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Abstract. Indoor fine particles (PM2.5) exposure poses significant public health risks, prompting growing use of low-cost 

sensors for indoor air quality monitoring. However, maintaining data accuracy from these sensors is challenging, due to 

interference of environmental conditions, such as humidity, and instrument drift. Calibration is essential to ensure the accuracy 35 

of these sensors. This study introduces a novel automated machine learning (AutoML)-based calibration framework to enhance 

the reliability of low-cost indoor PM2.5 measurements. The multi-stage calibration framework connects low-cost field sensors 

to be deployed with intermediate drift-correction reference sensors and a reference-grade instrument, applying separate 

calibration models for low (clean air environment) and high (pollution events) concentration ranges. We evaluated the 

framework in a controlled indoor chamber using two different sensor models exposed to diverse indoor pollution sources under 40 

uncontrolled natural ambient conditions. The AutoML-driven calibration significantly improved sensor performance, 

achieving a strong correlation with reference measurements (R2>0.90) and substantially reducing error metrics (with 

normalized root-mean-square error (NRMSE) and symmetric mean absolute percentage error (sMAPE) roughly halved relative 

to uncalibrated data). Bias was effectively minimised, yielding calibrated readings closely aligned with the reference 

instrument. These findings demonstrate that our calibration strategy can convert low-cost sensors into a more reliable tool for 45 

indoor air pollution monitoring. The improved data quality supports atmospheric science research by enabling more accurate 

indoor PM2.5 monitoring, and informs public health interventions and evaluation by facilitating better indoor exposure 

assessment. 

1 Introduction 

Air quality monitoring is essential in understanding exposure to pollutants in both outdoor and indoor environments, which 50 

informs public health improvement strategies. In particular, indoor air quality (IAQ) has gained attention because people spend 

the majority of their time indoors, yet historically it has been difficult to measure indoor pollutants continuously (Aix et al., 

2023). Traditional approaches for IAQ assessment relied on expensive reference instruments (e.g. filter-based gravimetric 

samplers with pumps and impactors) that require expert operation and maintenance. These practical challenges made long-

term indoor monitoring infeasible in most settings (Levy Zamora et al., 2018). Recently, however, dramatic advances in low-55 

cost sensor technology have transformed this landscape. Compact and affordable low-cost sensors for particulate matter (PM) 

and gases have made it possible to deploy dense monitoring networks and to track air quality in homes, offices, and other 

indoor spaces in real-time. For example, a consumer-grade PM sensor “PurpleAir” is now widely used, and over 5,600 devices 

reporting to an online map, and about 18% of these were deployed indoors as of 2020 (Koehler et al., 2023). This surge in 

low-cost sensor use highlights their promise for broad IAQ surveillance and community engagement in air quality 60 

improvement efforts. 

As low-cost sensors proliferate, ensuring their data quality through proper calibration has become a critical concern. These 

sensors often suffer from biases and interferences that can compromise accuracy. For example, low-cost PM sensors that use 

optical scattering can be highly sensitive to environmental factors like relative humidity (RH) and aerosol properties. At high 
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RH (> 80%), condensation on the sensor or particles can lead to overestimation of fine particles (PM2.5) concentrations (Crilley 65 

et al., 2020; Hagan & Kroll, 2020). Cross-sensitivities are also common, electrochemical gas sensors may respond to non-

target gases (e.g. ozone sensors responding to nitrogen dioxide NO2). Moreover, the performance of air quality sensors can 

degrade over time due to aging and fouling of components (so-called “drift effect”). Studies have showed that low-cost sensors 

tend to lose sensitivity or shift baseline after months of use, and electrochemical sensor singles degrades within two years, 

necessitating periodic recalibration (Zaidan et al., 2022; Zimmerman et al., 2018) .  70 

 

To address these issues, a variety of calibration techniques have been explored previously, ranging from simple corrections to 

machine learning (ML) models. Traditional calibration methods typically include collocating low-cost sensors with a 

reference-grade instrument (such as federal reference methods, FRMs) and deriving a statistical correction (Liang, 2021). The 

simplest approach is a linear regression or affine transformation that aligns the sensor readings to the reference values. 75 

Additional environmental parameters are generally incorporated into multi-variate calibration models, for example, 

temperature and RH are included as independent variables to account for their influence on sensor response (Kang & Choi, 

2024). These methods, including one-point or two-point calibrations and polynomial fits, have been shown to improve sensor 

accuracy under stable conditions (Cowell et al., 2023). In practice, laboratories or field researchers may perform a pre-

deployment calibration by exposing sensors to known pollutant concentrations and fitting a curve. However, a calibration 80 

derived in one setting does not necessarily transfer well to another. Studies have noted that calibrations done in controlled lab 

environments often do not span the full range of real-world conditions, limiting their generality (Kim et al., 2019; Li et al., 

2018; Mousavi & Wu, 2021). Different particle compositions also affect the magnitude of the sensor response (Crilley et al., 

2020; Zou et al., 2021). Therefore, in situ calibration is often recommended to capture local environmental effects to yield 

more robust calibration models, allowing necessary adjustments for factors like aerosol composition and meteorological 85 

conditions (Raysoni et al., 2023). Although the performance of these traditional methods may be suboptimal when sensor 

response relationships are highly non-linear or environment-specific, they are still widely used due to their transparency and 

ease of implementation.  

