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Response to reviewers 

Title: “Enhancing Accuracy of Indoor Air Quality Sensors via Automated Machine Learning Calibration” 

General Response: We would like to thank the editor and reviewers for the positive feedbacks and constructive comments. 

Below, we’ve provided a point-by-point response to all comments to clarify revisions and improvements in the manuscript. 

Reviewer #1: 5 

Comment 1. Ln 171: As far as I understand, there are eight regression algorithms. Better to mention the exact 

number of algorithms you used instead of ‘multiple’. 

Response:  

We thank the reviewer. We have revised the Methods to report the exact algorithms used and to clarify wording. 

Specifically, we now state that AutoML evaluated 30 machine learning algorithms (Table S1).  10 

Revised sentences: 

We employed an AutoML framework to develop and select calibration models for the indoor air quality sensors. The 

AutoML approach generate a variety of (i.e., 30 in this study) candidate models and optimised their hyperparameters. Then 

the AutoML algorithm would identify a model that best maps the sensor outputs to the reference concentrations by ranking 

the cross-validation root mean squared error (RMSE). In our implementation, the input features to each model included the 15 

sensor’s raw readings, indoor temperature, and RH, while the target output was the PM concentration measured by Fidas 

200. 

Comment 2. Ln 175: How did you allocate the 80% and 20% dataset? Randomly, chronologically, or other methods? 

Did you also use cross validation in the step?  

Response: 20 

Data splitting was random following previous studies. Within each concentration regime (<50 and ≥50 µg m-3), we used 

H2O’s splitFrame with a fixed seed (1014) to allocate 80% of the rows to training and 20% to a held-out test set. During 

AutoML, we used k-fold cross-validation (5-fold) on the training portion for model selection (sorted by RMSE). The held-out 

20% test set was never used for training or tuning; we report both cross-validated training metrics and external test 

metrics (see Table S1). This choice ensured both train/test and cross-validation folds contained comparable concentration 25 
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distributions while avoiding temporal leakage, as the experiment container was well-mixed and emission episodes were 

interleaved. 

We revised the manuscript by adding the above paragraph to reflect these points.  

Comment 3. Ln 223: From Figure S1, I can’t really see a clear threshold of 50 µg m-3. To me, it looks more like 25 µg 

m-3 is the threshold. It’s ok to use 50 µg m-3, but it’s better to show more clearly why it is chosen. 30 

Response:  

Thank you for the helpful observation. We chose 50 µg m-3 because the scatter shows two regimes relative to the 1:1 line. 

At or below 50 µg m-3 the point cloud is tight and lies mostly above the 1:1 line. This indicates a positive sensor bias at low 

concentrations. Above 50 µg m-3 the points shift below the 1:1 line and the fitted trend is flatter than the 1:1 reference. 

This is consistent with signal compression at higher particle loads. The observations are not evenly distributed. Most data 35 

lie below about 25 µg m-3 and only a small number of points fall between 25 and 100 µg m-3. A split at 50 µg m-3 therefore 

separates the two behaviours cleanly and avoids further fragmenting ranges that are already sparse. We have clarified this 

in the manuscript so that the rationale for the chosen split is explicit. 

Revised sentences: 

Our exploratory analysis (Fig. S1) revealed a clear threshold at 50 µg m-3 where the sensor bias flips. We chose this value 40 

because the scatter plot of sensor versus reference measurements shows two distinct regimes relative to the 1:1 line. At or 

below 50 µg m-3, the data cloud is tight and lies mostly above the 1:1 line, which indicates a positive sensor bias 

(overestimation) at low concentrations. Conversely, above 50 µg m-3 the cloud shifts below the 1:1 line, and the fitted trend 

becomes flatter than the 1:1 reference, a pattern consistent with signal compression and underestimation at higher particle 

loads. This split is further justified by the data distribution; most data lie below about 25 µg m-3, with only a small number of 45 

points between 25 and 100 µg m-3. A split at 50 µg m-3 produces two interpretable regimes that align with the observed 

change in bias, keeps the rare high-concentration events together, and avoids slicing the dense background data into very 

small groups, which would reduce model stability. Therefore, we applied a stratified calibration strategy, training separate 

AutoML models for the low (<50 µg m-3) and high (50–600 µg m-3) regimes in both the field‑to‑drift (f2d) and 

drift‑to‑reference (d2r) stages. This allows us to tailor the calibration to the specific bias profile of each regime and thereby 50 

minimises systematic error across the sensor’s full operating range. 
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Comment 4. Figure 2: It is a good flow chart, but the arrows with different colors are a bit confusing. What do brown 

and blue arrows represent respectively? 

Thank you for raising this point. We agree that the color encoding should have been explicitly defined in the manuscript. 55 

We have added clear explanations in Figure 2 caption and in the caption so that the meaning of each arrow is 

unambiguous.  

The blue arrows represent the primary data flow used to train and apply the AutoML calibration models across Processes 1 

to 3. This path links the field sensors, the drift-reference sensors, and the reference instrument during both training and 

prediction, and it yields calibrated field-sensor readings relative to the reference instrument. The brown dashed arrow 60 

represents the post-deployment recalibration path. After the field sensors are retrieved from the observation, we rebuild 

the field-to-drift and drift-to-reference models using the post-deployment dataset to correct for sensor drift and then 

route the updated predictions through Process 3 to obtain post-deployment calibrated readings referenced to the same 

instrument. The color scheme therefore distinguishes workflow timing rather than sensor type or data source, with blue 

indicating the main training and prediction workflow and brown dashed indicating the optional recalibration that is 65 

activated after deployment. 

To make this explicit without modifying the flowchart, we inserted the following text in Figure 2 caption: “We use a fixed 

color scheme to distinguish the two stages of the workflow. Blue arrows and lines represent the main training and 

prediction path that spans Processes 1–3. The brown arrows and lines represent the post-deployment recalibration path, 

which is executed after sensor retrieval to correct drift using the post-deployment dataset. The resulting predictions are 70 

passed through Process 3 to obtain calibrated readings mapped to the reference instrument.” 

 

 

 

 75 
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Comment 5. Figure 3 a/b: Are these two subplots 3-dimensional? I see that all the lines for timeseries are not really 

aligned vertically. It can be misleading as they can mean that they are not in the same timestamp. I understand that 80 

in this way you can illustrate the difference between lines more clearly, but at least you need to draw a z-axis to show 

that there is a third dimension. 

Response: 

Thank you for flagging this. In the revision we converted panels 3a and 3b into explicit 3D time series plots by adding and 

labelling a z axis. The x axis shows time, the y axis shows PM2.5 concentration in μg m-3, and the z axis indexes the sensors 85 

with tick labels corresponding to sensor numbers. All series share the same time coordinate, so timestamps are aligned 

vertically, and the apparent separation is now clearly along the sensor dimension rather than time. These clarifications 

improve readability and remove the possibility of misinterpretation, while leaving the analysis and conclusions unchanged. 

Please see the revised figure below. 

 90 
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Comment 6. Table 1: The problem with using 50 µg m-3 as threshold might be that the subset of ‘above 50 µg m-3’ has 

too few data points compared to the ‘below 50 µg m-3’. Have you considered using another value as a threshold 

(similar to question 2)? 105 

Response: 

We recognize that there are fewer data points above 50 µg m-3. We chose 50 µg m-3 as the threshold because there is a 

clear, empirically observed transition between two distinct response regimes of the sensors in comparison with the 

reference instruments. As shown in our exploratory plots, data at or below this value forms a tight cluster predominantly 

above the 1:1 line, indicating a consistent low-end positive bias. In contrast, above 50 µg m-3, the data points rotate below 110 

the 1:1 line and the slope flattens. Choosing the threshold at this transition point allows us to model a real change in the 

sensor’s behavior, a rationale we now explicitly state in the Methods. 

For data above-50 µg m-3, although relatively small, it is sufficiently informative to train a stable model. The performance of 

the calibrated models validates this approach, as they retain strong agreement with the reference instrument. In this high-

concentration regime, AirGradient achieved an R2=0.92 and IOA=0.87, while AtmoCube achieved an R2=0.76 with minor 115 

residual bias. The fit is neither noisy nor over-tuned. Further evidence comes from independent train-test statistics, which 

show that the models generalize well, achieving a test R2 of 0.78–0.79 and confirming that the sample is large enough to 

learn a robust mapping specific to that regime. 

We indeed considered adjusting the threshold, but the highly skewed nature of the data distribution makes alternatives 

ineffective. Most observations fall below 25 µg m-3, with very few events between 25 and 100 µg m-3. Lowering the 120 

threshold would contaminate the high-range model with low-bias data points, blurring the very change in slope we aim to 

capture. Conversely, raising the threshold would further diminish the already scarce high-range data. Therefore, keeping 

the threshold at the empirically observed change point preserves interpretability and reduces model misspecification. 

 

 125 
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Comment 7. Ln 176-195, Figure S7, and several instances in the paper: You separated two model subsets ‘below 50 

µg m-3’ and ‘above 50 µg m-3’. When you compared the results using MAE and RMSE, it’s not easy to tell which one 

has a worse MAE as you have the two subsets with different reference values. It’s the most obvious on Figure S7 that 130 

you tried to compare the errors in different concentration ranges using MAE. This comparison may not be the most 

appropriate as a smaller concentration apparently has a smaller MAE. What matters in this case is the error 

percentage. I suggest authors using mean absolute percentage error (MAPE) instead of MAE when comparing the 

two subsets. For RMSE, there is also an alternative NRMSE. 

Response:   135 

Thank you for this helpful suggestion, which we have implemented in the revised manuscript. In addition to RMSE and MAE, 

we now report normalized RMSE (NRMSE) and symmetric mean absolute percentage error (sMAPE) for each concentration 

regime. NRMSE is defined as RMSE divided by the mean Fidas 200 concentration in the corresponding subset and expressed 

as a percentage, while sMAPE provides a symmetric percentage error that is more stable at very low concentrations than 

conventional MAPE. Figure S7 and the accompanying text (Lines 176–195) have been updated so that comparisons between 140 

the below 50 µg m-3 and above 50 µg m-3 regimes are based on NRMSE and sMAPE rather than MAE alone. This makes the 

relative error behavior across the two concentration ranges clearer and directly addresses the reviewer’s concern about 

concentration‑dependent absolute errors. 

