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Response to reviewers
Title: “Enhancing Accuracy of Indoor Air Quality Sensors via Automated Machine Learning Calibration”

General Response: We would like to thank the editor and reviewers for the positive feedbacks and constructive comments.

Below, we’ve provided a point-by-point response to all comments to clarify revisions and improvements in the manuscript.
Reviewer #1:

Comment 1. Ln 171: As far as I understand, there are eight regression algorithms. Better to mention the exact

number of algorithms you used instead of ‘multiple’.
Response:

We thank the reviewer. We have revised the Methods to report the exact algorithms used and to clarify wording.

Specifically, we now state that AutoML evaluated 30 machine learning algorithms (Table S1).
Revised sentences:

We employed an AutoML framework to develop and select calibration models for the indoor air quality sensors. The
AutoML approach generate a variety of (i.e., 30 in this study) candidate models and optimised their hyperparameters. Then
the AutoML algorithm would identify a model that best maps the sensor outputs to the reference concentrations by ranking
the cross-validation root mean squared error (RMSE). In our implementation, the input features to each model included the
sensor’s raw readings, indoor temperature, and RH, while the target output was the PM concentration measured by Fidas

200.

Comment 2. Ln 175: How did you allocate the 80% and 20% dataset? Randomly, chronologically, or other methods?

Did you also use cross validation in the step?
Response:

Data splitting was random following previous studies. Within each concentration regime (<50 and =50 pg m™), we used
H20's splitFrame with a fixed seed (1014) to allocate 80% of the rows to training and 20% to a held-out test set. During
AutoML, we used k-fold cross-validation (5-fold) on the training portion for model selection (sorted by RMSE). The held-out
20% test set was never used for training or tuning; we report both cross-validated training metrics and external test

metrics (see Table S1). This choice ensured both train/test and cross-validation folds contained comparable concentration
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distributions while avoiding temporal leakage, as the experiment container was well-mixed and emission episodes were

interleaved.
We revised the manuscript by adding the above paragraph to reflect these points.

Comment 3. Ln 223: From Figure S1, I can’t really see a clear threshold of 50 pg m>. To me, it looks more like 25 png

m? is the threshold. It’s ok to use 50 pg m=, but it’s better to show more clearly why it is chosen.
Response:

Thank you for the helpful observation. We chose 50 pg m=3 because the scatter shows two regimes relative to the 1:1 line.
At or below 50 pg m™ the point cloud is tight and lies mostly above the 1:1 line. This indicates a positive sensor bias at low
concentrations. Above 50 pg m™ the points shift below the 1:1 line and the fitted trend is flatter than the 1:1 reference.
This is consistent with signal compression at higher particle loads. The observations are not evenly distributed. Most data
lie below about 25 pg m™ and only a small number of points fall between 25 and 100 pg m™3. A split at 50 pg m™ therefore
separates the two behaviours cleanly and avoids further fragmenting ranges that are already sparse. We have clarified this

in the manuscript so that the rationale for the chosen split is explicit.
Revised sentences:

Our exploratory analysis (Fig. S1) revealed a clear threshold at 50 ug m where the sensor bias flips. We chose this value
because the scatter plot of sensor versus reference measurements shows two distinct regimes relative to the 1:1 line. At or
below 50 ug m, the data cloud is tight and lies mostly above the 1:1 line, which indicates a positive sensor bias
(overestimation) at low concentrations. Conversely, above 50 ug m the cloud shifts below the 1:1 line, and the fitted trend
becomes flatter than the 1:1 reference, a pattern consistent with signal compression and underestimation at higher particle
loads. This split is further justified by the data distribution; most data lie below about 25 ug m3, with only a small number of
points between 25 and 100 ug m. A split at 50 ug m produces two interpretable regimes that align with the observed
change in bias, keeps the rare high-concentration events together, and avoids slicing the dense background data into very
small groups, which would reduce model stability. Therefore, we applied a stratified calibration strategy, training separate
AutoML models for the low (<50 ug m3) and high (50-600 ug m3) regimes in both the field-to-drift (f2d) and
drift-to-reference (d2r) stages. This allows us to tailor the calibration to the specific bias profile of each regime and thereby

minimises systematic error across the sensor’s full operating range.
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Comment 4. Figure 2: It is a good flow chart, but the arrows with different colors are a bit confusing. What do brown

and blue arrows represent respectively?

Thank you for raising this point. We agree that the color encoding should have been explicitly defined in the manuscript.
We have added clear explanations in Figure 2 caption and in the caption so that the meaning of each arrow is

unambiguous.

The blue arrows represent the primary data flow used to train and apply the AutoML calibration models across Processes 1
to 3. This path links the field sensors, the drift-reference sensors, and the reference instrument during both training and
prediction, and it yields calibrated field-sensor readings relative to the reference instrument. The brown dashed arrow
represents the post-deployment recalibration path. After the field sensors are retrieved from the observation, we rebuild
the field-to-drift and drift-to-reference models using the post-deployment dataset to correct for sensor drift and then
route the updated predictions through Process 3 to obtain post-deployment calibrated readings referenced to the same
instrument. The color scheme therefore distinguishes workflow timing rather than sensor type or data source, with blue
indicating the main training and prediction workflow and brown dashed indicating the optional recalibration that is

activated after deployment.

To make this explicit without modifying the flowchart, we inserted the following text in Figure 2 caption: “We use a fixed
color scheme to distinguish the two stages of the workflow. Blue arrows and lines represent the main training and
prediction path that spans Processes 1-3. The brown arrows and lines represent the post-deployment recalibration path,
which is executed after sensor retrieval to correct drift using the post-deployment dataset. The resulting predictions are

passed through Process 3 to obtain calibrated readings mapped to the reference instrument.”
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Comment 5. Figure 3 a/b: Are these two subplots 3-dimensional? I see that all the lines for timeseries are not really
aligned vertically. It can be misleading as they can mean that they are not in the same timestamp. I understand that
in this way you can illustrate the difference between lines more clearly, but at least you need to draw a z-axis to show

that there is a third dimension.
Response:

Thank you for flagging this. In the revision we converted panels 3a and 3b into explicit 3D time series plots by adding and
labelling a z axis. The x axis shows time, the y axis shows PM,s concentration in ug m=3, and the z axis indexes the sensors
with tick labels corresponding to sensor numbers. All series share the same time coordinate, so timestamps are aligned
vertically, and the apparent separation is now clearly along the sensor dimension rather than time. These clarifications
improve readability and remove the possibility of misinterpretation, while leaving the analysis and conclusions unchanged.
Please see the revised figure below.
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Comment 6. Table 1: The problem with using 50 pg m= as threshold might be that the subset of ‘above 50 pg m’ has

-39

too few data points compared to the ‘below 50 pg m~’. Have you considered using another value as a threshold

(similar to question 2)?

Response:

We recoghize that there are fewer data points above 50 pg m=. We chose 50 pg m™ as the threshold because there is a
clear, empirically observed transition between two distinct response regimes of the sensors in comparison with the
reference instruments. As shown in our exploratory plots, data at or below this value forms a tight cluster predominantly
above the 1:1 line, indicating a consistent low-end positive bias. In contrast, above 50 pg m=3, the data points rotate below
the 1:1 line and the slope flattens. Choosing the threshold at this transition point allows us to model a real change in the

sensor’s behavior, a rationale we now explicitly state in the Methods.

For data above-50 ug m3, although relatively small, it is sufficiently informative to train a stable model. The performance of
the calibrated models validates this approach, as they retain strong agreement with the reference instrument. In this high-
concentration regime, AirGradient achieved an R?=0.92 and 10A=0.87, while AtmoCube achieved an R?=0.76 with minor
residual bias. The fit is neither noisy nor over-tuned. Further evidence comes from independent train-test statistics, which
show that the models generalize well, achieving a test R? of 0.78-0.79 and confirming that the sample is large enough to

learn a robust mapping specific to that regime.

We indeed considered adjusting the threshold, but the highly skewed nature of the data distribution makes alternatives
ineffective. Most observations fall below 25 pg m3, with very few events between 25 and 100 ug m3. Lowering the
threshold would contaminate the high-range model with low-bias data points, blurring the very change in slope we aim to
capture. Conversely, raising the threshold would further diminish the already scarce high-range data. Therefore, keeping

the threshold at the empirically observed change point preserves interpretability and reduces model misspecification.
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Comment 7. Ln 176-195, Figure S7, and several instances in the paper: You separated two model subsets ‘below 50

-39 -3s

and ‘above 50 ng m~’. When you compared the results using MAE and RMSE, it’s not easy to tell which one

pg m
has a worse MAE as you have the two subsets with different reference values. It’s the most obvious on Figure S7 that
you tried to compare the errors in different concentration ranges using MAE. This comparison may not be the most
appropriate as a smaller concentration apparently has a smaller MAE. What matters in this case is the error
percentage. I suggest authors using mean absolute percentage error (MAPE) instead of MAE when comparing the

two subsets. For RMSE, there is also an alternative NRMSE.
Response:

Thank you for this helpful suggestion, which we have implemented in the revised manuscript. In addition to RMSE and MAE,
we now report normalized RMSE (NRMSE) and symmetric mean absolute percentage error (SMAPE) for each concentration
regime. NRMSE is defined as RMSE divided by the mean Fidas 200 concentration in the corresponding subset and expressed
as a percentage, while sMAPE provides a symmetric percentage error that is more stable at very low concentrations than
conventional MAPE. Figure S7 and the accompanying text (Lines 176—-195) have been updated so that comparisons between
the below 50 pg m and above 50 pg m regimes are based on NRMSE and sMAPE rather than MAE alone. This makes the
relative error behavior across the two concentration ranges clearer and directly addresses the reviewer’s concern about

concentration-dependent absolute errors.

