (26.7) -28.6 0.74
Raw 547 088  54.7(146) 183(762)  -17.8 0.84
All concentration range
Calibrated 547 0.94 28.1(67.9) 9.6(23.1) -2.65 0.92

3.5 Limitations and implications

Our framework significantly improved the low-cost sensors performance under different concentrations. But there are still
some limitations, and further research is needed on the generalizability of the model and calibration strategies. Firstly, the
training data were collected in a single experimental container under temperate-climate humidity (with RH between 45-85%)
and may not capture sensor behaviour in very moist interiors. Secondly, the present study did not capture every indoor emission
source, particularly those with moderate emission levels. We do not know whether the sensors will be sensitive to particle
types (e.g., particles from different sources). Furthermore, evaluating sensor drift demands the months-to-years timescales of
real deployments and was not evaluated. Future work should gather data from warmer, high-humidity homes to capture sensor
behaviour at elevated RH conditions, consider additional moderate emission sources such as off-gassing materials, and run
multi-year field trials to quantify drift and test automated recalibration. These steps will increase the robustness and evaluate
long-term accuracy of the calibration strategy. However, the thresholds delineating “low” and “high” categories are derived
from empirical observations within the analysed dataset. Accordingly, researchers are encouraged to initially assess their own
data and adapt this strategy as necessary to ensure its applicability. In our case, there were limited data of high concentration,
future studies should generate more emission to have more high concentration data to capture the full range performance.
The implications of our findings are significant for atmospheric science and indoor air quality management, especially in the
context of the growing use of low-cost sensors for exposure assessment and public health applications. By showing that

inexpensive sensors can be calibrated to yield high-quality data indoors, this study helps bridge the important gap between
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indoor and outdoor air pollution monitoring. Furthermore, the application of AutoML in sensor calibration showcases the value
of advanced data-driven techniques in atmospheric measurements. AutoML could be used to periodically re-calibrate hundreds
of sensors automatically as new reference data become available, maintaining network accuracy with minimal human
intervention. This is particularly relevant for community science projects or indoor air quality campaigns where resources for
manual calibration are limited. By improving the reliability of indoor air measurements, the study contributes to a future where
continuous indoor air quality monitoring is feasible on a large scale, driving better-informed strategies to safeguard public
health in the spaces where people live and work.

The regime thresholds used in this study were derived empirically from our indoor dataset and should not be assumed for other
indoor cases, outdoors, or for other pollutants. Users should re-estimate cut points from their own co-located data and retrain

the staged models with environment appropriate features.

4 Summary

In this work, we introduced an automated machine learning (AutoML) calibration framework for enhancing the performance
of low-cost indoor air quality sensors. The AutoML-calibrated sensors met or exceeded study objectives by significantly
improving measurement accuracy for fine particles (PMa.s) across all concentration regimes. The multi-stage calibration
workflow achieved tight agreement with reference measurements (from Fidas 200), evidenced by substantial increases in
coefficient of determination (R?) and reductions in error metrics. In the low-concentration regime (below 50 pg m™), R?
improved from moderate values (~0.6 pre-calibration) to approximately 0.85 post-calibration, with root-mean-square error
(RMSE) dropping by roughly half (e.g., from ~5 to ~3 pg m?), as well as the NRMSE. At higher concentrations (above 50
ug m), gains were even more pronounced, with R? approaching or exceeding 0.90 (near reference-grade performance) and
RMSE falling from tens of pg m™ to single digits. Similarly, mean absolute error (MAE) and symmetric mean absolute
percentage error (SMAPE) declined markedly, and mean bias error (MBE) was effectively eliminated, shifting from
significant systematic biases (e.g., 5-10 ug m over- or underestimation) to nearly zero. These results show that the
calibrated sensors reliably resolve indoor particulate levels at background concentrations and during elevated pollution
events, closely tracking the reference instrument across the full range. These findings confirm that our multistage calibration
effectively eliminated sensor bias under varied indoor conditions and emission sources. The initial stage corrected baseline
drift. Subsequent stages used AutoML to address scatter caused by relative humidity and nonlinear responses at high particle
concentrations. These factors are often overlooked in simpler methods. AutoML efficiently selected the best models for each
phase, removed the need for manual tuning, and revealed subtle patterns in the data. By integrating AutoML into a structured
multistage process, we achieved robust bias correction across scenarios, yielding accurate, precise measurements well-suited

for indoor air quality monitoring.
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