We retain RMSE and MAE to facilitate comparison with guideline values, manufacturer specifications, and previous 

calibration studies, which almost always report absolute error metrics, and because they summarize complementary aspects 145 

of model performance (MAE reflecting the typical deviation and RMSE being more sensitive to occasional large errors). In 

the revision, NRMSE and sMAPE are therefore used to compare relative performance across concentration regimes, while 

MAE and RMSE are reported alongside to document the absolute magnitude and structure of the residuals. 

Comment 8. Table S1: What are the criteria of ranking the eight regression algorithms? For the best algorithm? For 

model subset of low conc., the one listed as rank 1 has a higher RMSE/MAE and lower R2 compared to the one listed 150 

as rank 2. For high conc., the one ranked as 5th has a better MAE/RMSE/R2 results than the one ranked top. Are 

you using some other criteria for the ranking? Please list them in the table as well. Also, please clarify what criteria 

you used in the main text as well. 

Response: 

We recognize the need to be clear with the criteria. In the original Table S1, “Rank 1” referred to the H2O AutoML 155 

leaderboard order, which we configured to sort by cross‑validated RMSE computed on the training set (k‑fold 
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cross‑validation). In k‑fold cross‑validation, the training set is split into k parts; each model is trained on k-1 parts and 

evaluated on the remaining part, and the errors are averaged. RMSE (µg m-3) penalizes large errors more than small ones, 

which is important for PM2.5 where high concentrations matter.  

In the same table, we also reported performance on an independent 20% test set that AutoML did not use for training or 160 

ranking. Because the leaderboard metric (cross‑validated RMSE) and the external test metric (single‑split RMSE on the test 

set) are computed on different data with different protocols, it is expected that the model at Leader Rank 1 may not have 

the lowest error on that test set. This is especially plausible in the high‑concentration subset, where there are fewer data 

points and variance is higher, and when comparing metrics with different sensitivities (e.g., RMSE vs. MAE vs. R2). 

To remove ambiguity, we revised Table S1 to report two ranks for each subset. Leader Rank is the AutoML order by 165 

cross‑validated RMSE on the training set and is our model‑selection criterion. We use Leader Rank because (i) it preserves 

the independence of the 20% test set by not using it to choose the winner, avoiding optimistic bias; (ii) averaging errors 

across folds provides a more stable, lower‑variance estimate than a single split; and (iii) RMSE penalizes large deviations, 

aligning with the scientific and regulatory importance of limiting large PM2.5 errors. Alongside this, External Test Rank 

orders models by RMSE on the independent 20% test set and is included for transparency. In the Methods we now state 170 

explicitly that selection follows the leaderboard metric, whereas all performance reported in the Results refers to the test 

set (with splits created using a fixed random seed for reproducibility). 

For transparency we also describe each column exactly as it appears in the revised Table S1. “Model_Subset” identifies 

whether the model belongs to the low concentration subset below 50 µg m-3 or the high concentration subset at or above 

50 µg m-3. “Model_ID” is the H2O identifier that allows exact reproduction. “Algorithm” is the model family returned on 175 

retrieval. “Test_RMSE”, “Test_MAE”, and “Test_R2” report performance on the independent 20% hold-out set, with RMSE 

and MAE in µg m-3 and R2 dimensionless. “Train_RMSE”, “Train_MAE”, and “Train_R2” are training-frame summaries 

shown for context. All columns prefixed with “LB_” are copied directly from the AutoML leaderboard with extra columns 

enabled and therefore reflect the cross-validation view used to form the leaderboard. In this file they include “LB_rmse”, 

“LB_mae”, “LB_mean_residual_deviance”, and “LB_ Rank”, where “LB_Rank” is the raw leaderboard order that determines 180 

the top model for each subset. 
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Comment 9. Could this framework also be used outdoors for ambient air concentration? Can this framework also 185 

work for aerosols of larger size and gas pollutants? 

Response: 

Thank you for raising the question of generalizability. The framework is model agnostic and can be transferred to outdoor 

settings. In practice, the same three stage structure field to drift reference, drift reference to reference instrument, and the 

composite field to reference transfer can be implemented outdoors by collocating a subset of sensors with a regulatory or 190 

research-grade outdoor reference sensor and by using outdoor meteorology as covariates such as ambient temperature, 

relative humidity, and wind driven dispersion proxies. The concentration regime split is not fixed and should be learned 

from the outdoor dataset using the same data driven rationale that we applied indoors. However, if there is no clear 

difference in the trend in different concentration range, one ML model may be sufficient. The manuscript now states that 

regime boundaries are empirical and should be re-estimated for a new application, e.g., outdoors.  195 

Yes, the workflow should also apply to other particulate matters such as PM1, PM4, and PM10 as well as if a time aligned 

reference for the target parameter is available.  

Technical comments: 

Ln 251: No need to use hyphens for 400-to-500 µg m-3 

Ln 261: If you have used 50 µg m-3 as a threshold, then there is no need to use the symbol ‘~’. 200 

Ln 311: What is ~10? It’s very confusing what you referred to without a unit. 

Response: 

Thank you for these careful technical comments. We have revised the text accordingly. At line 251, “between 400-to-500 

µg m-3” has been corrected to “between 400 and 500 µg m-3”. At line 261, we removed the tilde so that 50 µg m-3 is now 

written without the approximation symbol, consistent with its use as a threshold. At line 311, we clarified that “~10” refers 205 

to an approximate 10% relative error at 600 µg m-3 and now state the unit explicitly in the sentence. 
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Reviewer #2: 210 

Comment 1. Line 146–152: Here, the authors describe which two types of low-cost sensors were used and against 

which reference instrument they were compared. I am wondering whether the low-cost sensors have a similar 

detectable particle size range as the Palas Fidas 200. It could add an additional layer of clarity to mention the particle 

size range for the reference instrument and - if available - also for the low-cost sensors. 

Response: 215 

Thank you for this suggestion.  

We do agree. Yes, the detectable particle size range is similar. We have revised the manuscript to include the 

manufacturer-specified particle size ranges for all instruments. The reference instrument, the Palas Fidas 200, has a 

certified detection range of 0.18–18 µm. The low-cost sensors, the Plantower PMS5003 and the Sensirion SPS30, both have 

a specified particle size detection range of 0.3–10 µm. 220 

While addressing this comment, we also took the opportunity to include the manufacturer-specified measurement 

uncertainties for all instruments to further enhance the technical comparison. The revised text now reflects both points. 

Revised sentences: 

An aerosol spectrometer (i.e., Palas Fidas 200 (detectable particle size of 0.18-18 µg, ranges from 0 to 10,000 µg m-3 with 

9.7% uncertainty for PM2.5 measurements)) was used as the reference-grade instrument for sensor performance evaluation 225 

and calibration. A total of 40 low-cost air quality sensors was deployed within the chamber, settled on a table at near the 

same height with Fidas 200 to minimize positional variability. Our air quality sensors consisted of two different types, 

including 20 units of AirGradient ONE (Model I-9PSL) and 20 units of AtmoCube. AirGradient ONE sensors measure PM2.5 

using a Plantower PMS5003 laser-scattering sensor (manufacturing specification: detectable particle size of 0.3-10 µm, with 

±10 µg m-3 at 0-100 µg m-3 10% at 100-500 µg m-3), and temperature and RH through a Sensirion SHT40 sensor. AtmoCube 230 

sensors detect particulate matter using a Sensirion SPS30 laser-scattering sensor (manufacturing specification: detectable 

particle size of 0.3-10 µm, with ±5 µg m-3 at 0-100 µg m-3, ±10% at 100-1000 µg m-3), temperature using a Sensirion STS35-

DIS, and RH using a Sensirion SHTC3. 

 

 235 
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Comment 2. Line 154 – 155: Hopefully, the team got to enjoy the food afterward. Scientific dedication always 

deserves a good meal. 

Response: 

Thank you for this kind remark. The cooking part did indeed come with some well-deserved meals for the team, and it was 

all conducted in accordance with our laboratory safety and hygiene procedures. 240 

Comment 3. Line 157: The phrase “natural indoor conditions” sounds somewhat contradictory, since indoor 

environments are by definition artificial. It might be clearer to use “realistic” or “typical”. 

Response: 

Yes, we fully agree that “natural indoor conditions” is by definition artificial and thus we have revised the wording 

accordingly. 245 

In the revised manuscript, we now write “typical indoor conditions” at the corresponding location (former line 157), so the 

sentence reads: 

“Temperature and RH levels were allowed to exchange passively with the outdoor air with no mechanic ventilations or 

windows/door opening, mimicking indoor conditions where these parameters may fluctuate.” 

This change clarifies our intended meaning and avoids the contradiction you highlighted. 250 

Comment 4. Line 223–228: I wonder how the threshold of 50 µg m⁻³ was determined. The text mentions that the 

exploratory analysis revealed a bias flip at this concentration, but it could strengthen the explanation to briefly clarify 

why 50 µg m⁻³ was selected as the cutoff. 

Response: Please also see response to Comment 3 by reviewer 1. 

We appreciate this observation. We selected 50 µg m-3 because the scatter plot clearly shows two distinct regimes relative 255 

to the 1:1 line. Below 50 µg m-3, the points form a compact cluster mostly above the 1:1 line for AirGradient ONE sensors, 

indicating a positive sensor bias at low concentrations. Above 50 µg m-3 the points shift below the 1:1 line and the fitted 

regression becomes shallower than the 1:1 reference, which is consistent with signal compression at higher particle loads. 

The data are also unevenly distributed. Most observations fall below about 25 µg m-3 and only a small fraction lie between 

25 and 100 µg m-3. Using 50 µg m-3 as the threshold therefore separates these two behaviors clearly while avoiding further 260 

subdivision of already sparse ranges. We have revised the manuscript to explain this rationale explicitly. 
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Comment 5. Line 251: In the phrase “between 400-to-500 µg m⁻³” the hyphen is unnecessary. It would read more 

clearly as “between 400 and 500 µg m⁻³.” 