We retain RMSE and MAE to facilitate comparison with guideline values, manufacturer specifications, and previous
calibration studies, which almost always report absolute error metrics, and because they summarize complementary aspects
of model performance (MAE reflecting the typical deviation and RMSE being more sensitive to occasional large errors). In
the revision, NRMSE and sMAPE are therefore used to compare relative performance across concentration regimes, while

MAE and RMSE are reported alongside to document the absolute magnitude and structure of the residuals.

Comment 8. Table S1: What are the criteria of ranking the eight regression algorithms? For the best algorithm? For
model subset of low conc., the one listed as rank 1 has a higher RMSE/MAE and lower R2 compared to the one listed
as rank 2. For high conc., the one ranked as Sth has a better MAE/RMSE/R2 results than the one ranked top. Are
you using some other criteria for the ranking? Please list them in the table as well. Also, please clarify what criteria

you used in the main text as well.
Response:

We recognize the need to be clear with the criteria. In the original Table S1, “Rank 1” referred to the H20 AutoML

leaderboard order, which we configured to sort by cross-validated RMSE computed on the training set (k-fold
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cross-validation). In k-fold cross-validation, the training set is split into k parts; each model is trained on k-1 parts and
evaluated on the remaining part, and the errors are averaged. RMSE (ug m3) penalizes large errors more than small ones,

which is important for PM,.s where high concentrations matter.

In the same table, we also reported performance on an independent 20% test set that AutoML did not use for training or
ranking. Because the leaderboard metric (cross-validated RMSE) and the external test metric (single-split RMSE on the test
set) are computed on different data with different protocols, it is expected that the model at Leader Rank 1 may not have
the lowest error on that test set. This is especially plausible in the high-concentration subset, where there are fewer data

points and variance is higher, and when comparing metrics with different sensitivities (e.g., RMSE vs. MAE vs. R?).

To remove ambiguity, we revised Table S1 to report two ranks for each subset. Leader Rank is the AutoML order by
cross-validated RMSE on the training set and is our model-selection criterion. We use Leader Rank because (i) it preserves
the independence of the 20% test set by not using it to choose the winner, avoiding optimistic bias; (ii) averaging errors
across folds provides a more stable, lower-variance estimate than a single split; and (iii) RMSE penalizes large deviations,
aligning with the scientific and regulatory importance of limiting large PM, s errors. Alongside this, External Test Rank
orders models by RMSE on the independent 20% test set and is included for transparency. In the Methods we now state
explicitly that selection follows the leaderboard metric, whereas all performance reported in the Results refers to the test

set (with splits created using a fixed random seed for reproducibility).

For transparency we also describe each column exactly as it appears in the revised Table S1. “Model_Subset” identifies
whether the model belongs to the low concentration subset below 50 pg m= or the high concentration subset at or above
50 ug m3. “Model_ID” is the H20 identifier that allows exact reproduction. “Algorithm” is the model family returned on
retrieval. “Test_RMSE”, “Test_ MAE”, and “Test_R2” report performance on the independent 20% hold-out set, with RMSE
and MAE in ug m and R? dimensionless. “Train_RMSE”, “Train_MAE”, and “Train_R2” are training-frame summaries
shown for context. All columns prefixed with “LB_" are copied directly from the AutoML leaderboard with extra columns
enabled and therefore reflect the cross-validation view used to form the leaderboard. In this file they include “LB_rmse”,
“LB_mae”, “LB_mean_residual_deviance”, and “LB_ Rank”, where “LB_Rank” is the raw leaderboard order that determines

the top model for each subset.



185

190

195

200

205

Comment 9. Could this framework also be used outdoors for ambient air concentration? Can this framework also

work for aerosols of larger size and gas pollutants?
Response:

Thank you for raising the question of generalizability. The framework is model agnostic and can be transferred to outdoor
settings. In practice, the same three stage structure field to drift reference, drift reference to reference instrument, and the
composite field to reference transfer can be implemented outdoors by collocating a subset of sensors with a regulatory or
research-grade outdoor reference sensor and by using outdoor meteorology as covariates such as ambient temperature,
relative humidity, and wind driven dispersion proxies. The concentration regime split is not fixed and should be learned
from the outdoor dataset using the same data driven rationale that we applied indoors. However, if there is no clear
difference in the trend in different concentration range, one ML model may be sufficient. The manuscript now states that

regime boundaries are empirical and should be re-estimated for a new application, e.g., outdoors.

Yes, the workflow should also apply to other particulate matters such as PM;, PM4, and PMy as well as if a time aligned

reference for the target parameter is available.

Technical comments:

Ln 251: No need to use hyphens for 400-to-500 pg m-3

Ln 261: If you have used 50 pg m-3 as a threshold, then there is no need to use the symbol ‘~’.
Ln 311: What is ~10? It’s very confusing what you referred to without a unit.

Response:

Thank you for these careful technical comments. We have revised the text accordingly. At line 251, “between 400-to-500
ug m3” has been corrected to “between 400 and 500 pug m=”. At line 261, we removed the tilde so that 50 ug m is now
written without the approximation symbol, consistent with its use as a threshold. At line 311, we clarified that “~10” refers

to an approximate 10% relative error at 600 pug m and now state the unit explicitly in the sentence.
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Reviewer #2:

Comment 1. Line 146-152: Here, the authors describe which two types of low-cost sensors were used and against
which reference instrument they were compared. I am wondering whether the low-cost sensors have a similar
detectable particle size range as the Palas Fidas 200. It could add an additional layer of clarity to mention the particle

size range for the reference instrument and - if available - also for the low-cost sensors.
Response:
Thank you for this suggestion.

We do agree. Yes, the detectable particle size range is similar. We have revised the manuscript to include the
manufacturer-specified particle size ranges for all instruments. The reference instrument, the Palas Fidas 200, has a
certified detection range of 0.18-18 pum. The low-cost sensors, the Plantower PMS5003 and the Sensirion SPS30, both have

a specified particle size detection range of 0.3—10 pum.

While addressing this comment, we also took the opportunity to include the manufacturer-specified measurement

uncertainties for all instruments to further enhance the technical comparison. The revised text now reflects both points.

Revised sentences:

An aerosol spectrometer (i.e., Palas Fidas 200 (detectable particle size of 0.18-18 ug, ranges from 0 to 10,000 ug m with
9.7% uncertainty for PM, s measurements)) was used as the reference-grade instrument for sensor performance evaluation
and calibration. A total of 40 low-cost air quality sensors was deployed within the chamber, settled on a table at near the
same height with Fidas 200 to minimize positional variability. Our air quality sensors consisted of two different types,
including 20 units of AirGradient ONE (Model I-9PSL) and 20 units of AtmoCube. AirGradient ONE sensors measure PM; s
using a Plantower PMS5003 laser-scattering sensor (manufacturing specification: detectable particle size of 0.3-10 um, with
+10 ug m*3 at 0-100 pug m=10% at 100-500 ug m3), and temperature and RH through a Sensirion SHT40 sensor. AtmoCube
sensors detect particulate matter using a Sensirion SPS30 laser-scattering sensor (manufacturing specification: detectable
particle size of 0.3-10 um, with 5 ug m at 0-100 ug m=3, #10% at 100-1000 ug m3), temperature using a Sensirion STS35-
DIS, and RH using a Sensirion SHTC3.
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Comment 2. Line 154 — 155: Hopefully, the team got to enjoy the food afterward. Scientific dedication always

deserves a good meal.
Response:

Thank you for this kind remark. The cooking part did indeed come with some well-deserved meals for the team, and it was

all conducted in accordance with our laboratory safety and hygiene procedures.

Comment 3. Line 157: The phrase “natural indoor conditions” sounds somewhat contradictory, since indoor

environments are by definition artificial. It might be clearer to use “realistic” or “typical”.
Response:

Yes, we fully agree that “natural indoor conditions” is by definition artificial and thus we have revised the wording

accordingly.

