Response to reviewers
Title: “Enhancing Accuracy of Indoor Air Quality Sensors via Automated Machine Learning Calibration”

General Response: We would like to thank the editor and reviewers for the positive feedbacks and constructive
comments. Below, we’ve provided a point-by-point response to all comments to clarify revisions and

improvements in the manuscript.
Reviewer #1:

Comment 1. Ln 171: As far as I understand, there are eight regression algorithms. Better to mention the

exact number of algorithms you used instead of ‘multiple’.
Response:

We thank the reviewer. We have revised the Methods to report the exact algorithms used and to clarify wording.

Specifically, we now state that AutoML evaluated 30 machine learning algorithms (Table S1).
Revised sentences:

We employed an AutoML framework to develop and select calibration models for the indoor air quality sensors.
The AutoML approach generate a variety of (i.e., 30 in this study) candidate models and optimised their
hyperparameters. Then the AutoML algorithm would identify a model that best maps the sensor outputs to the
reference concentrations by ranking the cross-validation root mean squared error (RMSE). In our implementation,
the input features to each model included the sensor’s raw readings, indoor temperature, and RH, while the target
output was the PM concentration measured by Fidas 200.

Comment 2. Ln 175: How did you allocate the 80% and 20% dataset? Randomly, chronologically, or other
methods? Did you also use cross validation in the step?

Response:

Data splitting was random following previous studies. Within each concentration regime (<50 and =50 pg m3), we
used H20'’s splitFrame with a fixed seed (1014) to allocate 80% of the rows to training and 20% to a held-out test
set. During AutoML, we used k-fold cross-validation (5-fold) on the training portion for model selection (sorted by
RMSE). The held-out 20% test set was never used for training or tuning; we report both cross-validated training
metrics and external test metrics (see Table S1). This choice ensured both train/test and cross-validation folds
contained comparable concentration distributions while avoiding temporal leakage, as the experiment container

was well-mixed and emission episodes were interleaved.
We revised the manuscript by adding the above paragraph to reflect these points.

Comment 3. Ln 223: From Figure S1, I can’t really see a clear threshold of 50 ug m=. To me, it looks more
like 25 ng m3 is the threshold. It’s ok to use 50 pug m3, but it’s better to show more clearly why it is chosen.

Response:

Thank you for the helpful observation. We chose 50 pg m because the scatter shows two regimes relative to the
1:1 line. At or below 50 pg m?3 the point cloud is tight and lies mostly above the 1:1 line. This indicates a positive

sensor bias at low concentrations. Above 50 ug m the points shift below the 1:1 line and the fitted trend is flatter
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than the 1:1 reference. This is consistent with signal compression at higher particle loads. The observations are
not evenly distributed. Most data lie below about 25 pg m™ and only a small number of points fall between 25
and 100 pg m3. A split at 50 pg m™3 therefore separates the two behaviours cleanly and avoids further
fragmenting ranges that are already sparse. We have clarified this in the manuscript so that the rationale for the

chosen split is explicit.
Revised sentences:

Our exploratory analysis (Fig. S1) revealed a clear threshold at 50 ug m where the sensor bias flips. We chose this
value because the scatter plot of sensor versus reference measurements shows two distinct regimes relative to the
1:1 line. At or below 50 ug m?, the data cloud is tight and lies mostly above the 1:1 line, which indicates a positive
sensor bias (overestimation) at low concentrations. Conversely, above 50 ug m= the cloud shifts below the 1:1 line,
and the fitted trend becomes flatter than the 1:1 reference, a pattern consistent with signal compression and
underestimation at higher particle loads. This split is further justified by the data distribution; most data lie below
about 25 ug m=, with only a small number of points between 25 and 100 ug m. A split at 50 ug m produces two
interpretable regimes that align with the observed change in bias, keeps the rare high-concentration events
together, and avoids slicing the dense background data into very small groups, which would reduce model
stability. Therefore, we applied a stratified calibration strategy, training separate AutoML models for the low

(<50 ug m3) and high (50-600 ug m=) regimes in both the field-to-drift (f2d) and drift-to-reference (d2r) stages.
This allows us to tailor the calibration to the specific bias profile of each regime and thereby minimises systematic

error across the sensor’s full operating range.

Comment 4. Figure 2: It is a good flow chart, but the arrows with different colors are a bit confusing. What

do brown and blue arrows represent respectively?