Response: 

Thank you for pointing this out. We have revised the wording accordingly and now write “between 400 and 500 µg m-3” to 265 

improve clarity at Line 251. 

Comment 6. Figure 3: The two time series plots showing the raw data from multiple low-cost sensors are displayed as 

3D graphics, which causes a slight misalignment between the sensor readings and the x–y axes, making the 

visualization somewhat confusing. I am not sure this is the most effective way to present the data, although it is not a 

major issue. I would generally recommend adding x-axis tick marks to indicate the days (with major ticks for the 270 

labeled days and minor ones for each individual day) and including grid lines especially in panels (a) and (b), which 

would help improve readability and reduce the visual confusion caused by the three-dimensional layout. 

Response: 

We appreciate you drawing attention to the potential ambiguity in Figure 3. In the revised version we have converted 

panels 3a and 3b into explicit three-dimensional time series plots by adding and labelling a z axis. The x axis now represents 275 

time, the y axis shows PM2.5 concentration in μg m-3, and the z axis indexes the sensors, with tick labels corresponding to 

sensor numbers. All series share a common time coordinate, so timestamps are aligned vertically and the apparent 

separation is clearly along the sensor dimension rather than time. These changes improve readability and remove the 

scope for misinterpretation, while leaving the analysis and conclusions unchanged. 

 280 

 

 

 

 

 285 
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Comment 7. Figures 4 and 5 appear to have different sizes and resolutions. Since both figures are quite similar, it 

would be visually more appealing and consistent to display them at the same size and resolution for better 

comparison and overall presentation quality. 

Response: Thank you for this helpful suggestion. We agree that having Figures 4 and 5 in the same size and resolution 

improves consistency and makes comparison easier. In the revised manuscript, we have adjusted both figures so that they 290 

are now displayed at the same size and resolution to enhance visual clarity and overall presentation quality. Please see the 

revised figure below. 
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Comment 8. I really appreciate the thorough and transparent discussion of the limitations of the proposed method. 

The authors clearly acknowledge the constraints related to environmental conditions, emission sources, and long-

term applicability. An analysis of long-term sensor drift would have provided valuable additional insights into the 295 

robustness of the calibration over extended periods. However, since this aspect is explicitly discussed as a limitation 

and identified as an important direction for future work, I find the current scope appropriate and well-justified for 

this study. 

Response:  

We thank the reviewer for this positive and encouraging comment on our discussion of limitations. We fully agree that an 300 

explicit analysis of long-term sensor drift would provide valuable evidence on the robustness of the calibration over 

extended deployments. In future studies we plan multi-year field deployments to quantify drift and to test automated 

recalibration within the proposed framework.  

 

 305 
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Abstract. Indoor fine particles (PM2.5) exposure poses significant public health risks, prompting growing use of low-cost 340 

sensors for indoor air quality monitoring. However, maintaining data accuracy from these sensors is challenging, due to 

interference of environmental conditions, such as humidity, and instrument drift. Calibration is essential to ensure the accuracy 

of these sensors. This study introduces a novel automated machine learning (AutoML)-based calibration framework to enhance 

the reliability of low-cost indoor PM2.5 measurements. The multi-stage calibration framework connects low-cost field sensors 

to be deployed with intermediate drift-correction reference sensors and a reference-grade instrument, applying separate 345 

calibration models for low (clean air environment) and high (pollution events) concentration ranges. We evaluated the 

framework in a controlled indoor chamber using two different sensor models exposed to diverse indoor pollution sources under 

uncontrolled natural ambient conditions. The AutoML-driven calibration significantly improved sensor performance, 

achieving a strong correlation with reference measurements (R2>0.90) and substantially reducing error metrics (with 

normalized root-mean-square error (NRMSE) and symmetric mean absolute percentage error (sMAPE) roughly halved relative 350 

to uncalibrated data). Bias was effectively minimised, yielding calibrated readings closely aligned with the reference 

instrument. These findings demonstrate that our calibration strategy can convert low-cost sensors into a more reliable tool for 

indoor air pollution monitoring. The improved data quality supports atmospheric science research by enabling more accurate 

indoor PM2.5 monitoring, and informs public health interventions and evaluation by facilitating better indoor exposure 

assessment. 355 

1 Introduction 

Air quality monitoring is essential in understanding exposure to pollutants in both outdoor and indoor environments, which 

informs public health improvement strategies. In particular, indoor air quality (IAQ) has gained attention because people spend 

the majority of their time indoors, yet historically it has been difficult to measure indoor pollutants continuously (Aix et al., 

2023). Traditional approaches for IAQ assessment relied on expensive reference instruments (e.g. filter-based gravimetric 360 

samplers with pumps and impactors) that require expert operation and maintenance. These practical challenges made long-

term indoor monitoring infeasible in most settings (Levy Zamora et al., 2018). Recently, however, dramatic advances in low-

cost sensor technology have transformed this landscape. Compact and affordable low-cost sensors for particulate matter (PM) 

and gases have made it possible to deploy dense monitoring networks and to track air quality in homes, offices, and other 

indoor spaces in real-time. For example, a consumer-grade PM sensor “PurpleAir” is now widely used, and over 5,600 devices 365 

reporting to an online map, and about 18% of these were deployed indoors as of 2020 (Koehler et al., 2023). This surge in 

low-cost sensor use highlights their promise for broad IAQ surveillance and community engagement in air quality 

improvement efforts. 

As low-cost sensors proliferate, ensuring their data quality through proper calibration has become a critical concern. These 

sensors often suffer from biases and interferences that can compromise accuracy. For example, low-cost PM sensors that use 370 

optical scattering can be highly sensitive to environmental factors like relative humidity (RH) and aerosol properties. At high 
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RH (> 80%), condensation on the sensor or particles can lead to overestimation of fine particles (PM2.5) concentrations (Crilley 

et al., 2020; Hagan & Kroll, 2020). Cross-sensitivities are also common, electrochemical gas sensors may respond to non-

target gases (e.g. ozone sensors responding to nitrogen dioxide NO2). Moreover, the performance of air quality sensors can 

degrade over time due to aging and fouling of components (so-called “drift effect”). Studies have showed that low-cost sensors 375 

tend to lose sensitivity or shift baseline after months of use, and electrochemical sensor singles degrades within two years, 

necessitating periodic recalibration (Zaidan et al., 2022; Zimmerman et al., 2018) .  

 

To address these issues, a variety of calibration techniques have been explored previously, ranging from simple corrections to 

machine learning (ML) models. Traditional calibration methods typically include collocating low-cost sensors with a 380 

reference-grade instrument (such as federal reference methods, FRMs) and deriving a statistical correction (Liang, 2021). The 

simplest approach is a linear regression or affine transformation that aligns the sensor readings to the reference values. 

Additional environmental parameters are generally incorporated into multi-variate calibration models, for example, 

temperature and RH are included as independent variables to account for their influence on sensor response (Kang & Choi, 

2024). These methods, including one-point or two-point calibrations and polynomial fits, have been shown to improve sensor 385 

accuracy under stable conditions (Cowell et al., 2023). In practice, laboratories or field researchers may perform a pre-

deployment calibration by exposing sensors to known pollutant concentrations and fitting a curve. However, a calibration 

derived in one setting does not necessarily transfer well to another. Studies have noted that calibrations done in controlled lab 

environments often do not span the full range of real-world conditions, limiting their generality (Kim et al., 2019; Li et al., 

2018; Mousavi & Wu, 2021). Different particle compositions also affect the magnitude of the sensor response (Crilley et al., 390 

2020; Zou et al., 2021). Therefore, in situ calibration is often recommended to capture local environmental effects to yield 

more robust calibration models, allowing necessary adjustments for factors like aerosol composition and meteorological 

conditions (Raysoni et al., 2023). Although the performance of these traditional methods may be suboptimal when sensor 

response relationships are highly non-linear or environment-specific, they are still widely used due to their transparency and 

ease of implementation.  395 

Recently, ML algorithms have been employed to improve calibration accuracy and capture complex sensor behaviours. ML 

calibration methods can simulate non-linear relationships and interactions that traditional linear methods might neglect 

(Villanueva et al., 2023). A range of ML approaches has been applied, including artificial neural networks (ANN), support 

vector regression (SVR), random forests (RF), gaussian process regression (GPR), and even semi-parametric models like 

generalized additive models (GAM) (Mahajan & Kumar, 2020). These data-driven models leverage not only raw readings 400 

from the sensor but often additional features (e.g., RH, temperature, timestamps) to learn the mapping to actual pollutant 

concentrations. Several studies have presented the effectiveness of ML-based calibration. Nowack et al. (2021) compared a 

regularized linear model (ridge regression) against non-linear models (random forest and GPR) for calibrating nitrogen dioxide 

(NO2) and particulate matter with a diameter less than 10 micrometres (PM10) sensors, finding that the machine learning 

approaches achieved high out-of-sample accuracy (frequently coefficient of determination R2>0.8) and outperformed 405 
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traditional multiple linear regression models (Nowack et al., 2021). Mahajan et al. (2019) observed that an SVR model 

provided better calibration performance for PM10 sensors than both linear regression and standard neural networks (Munir et 

al., 2019). Nonetheless, ML-based calibrations also present challenges. They typically require a substantial dataset of sensor 

as well as reference readings for training, and their predictions can be unreliable outside the range of training data. For instance, 

an ANN or RF may struggle to extrapolate to pollutant levels higher than it has been seen during calibration, whereas a 410 

Gaussian process regression model may handle extrapolation with less bias (Nowack et al., 2021). Additionally, the calibration 

model learned at one location may not generalize to a new location (i.e., site transferability issue) unless a wide variety of 

conditions are considered. Despite these limitations, ML-based calibration can significantly improve the performance of low-

cost sensors when carefully applied (Liu et al., 2019; Nowack et al., 2021; Villanueva et al., 2023; Zimmerman et al., 2018).  

While most field calibration studies to date have focused on outdoor deployments, where sensors are co-located with 415 

regulatory-grade monitors or used in ambient networks, a critical gap in the current literature is the calibration of low-cost 

sensors specifically for indoor environment.  