Recently, ML algorithms have been employed to improve calibration accuracy and capture complex sensor behaviours. ML 

calibration methods can simulate non-linear relationships and interactions that traditional linear methods might neglect 90 

(Villanueva et al., 2023). A range of ML approaches has been applied, including artificial neural networks (ANN), support 

vector regression (SVR), random forests (RF), gaussian process regression (GPR), and even semi-parametric models like 

generalized additive models (GAM) (Mahajan & Kumar, 2020). These data-driven models leverage not only raw readings 

from the sensor but often additional features (e.g., RH, temperature, timestamps) to learn the mapping to actual pollutant 

concentrations. Several studies have presented the effectiveness of ML-based calibration. Nowack et al. (2021) compared a 95 

regularized linear model (ridge regression) against non-linear models (random forest and GPR) for calibrating nitrogen dioxide 

(NO2) and particulate matter with a diameter less than 10 micrometres (PM10) sensors, finding that the machine learning 

approaches achieved high out-of-sample accuracy (frequently coefficient of determination R2>0.8) and outperformed 
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traditional multiple linear regression models (Nowack et al., 2021). Mahajan et al. (2019) observed that an SVR model 

provided better calibration performance for PM10 sensors than both linear regression and standard neural networks (Munir et 100 

al., 2019). Nonetheless, ML-based calibrations also present challenges. They typically require a substantial dataset of sensor 

as well as reference readings for training, and their predictions can be unreliable outside the range of training data. For instance, 

an ANN or RF may struggle to extrapolate to pollutant levels higher than it has been seen during calibration, whereas a 

Gaussian process regression model may handle extrapolation with less bias (Nowack et al., 2021). Additionally, the calibration 

model learned at one location may not generalize to a new location (i.e., site transferability issue) unless a wide variety of 105 

conditions are considered. Despite these limitations, ML-based calibration can significantly improve the performance of low-

cost sensors when carefully applied (Liu et al., 2019; Nowack et al., 2021; Villanueva et al., 2023; Zimmerman et al., 2018).  

While most field calibration studies to date have focused on outdoor deployments, where sensors are co-located with 

regulatory-grade monitors or used in ambient networks, a critical gap in the current literature is the calibration of low-cost 

sensors specifically for indoor environment.  110 

Indoor air, however, can differ markedly from outdoor air in composition and dynamics. Factors like indoor-generated particles 

(from cooking, smoking, etc.), confined space, and higher humidity or temperature fluctuations can all influence sensor 

readings. For example, cooking can release ultrafine particles and organic aerosols in short bursts, causing sharp concentration 

spikes. A study reported that indoor PM2.5 levels peaking near 488 µg m-3 during cooking in a home, far exceeding typical 

outdoor concentrations (Cowell et al., 2023). Tobacco smoke similarly produces dense particulate matter and complex 115 

chemicals in confined spaces. Also, indoor spaces often have limited ventilation, allowing pollutants to accumulate and 

humidity to fluctuate in ways not seen outdoors. These conditions test the limits of calibration models. A calibration model 

trained mostly on moderate outdoor pollution levels may not extrapolate well to the abrupt spikes or ultra-low concentrations 

encountered indoors (Koehler et al., 2023). Compounding the issue, gathering extensive indoor calibration datasets is difficult, 

reference-grade indoor measurements are rare because deploying instruments indoors at scale is resource-intensive. As a result, 120 

there is a paucity of calibration methods tailored to indoor use, and questions remain about how well the algorithms proven in 

ambient air translate to indoor settings. This gap is increasingly problematic as the adoption of indoor air quality sensors grows; 

without reliable calibration, the data from these sensors could mislead users or undermine trust in sensor-based monitoring. 

 

In this study, we aim to bridge the gap by introducing a replicable calibration approach for indoor air quality sensors using 125 

Automated Machine Learning (AutoML). AutoML is an emerging technology that automates the selection of machine learning 

algorithms and hyperparameters to build optimal models (LeDell & Poirier, 2020). Our objective is to develop a calibration 

framework that can be easily applied to low-cost sensor data in indoor environment to improve its accuracy and reliability. 

Unlike traditional calibration methods that might rely on fixed formulas or manually crafted ML models, an AutoML-based 

approach automates the selection and optimization of the calibration model. In our framework, sensor readings (e.g., raw PM2.5 130 

concentrations) are combined with environmental variables (mainly indoor temperature and RH), and an AutoML is employed 

to identify the best-performing calibration model through automated testing of many algorithms and hyperparameter settings. 



5 

 

By allowing the AutoML system to explore a wide range of potential models (from linear regressions to complex ensemble 

methods), we ensure that the final chosen model is well-suited to the characteristics of the indoor dataset, without requiring 

the user to have advanced machine learning expertise. The proposed approach is replicable in that it provides a general template 135 

that can be applied to other indoor sensor deployments, that is, researchers or practitioners can feed their co-location data into 

the same AutoML pipeline to obtain a custom calibration model for their specific environment. 

The remainder of this paper is structured as follows. Section 2 describes the experimental setup and calibration methodology, 

including indoor air quality sensors, reference instruments, data collection procedures, and the AutoML workflow employed 

to generate calibration models. Section 3 presents the calibration results and discusses the implications of the findings. Section 140 

4 summarizes the key findings. We also discuss limitations of our approach and provide recommendations for future research. 