Thank you for raising this point. We agree that the color encoding should have been explicitly defined in the
manuscript. We have added clear explanations in Figure 2 caption and in the caption so that the meaning of each

arrow is unambiguous.

The blue arrows represent the primary data flow used to train and apply the AutoML calibration models across
Processes 1 to 3. This path links the field sensors, the drift-reference sensors, and the reference instrument during
both training and prediction, and it yields calibrated field-sensor readings relative to the reference instrument. The
brown dashed arrow represents the post-deployment recalibration path. After the field sensors are retrieved from
the observation, we rebuild the field-to-drift and drift-to-reference models using the post-deployment dataset to
correct for sensor drift and then route the updated predictions through Process 3 to obtain post-deployment
calibrated readings referenced to the same instrument. The color scheme therefore distinguishes workflow timing
rather than sensor type or data source, with blue indicating the main training and prediction workflow and brown
dashed indicating the optional recalibration that is activated after deployment.

To make this explicit without modifying the flowchart, we inserted the following text in Figure 2 caption: “We use
a fixed color scheme to distinguish the two stages of the workflow. Blue arrows and lines represent the main
training and prediction path that spans Processes 1-3. The brown arrows and lines represent the post-deployment
recalibration path, which is executed after sensor retrieval to correct drift using the post-deployment dataset. The
resulting predictions are passed through Process 3 to obtain calibrated readings mapped to the reference

instrument.”



Comment 5. Figure 3 a/b: Are these two subplots 3-dimensional? I see that all the lines for timeseries are not
really aligned vertically. It can be misleading as they can mean that they are not in the same timestamp. I
understand that in this way you can illustrate the difference between lines more clearly, but at least you need

to draw a z-axis to show that there is a third dimension.

Response:

Thank you for flagging this. In the revision we converted panels 3a and 3b into explicit 3D time series plots by
adding and labelling a z axis. The x axis shows time, the y axis shows PM, s concentration in ug m3, and the z axis
indexes the sensors with tick labels corresponding to sensor numbers. All series share the same time coordinate,
so timestamps are aligned vertically, and the apparent separation is now clearly along the sensor dimension rather
than time. These clarifications improve readability and remove the possibility of misinterpretation, while leaving

the analysis and conclusions unchanged. Please see the revised figure below.
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Comment 6. Table 1: The problem with using 50 pg m™ as threshold might be that the subset of ‘above 50 pg

-39

m™>’ has too few data points compared to the ‘below 50 pg m’. Have you considered using another value as a

threshold (similar to question 2)?

Response:

We recognize that there are fewer data points above 50 pg m=. We chose 50 pg m™ as the threshold because
there is a clear, empirically observed transition between two distinct response regimes of the sensors in
comparison with the reference instruments. As shown in our exploratory plots, data at or below this value forms a
tight cluster predominantly above the 1:1 line, indicating a consistent low-end positive bias. In contrast, above 50
ug m3, the data points rotate below the 1:1 line and the slope flattens. Choosing the threshold at this transition
point allows us to model a real change in the sensor’s behavior, a rationale we now explicitly state in the
Methods.

For data above-50 ug m=3, although relatively small, it is sufficiently informative to train a stable model. The
performance of the calibrated models validates this approach, as they retain strong agreement with the reference
instrument. In this high-concentration regime, AirGradient achieved an R?=0.92 and I0A=0.87, while AtmoCube
achieved an R?=0.76 with minor residual bias. The fit is neither noisy nor over-tuned. Further evidence comes
from independent train-test statistics, which show that the models generalize well, achieving a test R? of 0.78—
0.79 and confirming that the sample is large enough to learn a robust mapping specific to that regime.

We indeed considered adjusting the threshold, but the highly skewed nature of the data distribution makes
alternatives ineffective. Most observations fall below 25 pg m3, with very few events between 25 and 100 pg m=.
Lowering the threshold would contaminate the high-range model with low-bias data points, blurring the very
change in slope we aim to capture. Conversely, raising the threshold would further diminish the already scarce
high-range data. Therefore, keeping the threshold at the empirically observed change point preserves

interpretability and reduces model misspecification.