Indoor air, however, can differ markedly from outdoor air in composition and dynamics. Factors like indoor-generated particles 

(from cooking, smoking, etc.), confined space, and higher humidity or temperature fluctuations can all influence sensor 

readings. For example, cooking can release ultrafine particles and organic aerosols in short bursts, causing sharp concentration 420 

spikes. A study reported that indoor PM2.5 levels peaking near 488 µg m-3 during cooking in a home, far exceeding typical 

outdoor concentrations (Cowell et al., 2023). Tobacco smoke similarly produces dense particulate matter and complex 

chemicals in confined spaces. Also, indoor spaces often have limited ventilation, allowing pollutants to accumulate and 

humidity to fluctuate in ways not seen outdoors. These conditions test the limits of calibration models. A calibration model 

trained mostly on moderate outdoor pollution levels may not extrapolate well to the abrupt spikes or ultra-low concentrations 425 

encountered indoors (Koehler et al., 2023). Compounding the issue, gathering extensive indoor calibration datasets is difficult, 

reference-grade indoor measurements are rare because deploying instruments indoors at scale is resource-intensive. As a result, 

there is a paucity of calibration methods tailored to indoor use, and questions remain about how well the algorithms proven in 

ambient air translate to indoor settings. This gap is increasingly problematic as the adoption of indoor air quality sensors grows; 

without reliable calibration, the data from these sensors could mislead users or undermine trust in sensor-based monitoring. 430 

 

In this study, we aim to bridge the gap by introducing a replicable calibration approach for indoor air quality sensors using 

Automated Machine Learning (AutoML). AutoML is an emerging technology that automates the selection of machine learning 

algorithms and hyperparameters to build optimal models (LeDell & Poirier, 2020). Our objective is to develop a calibration 

framework that can be easily applied to low-cost sensor data in indoor environment to improve its accuracy and reliability. 435 

Unlike traditional calibration methods that might rely on fixed formulas or manually crafted ML models, an AutoML-based 

approach automates the selection and optimization of the calibration model. In our framework, sensor readings (e.g., raw PM2.5 

concentrations) are combined with environmental variables (mainly indoor temperature and RH), and an AutoML is employed 

to identify the best-performing calibration model through automated testing of many algorithms and hyperparameter settings. 
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By allowing the AutoML system to explore a wide range of potential models (from linear regressions to complex ensemble 440 

methods), we ensure that the final chosen model is well-suited to the characteristics of the indoor dataset, without requiring 

the user to have advanced machine learning expertise. The proposed approach is replicable in that it provides a general template 

that can be applied to other indoor sensor deployments, that is, researchers or practitioners can feed their co-location data into 

the same AutoML pipeline to obtain a custom calibration model for their specific environment. 

The remainder of this paper is structured as follows. Section 2 describes the experimental setup and calibration methodology, 445 

including indoor air quality sensors, reference instruments, data collection procedures, and the AutoML workflow employed 

to generate calibration models. Section 3 presents the calibration results and discusses the implications of the findings. Section 

4 summarizes the key findings. We also discuss limitations of our approach and provide recommendations for future research. 

2 Method 

2.1 Experimental Configurations 450 

A controlled laboratory experiment was conducted within a custom-built container designed to simulate realistic indoor air 

pollution conditions (Fig. 1(a)). The chamber was equipped with fans to ensure uniform pollutant distribution (Fig. 1(b)), 

which minimized spatial concentration variations, essential for maintaining stable and reproducible conditions during sensor 

evaluation. An aerosol spectrometer (i.e., Palas Fidas 200 (detectable particle size of 0.18-18 µg, ranges from 0 to 10,000 µg 

m-3 with 9.7% uncertainty for PM2.5 measurements)) was employed as the reference-grade instrument to provide high-precision 455 

baseline measurements for sensor performance evaluation and calibration. A total of 40 low-cost air quality sensors was 

deployed within the chamber, settled on a table at near the same height with Fidas 200 to minimize positional variability. Our 

air quality sensors consisted of two different types, including 20 units of AirGradient ONE (Model I-9PSL) and 20 units of 

AtmoCube. AirGradient ONE sensors measure PM2.5 using a Plantower PMS5003 laser-scattering sensor (detectable particle 

size of 0.3-10 µg, with ±10 µg m-3 at 0-100 µg m-3, ±10% at 100-500 µg m-3), and temperature and RH through a Sensirion 460 

SHT40 sensor. AtmoCube sensors detect particulate matter using a Sensirion SPS30 laser-scattering sensor (detectable particle 

size of 0.3-10 µg, with ±5 µg m-3 at 0-100 µg m-3, ±10% at 100-1000 µg m-3), temperature using a Sensirion STS35-DIS, and 

RH using a Sensirion SHTC3.  

To generate diverse and realistic indoor air pollution profiles, three indoor emission sources were introduced into the 

experimental container, including incense sticks, cigarette smoke from 7th to 21st Oct 2024, and cooking emissions (i.e., frying 465 

vegetables, bacon, and fries) from 22nd to 30th Oct 2024 (Fig. 1(b) and Fig. 1(c)). All AirGradient ONE and AtmoCube sensors 

and the Fidas 200 were exposed to the same emission sources simultaneously. Temperature and RH levels were allowed to 

exchange passively with the outdoor air with no mechanical ventilation or windows/door opening, mimicking indoor 

conditions where these parameters may fluctuate.Temperature and RH levels were allowed to exchange passively with the 

ambient environment with no ventilations or windows opening, mimicking natural indoor conditions where these parameters 470 

fluctuate freely. Between each emission event, the container was ventilated until pollutant concentrations returned to 
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background levels (mainly during the night), ensuring that there was no cross-contamination between different test conditions, 

thus generating a reliable dataset for subsequent sensor performance evaluation and calibration. 

 

 475 

Figure 1: Overview of indoor air quality sensor calibration setup: (a) fully renovated half-size container, (b) emission sources and 

analytical instrumentation, and (c) schematic of pollutant generation and instrument placement. 

 

2.2 Automated Machine Learning 

We employed an AutoML framework to develop and select calibration models for the indoor air quality sensors. The AutoML 480 

approach systematically generate a variety of (i.e., 30 in this study) candidate models and optimiseds their hyperparameters. 
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Then the AutoML algorithm  would identify a model that best maps the sensor outputs to the reference concentrations. In our 

implementation, the input features to each model included the sensor’s raw readings, indoor temperature, and RH, while the 

target output was the PM concentration measured by Fidas 200. The AutoML process explored multiple regression algorithms, 

including gradient boosting machines (GBM), distributed random forest (DRF), and extreme gradient boosting (xgboost), to 485 

identify a model that best maps the sensor outputs to the reference concentrations.  

This studyA typical training strategy was applied, with 80% of dataset allocated for model training and the remaining 20% 

reserved for performance testing.  used H2O’s splitFrame with a fixed seed (1014) to allocate 80% of the rows to training and 

20% to a held-out test set. During AutoML, we used k-fold cross-validation (5-fold) on the training portion for model selection 

(sorted by root mean square error (RMSE)). The held-out 20% test set was never used for training or tuning; we report both 490 

cross-validated training metrics and external test metrics (see Table S1). This choice ensured both train/test and cross-

validation folds contained comparable concentration distributions while avoiding temporal leakage, as the experiment 

container was well-mixed and emission episodes were interleaved. 

Evaluation metrics were calculated for each candidate to guide the selection of the best model. We primarily used the RMSE, 

normalized root mean square error (NRMSE), mean absolute error (MAE), symmetric mean absolute percentage error 495 

(sMAPE), mean bias error (MBE), index of agreement (IOA), and R2 as the performance criteria. RMSE quantified the average 

magnitude of prediction errors in units matching the observed data, with lower values reflecting smaller deviations. We also 

use NRMSE to provide a dimensionless measure of error that allows model performance to be compared fairly across different 

concentrations.  MAE measured the average absolute difference between observed and predicted values, providing an 

interpretable measure of accuracy independent of error direction. We also calculated sMAPE because it expresses errors as a 500 

bounded percentage relative to both observed and predicted values, making performance more comparable across different 

concentration ranges and less sensitive to extreme values. MBE provides the average bias in the predictions, where positive or 

negative values indicated overestimation or underestimation, respectively. IOA indicates the overall level of agreement (from 

-1 to 1) between reference measurements and predicted values, with 1 denoting perfect agreement (ideal model performance), 

0 with no agreement (predictions no better than simply predicting the observed average), and -1 with complete disagreement 505 

or systematic inverse relationship (Willmott et al., 2011). R2 (values in [0, 1]) indicates the proportion of the variance in the 

reference measurements explained by the model, with values closer to 1 indicating a stronger linear association. The formulas 

are represented below: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑜𝑖 − 𝑝𝑖)

2𝑛
𝑖=1           (1) 

NRMSE = 
√

1

𝑛
∑ (𝑜𝑖−𝑝𝑖)2𝑛

𝑖=1

𝑜̅
                                                                                                                                                    (2) 510 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑜𝑖 − 𝑝𝑖|

𝑛
𝑖=1                                                                 (23) 
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sMAPE = 
100

𝑛
∑

2|𝑜𝑖−𝑝𝑖|

|𝑜𝑖|+|𝑝𝑖|
𝑛
𝑖=1                                                                                                                                                   (4) 

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑜𝑖 − 𝑝𝑖)

𝑛
𝑖=1            (35) 

𝐼𝑂𝐴 = {
1 −

∑ |𝑝𝑖−𝑜𝑖|𝑛
𝑖=1

𝑐 ∑ |𝑜𝑖−𝑜̅|𝑛
𝑖=1

, 𝑤ℎ𝑒𝑛 ∑ |𝑝𝑖 − 𝑜𝑖|
𝑛
𝑖=1 ≤ 𝑐 ∑ |𝑜𝑖 − 𝑜̅|𝑛

𝑖=1

𝑐 ∑ |𝑜𝑖−𝑜̅|𝑛
𝑖=1

∑ |𝑝𝑖−𝑜𝑖|𝑛
𝑖=1

− 1, 𝑤ℎ𝑒𝑛 ∑ |𝑝𝑖 − 𝑜𝑖|
𝑛
𝑖=1 > 𝑐 ∑ |𝑜𝑖 − 𝑜̅|𝑛

𝑖=1   
      (46) 

𝑅2 = 1 −
∑ (𝑜𝑖−𝑝𝑖)2𝑛

𝑖=1

√∑ (𝑜𝑖−𝑜̅)2𝑛
𝑖=1

           (57) 515 

here 𝑜𝑖 denotes the i-th value from the reference dataset, 𝑝𝑖 is the i-th predicted value from the calibration models, 𝑛 represents 

the total number of data points in the dataset, and 𝑜̅ is the arithmetic average of all reference measurements.  