2 Method 

2.1 Experimental Configurations 

A controlled laboratory experiment was conducted within a custom-built container designed to simulate realistic indoor air 

pollution conditions (Fig. 1(a)). The chamber was equipped with fans to ensure uniform pollutant distribution (Fig. 1(b)), 145 

which minimized spatial concentration variations, essential for maintaining stable and reproducible conditions during sensor 

evaluation. An aerosol spectrometer (i.e., Palas Fidas 200 (detectable particle size of 0.18-18 µg, ranges from 0 to 10,000 µg 

m-3 with 9.7% uncertainty for PM2.5 measurements)) was employed as the reference-grade instrument to provide high-precision 

baseline measurements for sensor performance evaluation and calibration. A total of 40 low-cost air quality sensors was 

deployed within the chamber, settled on a table at near the same height with Fidas 200 to minimize positional variability. Our 150 

air quality sensors consisted of two different types, including 20 units of AirGradient ONE (Model I-9PSL) and 20 units of 

AtmoCube. AirGradient ONE sensors measure PM2.5 using a Plantower PMS5003 laser-scattering sensor (detectable particle 

size of 0.3-10 µg, with ±10 µg m-3 at 0-100 µg m-3, ±10% at 100-500 µg m-3), and temperature and RH through a Sensirion 

SHT40 sensor. AtmoCube sensors detect particulate matter using a Sensirion SPS30 laser-scattering sensor (detectable particle 

size of 0.3-10 µg, with ±5 µg m-3 at 0-100 µg m-3, ±10% at 100-1000 µg m-3), temperature using a Sensirion STS35-DIS, and 155 

RH using a Sensirion SHTC3.  

To generate diverse and realistic indoor air pollution profiles, three indoor emission sources were introduced into the 

experimental container, including incense sticks, cigarette smoke from 7th to 21st Oct 2024, and cooking emissions (i.e., frying 

vegetables, bacon, and fries) from 22nd to 30th Oct 2024 (Fig. 1(b) and Fig. 1(c)). All AirGradient ONE and AtmoCube sensors 

and the Fidas 200 were exposed to the same emission sources simultaneously. Temperature and RH levels were allowed to 160 

exchange passively with the outdoor air with no mechanical ventilation or windows/door opening, mimicking indoor 

conditions where these parameters may fluctuate. Between each emission event, the container was ventilated until pollutant 

concentrations returned to background levels (mainly during the night), ensuring that there was no cross-contamination 
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between different test conditions, thus generating a reliable dataset for subsequent sensor performance evaluation and 

calibration. 165 

 

 

Figure 1: Overview of indoor air quality sensor calibration setup: (a) fully renovated half-size container, (b) emission sources and 

analytical instrumentation, and (c) schematic of pollutant generation and instrument placement. 

 170 

2.2 Automated Machine Learning 

We employed an AutoML framework to develop and select calibration models for the indoor air quality sensors. The AutoML 

approach generate a variety of (i.e., 30 in this study) candidate models and optimised their hyperparameters. Then the AutoML 
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algorithm would identify a model that best maps the sensor outputs to the reference concentrations. In our implementation, the 

input features to each model included the sensor’s raw readings, indoor temperature, and RH, while the target output was the 175 

PM concentration measured by Fidas 200.  

This study used H2O’s splitFrame with a fixed seed (1014) to allocate 80% of the rows to training and 20% to a held-out test 

set. During AutoML, we used k-fold cross-validation (5-fold) on the training portion for model selection (sorted by root mean 

square error (RMSE)). The held-out 20% test set was never used for training or tuning; we report both cross-validated training 

metrics and external test metrics (see Table S1). This choice ensured both train/test and cross-validation folds contained 180 

comparable concentration distributions while avoiding temporal leakage, as the experiment container was well-mixed and 

emission episodes were interleaved. 

Evaluation metrics were calculated for each candidate to guide the selection of the best model. We primarily used the RMSE, 

normalized root mean square error (NRMSE), mean absolute error (MAE), symmetric mean absolute percentage error 

(sMAPE), mean bias error (MBE), index of agreement (IOA), and R2 as the performance criteria. RMSE quantified the average 185 

magnitude of prediction errors in units matching the observed data, with lower values reflecting smaller deviations. We also 

use NRMSE to provide a dimensionless measure of error that allows model performance to be compared fairly across different 

concentrations.  MAE measured the average absolute difference between observed and predicted values, providing an 

interpretable measure of accuracy independent of error direction. We also calculated sMAPE because it expresses errors as a 

bounded percentage relative to both observed and predicted values, making performance more comparable across different 190 

concentration ranges and less sensitive to extreme values. MBE provides the average bias in the predictions, where positive or 

negative values indicated overestimation or underestimation, respectively. IOA indicates the overall level of agreement (from 

-1 to 1) between reference measurements and predicted values, with 1 denoting perfect agreement (ideal model performance), 

0 with no agreement (predictions no better than simply predicting the observed average), and -1 with complete disagreement 

or systematic inverse relationship (Willmott et al., 2011). R2 (values in [0, 1]) indicates the proportion of the variance in the 195 

reference measurements explained by the model, with values closer to 1 indicating a stronger linear association. The formulas 

are represented below: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑜𝑖 − 𝑝𝑖)

2𝑛
𝑖=1                     (1) 

NRMSE = 
√

1

𝑛
∑ (𝑜𝑖−𝑝𝑖)2𝑛

𝑖=1

𝑜̅
                                                                                                                                                              (2) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑜𝑖 − 𝑝𝑖|

𝑛
𝑖=1                                                                           (3) 200 

sMAPE = 
100

𝑛
∑

2|𝑜𝑖−𝑝𝑖|

|𝑜𝑖|+|𝑝𝑖|
𝑛
𝑖=1                                                                                                                                                              (4) 

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑜𝑖 − 𝑝𝑖)

𝑛
𝑖=1                      (5) 
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𝐼𝑂𝐴 = {
1 −