In the revised manuscript, we now write “typical indoor conditions” at the corresponding location (former line 157), so the

sentence reads:

“Temperature and RH levels were allowed to exchange passively with the outdoor air with no mechanic ventilations or

windows/door opening, mimicking indoor conditions where these parameters may fluctuate.”
This change clarifies our intended meaning and avoids the contradiction you highlighted.

Comment 4. Line 223-228: I wonder how the threshold of 50 ng m=> was determined. The text mentions that the
exploratory analysis revealed a bias flip at this concentration, but it could strengthen the explanation to briefly clarify

why 50 pg m= was selected as the cutoff.
Response: Please also see response to Comment 3 by reviewer 1.

We appreciate this observation. We selected 50 pg m= because the scatter plot clearly shows two distinct regimes relative
to the 1:1 line. Below 50 pg m3, the points form a compact cluster mostly above the 1:1 line for AirGradient ONE sensors,
indicating a positive sensor bias at low concentrations. Above 50 pg m3 the points shift below the 1:1 line and the fitted
regression becomes shallower than the 1:1 reference, which is consistent with signal compression at higher particle loads.
The data are also unevenly distributed. Most observations fall below about 25 ug m and only a small fraction lie between
25 and 100 pg m3. Using 50 ug m=3 as the threshold therefore separates these two behaviors clearly while avoiding further

subdivision of already sparse ranges. We have revised the manuscript to explain this rationale explicitly.

10
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Comment 5. Line 251: In the phrase “between 400-to-500 ug m—>” the hyphen is unnecessary. It would read more
clearly as “between 400 and 500 pg m3.”

Response:

Thank you for pointing this out. We have revised the wording accordingly and now write “between 400 and 500 ug m3” to

improve clarity at Line 251.

Comment 6. Figure 3: The two time series plots showing the raw data from multiple low-cost sensors are displayed as
3D graphics, which causes a slight misalignment between the sensor readings and the x—y axes, making the
visualization somewhat confusing. I am not sure this is the most effective way to present the data, although it is not a
major issue. I would generally recommend adding x-axis tick marks to indicate the days (with major ticks for the
labeled days and minor ones for each individual day) and including grid lines especially in panels (a) and (b), which

would help improve readability and reduce the visual confusion caused by the three-dimensional layout.
Response:

We appreciate you drawing attention to the potential ambiguity in Figure 3. In the revised version we have converted
panels 3a and 3b into explicit three-dimensional time series plots by adding and labelling a z axis. The x axis now represents
time, the y axis shows PM, s concentration in ug m3, and the z axis indexes the sensors, with tick labels corresponding to
sensor numbers. All series share a common time coordinate, so timestamps are aligned vertically and the apparent
separation is clearly along the sensor dimension rather than time. These changes improve readability and remove the

scope for misinterpretation, while leaving the analysis and conclusions unchanged.

11
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Comment 7. Figures 4 and 5 appear to have different sizes and resolutions. Since both figures are quite similar, it
would be visually more appealing and consistent to display them at the same size and resolution for better

comparison and overall presentation quality.

Response: Thank you for this helpful suggestion. We agree that having Figures 4 and 5 in the same size and resolution
improves consistency and makes comparison easier. In the revised manuscript, we have adjusted both figures so that they
are now displayed at the same size and resolution to enhance visual clarity and overall presentation quality. Please see the

revised figure below.
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Comment 8. I really appreciate the thorough and transparent discussion of the limitations of the proposed method.
The authors clearly acknowledge the constraints related to environmental conditions, emission sources, and long-
295 term applicability. An analysis of long-term sensor drift would have provided valuable additional insights into the
robustness of the calibration over extended periods. However, since this aspect is explicitly discussed as a limitation
and identified as an important direction for future work, I find the current scope appropriate and well-justified for

this study.
Response:

300 We thank the reviewer for this positive and encouraging comment on our discussion of limitations. We fully agree that an
explicit analysis of long-term sensor drift would provide valuable evidence on the robustness of the calibration over
extended deployments. In future studies we plan multi-year field deployments to quantify drift and to test automated

recalibration within the proposed framework.
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Abstract. Indoor fine particles (PM,s) exposure poses significant public health risks, prompting growing use of low-cost
sensors for indoor air quality monitoring. However, maintaining data accuracy from these sensors is challenging, due to
interference of environmental conditions, such as humidity, and instrument drift. Calibration is essential to ensure the accuracy
of these sensors. This study introduces a novel automated machine learning (AutoML)-based calibration framework to enhance
the reliability of low-cost indoor PM; 5 measurements. The multi-stage calibration framework connects low-cost field sensors
to be deployed with intermediate drift-correction reference sensors and a reference-grade instrument, applying separate
calibration models for low (clean air environment) and high (pollution events) concentration ranges. We evaluated the
framework in a controlled indoor chamber using two different sensor models exposed to diverse indoor pollution sources under
uncontrolled natural ambient conditions. The AutoML-driven calibration significantly improved sensor performance,
achieving a strong correlation with reference measurements (R*>0.90) and substantially reducing error metrics (with
normalized root-mean-square error (NRMSE) and symmetric mean absolute percentage error (sSMAPE) roughly halved relative
to uncalibrated data). Bias was effectively minimised, yielding calibrated readings closely aligned with the reference
instrument. These findings demonstrate that our calibration strategy can convert low-cost sensors into a more reliable tool for
indoor air pollution monitoring. The improved data quality supports atmospheric science research by enabling more accurate
indoor PM» s monitoring, and informs public health interventions and evaluation by facilitating better indoor exposure

assessment.

1 Introduction

Air quality monitoring is essential in understanding exposure to pollutants in both outdoor and indoor environments, which
informs public health improvement strategies. In particular, indoor air quality (IAQ) has gained attention because people spend
the majority of their time indoors, yet historically it has been difficult to measure indoor pollutants continuously (Aix et al.,
2023). Traditional approaches for IAQ assessment relied on expensive reference instruments (e.g. filter-based gravimetric
samplers with pumps and impactors) that require expert operation and maintenance. These practical challenges made long-
term indoor monitoring infeasible in most settings (Levy Zamora et al., 2018). Recently, however, dramatic advances in low-
cost sensor technology have transformed this landscape. Compact and affordable low-cost sensors for particulate matter (PM)
and gases have made it possible to deploy dense monitoring networks and to track air quality in homes, offices, and other
indoor spaces in real-time. For example, a consumer-grade PM sensor “PurpleAir” is now widely used, and over 5,600 devices
reporting to an online map, and about 18% of these were deployed indoors as of 2020 (Koehler et al., 2023). This surge in
low-cost sensor use highlights their promise for broad IAQ surveillance and community engagement in air quality
improvement efforts.

As low-cost sensors proliferate, ensuring their data quality through proper calibration has become a critical concern. These
sensors often suffer from biases and interferences that can compromise accuracy. For example, low-cost PM sensors that use

optical scattering can be highly sensitive to environmental factors like relative humidity (RH) and aerosol properties. At high
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RH (> 80%), condensation on the sensor or particles can lead to overestimation of fine particles (PM; 5) concentrations (Crilley
et al., 2020; Hagan & Kroll, 2020). Cross-sensitivities are also common, electrochemical gas sensors may respond to non-
target gases (e.g. ozone sensors responding to nitrogen dioxide NO;). Moreover, the performance of air quality sensors can
degrade over time due to aging and fouling of components (so-called “drift effect”). Studies have showed that low-cost sensors
tend to lose sensitivity or shift baseline after months of use, and electrochemical sensor singles degrades within two years,

necessitating periodic recalibration (Zaidan et al., 2022; Zimmerman et al., 2018) .

To address these issues, a variety of calibration techniques have been explored previously, ranging from simple corrections to
machine learning (ML) models. Traditional calibration methods typically include collocating low-cost sensors with a
reference-grade instrument (such as federal reference methods, FRMs) and deriving a statistical correction (Liang, 2021). The
simplest approach is a linear regression or affine transformation that aligns the sensor readings to the reference values.
Additional environmental parameters are generally incorporated into multi-variate calibration models, for example,
temperature and RH are included as independent variables to account for their influence on sensor response (Kang & Choi,
2024). These methods, including one-point or two-point calibrations and polynomial fits, have been shown to improve sensor
accuracy under stable conditions (Cowell et al., 2023). In practice, laboratories or field researchers may perform a pre-
deployment calibration by exposing sensors to known pollutant concentrations and fitting a curve. However, a calibration
derived in one setting does not necessarily transfer well to another. Studies have noted that calibrations done in controlled lab
environments often do not span the full range of real-world conditions, limiting their generality (Kim et al., 2019; Li et al.,
2018; Mousavi & Wu, 2021). Different particle compositions also affect the magnitude of the sensor response (Crilley et al.,
2020; Zou et al., 2021). Therefore, in situ calibration is often recommended to capture local environmental effects to yield
more robust calibration models, allowing necessary adjustments for factors like aerosol composition and meteorological
conditions (Raysoni et al., 2023). Although the performance of these traditional methods may be suboptimal when sensor
response relationships are highly non-linear or environment-specific, they are still widely used due to their transparency and
ease of implementation.