After training the model, AutoML ranks candidates on its leaderboard by the RMSE obtained from k‑fold cross‑validation on 

the training set (Table S1). The highest‑ranked model (Leader Rank 1) is therefore the model with the smallest cross‑validated 

RMSE among all candidates. We adopt this criterion to (i) keep the 20% test set independent of model selection (avoiding 520 

optimistic bias), (ii) obtain a more stable, lower‑variance estimate by averaging errors across folds rather than relying on a 

single split, and (iii) prioritize a loss that penalizes large deviations, which is appropriate for PM2.5 calibration (RMSE in µg m-

3). After selection, all performance reported in the Results refers to the independent test set. Among all candidate models, 

stacked ensemble models show superior stability and predictive accuracy and was therefore selected as the final calibration 

model in this study (Table S1). 525 

2.3 Calibration Procedure 

To ensure reproducible calibration of the low-cost sensors against the Fidas 200, we first established a three-step protocol that 

accounts for variability among sensor units while maintaining consistency with reference measurements. The approach is 

designed to be scalable for large sensor networks in real-world indoor monitoring applications. The key steps include:  

(1) Field sensor-to-“Drift–reference sensor” calibration (f2d). A subset of five sensors from each sensor type 530 

(AtmoCube and AirGradient ONE) was randomly selected to serve as “drift–reference sensors”. These drift–reference 

sensors were used exclusively for calibration purposes and were not deployed for field indoor monitoring. The 

remaining sensors, referred to as “field sensors”, were intended for operational deployment. We employed AutoML 

to develop calibration models that map the field sensors’ raw readings to the corresponding averaged measurements 

of the drift–reference sensors at each time step:  535 

𝑑𝑗 ̂(𝑡) = ℱ𝑗
𝑓2𝑑

(𝑥𝑗(𝑡))         (86) 

ℱ𝑗
𝑓2𝑑

= arg min
 𝑓∈ℱ

∑ [𝑓 (𝑥𝑗(𝑡)) − 𝑑̅(𝑡)]
2

𝑁
𝑡=1        (97) 
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𝑥𝑗(𝑡) = [𝑠𝑗(𝑡), 𝑇𝑗(𝑡), 𝑅𝐻𝑗(𝑡)]
𝑇
        (810)

 𝑑̅(𝑡) = ∑ 𝑑𝑘(𝑡)𝐾
𝑘=1          (911) 

where 𝑑𝑗̂(𝑡) is calibrated PM concentration for field sensor 𝑗 (1, …, M) at a time index of calibration record 𝑡 (1, …, 540 

N); 𝑥𝑗(𝑡) represents raw sensor reading, temperature, and RH; 𝑑̅(𝑡) denotes mean of 𝐾(=5) drift–reference sensors; 

and ℱ𝑗
𝑓2𝑑

 represent best-performing model chosen for sensor 𝑗 (GBM in this study) from pool of AutoML candidate 

models ℱ during this f2d process. Note that here 𝑇𝑗(𝑡) and 𝑅𝐻𝑗(𝑡) should be calibrated against averaged values of 

the drift–reference sensors using a simple univariate transfer function before being used as input features. 

(2) “Drift–reference sensor” to “Reference instrument” calibration (d2r). The averaged readings from drift–545 

reference sensors were calibrated against Fidas 200 following similar procedure above: 

𝑟̂(𝑡) = ℱ𝑑2𝑟(𝑧(𝑡))         (1012) 

ℱ𝑑2𝑟 = arg min
 𝑓∈ℱ

∑ [𝑓(𝑧(𝑡)) − 𝑟(𝑡)]
2𝑁

𝑡=1        (1113) 

𝑧(𝑡) = [𝑑̅(𝑡), 𝑇̅(𝑡), 𝑅𝐻̅̅ ̅̅ (𝑡)]
𝑇
        (1214) 

here 𝑟̂(𝑡) represents calibrated PM concentration for drift–reference sensors; 𝑟(𝑡) is PM concentration measured by 550 

the reference instruments (Fidas 200); 𝑧(𝑡) represents a vector of 𝑑̅(𝑡), and calibrated 𝑇̅(𝑡) and 𝑅𝐻̅̅ ̅̅ (𝑡) (against 

Fidas 200); and  ℱ𝑑2𝑟 denotes best-performing model for the d2r calibration.  

OOur exploratory analysis (Fig. S1) revealed a clear threshold at 50 µg m-3 where the sensor bias flips. We chose this 

value because the scatter plot of sensor versus reference measurements shows two distinct regimes relative to the 1:1 

line. At or below 50 µg m-3, the data cloud is tight and lies mostly above the 1:1 line, which indicates a positive sensor 555 

bias (overestimation) at low concentrations. Conversely, above 50 µg m-3 the cloud shifts below the 1:1 line, and the 

fitted trend becomes flatter than the 1:1 reference, a pattern consistent with signal compression and underestimation 

at higher particle loads. This split is further justified by the data distribution; most data lie below about 25 µg m-3, 

with only a small number of points between 25 and 100 µg m-3. A split at 50 µg m-3 produces two interpretable 

regimes that align with the observed change in bias, keeps the rare high-concentration events together, and avoids 560 

slicing the dense background data into very small groups, which would reduce model stability. Therefore, we applied 

a stratified calibration strategy, training separate AutoML models for the low (<50 µg m-3) and high (50–600 µg m-3) 

regimes in both the field‑to‑drift (f2d) and drift‑to‑reference (d2r) stages. This allows us to tailor the calibration to 

the specific bias profile of each regime and thereby minimises systematic error across the sensor’s full operating range. 

ur exploratory analysis (Fig. S1) revealed a clear threshold at 50 µg m-3 where the sensor bias flips. The sensors tend 565 

to overestimate Fidas 200 measurements below but underestimate them above the threshold. Therefore, we applied 

stratified calibration strategy, training separate AutoML models for the low (<50 µg m-3) and high (50–600 µg m-3) 

regimes in both the field‑to‑drift (f2d) and drift‑to‑reference (d2r) stages. It allows us to tailor the calibration to the 

specific bias profile of each regime and thereby minimises systematic error across the sensor’s full operating range. 
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(3) Field sensor-to-“Reference instrument” calibration (f2r). For every time stamp 𝑡, the field sensor’s raw reading 570 

is first converted to a drift–reference proxy as in Step (1) f2d. That proxy, combined with calibrated temperature 

and RH (against Fidas 200), is then fed into the calibration models in Step (2) d2r to calculate concentrations 

directly comparable to the reference dataset: 

𝑟𝑗̃(𝑡) = ℋ𝑗 (𝑥𝑗(𝑡)) ≡ (ℱ𝑑2𝑟 ∘ ℱ𝑗
𝑓2𝑑

) (𝑥𝑗(𝑡))      (1315) 

where 𝑟𝑗̃(𝑡) denotes final PM concentration of sensor 𝑗 aligned to Fidas 200; and ℋ𝑗 represents shorthand for the 575 

overall transfer function ℱ𝑑2𝑟 ∘ ℱ𝑗
𝑓2𝑑

.  

The sensor performance drift over long deployments, the calibration derived pre-deployment gradually becomes less reliable. 

After retrieval we therefore rebuild the f2d and d2r models with the post-deployment dataset, obtaining a second set of 

predictions 𝑟𝑗 
’̃(𝑡). For any timestamp 𝑡 within the deployment period 0 ≤ 𝑡 ≤ 𝐷 (with 𝐷 the total duration), we fuse the two 

predictions with a simple linear weight that shifts emphasis from the pre- to the post-deployment model: 580 

𝑟𝑗 ∗ (𝑡) = (1 −
𝑡

𝐷
) × 𝑟𝑗̃(𝑡) +

𝑡

𝐷
× 𝑟𝑗 

’̃(𝑡)         (1416) 

thus, 𝑟𝑗 ∗ (𝑡) equals the pre-deployment estimate at the campaign start (𝑡 = 0), the post-deployment estimate at the end (𝑡 =

𝐷), and a smoothly blended value in between, providing a first order correction for drift.  

The overall calibration framework is shown schematically in Fig. 2.  

3 Results and Discussions 585 

3.1 Low-cost sensor raw readings 

Figure 3 compares the timeseries responses of the two sensor types, from AirGradient ONE and AtmoCube to indoor emission 

events. During the combustion episodes (cigarette smoking and incense-burning) that occurred between 12th and 22nd October 

2024, the AirGradient ONE sensors repeatedly recorded uncalibrated PM2.5 concentrations exceeding 500 µg m-3, and all units 

tracked those peaks almost identically, showing high intra-sensor coherence and a high sensitivity to combustion-derived 590 

particles. The AtmoCube sensors followed the same temporal pattern but with systematically lower maximum concentrations 

compared to the AirGradient ONE sensors, with peak readings between 400 and 500 µg m-3between 400-to-500 µg m-3. 

Cooking activities generated far lower PM concentrations. Routine meal preparation produced brief excursions of ~30 µg m-3 

on both sensor types, while a single spike of 80 µg m-3 on 30th October consistent with braise and fry high-fat foods that known 

to generate abundant aerosols (Xu et al., 2024). Therefore, although both AirGradient ONE and AtmoCube sensors correctly 595 

identified the timing of each emission episode, AirGradient ONE consistently reported higher absolute concentrations, 

particularly for the most intense combustion plumes than those of AtmoCube sensors. 
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Figure 2: Flowchart of the indoor air quality sensor calibration strategy. The flowchart used a fixed colour scheme to 

distinguish the two stages of the workflow. Blue arrows and lines represent the main training and prediction path that spans 600 

Processes 1–3. The brown arrows and lines represent the post-deployment recalibration path, which is executed after sensor 

retrieval to correct drift using the post-deployment dataset. The resulting predictions are passed through Process 3 to obtain 

calibrated readings mapped to the reference instrument. 