∑ |𝑝𝑖−𝑜𝑖|𝑛
𝑖=1

𝑐 ∑ |𝑜𝑖−𝑜̅|𝑛
𝑖=1

, 𝑤ℎ𝑒𝑛 ∑ |𝑝𝑖 − 𝑜𝑖|
𝑛
𝑖=1 ≤ 𝑐 ∑ |𝑜𝑖 − 𝑜̅|𝑛

𝑖=1

𝑐 ∑ |𝑜𝑖−𝑜̅|𝑛
𝑖=1

∑ |𝑝𝑖−𝑜𝑖|𝑛
𝑖=1

− 1, 𝑤ℎ𝑒𝑛 ∑ |𝑝𝑖 − 𝑜𝑖|
𝑛
𝑖=1 > 𝑐 ∑ |𝑜𝑖 − 𝑜̅|𝑛

𝑖=1   
              (6) 

𝑅2 = 1 −
∑ (𝑜𝑖−𝑝𝑖)2𝑛

𝑖=1

√∑ (𝑜𝑖−𝑜̅)2𝑛
𝑖=1

                   (7) 

here 𝑜𝑖 denotes the i-th value from the reference dataset, 𝑝𝑖 is the i-th predicted value from the calibration models, 𝑛 represents 205 

the total number of data points in the dataset, and 𝑜̅ is the arithmetic average of all reference measurements.  

After training the model, AutoML ranks candidates on its leaderboard by the RMSE obtained from k‑fold cross‑validation on 

the training set (Table S1). The highest‑ranked model (Leader Rank 1) is therefore the model with the smallest cross‑validated 

RMSE among all candidates. We adopt this criterion to (i) keep the 20% test set independent of model selection (avoiding 

optimistic bias), (ii) obtain a more stable, lower‑variance estimate by averaging errors across folds rather than relying on a 210 

single split, and (iii) prioritize a loss that penalizes large deviations, which is appropriate for PM2.5 calibration (RMSE in µg m-

3). After selection, all performance reported in the Results refers to the independent test set.  

2.3 Calibration Procedure 

To ensure reproducible calibration of the low-cost sensors against the Fidas 200, we first established a three-step protocol that 

accounts for variability among sensor units while maintaining consistency with reference measurements. The approach is 215 

designed to be scalable for large sensor networks in real-world indoor monitoring applications. The key steps include:  

(1) Field sensor-to-“Drift–reference sensor” calibration (f2d). A subset of five sensors from each sensor type 

(AtmoCube and AirGradient ONE) was randomly selected to serve as “drift–reference sensors”. These drift–reference 

sensors were used exclusively for calibration purposes and were not deployed for field indoor monitoring. The 

remaining sensors, referred to as “field sensors”, were intended for operational deployment. We employed AutoML 220 

to develop calibration models that map the field sensors’ raw readings to the corresponding averaged measurements 

of the drift–reference sensors at each time step:  

𝑑𝑗 ̂(𝑡) = ℱ𝑗
𝑓2𝑑

(𝑥𝑗(𝑡))                 (8) 

ℱ𝑗
𝑓2𝑑

= arg min
 𝑓∈ℱ

∑ [𝑓 (𝑥𝑗(𝑡)) − 𝑑̅(𝑡)]
2

𝑁
𝑡=1                (9) 

𝑥𝑗(𝑡) = [𝑠𝑗(𝑡), 𝑇𝑗(𝑡), 𝑅𝐻𝑗(𝑡)]
𝑇
              (10)225 

 𝑑̅(𝑡) = ∑ 𝑑𝑘(𝑡)𝐾
𝑘=1                (11) 

where 𝑑𝑗̂(𝑡) is calibrated PM concentration for field sensor 𝑗 (1, …, M) at a time index of calibration record 𝑡 (1, …, 

N); 𝑥𝑗(𝑡) represents raw sensor reading, temperature, and RH; 𝑑̅(𝑡) denotes mean of 𝐾(=5) drift–reference sensors; 

and ℱ𝑗
𝑓2𝑑

 represent best-performing model chosen for sensor 𝑗 (GBM in this study) from pool of AutoML candidate 
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models ℱ during this f2d process. Note that here 𝑇𝑗(𝑡) and 𝑅𝐻𝑗(𝑡) should be calibrated against averaged values of 230 

the drift–reference sensors using a simple univariate transfer function before being used as input features. 

(2) “Drift–reference sensor” to “Reference instrument” calibration (d2r). The averaged readings from drift–

reference sensors were calibrated against Fidas 200 following similar procedure above: 

𝑟̂(𝑡) = ℱ𝑑2𝑟(𝑧(𝑡))               (12) 

ℱ𝑑2𝑟 = arg min
 𝑓∈ℱ

∑ [𝑓(𝑧(𝑡)) − 𝑟(𝑡)]
2𝑁

𝑡=1              (13) 235 

𝑧(𝑡) = [𝑑̅(𝑡), 𝑇̅(𝑡), 𝑅𝐻̅̅ ̅̅ (𝑡)]
𝑇
              (14) 

here 𝑟̂(𝑡) represents calibrated PM concentration for drift–reference sensors; 𝑟(𝑡) is PM concentration measured by 

the reference instruments (Fidas 200); 𝑧(𝑡) represents a vector of 𝑑̅(𝑡), and calibrated 𝑇̅(𝑡) and 𝑅𝐻̅̅ ̅̅ (𝑡) (against 

Fidas 200); and  ℱ𝑑2𝑟 denotes best-performing model for the d2r calibration.  