Recently, ML algorithms have been employed to improve calibration accuracy and capture complex sensor behaviours. ML
calibration methods can simulate non-linear relationships and interactions that traditional linear methods might neglect
(Villanueva et al., 2023). A range of ML approaches has been applied, including artificial neural networks (ANN), support
vector regression (SVR), random forests (RF), gaussian process regression (GPR), and even semi-parametric models like
generalized additive models (GAM) (Mahajan & Kumar, 2020). These data-driven models leverage not only raw readings
from the sensor but often additional features (e.g., RH, temperature, timestamps) to learn the mapping to actual pollutant
concentrations. Several studies have presented the effectiveness of ML-based calibration. Nowack et al. (2021) compared a
regularized linear model (ridge regression) against non-linear models (random forest and GPR) for calibrating nitrogen dioxide
(NO») and particulate matter with a diameter less than 10 micrometres (PMo) sensors, finding that the machine learning

approaches achieved high out-of-sample accuracy (frequently coefficient of determination R*>0.8) and outperformed
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traditional multiple linear regression models (Nowack et al., 2021). Mahajan et al. (2019) observed that an SVR model
provided better calibration performance for PM¢ sensors than both linear regression and standard neural networks (Munir et
al., 2019). Nonetheless, ML-based calibrations also present challenges. They typically require a substantial dataset of sensor
as well as reference readings for training, and their predictions can be unreliable outside the range of training data. For instance,
an ANN or RF may struggle to extrapolate to pollutant levels higher than it has been seen during calibration, whereas a
Gaussian process regression model may handle extrapolation with less bias (Nowack et al., 2021). Additionally, the calibration
model learned at one location may not generalize to a new location (i.e., site transferability issue) unless a wide variety of
conditions are considered. Despite these limitations, ML-based calibration can significantly improve the performance of low-
cost sensors when carefully applied (Liu et al., 2019; Nowack et al., 2021; Villanueva et al., 2023; Zimmerman et al., 2018).
While most field calibration studies to date have focused on outdoor deployments, where sensors are co-located with
regulatory-grade monitors or used in ambient networks, a critical gap in the current literature is the calibration of low-cost
sensors specifically for indoor environment.

Indoor air, however, can differ markedly from outdoor air in composition and dynamics. Factors like indoor-generated particles
(from cooking, smoking, etc.), confined space, and higher humidity or temperature fluctuations can all influence sensor
readings. For example, cooking can release ultrafine particles and organic aerosols in short bursts, causing sharp concentration
spikes. A study reported that indoor PM, 5 levels peaking near 488 pg m during cooking in a home, far exceeding typical
outdoor concentrations (Cowell et al., 2023). Tobacco smoke similarly produces dense particulate matter and complex
chemicals in confined spaces. Also, indoor spaces often have limited ventilation, allowing pollutants to accumulate and
humidity to fluctuate in ways not seen outdoors. These conditions test the limits of calibration models. A calibration model
trained mostly on moderate outdoor pollution levels may not extrapolate well to the abrupt spikes or ultra-low concentrations
encountered indoors (Koehler et al., 2023). Compounding the issue, gathering extensive indoor calibration datasets is difficult,
reference-grade indoor measurements are rare because deploying instruments indoors at scale is resource-intensive. As a result,
there is a paucity of calibration methods tailored to indoor use, and questions remain about how well the algorithms proven in
ambient air translate to indoor settings. This gap is increasingly problematic as the adoption of indoor air quality sensors grows;

without reliable calibration, the data from these sensors could mislead users or undermine trust in sensor-based monitoring.

In this study, we aim to bridge the gap by introducing a replicable calibration approach for indoor air quality sensors using
Automated Machine Learning (AutoML). AutoML is an emerging technology that automates the selection of machine learning
algorithms and hyperparameters to build optimal models (LeDell & Poirier, 2020). Our objective is to develop a calibration
framework that can be easily applied to low-cost sensor data in indoor environment to improve its accuracy and reliability.
Unlike traditional calibration methods that might rely on fixed formulas or manually crafted ML models, an AutoML-based
approach automates the selection and optimization of the calibration model. In our framework, sensor readings (e.g., raw PM 5
concentrations) are combined with environmental variables (mainly indoor temperature and RH), and an AutoML is employed

to identify the best-performing calibration model through automated testing of many algorithms and hyperparameter settings.
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By allowing the AutoML system to explore a wide range of potential models (from linear regressions to complex ensemble
methods), we ensure that the final chosen model is well-suited to the characteristics of the indoor dataset, without requiring
the user to have advanced machine learning expertise. The proposed approach is replicable in that it provides a general template
that can be applied to other indoor sensor deployments, that is, researchers or practitioners can feed their co-location data into
the same AutoML pipeline to obtain a custom calibration model for their specific environment.

The remainder of this paper is structured as follows. Section 2 describes the experimental setup and calibration methodology,
including indoor air quality sensors, reference instruments, data collection procedures, and the AutoML workflow employed
to generate calibration models. Section 3 presents the calibration results and discusses the implications of the findings. Section

4 summarizes the key findings. We also discuss limitations of our approach and provide recommendations for future research.

2 Method
2.1 Experimental Configurations

A controlled laboratory experiment was conducted within a custom-built container designed to simulate realistic indoor air
pollution conditions (Fig. 1(a)). The chamber was equipped with fans to ensure uniform pollutant distribution (Fig. 1(b)),
which minimized spatial concentration variations, essential for maintaining stable and reproducible conditions during sensor

evaluation. An aerosol spectrometer (i.e., Palas Fidas 200 _(detectable particle size of 0.18-18 pg. ranges from 0 to 10,000 ug

m~ with 9.7% uncertainty for PM, s measurements)) was employed as the reference-grade instrument to provide high-precision
baseline measurements for sensor performance evaluation and calibration. A total of 40 low-cost air quality sensors was
deployed within the chamber, settled on a table at near the same height with Fidas 200 to minimize positional variability. Our

air quality sensors consisted of two different types, including 20 units of AirGradient ONE (Model I-9PSL) and 20 units of

AtmoCube. AirGradient ONE sensors measure PM s using a Plantower PMS5003 laser-scattering sensor (detectable particle

size of 0.3-10 pg, with #10 pg m™ at 0-100 pg m-, £10% at 100-500 pg m), and temperature and RH through a Sensirion

SHT40 sensor. AtmoCube sensors detect particulate matter using a Sensirion SPS30 laser-scattering sensor (detectable particle

size 0f 0.3-10 pg, with £5 pg m= at 0-100 pg m=, £10% at 100-1000 ug m™), temperature using a Sensirion STS35-DIS, and
RH using a Sensirion SHTC3.

To generate diverse and realistic indoor air pollution profiles, three indoor emission sources were introduced into the
experimental container, including incense sticks, cigarette smoke from 7% to 21% Oct 2024, and cooking emissions (i.e., frying
vegetables, bacon, and fries) from 22" to 30" Oct 2024 (Fig. 1(b) and Fig. 1(c)). All AirGradient ONE and AtmoCube sensors

and the Fidas 200 were exposed to the same emission sources simultaneously. Temperature and RH levels were allowed to

exchange passively with the outdoor air with no mechanical ventilation or windows/door opening, mimicking indoor

conditions where these parameters may fluctuate.

fluetuate—freely= Between each emission event, the container was ventilated until pollutant concentrations returned to
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background levels (mainly during the night), ensuring that there was no cross-contamination between different test conditions,
thus generating a reliable dataset for subsequent sensor performance evaluation and calibration.

@1 smoking, incense sticks, cooing ﬂ
é/g;? . C\V sensors ]
v =9
ALS» ns  e— Outlet
« 1
Fidas 200
475

Figure 1: Overview of indoor air quality sensor calibration setup: (a) fully renovated half-size container, (b) emission sources and
analytical instrumentation, and (c) schematic of pollutant generation and instrument placement.

2.2 Automated Machine Learning
480

We employed an AutoML framework to develop and select calibration models for the indoor air quality sensors. The AutoML

approach systematieally-generate a variety of (i.e., 30 in this study) candidate models and optimiseds their hyperparameters.
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Then the AutoML algorithm -would identify a model that best maps the sensor outputs to the reference concentrations. In our

implementation, the input features to each model included the sensor’s raw readings, indoor temperature, and RH, while the

target output was the PM concentration measured by Fidas 200. The AuteME-process-explored-multiple regression-algorithms;

n m hino BN\ d huted n N fore DR E nd e ame dien
2 a 1V H a a 518

This studyAty
reserved-for performaneetesting— used H20’s splitFrame with a fixed seed (1014) to allocate 80% of the rows to training and

20% to a held-out test set. During AutoML, we used k-fold cross-validation (5-fold) on the training portion for model selection

(sorted by root mean square error (RMSE)). The held-out 20% test set was never used for training or tuning; we report both

cross-validated training metrics and external test metrics (see Table S1). This choice ensured both train/test and cross-

validation folds contained comparable concentration distributions while avoiding temporal leakage, as the experiment

container was well-mixed and emission episodes were interleaved.