Comment 7. Ln 176-195, Figure S7, and several instances in the paper: You separated two model subsets
‘below 50 ng m’ and ‘above 50 ng m*. When you compared the results using MAE and RMSE, it’s not easy
to tell which one has a worse MAE as you have the two subsets with different reference values. It’s the most
obvious on Figure S7 that you tried to compare the errors in different concentration ranges using MAE. This
comparison may not be the most appropriate as a smaller concentration apparently has a smaller MAE.
What matters in this case is the error percentage. I suggest authors using mean absolute percentage error
(MAPE) instead of MAE when comparing the two subsets. For RMSE, there is also an alternative NRMSE.

Response:

Thank you for this helpful suggestion, which we have implemented in the revised manuscript. In addition to RMSE
and MAE, we now report normalized RMSE (NRMSE) and symmetric mean absolute percentage error (sMAPE) for
each concentration regime. NRMSE is defined as RMSE divided by the mean Fidas 200 concentration in the
corresponding subset and expressed as a percentage, while SMAPE provides a symmetric percentage error that is
more stable at very low concentrations than conventional MAPE. Figure S7 and the accompanying text (Lines 176—
195) have been updated so that comparisons between the below 50 pg m and above 50 ug m regimes are based
on NRMSE and sMAPE rather than MAE alone. This makes the relative error behavior across the two concentration
ranges clearer and directly addresses the reviewer’s concern about concentration-dependent absolute errors.

We retain RMSE and MAE to facilitate comparison with guideline values, manufacturer specifications, and previous



calibration studies, which almost always report absolute error metrics, and because they summarize complementary
aspects of model performance (MAE reflecting the typical deviation and RMSE being more sensitive to occasional
large errors). In the revision, NRMSE and sMAPE are therefore used to compare relative performance across
concentration regimes, while MAE and RMSE are reported alongside to document the absolute magnitude and

structure of the residuals.

Comment 8. Table S1: What are the criteria of ranking the eight regression algorithms? For the best
algorithm? For model subset of low conc., the one listed as rank 1 has a higher RMSE/MAE and lower R2
compared to the one listed as rank 2. For high conc., the one ranked as Sth has a better MAE/RMSE/R2
results than the one ranked top. Are you using some other criteria for the ranking? Please list them in the

table as well. Also, please clarify what criteria you used in the main text as well.
Response:

We recognize the need to be clear with the criteria. In the original Table S1, “Rank 1” referred to the H20 AutoML
leaderboard order, which we configured to sort by cross-validated RMSE computed on the training set (k-fold
cross-validation). In k-fold cross-validation, the training set is split into k parts; each model is trained on k-1 parts
and evaluated on the remaining part, and the errors are averaged. RMSE (ug m3) penalizes large errors more than

small ones, which is important for PM; s where high concentrations matter.

In the same table, we also reported performance on an independent 20% test set that AutoML did not use for
training or ranking. Because the leaderboard metric (cross-validated RMSE) and the external test metric
(single-split RMSE on the test set) are computed on different data with different protocols, it is expected that the
model at Leader Rank 1 may not have the lowest error on that test set. This is especially plausible in the
high-concentration subset, where there are fewer data points and variance is higher, and when comparing metrics
with different sensitivities (e.g., RMSE vs. MAE vs. R?).

To remove ambiguity, we revised Table S1 to report two ranks for each subset. Leader Rank is the AutoML order by
cross-validated RMSE on the training set and is our model-selection criterion. We use Leader Rank because (i) it
preserves the independence of the 20% test set by not using it to choose the winner, avoiding optimistic bias; (ii)
averaging errors across folds provides a more stable, lower-variance estimate than a single split; and (iii) RMSE
penalizes large deviations, aligning with the scientific and regulatory importance of limiting large PM, s errors.
Alongside this, External Test Rank orders models by RMSE on the independent 20% test set and is included for
transparency. In the Methods we now state explicitly that selection follows the leaderboard metric, whereas all
performance reported in the Results refers to the test set (with splits created using a fixed random seed for
reproducibility).

For transparency we also describe each column exactly as it appears in the revised Table S1. “Model_Subset”
identifies whether the model belongs to the low concentration subset below 50 pg m=3 or the high concentration
subset at or above 50 pg m=3. “Model_ID” is the H20 identifier that allows exact reproduction. “Algorithm” is the
model family returned on retrieval. “Test_ RMSE”, “Test_MAE”, and “Test_R2” report performance on the
independent 20% hold-out set, with RMSE and MAE in ug m= and R? dimensionless. “Train_RMSE”, “Train_MAE”,
and “Train_R2” are training-frame summaries shown for context. All columns prefixed with “LB_" are copied
directly from the AutoML leaderboard with extra columns enabled and therefore reflect the cross-validation view
used to form the leaderboard. In this file they include “LB_rmse”, “LB_mae”, “LB_mean_residual_deviance”, and

“LB_ Rank”, where “LB_Rank” is the raw leaderboard order that determines the top model for each subset.