Our exploratory analysis (Fig. S1) revealed a clear threshold at 50 µg m-3 where the sensor bias flips. We chose this 240 

value because the scatter plot of sensor versus reference measurements shows two distinct regimes relative to the 1:1 

line. At or below 50 µg m-3, the data cloud is tight and lies mostly above the 1:1 line, which indicates a positive sensor 

bias (overestimation) at low concentrations. Conversely, above 50 µg m-3 the cloud shifts below the 1:1 line, and the 

fitted trend becomes flatter than the 1:1 reference, a pattern consistent with signal compression and underestimation 

at higher particle loads. This split is further justified by the data distribution; most data lie below about 25 µg m-3, 245 

with only a small number of points between 25 and 100 µg m-3. A split at 50 µg m-3 produces two interpretable 

regimes that align with the observed change in bias, keeps the rare high-concentration events together, and avoids 

slicing the dense background data into very small groups, which would reduce model stability. Therefore, we applied 

a stratified calibration strategy, training separate AutoML models for the low (<50 µg m-3) and high (50–600 µg m-3) 

regimes in both the field‑to‑drift (f2d) and drift‑to‑reference (d2r) stages. This allows us to tailor the calibration to 250 

the specific bias profile of each regime and thereby minimises systematic error across the sensor’s full operating range.  

(3) Field sensor-to-“Reference instrument” calibration (f2r). For every time stamp 𝑡, the field sensor’s raw reading 

is first converted to a drift–reference proxy as in Step (1) f2d. That proxy, combined with calibrated temperature 

and RH (against Fidas 200), is then fed into the calibration models in Step (2) d2r to calculate concentrations 

directly comparable to the reference dataset: 255 

𝑟𝑗̃(𝑡) = ℋ𝑗 (𝑥𝑗(𝑡)) ≡ (ℱ𝑑2𝑟 ∘ ℱ𝑗
𝑓2𝑑

) (𝑥𝑗(𝑡))            (15) 

where 𝑟𝑗̃(𝑡) denotes final PM concentration of sensor 𝑗 aligned to Fidas 200; and ℋ𝑗 represents shorthand for the 

overall transfer function ℱ𝑑2𝑟 ∘ ℱ𝑗
𝑓2𝑑

.  

The sensor performance drift over long deployments, the calibration derived pre-deployment gradually becomes less reliable. 

After retrieval we therefore rebuild the f2d and d2r models with the post-deployment dataset, obtaining a second set of 260 



10 

 

predictions 𝑟𝑗 
’̃(𝑡). For any timestamp 𝑡 within the deployment period 0 ≤ 𝑡 ≤ 𝐷 (with 𝐷 the total duration), we fuse the two 

predictions with a simple linear weight that shifts emphasis from the pre- to the post-deployment model: 

𝑟𝑗 ∗ (𝑡) = (1 −
𝑡

𝐷
) × 𝑟𝑗̃(𝑡) +

𝑡

𝐷
× 𝑟𝑗 

’̃(𝑡)                 (16) 

thus, 𝑟𝑗 ∗ (𝑡) equals the pre-deployment estimate at the campaign start (𝑡 = 0), the post-deployment estimate at the end (𝑡 =

𝐷), and a smoothly blended value in between, providing a first order correction for drift.  265 

The overall calibration framework is shown schematically in Fig. 2.  

3 Results and Discussions 

3.1 Low-cost sensor raw readings 

Figure 3 compares the timeseries responses of the two sensor types, from AirGradient ONE and AtmoCube to indoor emission 

events. During the combustion episodes (cigarette smoking and incense-burning) that occurred between 12th and 22nd October 270 

2024, the AirGradient ONE sensors repeatedly recorded uncalibrated PM2.5 concentrations exceeding 500 µg m-3, and all units 

tracked those peaks almost identically, showing high intra-sensor coherence and a high sensitivity to combustion-derived 

particles. The AtmoCube sensors followed the same temporal pattern but with systematically lower maximum concentrations 

compared to the AirGradient ONE sensors, with peak readings between 400 and 500 µg m-3. Cooking activities generated far 

lower PM concentrations. Routine meal preparation produced brief excursions of ~30 µg m-3 on both sensor types, while a 275 

single spike of 80 µg m-3 on 30th October consistent with braise and fry high-fat foods that known to generate abundant aerosols 

(Xu et al., 2024). Therefore, although both AirGradient ONE and AtmoCube sensors correctly identified the timing of each 

emission episode, AirGradient ONE consistently reported higher absolute concentrations, particularly for the most intense 

combustion plumes than those of AtmoCube sensors. 
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 280 

Figure 2: Flowchart of the indoor air quality sensor calibration strategy. The flowchart used a fixed colour scheme to 

distinguish the two stages of the workflow. Blue arrows and lines represent the main training and prediction path that spans 

Processes 1–3. The brown arrows and lines represent the post-deployment recalibration path, which is executed after sensor 

retrieval to correct drift using the post-deployment dataset. The resulting predictions are passed through Process 3 to obtain 

calibrated readings mapped to the reference instrument. 285 

 

The inter-type relationship is summarised in Fig. S2, showing the averaged drift-reference PM2.5 measurements from 

AirGradient ONE and AtmoCube. At concentrations below 50 µg m-3 (hereafter denotes as “below-50”) (Fig. S2(a)), 

AirGradient ONE readings lay predominately above the 1:1 reference line, showing a positive bias relative to AtmoCube 

sensors. Once concentrations exceeded ~50 µg m-3 (denotes as “above-50”) (Fig. S2(b)), this coherence vanished and the 290 

paired data became more scattered, indicating that the two sensor types diverge progressively with increasing particle load. 
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Calibration that reconciles these type- (brand) specific sensitivities is therefore essential for any application that requires 

accurate absolute PM2.5 values. 