Evaluation metrics were calculated for each candidate to guide the selection of the best model. We primarily used the RMSE

normalized root mean square error (NRMSE), mean absolute error (MAE), symmetric mean absolute_percentage error

(sSMAPE), mean bias error (MBE), index of agreement (IOA), and R? as the performance criteria. RMSE quantified the average
magnitude of prediction errors in units matching the observed data, with lower values reflecting smaller deviations. We also

use NRMSE to provide a dimensionless measure of error that allows model performance to be compared fairly across different

concentrations. MAE measured the average absolute difference between observed and predicted values, providing an

interpretable measure of accuracy independent of error direction. We also calculated sSMAPE because it expresses errors as a

bounded percentage relative to both observed and predicted values, making performance more comparable across different

concentration ranges and less sensitive to extreme values. MBE provides the average bias in the predictions, where positive or

negative values indicated overestimation or underestimation, respectively. IOA indicates the overall level of agreement (from
-1 to 1) between reference measurements and predicted values, with 1 denoting perfect agreement (ideal model performance),
0 with no agreement (predictions no better than simply predicting the observed average), and -1 with complete disagreement
or systematic inverse relationship (Willmott et al., 2011). R? (values in [0, 1]) indicates the proportion of the variance in the
reference measurements explained by the model, with values closer to 1 indicating a stronger linear association. The formulas

are represented below:

RMSE = /%2;;1(01- — y)? (1)

1
Y1 (0i-pi)?

NRMSE = Y- )

MAE = %Z?:ﬂoi - pil I %)
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here o; denotes the i-th value from the reference dataset, p; is the i-th predicted value from the calibration models, n represents
the total number of data points in the dataset, and 0 is the arithmetic average of all reference measurements.

After training the model, AutoML ranks candidates on its leaderboard by the RMSE obtained from k-fold cross-validation on

the training set (Table S1). The highest-ranked model (Leader Rank 1) is therefore the model with the smallest cross-validated

RMSE among all candidates. We adopt this criterion to (i) keep the 20% test set independent of model selection (avoiding

optimistic bias), (ii) obtain a more stable, lower-variance estimate by averaging errors across folds rather than relying on a

single split, and (iii) prioritize a loss that penalizes large deviations, which is appropriate for PM; s calibration (RMSE in pg m-

3). After selection, all performance reported in the Results refers to the independent test set. Among-all-candidate-models;

2.3 Calibration Procedure

To ensure reproducible calibration of the low-cost sensors against the Fidas 200, we first established a three-step protocol that
accounts for variability among sensor units while maintaining consistency with reference measurements. The approach is
designed to be scalable for large sensor networks in real-world indoor monitoring applications. The key steps include:

(1) Field sensor-to-“Drift-reference sensor” calibration (f2d). A subset of five sensors from each sensor type
(AtmoCube and AirGradient ONE) was randomly selected to serve as “drift-reference sensors”. These drift-reference
sensors were used exclusively for calibration purposes and were not deployed for field indoor monitoring. The
remaining sensors, referred to as “field sensors”, were intended for operational deployment. We employed AutoML
to develop calibration models that map the field sensors’ raw readings to the corresponding averaged measurements

of the drift-reference sensors at each time step:
4 (0 = F* (5(®) (86)

F = argmin TIL [f (9(0) - d©] ©7)
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x(8) = [5;(0), T;(0), RH;®)] (810)

d(t) = Xi-1 di (1) (911)
where 3] (t) is calibrated PM concentration for field sensor j (1, ..., M) at a time index of calibration record ¢ (1, ...,
N); x;(t) represents raw sensor reading, temperature, and RH; d(t) denotes mean of K(=5) drift-reference sensors;
and 9—}" 2d represent best-performing model chosen for sensor j (GBM in this study) from pool of AutoML candidate
models F during this f2d process. Note that here T;(t) and RH;(t) should be calibrated against averaged values of

the drift-reference sensors using a simple univariate transfer function before being used as input features.
“Drift-reference sensor” to “Reference instrument” calibration (d2r). The averaged readings from drift—

reference sensors were calibrated against Fidas 200 following similar procedure above:

#(t) = F4(2(1)) (#612)
F4r = argmin i [f (2(0) — r(0)]° (H13)
2(t) = [d(©), T(&), RH(®)]" (1214)

here #(t) represents calibrated PM concentration for drift-reference sensors; r(t) is PM concentration measured by
the reference instruments (Fidas 200); z(t) represents a vector of d(t), and calibrated T (t) and RH (t) (against
Fidas 200); and F?2" denotes best-performing model for the d2r calibration.

OOur exploratory analysis (Fig. S1) revealed a clear threshold at 50 pg m where the sensor bias flips. We chose this

value because the scatter plot of sensor versus reference measurements shows two distinct regimes relative to the 1:1

line. At or below 50 pg m?, the data cloud is tight and lies mostly above the 1:1 line, which indicates a positive sensor

bias (overestimation) at low concentrations. Conversely, above 50 pg m™ the cloud shifts below the 1:1 line, and the

fitted trend becomes flatter than the 1:1 reference, a pattern consistent with signal compression and underestimation

at higher particle loads. This split is further justified by the data distribution; most data lie below about 25 pg m=,

with only a small number of points between 25 and 100 ug m3. A split at 50 ug m> produces two interpretable

regimes that align with the observed change in bias, keeps the rare high-concentration events together, and avoids

slicing the dense background data into very small groups, which would reduce model stability. Therefore, we applied

a stratified calibration strategy, training separate AutoML models for the low (<50 pg m™) and high (50-600 pg m-

regimes in both the field-to-drift (f2d) and drift-to-reference (d2r) stages. This allows us to tailor the calibration to

the specific bias profile of each regime and thereby minimises systematic error across the sensor’s full operating range.
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(3) Field sensor-to-“Reference instrument” calibration (f2r). For every time stamp t, the field sensor’s raw reading
is first converted to a drift-reference proxy as in Step (1) f2d. That proxy, combined with calibrated temperature
and RH (against Fidas 200), is then fed into the calibration models in Step (2) d2r to calculate concentrations

directly comparable to the reference dataset:

7 = 3 (5(0) = (F2 o 72 (5(0) (1315)
where 77(t) denotes final PM concentration of sensor j aligned to Fidas 200; and H; represents shorthand for the
overall transfer function F 42" o T}f 24,

The sensor performance drift over long deployments, the calibration derived pre-deployment gradually becomes less reliable.
After retrieval we therefore rebuild the f2d and d2r models with the post-deployment dataset, obtaining a second set of
predictions ;“; (t). For any timestamp t within the deployment period 0 < t < D (with D the total duration), we fuse the two
predictions with a simple linear weight that shifts emphasis from the pre- to the post-deployment model:

o (0) = (1= 2) x50 +5x 77 (8) (+416)
thus, 7; * (t) equals the pre-deployment estimate at the campaign start (t = 0), the post-deployment estimate at the end (t =

D), and a smoothly blended value in between, providing a first order correction for drift.

The overall calibration framework is shown schematically in Fig. 2.

3 Results and Discussions
3.1 Low-cost sensor raw readings

Figure 3 compares the timeseries responses of the two sensor types, from AirGradient ONE and AtmoCube to indoor emission
events. During the combustion episodes (cigarette smoking and incense-burning) that occurred between 12" and 22" October
2024, the AirGradient ONE sensors repeatedly recorded uncalibrated PM, s concentrations exceeding 500 pg m, and all units
tracked those peaks almost identically, showing high intra-sensor coherence and a high sensitivity to combustion-derived
particles. The AtmoCube sensors followed the same temporal pattern but with systematically lower maximum concentrations

compared to the AirGradient ONE sensors, with peak readings between 400 and 500 ug m-~between400-to-500pgm™.

Cooking activities generated far lower PM concentrations. Routine meal preparation produced brief excursions of ~30 pg m
on both sensor types, while a single spike of 80 pg m on 30" October consistent with braise and fry high-fat foods that known
to generate abundant aerosols (Xu et al., 2024). Therefore, although both AirGradient ONE and AtmoCube sensors correctly
identified the timing of each emission episode, AirGradient ONE consistently reported higher absolute concentrations,

particularly for the most intense combustion plumes than those of AtmoCube sensors.
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Figure 2: Flowchart of the indoor air quality sensor calibration strategy. The flowchart used a fixed colour scheme to

distinguish the two stages of the workflow. Blue arrows and lines represent the main training and prediction path that spans

Processes 1-3. The brown arrows and lines represent the post-deployment recalibration path, which is executed after sensor

retrieval to correct drift using the post-deployment dataset. The resulting predictions are passed through Process 3 to obtain

calibrated readings mapped to the reference instrument.