 

The inter-type relationship is summarised in Fig. S2, showing the averaged drift-reference PM2.5 measurements from 605 

AirGradient ONE and AtmoCube. At concentrations below ~50 µg m-3 (hereafter denotes as “below-50”) (Fig. S2(a)), 

AirGradient ONE readings lay predominately above the 1:1 reference line, showing a positive bias relative to AtmoCube 

sensors. Once concentrations exceeded ~50 µg m-3 (denotes as “above-50”) (Fig. S2(b)), this coherence vanished and the 

paired data became more scattered, indicating that the two sensor types diverge progressively with increasing particle load. 
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Calibration that reconciles these type- (brand) specific sensitivities is therefore essential for any application that requires 610 

accurate absolute PM2.5 values. 

 

Sensor-measured environmental parameters exhibited similar systematic offsets (Fig. S3 for temperature and Fig. S4 for RH). 

Throughout the calibration, AirGradient ONE temperatures were 1.2–1.8°C higher than those from AtmoCube (Fig. S3(a) and 

S3(b)), where paired data cluster above the identity line (slope=1.01, R2=0.94). AirGradient ONE measured 4–7 % lower than 615 

AtmoCube sensors for RH maxima, whereas at minima AirGradient ONE read 3–5 % higher, as in Fig. S4(a) and S4(b). Intra-

type variability reached ~2°C for AirGradient ONE sensors but was ≤1.5°C for AtmoCube sensors, and both types recorded 

the same diurnal trend (Fig. S3(c) and S3(d)). RH measurements ranged from 47% to 89% (Fig. S4(c) for AirGradient ONE 

and 4(d) for AtmoCube). AirGradient ONE sensors exhibited tighter clustering (intra-type variability ≤5%) than AtmoCube 

(≤10%), but they showed a systematic pattern.  620 
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Figure 3: Timeseries of (a) PM2.5 from AirGradient ONE sensors, (b) PM2.5 from AtmoCube sensors, and (c) Averaged 

concentration from drift-reference sensors.  625 
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3.2 Raw readings from drift–reference sensors vs. Fidas 200 measurements 

Figures 4(a) and 4(c) shows scatter plots of raw and calibrated averaged PM2.5 concentrations from AirGradient ONE and 

AtmoCube drift-reference sensors against the Fidas 200 measurements in the below-50 regime, representative of relatively 

low air pollution. Before calibration, both AirGradient ONE and AtmoCube sensors exhibited moderate linear correlations 630 

with the Fidas 200, with R2 values of 0.65 for the AirGradient ONE and 0.57 for the AtmoCube, respectively (Table 1). 

Although both sensor types clustered close to the 1:1 reference line, their slopes reveal systematic biases. AirGradient ONE 

readings lay predominately above the line with a regression slope of 1.57, producing an average 20% overestimation relative 

to the Fidas 200, while AtmoCube readings fell below with a slope of 0.64, corresponding to a 55.6% underestimation. 

Extending the analysis to the above-50 regime (Figs. 4(b) and 4(d)) highlights further divergence. Here, AirGradient ONE 635 

sensors had a stronger correlation with the reference (R2=0.78), but its slope decreased to 0.82, reflecting a slight 3.1% 

underestimation during high pollution episodes. In contrast, AtmoCube sensors had a lower slope of 0.50 and an R2 of 0.64, 

showing a substantial 38.8% underestimation. Therefore, both types of sensor experience signal compression at higher particle 

loads, yet the magnitude of this non-linearity is sensor specific. 

RH can significantly influence the measurement accuracy of particles from indoor air quality sensors (Fig. S5). For 640 

AirGradient ONE (Fig. S5(a) and S5(b)), PM2.5 readings above the 1:1 reference line at low concentrations consistently 

associated with periods of high RH, implying that hygroscopic growth of particles at high humidity is a primary driver of 

AirGradient ONE’s low end overestimation (Liang, 2021). Conversely, AtmoCube showed no systematic RH pattern 

(Fig. S5(c) and S5(d)); its scatter remained broadly uniform across the humidity spectrum, indicating lower RH sensitivity. 

This disparity may reflect differences in internal RH-compensation algorithms implemented by each manufacturer. 645 

Table 1: Statistical performance of raw and calibrated AirGradient ONE and AtmoCube drift–reference sensors relative to the 

Fidas 200 measurements for PM2.5, stratified by concentration regime (below-50, above-50) and for the combined dataset.  

Sensor Subset Stage 
n (sample 

size) 
R2 

RMSE 

(NRMSE) 

MAE 

(sMAPE) 
MBE IOA 

AirGradient 

ONE 

Below 50 µg m-3 
Raw 483 0.65 6.4 (98.5) 3.7 (46.1) -1.8 0.49 

Calibrated 483 0.69 3.8 (32.6) 1.5 (22.8) -0.1 0.80 

Above 50 µg m-3 
Raw 64 0.78 91.3 (32.5) 69.6 (36.5) -40.9 0.80 

Calibrated 64 0.92 59 (23.9) 44.6 (31.6) -45.4 0.87 

All concentration range 
Raw 547 0.95 31.8 (82.3) 11.4 (44.9) -3.2 0.90 

Calibrated 547 0.97 20.5 (59.6) 6.5 (23.8) -0.6 0.94 

AtmoCube Below 50 µg m-3 
Raw 499 0.57 

12.4 

(140.3) 
5.1 (82.2) -0.044.89 0.63 

Calibrated 499 0.80 7.4 (122) 2.8 (80.8) 0.03-0.27 0.79 
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Above 50 µg m-3 
Raw 48 0.64 

182.7 

(52.5) 

160.5 

(62.6) 
-150.8 0.48 

Calibrated 48 0.76 91.1 (23.3) 72.3 (25.5) 2.4-27.7 0.76 

All concentration range 
Raw 547 0.90 55.4 (143) 18.7 (80.4) -17.7 0.84 

Calibrated 547 0.94 27.9 (67.7) 8.9 (75.9) 0.3-2.68 0.92 

 

3.3 Calibrated readings from drift-reference sensor vs. Fidas 200 measurements 

In the below-50 regime, calibrated AirGradient ONE drift-reference readings show slight stronger correlation with Fidas 200 650 

measurements (R2=0.69) compared to their raw values (Fig. 4(a)), and errors are relatively small and have been improved 

(NRMSE=3.8 µg m-332.6%, MAEsSMAPE=1.5 µg m-322.8%) as shown in Table 1. The residuals present negligible 

systematic bias (MBE=-0.1 µg m-3), indicating great improvements from systematic overestimation under low PM2.5 

concentration before calibration. After calibration, the sensor performance meets the recommended criteria of R2 ≥ 0.70 and 

RMSE ≤ 7 µg m-3 (Zamora et al., 2022). At above-50 concentrations (Fig. 4(b)), the improvement in the performance of 655 

calibrated AirGradient ONE sensors was even more significant, with R2 and IOA achieving about 0.92 and 0.87, respectively. 

Absolute errors increaseThe errors also hashave been improved (NRMSE = 59 µg m-323.9%, MAEsMAPE = 44.6 µg m-

331.6%) as expected but and remain proportionally reasonable (e.g., ~10% uncertainty at 600 µg m-3). A slight negative bias 

(MBE = -54.4 µg m-3) indicating a small underestimation tendency at extreme high concentrations, but high IOA value (0.87) 

show accurate tracking of both timing and magnitude. 660 

Figure S6 show the impact of RH on calibrated readings of AirGradient ONE sensors for the below-50 (Fig. S6(a)) and the 

above-50 (Fig. S6(b)) concentration regimes, respectively. Across both concentration ranges the residuals show no systematic 

humidity bias, indicating that the AutoML model (using RH and temperature as covariates) mitigated hygroscopic growth 

influences that typically inflate optical counts above 70–80% RH (Ko et al., 2024). The small scatter evident at extreme high 

RH levels likely reflects limited training data but does not compromise agreement with the reference, corroborating reports 665 

that RH-aware calibration can suppress sensor error by around 20% (Liang, 2021). 

Calibration likewise improved AtmoCube agreement with the Fidas 200 across the full concentration range (Figs. 4(c) 

and 4(d)). Overall AtmoCube sensors achieved R2=0.94 and IOA=0.92 (Table 1). In the below-50 clean air conditions, the 

calibrated AtmoCube sensors have R2=0.80, and such slightly lower correlation relative to those of high pollution levels is 

expected as sensor signals approach the noise floor at very low pollution levels (Johnson et al., 2018). RMSE (7.4 µg m-3) and 670 

MAE (2.8 µg m-3) are relatively small, and the mean bias is negligible, indicating that the calibration mitigates the pronounced 

low-end under-reading observed pre-calibration. At high PM2.5 levels, calibrated AtmoCube sensors still show good agreement 

with Fidas 200 as data points distribute along the 1:1 line but with slightly reduced R2 (0.76). A possible explanation is that at 

very high particle loading the sensor’s optical detector response starts to become non-linear or approaches a saturation point 

(Kelly et al., 2017), introducing larger random errors. The residual bias is minor (MBE=2.427.7 µg m-3), indicating a small 675 
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over-read under very high pollution. Figure S6(c–d) shows that, after calibration, AtmoCube residuals remain almost flat 

across the full RH ranges in both low and high concentration regimes. Even during episodes exceeding 80 % RH, no coherent 

over- or under-reading trend was found, indicating that the calibration has effectively reduced humidity interference. 

 

Figure 4: Raw and calibrated PM2.5 of drift-reference sensors compared with the Fidas 200 measurements, (a) 680 

AirGradient ONE sensors within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (c) 

AtmoCube sensors within below-50 regime; (d) AtmoCube sensors within above-50 regime. 