 

Sensor-measured environmental parameters exhibited similar systematic offsets (Fig. S3 for temperature and Fig. S4 for RH). 295 

Throughout the calibration, AirGradient ONE temperatures were 1.2–1.8°C higher than those from AtmoCube (Fig. S3(a) and 

S3(b)), where paired data cluster above the identity line (slope=1.01, R2=0.94). AirGradient ONE measured 4–7 % lower than 

AtmoCube sensors for RH maxima, whereas at minima AirGradient ONE read 3–5 % higher, as in Fig. S4(a) and S4(b). Intra-

type variability reached ~2°C for AirGradient ONE sensors but was ≤1.5°C for AtmoCube sensors, and both types recorded 

the same diurnal trend (Fig. S3(c) and S3(d)). RH measurements ranged from 47% to 89% (Fig. S4(c) for AirGradient ONE 300 

and 4(d) for AtmoCube). AirGradient ONE sensors exhibited tighter clustering (intra-type variability ≤5%) than AtmoCube 

(≤10%), but they showed a systematic pattern.  
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Figure 3: Timeseries of (a) PM2.5 from AirGradient ONE sensors, (b) PM2.5 from AtmoCube sensors, and (c) Averaged 305 

concentration from drift-reference sensors.  
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3.2 Raw readings from drift–reference sensors vs. Fidas 200 measurements 

Figures 4(a) and 4(c) shows scatter plots of raw and calibrated averaged PM2.5 concentrations from AirGradient ONE and 

AtmoCube drift-reference sensors against the Fidas 200 measurements in the below-50 regime, representative of relatively 

low air pollution. Before calibration, both AirGradient ONE and AtmoCube sensors exhibited moderate linear correlations 310 

with the Fidas 200, with R2 values of 0.65 for the AirGradient ONE and 0.57 for the AtmoCube, respectively (Table 1). 

Although both sensor types clustered close to the 1:1 reference line, their slopes reveal systematic biases. AirGradient ONE 

readings lay predominately above the line with a regression slope of 1.57, producing an average 20% overestimation relative 

to the Fidas 200, while AtmoCube readings fell below with a slope of 0.64, corresponding to a 55.6% underestimation. 

Extending the analysis to the above-50 regime (Figs. 4(b) and 4(d)) highlights further divergence. Here, AirGradient ONE 315 

sensors had a stronger correlation with the reference (R2=0.78), but its slope decreased to 0.82, reflecting a slight 3.1% 

underestimation during high pollution episodes. In contrast, AtmoCube sensors had a lower slope of 0.50 and an R2 of 0.64, 

showing a substantial 38.8% underestimation. Therefore, both types of sensor experience signal compression at higher particle 

loads, yet the magnitude of this non-linearity is sensor specific. 

RH can significantly influence the measurement accuracy of particles from indoor air quality sensors (Fig. S5). For 320 

AirGradient ONE (Fig. S5(a) and S5(b)), PM2.5 readings above the 1:1 reference line at low concentrations consistently 

associated with periods of high RH, implying that hygroscopic growth of particles at high humidity is a primary driver of 

AirGradient ONE’s low end overestimation (Liang, 2021). Conversely, AtmoCube showed no systematic RH pattern 

(Fig. S5(c) and S5(d)); its scatter remained broadly uniform across the humidity spectrum, indicating lower RH sensitivity. 

This disparity may reflect differences in internal RH-compensation algorithms implemented by each manufacturer. 325 

Table 1: Statistical performance of raw and calibrated AirGradient ONE and AtmoCube drift–reference sensors relative to the 

Fidas 200 measurements for PM2.5, stratified by concentration regime (below-50, above-50) and for the combined dataset.  

Sensor Subset Stage 
n (sample 

size) 
R2 

RMSE 

(NRMSE) 

MAE 

(sMAPE) 
MBE IOA 

AirGradient 

ONE 

Below 50 µg m-3 
Raw 483 0.65 6.4 (98.5) 3.7 (46.1) 1.8 0.49 

Calibrated 483 0.69 3.8 (32.6) 1.5 (22.8) -0.1 0.80 

Above 50 µg m-3 
Raw 64 0.78 91.3 (32.5) 69.6 (36.5) -40.9 0.80 

Calibrated 64 0.92 59 (23.9) 44.6 (31.6) -4.4 0.87 

All concentration range 
Raw 547 0.95 31.8 (82.3) 11.4 (44.9) -3.2 0.90 

Calibrated 547 0.97 20.5 (59.6) 6.5 (23.8) -0.6 0.94 

AtmoCube 

Below 50 µg m-3 
Raw 499 0.57 

12.4 

(140.3) 
5.1 (82.2) -4.89 0.63 

Calibrated 499 0.80 7.4 (122) 2.8 (80.8) -0.27 0.79 

Above 50 µg m-3 Raw 48 0.64 
182.7 

(52.5) 

160.5 

(62.6) 
-150.8 0.48 
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Calibrated 48 0.76 91.1 (23.3) 72.3 (25.5) -27.7 0.76 

All concentration range 
Raw 547 0.90 55.4 (143) 18.7 (80.4) -17.7 0.84 

Calibrated 547 0.94 27.9 (67.7) 8.9 (75.9) -2.68 0.92 

 

3.3 Calibrated readings from drift-reference sensor vs. Fidas 200 measurements 

In the below-50 regime, calibrated AirGradient ONE drift-reference readings show slight stronger correlation with Fidas 200 330 

measurements (R2=0.69) compared to their raw values (Fig. 4(a)), and errors are relatively small and have been improved 

(NRMSE=32.6%, sMAPE=22.8%) as shown in Table 1. The residuals present negligible systematic bias (MBE=-0.1 µg m-3), 

indicating great improvements from systematic overestimation under low PM2.5 concentration before calibration. After 

calibration, the sensor performance meets the recommended criteria of R2 ≥ 0.70 and RMSE ≤ 7 µg m-3 (Zamora et al., 2022). 