The inter-type relationship is summarised in Fig. S2, showing the averaged drift-reference PM,s measurements from
AirGradient ONE and AtmoCube. At concentrations below ~50 ug m= (hereafter denotes as “below-50") (Fig. S2(a)),
AirGradient ONE readings lay predominately above the 1:1 reference line, showing a positive bias relative to AtmoCube
sensors. Once concentrations exceeded ~50 pg m (denotes as “above-50") (Fig. S2(b)), this coherence vanished and the

paired data became more scattered, indicating that the two sensor types diverge progressively with increasing particle load.
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610 Calibration that reconciles these type- (brand) specific sensitivities is therefore essential for any application that requires

accurate absolute PM s values.

Sensor-measured environmental parameters exhibited similar systematic offsets (Fig. S3 for temperature and Fig. S4 for RH).

Throughout the calibration, AirGradient ONE temperatures were 1.2—1.8°C higher than those from AtmoCube (Fig. S3(a) and
615 S3(b)), where paired data cluster above the identity line (slope=1.01, R?=0.94). AirGradient ONE measured 47 % lower than

AtmoCube sensors for RH maxima, whereas at minima AirGradient ONE read 3—5 % higher, as in Fig. S4(a) and S4(b). Intra-

type variability reached ~2°C for AirGradient ONE sensors but was <1.5°C for AtmoCube sensors, and both types recorded

the same diurnal trend (Fig. S3(c) and S3(d)). RH measurements ranged from 47% to 89% (Fig. S4(c) for AirGradient ONE

and 4(d) for AtmoCube). AirGradient ONE sensors exhibited tighter clustering (intra-type variability <5%) than AtmoCube
620 (<10%), but they showed a systematic pattern.
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Figure 3: Timeseries of (a) PM>s from AirGradient ONE sensors, (b) PMa2.s from AtmoCube sensors, and (c) Averaged

|625 concentration from drift-reference sensors.
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3.2 Raw readings from drift-reference sensors vs. Fidas 200 measurements

Figures 4(a) and 4(c) shows scatter plots of raw and calibrated averaged PM, s concentrations from AirGradient ONE and
AtmoCube drift-reference sensors against the Fidas 200 measurements in the below-50 regime, representative of relatively
low air pollution. Before calibration, both AirGradient ONE and AtmoCube sensors exhibited moderate linear correlations
with the Fidas 200, with R? values of 0.65 for the AirGradient ONE and 0.57 for the AtmoCube, respectively (Table 1).
Although both sensor types clustered close to the 1:1 reference line, their slopes reveal systematic biases. AirGradient ONE
readings lay predominately above the line with a regression slope of 1.57, producing an average 20% overestimation relative
to the Fidas 200, while AtmoCube readings fell below with a slope of 0.64, corresponding to a 55.6% underestimation.
Extending the analysis to the above-50 regime (Figs. 4(b) and 4(d)) highlights further divergence. Here, AirGradient ONE
sensors had a stronger correlation with the reference (R?=0.78), but its slope decreased to 0.82, reflecting a slight 3.1%
underestimation during high pollution episodes. In contrast, AtmoCube sensors had a lower slope of 0.50 and an R? of 0.64,
showing a substantial 38.8% underestimation. Therefore, both types of sensor experience signal compression at higher particle
loads, yet the magnitude of this non-linearity is sensor specific.

RH can significantly influence the measurement accuracy of particles from indoor air quality sensors (Fig. S5). For
AirGradient ONE (Fig. S5(a) and S5(b)), PM, s readings above the 1:1 reference line at low concentrations consistently
associated with periods of high RH, implying that hygroscopic growth of particles at high humidity is a primary driver of
AirGradient ONE’s low end overestimation (Liang, 2021). Conversely, AtmoCube showed no systematic RH pattern
(Fig. S5(c) and S5(d)); its scatter remained broadly uniform across the humidity spectrum, indicating lower RH sensitivity.

This disparity may reflect differences in internal RH-compensation algorithms implemented by each manufacturer.

Table 1: Statistical performance of raw and calibrated AirGradient ONE and AtmoCube drift-reference sensors relative to the
Fidas 200 measurements for PM..s, stratified by concentration regime (below-50, above-50) and for the combined dataset.

n (sample RMSE MAE
Sensor Subset Stage ] R? MBE I0A
size) (NRMSE) (sMAPE)
Raw 483 0.65 6.4.(98.5) 3.7.(46.1) -1.8 0.49
Below 50 pg m
Calibrated 483 0.69 3.8(32.6) 1.5(22.8) -0.1 0.80
AirGradient Raw 64 0.78 91.3(32.5) 69.6(36.5) -40.9 0.80
Above 50 ug m3
ONE Calibrated 64 0.92 59(23.9) 44.6(31.6) -45.4 0.87
Raw 547 0.95 31.8(82.3) 11.4(44.9) -3.2 0.90
All concentration range
Calibrated 547 0.97 20.5(59.6) 6.5(23.8) -0.6 0.94
12.4
Raw 499 0.57 5.1.(82.2) -6-044.89 0.63
AtmoCube Below 50 pg m?3 (140.3)
Calibrated 499 0.80 7.4 (122) 2.8 (80.8) 0:03-0.27 0.79
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Raw 48 0.64 -150.8 0.48
Above 50 pg m3 (52.5) (62.6)
Calibrated 48 0.76 91.1(23.3) 72.3(25.5) 24-27.7 0.76
Raw 547 0.90 55.4(143) 18.7.(80.4) -17.7 0.84
All concentration range
Calibrated 547 0.94 27.9(67.7) 8.9(75.9) 03-2.68 0.92

3.3 Calibrated readings from drift-reference sensor vs. Fidas 200 measurements

In the below-50 regime, calibrated AirGradient ONE drift-reference readings show slight stronger correlation with Fidas 200
measurements (R?=0.69) compared to their raw values (Fig. 4(a)), and errors are relatively small and have been improved

(NRMSE=3-8pg-—m732.6%, MAESSMAPE=15uem722.8%) as shown in Table 1. The residuals present negligible

systematic bias (MBE=-0.1 ug m>), indicating great improvements from systematic overestimation under low PMjys
concentration before calibration. After calibration, the sensor performance meets the recommended criteria of R2 > 0.70 and
RMSE < 7 ng m? (Zamora et al., 2022). At above-50 concentrations (Fig. 4(b)), the improvement in the performance of
calibrated AirGradient ONE sensors was even more significant, with R? and IOA achieving about 0.92 and 0.87, respectively.

Abselute—errors—inereaseThe errors also hashave been improved (NRMSE = 59y m323.9%, MAESMAPE = 44-:6-pem

331.6%) as expected but-and remain proportionally reasonable (e.g., ~10% uncertainty at 600 pg m™). A slight negative bias
(MBE = -54.4 ug m*) indicating a small underestimation tendency at extreme high concentrations, but high IOA value (0.87)
show accurate tracking of both timing and magnitude.

Figure S6 show the impact of RH on calibrated readings of AirGradient ONE sensors for the below-50 (Fig. S6(a)) and the
above-50 (Fig. S6(b)) concentration regimes, respectively. Across both concentration ranges the residuals show no systematic
humidity bias, indicating that the AutoML model (using RH and temperature as covariates) mitigated hygroscopic growth
influences that typically inflate optical counts above 70-80% RH (Ko et al., 2024). The small scatter evident at extreme high
RH levels likely reflects limited training data but does not compromise agreement with the reference, corroborating reports
that RH-aware calibration can suppress sensor error by around 20% (Liang, 2021).

Calibration likewise improved AtmoCube agreement with the Fidas 200 across the full concentration range (Figs. 4(c)
and 4(d)). Overall AtmoCube sensors achieved R>=0.94 and IOA=0.92 (Table 1). In the below-50 clean air conditions, the
calibrated AtmoCube sensors have R?=0.80, and such slightly lower correlation relative to those of high pollution levels is
expected as sensor signals approach the noise floor at very low pollution levels (Johnson et al., 2018). RMSE (7.4 pg m™) and
MAE (2.8 ug m) are relatively small, and the mean bias is negligible, indicating that the calibration mitigates the pronounced
low-end under-reading observed pre-calibration. At high PM, 5 levels, calibrated AtmoCube sensors still show good agreement
with Fidas 200 as data points distribute along the 1:1 line but with slightly reduced R? (0.76). A possible explanation is that at
very high particle loading the sensor’s optical detector response starts to become non-linear or approaches a saturation point

(Kelly et al., 2017), introducing larger random errors. The residual bias is minor (MBE=2.427.7 ug m?), indicating a small
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over-read under very high pollution. Figure S6(c—d) shows that, after calibration, AtmoCube residuals remain almost flat
across the full RH ranges in both low and high concentration regimes. Even during episodes exceeding 80 % RH, no coherent

over- or under-reading trend was found, indicating that the calibration has effectively reduced humidity interference.
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680 Figure 4: Raw and calibrated PMzs of drift-reference sensors compared with the Fidas 200 measurements, (a)
AirGradient ONE sensors within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (c)

AtmoCube sensors within below-50 regime; (d) AtmoCube sensors within above-50 regime.