 

3.4 Calibrated readings from field sensors vs. Fidas 200 measurements 

The multi-stage calibration strategy effectively improved the performance of field sensors against the reference-grade 685 

instrument Fidas 200 (Fig. 5 and Table 2). Within the below-50 regime, AirGradient ONE sensors showed a RMSE of 4 µg m-

3 and MAE of 1.70 µg m-3, and their correlation R2 increased from 0.45 to 0.64. By contrast, AtmoCube sensors achieved a 
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stronger linear match (R2=0.80) despite relatively higher residual scatter (RMSE=7.5 µg m-3) (Fig. 5(c)), consistent with their 

finer baseline sensitivity to subtle particulate variations. Performance at above-50 concentration regime indicated that both 

types of indoor air quality sensor synchronised well with the timing of pollution events while their error signatures differed. 690 

AirGradient ONE sensors showed moderate overestimation (MBE=3.9 µg m-3, RMSE=67.1 µg m-3, NRMSE=23.9%), while 

AtmoCube sensors displayed similar higher systematic bias (MBE=3.728.6 µg m-3) but and higher variability 

(RMSE=91.5 µg m-3, NRMSE=24.5%). These differences may arise from different sensor components, for example, 

AtmoCube units employed shorter optical path length and proprietary firmware averaging while AirGradient ONE sensors 

used longer path and raw count reporting of the Plantower PMS5003. Importantly, our calibration strategy reconciled 695 

hardware-driven disparities between sensor types. Both types of sensors agreed well with Fidas 200 measurements after 

calibration, with IOA increasing from 0.90 to 0.94 for AirGradient ONE and from 0.84 to 0.92 for AtmoCube sensors.  

To evaluate the multi-step calibration strategy itself rather than the choice of models, we compared AutoML models with 

multivariate regressions (Fig. S7). Figure S7(a) and Figures S8 shows that AutoML models produced better performance 

statistics, showing enhanced predictive accuracy and reliability, particularly when evaluating error distribution across different 700 

PM2.5 concentration regimes. MAE (Fig. S7(b)) reduced by 15-40% across different concentration ranges, with the largest 

improvement happened in the 25–50 µg m-3. Such improvements could be due to the ability of AutoML to incorporate 

interaction terms (RH, temperature) that influence the sensor light-scattering response (Liang, 2021). However, there is only 

one exception for AtmoCube sensors in the over 100 µg m-3, in which the linear model has a smaller sMAPE. This is might 

due to the limited number of data in the high concentration range. 705 
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Figure 5: Raw and calibrated PM2.5 of field sensors compared with the Fidas 200 measurements, (a) AirGradient ONE 

sensors within below-50 regime; (b) AirGradient ONE sensors within above-50 regime; (c) AtmoCube sensors within 

below-50 regime; (d) AtmoCube sensors within above-50 regime. 710 
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Table 2: Statistical performance of raw and calibrated AirGradient ONE and AtmoCube field sensors relative to the Fidas 200 

measurements for PM2.5, stratified by concentration regime (below-50, above-50) and for the combined dataset. 720 

Sensor Subset Stage n R2 
RMSE 

(NRMSE) 

MAE 

(sMAPE) 
MBE IOA 

AirGradient 

ONE 

Below 50 µg m-3 
Raw 483 0.45 7.3 (102) 4.3 (44.6) 2.32.02 0.41 

Calibrated 483 0.64 4 (60.9) 1.7 (26.9) 0.1 0.77 

Above 50 µg m-3 
Raw 64 0.86 83.1 (33.8) 62.2 (37.9) -22.242.5 0.82 

Calibrated 64 0.89 67.1 (23.9) 48.7 (29.1) 3.9 0.86 

All range 
Raw 547 0.94 29.2 (85.6) 11 (43.8) -3.190.6 0.90 

Calibrated 547 0.96 23.3 (60.2) 7.2 (27.1) 0.5 0.94 

AtmoCube 

Below 50 µg m-3 
Raw 499 0.75 

12.4 

(141.6) 
4.9 (77.4) -4.617.8 0.64 

Calibrated 499 0.80 7.5 (82.1) 3.6 (22.7) 0.2-0.15 0.77 

Above 50 µg m-3 
Raw 48 0.69 

180.3 

(53.5) 

158.2 

(64.1) 
-15247 0.48 

Calibrated 48 0.76 91.5 (24.5) 72.6 (26.7) 3.7-28.6 0.74 

All concentration range 
Raw 547 0.88 54.7 (146) 18.3 (76.2) -17.81 0.84 

Calibrated 547 0.94 28.1 (67.9) 9.6 (23.1) 0.5-2.65 0.92 

 

3.5 Limitations and implications 

Our framework significantly improved the low-cost sensors performance under different concentrations. But there are still 

some limitations, and further research is needed on the generalizability of the model and calibration strategies. First, the training 

data were collected in a single experimental container under temperate-climate humidity (with RH between 45–85%) and may 725 

not capture sensor behaviour in very moist interiors. Second, the present study did not capture every indoor emission source, 

particularly those with moderate emission levels. We do not know whether the sensors will be sensitive to particle types (e.g., 

particles from different sources). Third, evaluating sensor drift demands the months-to-years timescales of real deployments 

and was not evaluated. Future work should gather data from warmer, high-humidity homes to capture sensor behaviour at 

elevated RH conditions, consider additional moderate emission sources such as off-gassing materials, and run multi-year field 730 

trials to quantify drift and test automated recalibration. These steps will increase the robustness and evaluate long-term 

accuracy of the calibration strategy. However, the thresholds delineating “low” and “high” categories are derived from 

empirical observations within the analysed dataset. Accordingly, researchers are encouraged to initially assess their own data 

and adapt this strategy as necessary to ensure its applicability. 

The implications of our findings are significant for atmospheric science and indoor air quality management, especially in the 735 

context of the growing use of low-cost sensors for exposure assessment and public health applications. By showing that 

inexpensive sensors can be calibrated to yield high-quality data indoors, this study helps bridge the important gap between 

indoor and outdoor air pollution monitoring. Furthermore, the application of AutoML in sensor calibration showcases the value 



34 

 

of advanced data-driven techniques in atmospheric measurements. AutoML could be used to periodically re-calibrate hundreds 

of sensors automatically as new reference data become available, maintaining network accuracy with minimal human 740 

intervention. This is particularly relevant for community science projects or indoor air quality campaigns where resources for 

manual calibration are limited. By improving the reliability of indoor air measurements, the study contributes to a future where 

continuous indoor air quality monitoring is feasible on a large scale, driving better-informed strategies to safeguard public 

health in the spaces where people live and work. 

The regime thresholds used in this study were derived empirically from our indoor dataset and should not be assumed 745 

for other indoor cases, outdoors, or for other pollutants. Users should re-estimate cut points from their own co-located 

data and retrain the staged models with environment appropriate features.  

4 Summary 

In this work, we introduced an automated machine learning (AutoML) calibration framework for enhancing the performance 

of low-cost indoor air quality sensors. The AutoML-calibrated sensors met or exceeded study objectives by significantly 750 

improving measurement accuracy for fine particles (PM2.5) across all concentration regimes. The multi-stage calibration 

workflow achieved tight agreement with reference measurements (from Fidas 200), evidenced by substantial increases in 

coefficient of determination (R2) and reductions in error metrics. In the low-concentration regime (below 50 µg m-3), R2 

improved from moderate values (~0.6 pre-calibration) to approximately 0.85 post-calibration, with root-mean-square error 

(RMSE) dropping by roughly half (e.g., from ~5 to ~3 µg m-3), as well as the NRMSE. At higher concentrations (above 50 755 

µg m-3), gains were even more pronounced, with R2 approaching or exceeding 0.90 (near reference-grade performance) and 

RMSE falling from tens of µg m-3 to single digits. Similarly, mean absolute error (MAE) and symmetric mean absolute 

percentage error (sMAPE) declined markedly, and mean bias error (MBE) was effectively eliminated, shifting from 

significant systematic biases (e.g., 5–10 µg m-3 over- or underestimation) to nearly zero. These results show that the 

calibrated sensors reliably resolve indoor particulate levels at background concentrations and during elevated pollution 760 

events, closely tracking the reference instrument across the full range. These findings confirm that our multistage calibration 

effectively eliminated sensor bias under varied indoor conditions and emission sources. The initial stage corrected baseline 

drift. Subsequent stages used AutoML to address scatter caused by relative humidity and nonlinear responses at high particle 

concentrations. These factors are often overlooked in simpler methods. AutoML efficiently selected the best models for each 

phase, removed the need for manual tuning, and revealed subtle patterns in the data. By integrating AutoML into a structured 765 

multistage process, we achieved robust bias correction across scenarios, yielding accurate, precise measurements well-suited 

for indoor air quality monitoring. 
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Supplementary Materials 

 

In this file, AirGriadient is denoted as AG, and AtmoCube is denoted as AC. 