At above-50 concentrations (Fig. 4(b)), the improvement in the performance of calibrated AirGradient ONE sensors was even 335 

more significant, with R2 and IOA achieving about 0.92 and 0.87, respectively. The errors also have been improved (NRMSE 

= 23.9%, sMAPE = 31.6%) as expected and remain proportionally reasonable (e.g., ~10% uncertainty at 600 µg m-3). A slight 

negative bias (MBE = -4.4 µg m-3) indicating a small underestimation tendency at extreme high concentrations, but high IOA 

value (0.87) show accurate tracking of both timing and magnitude. 

Figure S6 show the impact of RH on calibrated readings of AirGradient ONE sensors for the below-50 (Fig. S6(a)) and the 340 

above-50 (Fig. S6(b)) concentration regimes, respectively. Across both concentration ranges the residuals show no systematic 

humidity bias, indicating that the AutoML model (using RH and temperature as covariates) mitigated hygroscopic growth 

influences that typically inflate optical counts above 70–80% RH (Ko et al., 2024). The small scatter evident at extreme high 

RH levels likely reflects limited training data but does not compromise agreement with the reference, corroborating reports 

that RH-aware calibration can suppress sensor error by around 20% (Liang, 2021). 345 

Calibration likewise improved AtmoCube agreement with the Fidas 200 across the full concentration range (Figs. 4(c) 

and 4(d)). Overall AtmoCube sensors achieved R2=0.94 and IOA=0.92 (Table 1). In the below-50 clean air conditions, the 

calibrated AtmoCube sensors have R2=0.80, and such slightly lower correlation relative to those of high pollution levels is 

expected as sensor signals approach the noise floor at very low pollution levels (Johnson et al., 2018). RMSE (7.4 µg m-3) and 

MAE (2.8 µg m-3) are relatively small, and the mean bias is negligible, indicating that the calibration mitigates the pronounced 350 

low-end under-reading observed pre-calibration. At high PM2.5 levels, calibrated AtmoCube sensors still show good agreement 

with Fidas 200 as data points distribute along the 1:1 line but with slightly reduced R2 (0.76). A possible explanation is that at 

very high particle loading the sensor’s optical detector response starts to become non-linear or approaches a saturation point 

(Kelly et al., 2017), introducing larger random errors. The residual bias is minor (MBE=27.7 µg m-3), indicating a small over-

read under very high pollution. Figure S6(c–d) shows that, after calibration, AtmoCube residuals remain almost flat across the 355 

full RH ranges in both low and high concentration regimes. Even during episodes exceeding 80 % RH, no coherent over- or 

under-reading trend was found, indicating that the calibration has effectively reduced humidity interference. 
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Figure 4: Raw and calibrated PM2.5 of drift-reference sensors compared with the Fidas 200 measurements, (a) AirGradient 

ONE sensors within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (c) AtmoCube sensors within 360 

below-50 regime; (d) AtmoCube sensors within above-50 regime. 

3.4 Calibrated readings from field sensors vs. Fidas 200 measurements 

The multi-stage calibration strategy effectively improved the performance of field sensors against the reference-grade 

instrument Fidas 200 (Fig. 5 and Table 2). Within the below-50 regime, AirGradient ONE sensors showed a RMSE of 4 µg m-

3 and MAE of 1.70 µg m-3, and their correlation R2 increased from 0.45 to 0.64. By contrast, AtmoCube sensors achieved a 365 

stronger linear match (R2=0.80) despite relatively higher residual scatter (RMSE=7.5 µg m-3) (Fig. 5(c)), consistent with their 

finer baseline sensitivity to subtle particulate variations. Performance at above-50 concentration regime indicated that both 

types of indoor air quality sensor synchronised well with the timing of pollution events while their error signatures differed. 

AirGradient ONE sensors showed moderate overestimation (MBE=3.9 µg m-3, RMSE=67.1 µg m-3, NRMSE=23.9%), while 
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AtmoCube sensors displayed higher systematic bias (MBE=28.6 µg m-3) and higher variability (RMSE=91.5 µg m-3, 370 

NRMSE=24.5%). These differences may arise from different sensor components, for example, AtmoCube units employed 

shorter optical path length and proprietary firmware averaging while AirGradient ONE sensors used longer path and raw count 

reporting of the Plantower PMS5003. Importantly, our calibration strategy reconciled hardware-driven disparities between 

sensor types. Both types of sensors agreed well with Fidas 200 measurements after calibration, with IOA increasing from 0.90 

to 0.94 for AirGradient ONE and from 0.84 to 0.92 for AtmoCube sensors.  375 

To evaluate the multi-step calibration strategy itself rather than the choice of models, we compared AutoML models with 

multivariate regressions (Fig. S7). Figure S7and Figures S8 show that AutoML models produced better performance statistics, 

showing enhanced predictive accuracy and reliability, particularly when evaluating error distribution across different PM2.5 

concentration regimes. Such improvements could be due to the ability of AutoML to incorporate interaction terms (RH, 

temperature) that influence the sensor light-scattering response (Liang, 2021). However, there is only one exception for 380 

AtmoCube sensors in the over 100 µg m-3, in which the linear model has a smaller sMAPE. This is might due to the limited 

amount of data in the high concentration range. 
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Figure 5: Raw and calibrated PM2.5 of field sensors compared with the Fidas 200 measurements, (a) AirGradient ONE sensors 385 

within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (c) AtmoCube sensors within below-50 regime; 

(d) AtmoCube sensors within above-50 regime. 

 

 

 390 

 

 

 

 

 395 
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Table 2: Statistical performance of raw and calibrated AirGradient ONE and AtmoCube field sensors relative to the Fidas 200 

measurements for PM2.5, stratified by concentration regime (below-50, above-50) and for the combined dataset. 