Comment 9. Could this framework also be used outdoors for ambient air concentration? Can this

framework also work for aerosols of larger size and gas pollutants?
Response:

Thank you for raising the question of generalizability. The framework is model agnostic and can be transferred to
outdoor settings. In practice, the same three stage structure field to drift reference, drift reference to reference
instrument, and the composite field to reference transfer can be implemented outdoors by collocating a subset of
sensors with a regulatory or research-grade outdoor reference sensor and by using outdoor meteorology as
covariates such as ambient temperature, relative humidity, and wind driven dispersion proxies. The concentration
regime split is not fixed and should be learned from the outdoor dataset using the same data driven rationale that
we applied indoors. However, if there is no clear difference in the trend in different concentration range, one ML
model may be sufficient. The manuscript now states that regime boundaries are empirical and should be re-

estimated for a new application, e.g., outdoors.

Yes, the workflow should also apply to other particulate matters such as PM;, PM4, and PMyg as well as if a time

aligned reference for the target parameter is available.

Technical comments:

Ln 251: No need to use hyphens for 400-to-500 pg m-3

Ln 261: If you have used 50 ng m-3 as a threshold, then there is no need to use the symbol ‘~’.
Ln 311: What is ~10? It’s very confusing what you referred to without a unit.

Response:

Thank you for these careful technical comments. We have revised the text accordingly. At line 251, “between 400-
to-500 pg m3” has been corrected to “between 400 and 500 pg m3”. At line 261, we removed the tilde so that 50
pg m3is now written without the approximation symbol, consistent with its use as a threshold. At line 311, we
clarified that “~10” refers to an approximate 10% relative error at 600 pg m=3 and now state the unit explicitly in

the sentence.



Reviewer #2:

Comment 1. Line 146—-152: Here, the authors describe which two types of low-cost sensors were used and
against which reference instrument they were compared. I am wondering whether the low-cost sensors have
a similar detectable particle size range as the Palas Fidas 200. It could add an additional layer of clarity to

mention the particle size range for the reference instrument and - if available - also for the low-cost sensors.
Response:
Thank you for this suggestion.

We do agree. Yes, the detectable particle size range is similar. We have revised the manuscript to include the
manufacturer-specified particle size ranges for all instruments. The reference instrument, the Palas Fidas 200, has
a certified detection range of 0.18-18 um. The low-cost sensors, the Plantower PMS5003 and the Sensirion SPS30,

both have a specified particle size detection range of 0.3-10 um.

While addressing this comment, we also took the opportunity to include the manufacturer-specified
measurement uncertainties for all instruments to further enhance the technical comparison. The revised text now

reflects both points.

Revised sentences:

An aerosol spectrometer (i.e., Palas Fidas 200 (detectable particle size of 0.18-18 ug, ranges from 0 to 10,000 ug
m3 with 9.7% uncertainty for PM,.s measurements)) was used as the reference-grade instrument for sensor
performance evaluation and calibration. A total of 40 low-cost air quality sensors was deployed within the
chamber, settled on a table at near the same height with Fidas 200 to minimize positional variability. Our air
quality sensors consisted of two different types, including 20 units of AirGradient ONE (Model I-9PSL) and 20 units
of AtmoCube. AirGradient ONE sensors measure PM, s using a Plantower PMS5003 laser-scattering sensor
(manufacturing specification: detectable particle size of 0.3-10 um, with +10 pug m at 0-100 ug m=10% at 100-
500 ug m3), and temperature and RH through a Sensirion SHT40 sensor. AtmoCube sensors detect particulate
matter using a Sensirion SPS30 laser-scattering sensor (manufacturing specification: detectable particle size of 0.3-
10 um, with +5 ug m3 at 0-100 ug m3, +10% at 100-1000 ug m3), temperature using a Sensirion STS35-DIS, and
RH using a Sensirion SHTC3.

Comment 2. Line 154 — 155: Hopefully, the team got to enjoy the food afterward. Scientific dedication always
deserves a good meal.

Response:

Thank you for this kind remark. The cooking part did indeed come with some well-deserved meals for the team,

and it was all conducted in accordance with our laboratory safety and hygiene procedures.