 

Table S1. Top 10 AutoML model training statistics for AirGradient sensors 

Model_Sub

set 
Model_ID Test_RMSE Test_MAE Test_R2 Train_RMSE Train_MAE Train_R2 LB_RMSE LB_MAE LB_mean_residual_deviance LB_Rank 

Low (<50 

µg/m³) 

StackedEns

emble_Best

OfFamily_1

_AutoML_1

_20251008_

144707 

3.452 1.45 0.569 3.668 1.14 0.721 4.562 1.558 20.816 1 

Low (<50 

µg/m³) 

DeepLearni

ng_grid_2_

AutoML_1_

20251008_1

44707_mod

el_4 

3.414 1.505 0.579 4.185 1.312 0.637 4.607 1.604 21.227 2 

Low (<50 

µg/m³) 

DeepLearni

ng_grid_2_

AutoML_1_

20251008_1

44707_mod

el_3 

3.673 1.955 0.512 4.825 2.03 0.517 4.642 1.548 21.544 3 

Low (<50 

µg/m³) 

DeepLearni

ng_grid_1_

AutoML_1_

20251008_1

44707_mod

el_3 

3.765 1.492 0.488 4.682 1.462 0.546 4.649 1.558 21.612 4 
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Low (<50 

µg/m³) 

DeepLearni

ng_grid_1_

AutoML_1_

20251008_1

44707_mod

el_2 

3.54 1.724 0.547 4.535 1.584 0.574 4.673 1.946 21.838 5 

Low (<50 

µg/m³) 

DeepLearni

ng_grid_3_

AutoML_1_

20251008_1

44707_mod

el_4 

3.491 1.681 0.56 3.937 1.373 0.679 4.683 1.735 21.934 6 

Low (<50 

µg/m³) 

DeepLearni

ng_grid_2_

AutoML_1_

20251008_1

44707_mod

el_1 

3.59 1.53 0.534 1.352 0.93 0.962 4.685 1.681 21.946 7 

Low (<50 

µg/m³) 

DeepLearni

ng_grid_3_

AutoML_1_

20251008_1

44707_mod

el_3 

3.583 1.815 0.536 4.691 1.862 0.544 4.689 1.78 21.982 8 

Low (<50 

µg/m³) 

DeepLearni

ng_grid_1_

AutoML_1_

20251008_1

44707_mod

el_4 

3.553 1.52 0.544 4.532 1.398 0.574 4.698 1.504 22.067 9 

Low (<50 

µg/m³) 

StackedEns

emble_All

Models_1_

AutoML_1_

20251008_1

44707 

3.41 1.406 0.58 3.463 1.092 0.751 4.749 1.54 22.556 10 
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High (≥50 

µg/m³) 

DeepLearni

ng_grid_3_

AutoML_2_

20251008_1

45912_mod

el_3 

85.74 67.492 0.73 77.232 61.739 0.862 85.468 67.948 7304.795 1 

High (≥50 

µg/m³) 

StackedEns

emble_Best

OfFamily_1

_AutoML_2

_20251008_

145912 

81.534 62.367 0.755 54.901 45.028 0.93 86.229 65.222 7435.452 2 

High (≥50 

µg/m³) 

DeepLearni

ng_grid_1_

AutoML_2_

20251008_1

45912_mod

el_2 

65.676 55.946 0.841 73.635 54.655 0.875 86.233 66.143 7436.123 3 

High (≥50 

µg/m³) 

DeepLearni

ng_grid_2_

AutoML_2_

20251008_1

45912_mod

el_3 

84.987 65.181 0.734 85.45 67.694 0.831 87.139 67.996 7593.221 4 

High (≥50 

µg/m³) 

StackedEns

emble_All

Models_1_

AutoML_2_

20251008_1

45912 

66.179 56.598 0.839 35.681 29.452 0.971 87.799 66.987 7708.709 5 

High (≥50 

µg/m³) 

DeepLearni

ng_grid_1_

AutoML_2_

20251008_1

45912_mod

el_1 

95.343 77.827 0.666 43.161 34.733 0.957 88.113 69.388 7763.824 6 
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High (≥50 

µg/m³) 

DeepLearni

ng_grid_3_

AutoML_2_

20251008_1

45912_mod

el_1 

140.436 84.304 0.274 18.061 13.396 0.992 90.677 72.281 8222.326 7 

High (≥50 

µg/m³) 

DeepLearni

ng_grid_1_

AutoML_2_

20251008_1

45912_mod

el_3 

66.326 51.31 0.838 67.328 50.082 0.895 91.621 70.071 8394.498 8 

High (≥50 

µg/m³) 

DeepLearni

ng_grid_1_

AutoML_2_

20251008_1

45912_mod

el_5 

112.725 94.296 0.533 90.516 66.322 0.811 92.224 72.416 8505.28 9 

High (≥50 

µg/m³) 

DeepLearni

ng_grid_1_

AutoML_2_

20251008_1

45912_mod

el_4 

66.452 52.316 0.838 57.167 40.525 0.925 93.509 74.121 8743.909 10 
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Table S2. Top 10 AutoML model training statistics for AtmoCube sensors 

Model_Subset Model_ID Test_RMSE Test_MAE Test_R2 Train_RMSE Train_MAE Train_R2 LB_rmse LB_mae LB_mean_residual_deviance LB_ Rank 

Low (<50 

µg/m³) 

DeepLearnin

g_grid_3_A

utoML_1_20

251008_161

954_model_

1 

6.57 2.895 0.803 2.828 1.368 0.972 6.782 2.529 45.989 1 

Low (<50 

µg/m³) 

StackedEnse

mble_BestO

fFamily_1_

AutoML_1_

20251008_1

61954 

6.253 2.94 0.822 2.995 1.663 0.969 7.231 2.478 52.285 2 

Low (<50 

µg/m³) 

DeepLearnin

g_grid_2_A

utoML_1_20

251008_161

954_model_

4 

13.264 3.79 0.197 6.022 1.886 0.874 7.353 2.559 54.068 3 

Low (<50 

µg/m³) 

StackedEnse

mble_AllMo

dels_1_Auto

ML_1_2025

1008_16195

4 

6.242 2.704 0.822 3.936 1.599 0.946 7.432 2.364 55.233 4 

Low (<50 

µg/m³) 

DeepLearnin

g_grid_1_A

utoML_1_20

251008_161

954_model_

3 

3.968 1.801 0.928 7.361 2.067 0.812 7.961 2.299 63.38 5 
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Low (<50 

µg/m³) 

DeepLearnin

g_grid_1_A

utoML_1_20

251008_161

954_model_

4 

4.318 1.876 0.915 7.481 1.986 0.805 8.109 2.385 65.755 6 

Low (<50 

µg/m³) 

DeepLearnin

g_grid_2_A

utoML_1_20

251008_161

954_model_

1 

6.4 2.973 0.813 3.578 1.6 0.955 8.159 2.991 66.577 7 

Low (<50 

µg/m³) 

GBM_grid_

1_AutoML_

1_20251008

_161954_mo

del_1 

6.54 2.881 0.805 6.186 2.093 0.867 8.213 3.02 67.453 8 

Low (<50 

µg/m³) 

DeepLearnin

g_grid_3_A

utoML_1_20

251008_161

954_model_

3 

15.851 14.642 -0.147 16.739 15.26 0.026 8.27 3.637 68.386 9 

Low (<50 

µg/m³) 

DeepLearnin

g_grid_3_A

utoML_1_20

251008_161

954_model_

4 

5.592 2.483 0.857 5.623 1.889 0.89 8.296 2.648 68.831 10 

High (≥50 

µg/m³) 

StackedEnse

mble_AllMo

dels_1_Auto

ML_2_2025

1008_16275

2 

121.022 100.61 0.629 44.53 34.225 0.939 89.695 74.541 8045.133 1 
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High (≥50 

µg/m³) 

DeepLearnin

g_grid_1_A

utoML_2_20

251008_162

752_model_

2 

136.761 118.11 0.526 73.709 60.697 0.834 94.745 80.044 8976.538 2 

High (≥50 

µg/m³) 

DeepLearnin

g_grid_3_A

utoML_2_20

251008_162

752_model_

3 

129.325 109.921 0.576 56.071 45.928 0.904 96.485 78.438 9309.44 3 

High (≥50 

µg/m³) 

StackedEnse

mble_BestO

fFamily_1_

AutoML_2_

20251008_1

62752 

129.279 110.052 0.577 64.196 52.846 0.874 99.53 79.996 9906.26 4 

High (≥50 

µg/m³) 

DeepLearnin

g_grid_2_A

utoML_2_20

251008_162

752_model_

3 

129.605 106.901 0.575 48.165 36.582 0.929 100.524 82.119 10105.011 5 

High (≥50 

µg/m³) 

DeepLearnin

g_grid_1_A

utoML_2_20

251008_162

752_model_

3 

114.367 96.043 0.669 68.377 54.058 0.857 102.895 80.471 10587.304 6 

High (≥50 

µg/m³) 

DeepLearnin

g_grid_3_A

utoML_2_20

251008_162

752_model_

1 

137.281 114.282 0.523 35.036 20.896 0.963 106.762 87.51 11398.144 7 
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High (≥50 

µg/m³) 

GBM_lr_an

nealing_sele

ction_Auto

ML_2_2025

1008_16275

2_select_mo

del 

139.195 111.078 0.509 67.122 53.151 0.862 109.135 87.475 11910.463 8 

High (≥50 

µg/m³) 

DeepLearnin

g_grid_1_A

utoML_2_20

251008_162

752_model_

4 

114.042 97.226 0.671 57.249 40.911 0.9 111.219 83.622 12369.733 9 

High (≥50 

µg/m³) 

GBM_grid_

1_AutoML_

2_20251008

_162752_mo

del_7 

139.607 101.849 0.506 17.735 14.743 0.99 115.542 91.521 13350.025 10 
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Figure S1. Relationship between all drift-reference sensors average concentration and Fidas 200, a) 

below 50 μg m-3, b) above 50 μg m-3. 

 

 

 

 

 

 

 

 

 

a) 

b) 
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Figure S2. Inter-relationships between AG and AC sensors, a) below 50 μg m-3, b) above 50 μg m-3. 

 

a) 

b) 
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Figure S3. Inter-relationship of measured temperature of AC and AG, a) scatter plot, b) timeseries, c) 

timeseries of AG temperature measurements, d) timeseries of AC temperature measurements 

a) b) 
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Figure S4. Inter-relationship of measured relative humidity of AC and AG, a) scatter plot, b) timeseries, 

c) timeseries of AG relative humidity measurements, d) timeseries of AC relative humidity 

measurements 
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Figure S5. Pre-calibration PM2.5 readings with relative humidity levels, a) AG below 50 μg m-3, b) AG above 50 μg m-3, c) AC below 50 μg m-3, and d) AC above 50 μg m-3. 
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Figure S6. Post-calibration PM2.5 readings with relative humidity levels, a) AG below 50 μg m-3, b) AG above 50 μg m-3, c) AC below 50 μg m-3, and d) AC above 50 μg m-3.
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Figure S7. Comparison of AutoML model and the multivariate linear regression model for AirGradient ONE, a) performance 

metrics, and b) error by concentration range. 
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Figure S8. Comparison of AutoML model and the multivariate linear regression model for AtmoCube, a) performance metrics, 10 

and b) error by concentration range. 

 

 