Sensor Subset Stage n R2 
RMSE 

(NRMSE) 

MAE 

(sMAPE) 
MBE IOA 

AirGradient 

ONE 

Below 50 µg m-3 
Raw 483 0.45 7.3 (102) 4.3 (44.6) 2.02 0.41 

Calibrated 483 0.64 4 (60.9) 1.7 (26.9) 0.1 0.77 

Above 50 µg m-3 
Raw 64 0.86 83.1 (33.8) 62.2 (37.9) -42.5 0.82 

Calibrated 64 0.89 67.1 (23.9) 48.7 (29.1) 3.9 0.86 

All range 
Raw 547 0.94 29.2 (85.6) 11 (43.8) -3.19 0.90 

Calibrated 547 0.96 23.3 (60.2) 7.2 (27.1) 0.5 0.94 

AtmoCube 

Below 50 µg m-3 
Raw 499 0.75 

12.4 

(141.6) 
4.9 (77.4) -17.8 0.64 

Calibrated 499 0.80 7.5 (82.1) 3.6 (22.7) -0.15 0.77 

Above 50 µg m-3 
Raw 48 0.69 

180.3 

(53.5) 

158.2 

(64.1) 
-152 0.48 

Calibrated 48 0.76 91.5 (24.5) 72.6 (26.7) -28.6 0.74 

All concentration range 
Raw 547 0.88 54.7 (146) 18.3 (76.2) -17.8 0.84 

Calibrated 547 0.94 28.1 (67.9) 9.6 (23.1) -2.65 0.92 

 

3.5 Limitations and implications 

Our framework significantly improved the low-cost sensors performance under different concentrations. But there are still 400 

some limitations, and further research is needed on the generalizability of the model and calibration strategies. First, the training 

data were collected in a single experimental container under temperate-climate humidity (with RH between 45–85%) and may 

not capture sensor behaviour in very moist interiors. Second, the present study did not capture every indoor emission source, 

particularly those with moderate emission levels. We do not know whether the sensors will be sensitive to particle types (e.g., 

particles from different sources). Third, evaluating sensor drift demands the months-to-years timescales of real deployments 405 

and was not evaluated. Future work should gather data from warmer, high-humidity homes to capture sensor behaviour at 

elevated RH conditions, consider additional moderate emission sources such as off-gassing materials, and run multi-year field 

trials to quantify drift and test automated recalibration. These steps will increase the robustness and evaluate long-term 

accuracy of the calibration strategy. However, the thresholds delineating “low” and “high” categories are derived from 

empirical observations within the analysed dataset. Accordingly, researchers are encouraged to initially assess their own data 410 

and adapt this strategy as necessary to ensure its applicability. 

The implications of our findings are significant for atmospheric science and indoor air quality management, especially in the 

context of the growing use of low-cost sensors for exposure assessment and public health applications. By showing that 

inexpensive sensors can be calibrated to yield high-quality data indoors, this study helps bridge the important gap between 

indoor and outdoor air pollution monitoring. Furthermore, the application of AutoML in sensor calibration showcases the value 415 



20 

 

of advanced data-driven techniques in atmospheric measurements. AutoML could be used to periodically re-calibrate hundreds 

of sensors automatically as new reference data become available, maintaining network accuracy with minimal human 

intervention. This is particularly relevant for community science projects or indoor air quality campaigns where resources for 

manual calibration are limited. By improving the reliability of indoor air measurements, the study contributes to a future where 

continuous indoor air quality monitoring is feasible on a large scale, driving better-informed strategies to safeguard public 420 

health in the spaces where people live and work. 

The regime thresholds used in this study were derived empirically from our indoor dataset and should not be assumed for other 

indoor cases, outdoors, or for other pollutants. Users should re-estimate cut points from their own co-located data and retrain 

the staged models with environment appropriate features.  

4 Summary 425 

In this work, we introduced an automated machine learning (AutoML) calibration framework for enhancing the performance 

of low-cost indoor air quality sensors. The AutoML-calibrated sensors met or exceeded study objectives by significantly 

improving measurement accuracy for fine particles (PM2.5) across all concentration regimes. The multi-stage calibration 

workflow achieved tight agreement with reference measurements (from Fidas 200), evidenced by substantial increases in 

coefficient of determination (R2) and reductions in error metrics. In the low-concentration regime (below 50 µg m-3), R2 430 

improved from moderate values (~0.6 pre-calibration) to approximately 0.85 post-calibration, with root-mean-square error 

(RMSE) dropping by roughly half (e.g., from ~5 to ~3 µg m-3), as well as the NRMSE. At higher concentrations (above 50 

µg m-3), gains were even more pronounced, with R2 approaching or exceeding 0.90 (near reference-grade performance) and 

RMSE falling from tens of µg m-3 to single digits. Similarly, mean absolute error (MAE) and symmetric mean absolute 

percentage error (sMAPE) declined markedly, and mean bias error (MBE) was effectively eliminated, shifting from 435 

significant systematic biases (e.g., 5–10 µg m-3 over- or underestimation) to nearly zero. These results show that the 

calibrated sensors reliably resolve indoor particulate levels at background concentrations and during elevated pollution 

events, closely tracking the reference instrument across the full range. These findings confirm that our multistage calibration 

effectively eliminated sensor bias under varied indoor conditions and emission sources. The initial stage corrected baseline 

drift. Subsequent stages used AutoML to address scatter caused by relative humidity and nonlinear responses at high particle 440 

concentrations. These factors are often overlooked in simpler methods. AutoML efficiently selected the best models for each 

phase, removed the need for manual tuning, and revealed subtle patterns in the data. By integrating AutoML into a structured 

multistage process, we achieved robust bias correction across scenarios, yielding accurate, precise measurements well-suited 

for indoor air quality monitoring. 

 445 
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