3.4 Calibrated readings from field sensors vs. Fidas 200 measurements

685 The multi-stage calibration strategy effectively improved the performance of field sensors against the reference-grade
instrument Fidas 200 (Fig. 5 and Table 2). Within the below-50 regime, AirGradient ONE sensors showed a RMSE of 4 pg m°

3 and MAE of 1.70 ng m?3, and their correlation R? increased from 0.45 to 0.64. By contrast, AtmoCube sensors achieved a
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stronger linear match (R?=0.80) despite relatively higher residual scatter (RMSE=7.5 ug m~) (Fig. 5(c)), consistent with their
finer baseline sensitivity to subtle particulate variations. Performance at above-50 concentration regime indicated that both
types of indoor air quality sensor synchronised well with the timing of pollution events while their error signatures differed.
AirGradient ONE sensors showed moderate overestimation (MBE=3.9 ng m=>, RMSE=67.1 pg m>, NRMSE=23.9%), while
AtmoCube sensors displayed similar—higher systematic bias (MBE=3.728.6 ug m?) but—and higher variability

(RMSE=91.5 ug m3, NRMSE=24.5%). These differences may arise from different sensor components, for example,

AtmoCube units employed shorter optical path length and proprietary firmware averaging while AirGradient ONE sensors
used longer path and raw count reporting of the Plantower PMS5003. Importantly, our calibration strategy reconciled
hardware-driven disparities between sensor types. Both types of sensors agreed well with Fidas 200 measurements after
calibration, with IOA increasing from 0.90 to 0.94 for AirGradient ONE and from 0.84 to 0.92 for AtmoCube sensors.

To evaluate the multi-step calibration strategy itself rather than the choice of models, we compared AutoML models with
multivariate regressions (Fig. S7). Figure S7¢a)-and Figures S8 shows that AutoML models produced better performance

statistics, showing enhanced predictive accuracy and reliability, particularly when evaluating error distribution across different

PM, s concentration regimes. MAE

%p?%%m%ﬁt—h&pp%ﬁ%d—m—th%@—ﬁg—m —Such improvements could be due to the ability of AutoML to incorporate

interaction terms (RH, temperature) that influence the sensor light-scattering response (Liang, 2021). However, there is only

one exception for AtmoCube sensors in the over 100 ug m>, in which the linear model has a smaller SMAPE. This is might

due to the limited number of data in the high concentration range.
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Figure 5: Raw and calibrated PM: s of field sensors compared with the Fidas 200 measurements, (a) AirGradient ONE
sensors within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (¢) AtmoCube sensors within

710  below-50 regime; (d) AtmoCube sensors within above-50 regime.
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Table 2: Statistical performance of raw and calibrated AirGradient ONE and AtmoCube field sensors relative to the Fidas 200
measurements for PMa.s, stratified by concentration regime (below-50, above-50) and for the combined dataset.

RMSE MAE
Sensor Subset Stage n R? MBE I0A
(NRMSE) (sMAPE)
Raw 483 0.45 7.3(102) 4.3.(44.6) 232.02 0.41
Below 50 pg m
Calibrated 483 0.64 4 (60.9) 1.7.(26.9 0.1 0.77
AirGradient Raw 64 0.86 83.1(33.8) 62.2(37.9) -22242.5 0.82
Above 50 ug m
ONE Calibrated 64 0.89 67.1(23.9) 48.7.(29.1) 3.9 0.86
Raw 547 0.94 29.2 (85.6) 11.(43.8) -3.196-6 0.90
All range
Calibrated 547 0.96 23.3(60.2) 7.2(27.1) 0.5 0.94
R 499 0.75 124 49(774) 46178 0.64
aw . . . -4.617. .
Below 50 pg m (141.6) T
Calibrated 499 0.80 7.5.(82.1) 3.6.(22.7) 0:2-0.15 0.77
180.3 158.2
AtmoCube Raw 48 0.69 -15247 0.48
Above 50 pg m (53.5) (64.1)
Calibrated 48 0.76 91.5(24.5) 72.6.(26.7) 3.7-28.6 0.74
Raw 547 0.88 54.7 (146) 18.3(76.2) -17.8+ 0.84
All concentration range
Calibrated 547 0.94 28.1(67.9) 9.6(23.1) 0:5-2.65 0.92

3.5 Limitations and implications

Our framework significantly improved the low-cost sensors performance under different concentrations. But there are still
some limitations, and further research is needed on the generalizability of the model and calibration strategies. First, the training
data were collected in a single experimental container under temperate-climate humidity (with RH between 45-85%) and may
not capture sensor behaviour in very moist interiors. Second, the present study did not capture every indoor emission source,
particularly those with moderate emission levels. We do not know whether the sensors will be sensitive to particle types (e.g.,
particles from different sources). Third, evaluating sensor drift demands the months-to-years timescales of real deployments
and was not evaluated. Future work should gather data from warmer, high-humidity homes to capture sensor behaviour at
elevated RH conditions, consider additional moderate emission sources such as off-gassing materials, and run multi-year field
trials to quantify drift and test automated recalibration. These steps will increase the robustness and evaluate long-term
accuracy of the calibration strategy. However, the thresholds delineating “low” and “high” categories are derived from
empirical observations within the analysed dataset. Accordingly, researchers are encouraged to initially assess their own data
and adapt this strategy as necessary to ensure its applicability.

The implications of our findings are significant for atmospheric science and indoor air quality management, especially in the
context of the growing use of low-cost sensors for exposure assessment and public health applications. By showing that
inexpensive sensors can be calibrated to yield high-quality data indoors, this study helps bridge the important gap between

indoor and outdoor air pollution monitoring. Furthermore, the application of AutoML in sensor calibration showcases the value
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of advanced data-driven techniques in atmospheric measurements. AutoML could be used to periodically re-calibrate hundreds
of sensors automatically as new reference data become available, maintaining network accuracy with minimal human
intervention. This is particularly relevant for community science projects or indoor air quality campaigns where resources for
manual calibration are limited. By improving the reliability of indoor air measurements, the study contributes to a future where
continuous indoor air quality monitoring is feasible on a large scale, driving better-informed strategies to safeguard public
health in the spaces where people live and work.

The regime thresholds used in this study were derived empirically from our indoor dataset and should not be assumed

for other indoor cases, outdoors, or for other pollutants. Users should re-estimate cut points from their own co-located

data and retrain the staged models with environment appropriate features.

4 Summary

In this work, we introduced an automated machine learning (AutoML) calibration framework for enhancing the performance
of low-cost indoor air quality sensors. The AutoML-calibrated sensors met or exceeded study objectives by significantly
improving measurement accuracy for fine particles (PM,s) across all concentration regimes. The multi-stage calibration
workflow achieved tight agreement with reference measurements (from Fidas 200), evidenced by substantial increases in
coefficient of determination (R?) and reductions in error metrics. In the low-concentration regime (below 50 ug m), R?
improved from moderate values (~0.6 pre-calibration) to approximately 0.85 post-calibration, with root-mean-square error

(RMSE) dropping by roughly half (e.g., from ~5 to ~3 pg m?), as well as the NRMSE. At higher concentrations (above 50

pg m), gains were even more pronounced, with R? approaching or exceeding 0.90 (near reference-grade performance) and

RMSE falling from tens of ug m? to single digits. Similarly, mean absolute error (MAE) and symmetric mean absolute

percentage error (SMAPE) declined markedly, and mean bias error (MBE) was effectively eliminated, shifting from

significant systematic biases (e.g., 5-10 pg m™ over- or underestimation) to nearly zero. These results show that the
calibrated sensors reliably resolve indoor particulate levels at background concentrations and during elevated pollution
events, closely tracking the reference instrument across the full range. These findings confirm that our multistage calibration
effectively eliminated sensor bias under varied indoor conditions and emission sources. The initial stage corrected baseline
drift. Subsequent stages used AutoML to address scatter caused by relative humidity and nonlinear responses at high particle
concentrations. These factors are often overlooked in simpler methods. AutoML efficiently selected the best models for each
phase, removed the need for manual tuning, and revealed subtle patterns in the data. By integrating AutoML into a structured
multistage process, we achieved robust bias correction across scenarios, yielding accurate, precise measurements well-suited

for indoor air quality monitoring.
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Supplementary Materials

In this file, AirGriadient is denoted as AG, and AtmoCube is denoted as AC.

Table S1. Top 10 AutoML model training statistics for AirGradient sensors

Model_Sub

set

Model_ID

Test RMSE

Test MAE

Test R?