Comment 3. Line 157: The phrase “natural indoor conditions” sounds somewhat contradictory, since indoor

environments are by definition artificial. It might be clearer to use “realistic” or “typical”.
Response:

Yes, we fully agree that “natural indoor conditions” is by definition artificial and thus we have revised the wording

accordingly.

In the revised manuscript, we now write “typical indoor conditions” at the corresponding location (former line

157), so the sentence reads:



“Temperature and RH levels were allowed to exchange passively with the outdoor air with no mechanic ventilations

or windows/door opening, mimicking indoor conditions where these parameters may fluctuate.”
This change clarifies our intended meaning and avoids the contradiction you highlighted.

Comment 4. Line 223-228: I wonder how the threshold of 50 pg m= was determined. The text mentions that
the exploratory analysis revealed a bias flip at this concentration, but it could strengthen the explanation to

briefly clarify why 50 pg m= was selected as the cutoff.
Response: Please also see response to Comment 3 by reviewer 1.

We appreciate this observation. We selected 50 ug m because the scatter plot clearly shows two distinct regimes
relative to the 1:1 line. Below 50 ug m3, the points form a compact cluster mostly above the 1:1 line for
AirGradient ONE sensors, indicating a positive sensor bias at low concentrations. Above 50 pug m the points shift
below the 1:1 line and the fitted regression becomes shallower than the 1:1 reference, which is consistent with
signal compression at higher particle loads. The data are also unevenly distributed. Most observations fall below
about 25 pg m3 and only a small fraction lie between 25 and 100 pug m. Using 50 pg m= as the threshold
therefore separates these two behaviors clearly while avoiding further subdivision of already sparse ranges. We

have revised the manuscript to explain this rationale explicitly.

Comment S. Line 251: In the phrase “between 400-to-500 pg m=>” the hyphen is unnecessary. It would read

more clearly as “between 400 and 500 pg m3.”
Response:

Thank you for pointing this out. We have revised the wording accordingly and now write “between 400 and 500 ug

m-3” to improve clarity at Line 251.

Comment 6. Figure 3: The two time series plots showing the raw data from multiple low-cost sensors are
displayed as 3D graphics, which causes a slight misalignment between the sensor readings and the x—y axes,
making the visualization somewhat confusing. I am not sure this is the most effective way to present the data,
although it is not a major issue. I would generally recommend adding x-axis tick marks to indicate the days
(with major ticks for the labeled days and minor ones for each individual day) and including grid lines
especially in panels (a) and (b), which would help improve readability and reduce the visual confusion caused
by the three-dimensional layout.

Response:

We appreciate you drawing attention to the potential ambiguity in Figure 3. In the revised version we have
converted panels 3a and 3b into explicit three-dimensional time series plots by adding and labelling a z axis. The x
axis now represents time, the y axis shows PM, s concentration in ug m3, and the z axis indexes the sensors, with
tick labels corresponding to sensor numbers. All series share a common time coordinate, so timestamps are
aligned vertically and the apparent separation is clearly along the sensor dimension rather than time. These
changes improve readability and remove the scope for misinterpretation, while leaving the analysis and

conclusions unchanged.



Comment 7. Figures 4 and 5 appear to have different sizes and resolutions. Since both figures are quite
similar, it would be visually more appealing and consistent to display them at the same size and resolution for
better comparison and overall presentation quality.

Response:
Thank you for this helpful suggestion.

We agree that having Figures 4 and 5 in the same size and resolution improves consistency and makes comparison
easier. In the revised manuscript, we have adjusted both figures so that they are now displayed at the same size

and resolution to enhance visual clarity and overall presentation quality. Please see the revised figure below.
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Comment 8. I really appreciate the thorough and transparent discussion of the limitations of the proposed
method. The authors clearly acknowledge the constraints related to environmental conditions, emission
sources, and long-term applicability. An analysis of long-term sensor drift would have provided valuable
additional insights into the robustness of the calibration over extended periods. However, since this aspect is
explicitly discussed as a limitation and identified as an important direction for future work, I find the

current scope appropriate and well-justified for this study.
Response:

We thank the reviewer for this positive and encouraging comment on our discussion of limitations. We fully agree
that an explicit analysis of long-term sensor drift would provide valuable evidence on the robustness of the
calibration over extended deployments. In future studies we plan multi-year field deployments to quantify drift

and to test automated recalibration within the proposed framework.
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