Train_RMSE

Train_ MAE

Train_R?

LB_RMSE

LB_MAE

LB_mean_residual_deviance

LB_Rank

Low (<50
pg/m’)

StackedEns
emble Best
OfFamily 1
_AutoML 1

20251008

144707

3.452

1.45

0.569

3.668

0.721

4.562

1.558

20.816

Low (<50
pg/m?)

DeepLearni

ng grid 2

AutoML 1

20251008 _1
44707_mod
el 4

3414

1.505

0.579

4.185

1.312

0.637

4.607

1.604

21.227

Low (<50
pg/m?)

DeepLearni

ng grid 2

AutoML 1

20251008 _1
44707_mod
el 3

3.673

1.955

0.512

4.825

2.03

0.517
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1.548

21.544

Low (<50
pg/m?)
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ng grid 1

AutoML_1_

20251008 _1
44707_mod
el 3
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1.492

0.488
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StackedEns
emble Best
OfFamily 1
_AutoML 2

20251008

145912

81.534

62.367

0.755

54.901

45.028

0.93

86.229

65.222

7435.452

High (>50
pg/m’)

DeepLearni

ng_grid 1 _

AutoML 2

20251008 _1
45912 _mod
el 2

65.676

55.946

0.841

73.635

54.655

0.875

86.233

66.143

7436.123

High (>50
pg/m’)

DeepLearni

ng_grid 2

AutoML 2

20251008 _1
45912 _mod
el 3

84.987

65.181

0.734

85.45

67.694

0.831

87.139

67.996

7593.221

High (>50
pg/m’)

StackedEns
emble All
Models 1

AutoML 2

20251008_1
45912

66.179

56.598

0.839

35.681

29.452

0.971

87.799

66.987

7708.709

High (>50
pg/m?)

DeepLearni

ng grid 1 _

AutoML 2

20251008 1
45912 _mod
el 1

95.343

77.827

0.666

43.161

34.733

0.957

88.113

69.388

7763.824
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High (>50
pg/m’)

DeepLearni

ng grid 3

AutoML 2

20251008 _1
45912_mod
el 1

140.436

84.304

0.274

18.061

13.396

0.992

90.677

72.281

8222.326

High (>50
pg/m’)

DeepLearni

ng_grid 1 _

AutoML 2

20251008 _1
45912 _mod
el 3

66.326

51.31

0.838

67.328

50.082

0.895

91.621

70.071

8394.498

High (>50
pg/m’)

DeepLearni

ng_grid 1 _

AutoML 2

20251008 _1
45912 _mod
el 5

112.725

94.296

0.533

90.516

66.322

0.811

92.224

72.416

8505.28

High (>50
pg/m’)

DeepLearni

ng_grid 1 _

AutoML 2

20251008 _1
45912 _mod
el 4

66.452

52316

0.838

57.167

40.525

0.925

93.509

74.121

8743.909

10
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Table S2. Top 10 AutoML model training statistics for AtmoCube sensors

Model_Subset

Model_ID

Test_ RMSE

Test MAE

Test_R2

Train_RMSE

Train_MAE

Train_R2

LB_rmse

LB_mae

LB_mean_residual_deviance

LB_ Rank

Low (<50
pg/m’)

DeepLearnin
g grid 3_A
utoML_1_20
251008_161
954 model
1

6.57

2.895

0.803

2.828

1.368

0.972

6.782

2.529

45.989

Low (<50
pg/m’)

StackedEnse
mble_BestO
fFamily 1
AutoML_1_
20251008 1
61954

6.253

2.94

0.822

2.995

1.663

0.969

7.231

2.478

52.285

Low (<50
pg/m’)

DeepLearnin
g grid 2 A
utoML 1 20
251008_161
954 model
4

13.264

3.79

0.197

6.022

1.886

0.874

7.353

2.559

54.068

Low (<50
pg/m?)

StackedEnse

mble_AllMo

dels 1 Auto

ML 1 2025

1008 16195
4

6.242

2.704

0.822

3.936

1.599

0.946

7.432

2.364

55.233

Low (<50
pg/m?)

DeepLearnin
gerid 1 A
utoML_1_20
251008_161
954 model
3

3.968

1.801

0.928

7.361

2.067

0.812

7.961

2.299

63.38
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Low (<50
pg/m’)

DeepLearnin
g grid 1 A
utoML 1 20
251008_161
954 model
4

4.318

1.876

0.915

7.481

1.986

0.805

8.109

2.385

65.755

Low (<50
pg/m’)

DeepLearnin
g grid 2 A
utoML_1_20
251008_161
954 model
1

6.4

2.973

0.813

3.578

1.6

0.955

8.159

2.991

66.577

Low (<50
pg/m’)

GBM_grid
1_AutoML_
120251008
_161954_mo
del 1

6.54

2.881

0.805

6.186

2.093

0.867

8.213

3.02

67.453

Low (<50
pg/m?)

DeepLearnin
g grid 3 A
utoML_1_20
251008_161
954 _model
3

15.851

14.642

-0.147

16.739

15.26

0.026

8.27

3.637

68.386

Low (<50
pg/m?)

DeepLearnin
g grid 3 A
utoML 1 20
251008_161
954 _model
4

5.592

2.483

0.857

5.623

1.889

0.89

8.296

2.648

68.831

10

High (>50
pg/m’)

StackedEnse

mble_AllMo

dels_1_Auto

ML _2 2025

1008_16275
2

121.022

100.61

0.629

44.53

34.225

0.939

89.695

74.541

8045.133
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High (>50
pg/m’)

DeepLearnin

g grid 1 A

utoML 2 20

251008_162

752_model
2

136.761

118.11

0.526

73.709

60.697

0.834

94.745

80.044

8976.538

High (>50
pg/m’)

DeepLearnin
g grid 3_A
utoML_2_20
251008_162
752 _model
3

129.325

109.921

0.576

56.071

45.928

0.904

96.485

78.438

9309.44

High (>50
pg/m’)

StackedEnse
mble_BestO
fFamily 1
AutoML 2
20251008 1
62752

129.279

110.052

0.577

64.196

52.846

0.874

99.53

79.996

9906.26

High (>50
pg/m’)

DeepLearnin
g grid 2 A
utoML 2 20
251008_162
752 _model
3

129.605

106.901

0.575

48.165

36.582

0.929

100.524

82.119

10105.011

High (>50
pg/m’)

DeepLearnin

g grid 1 A

utoML 2 20

251008_162

752_model
3

114.367

96.043

0.669

68.377

54.058

0.857

102.895

80.471

10587.304

High (>50
pg/m?)

DeepLearnin

g grid 3 A

utoML_2 20

251008_162

752_model
1

137.281

114.282

0.523

35.036

20.896

0.963

106.762

87.51

11398.144

44




High (>50
pg/m’)

GBM _Ir_an
nealing_sele
ction_Auto
ML 2 2025
1008_16275
2_select_mo

del

139.195

111.078

0.509

67.122

53.151

0.862

109.135

87.475

11910.463

High (>50
pg/m?)

DeepLearnin

gerid 1 A

utoML_2 20

251008_162

752 _model
4

114.042

97.226

0.671

57.249

40911

0.9

111.219

83.622

12369.733

High (>50
pg/m’)

GBM_grid_
1_AutoML_
2 20251008
162752 _mo
del 7

139.607

101.849

0.506

17.735

14.743

0.99

115.542

91.521

13350.025

10
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Figure S1. Relationship between all drift-reference sensors average concentration and Fidas 200, a)

below 50 pg m, b) above 50 ug m=.
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Figure S2. Inter-relationships between AG and AC sensors, a) below 50 pg m=, b) above 50 pg m=.

47



o))
—

30
- RZ=1 b)
Slope = 1.0 260
5 P
20 17.5
g
2 —~
m [&]
i a
8_15 Y 15.0
g 2
(= 3
o 10 g 125
< E
2
5 10.0
0, 75
0 5 10 15 20 25 30 Q& & A o, A
AC Temperature (°C) b(,\cy e-@ b{,@' N@n’ b‘,\e
& & & & <
Date
Device — AC — AG
) 20 AirGradient
o
—15
<
2
o
[
Qo
§
=10
20
d) AtmoCube
o
~15
g
2
o
[}
Q.
§
-
10

QA \Z Q v A\
S N X al &
Y o o S S
% o o % o
P ® ® P ®
Date
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Figure S5. Pre-calibration PM; s readings with relative humidity levels, a) AG below 50 ug m
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Figure S6. Post-calibration PM; s readings with relative humidity levels, a) AG below 50 ug m, b) AG above 50 pg m=, ¢) AC below 50 pg m?, and d) AC above 50 ug m=.
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Figure S7. Comparison of AutoML model and the multivariate linear regression model for AirGradient ONE, a) performance

metrics, and b) error by concentration range.
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