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Abstract.

Actual evapotranspiration (AET) is pivotal for the assessment of current and future water availability, particularly for sub

humid and AET dominant regions such as West Africa. In this region, climate change is projected to be substantial, which will

catalyze hydrological changes. In the climate-hydrological modeling chain for impact assessment, multiple sources of uncer-

tainty are embedded. While the uncertainties inherent in general circulation models (GCM) are difficult to reduce, minimizing5

uncertainties from hydrological modeling remains a critical focus for researchers and practitioners. Hence, the present study

investigates the impact calibration strategies can have on future hydrological changes in West Africa. Given the key role of

AET in West Africa, the study particularly evaluates how calibration shapes its future dynamics. In addition, we test whether a

specific plant growth modeling, attributed as leaf area index (LAI), can be used as a proxy to predict AET. The Bétérou Catch-

ment in Benin is selected as a demonstration case along hydrological modeling with the eco-hydrological SWAT-T model. To10

investigate calibration impacts, we apply three strategies, which range from simple (discharge (Q) only) to more comprehensive

(Q and LAI; Q, LAI, and AET) approaches. We use the Robust Parameter Estimation algorithm in each calibration strategy

to address parameter equinfinality. We use the standardized future climate data from ISIMIP3b (CMIP6) with five GCMs and

three emission scenarios and evaluate changes for the near (2031–2050) and far (2070–2099) future periods. The findings show

that the amount of future annual AET depends on the calibration strategy, where the change signal for all strategies indicates15

AET increases. The approach including AET calibration (Q, LAI, AET) shows high future changes, with e.g., multi-model

mean changes for SSP5–8.5 of ∆Enear = 5.8% and ∆Efar = 8.4%. The results moreover demonstrate that the combined "Q

+ LAI" can be used as a proxy to predict AET rates. For discharge, the change signal mostly indicates future decreases across all

calibration strategies with multi-model mean changes for SSP5–8.5 of ∆Qfar =−7.0% (Q, LAI, AET) to ∆Qfar =−1.6%

(Q only). Yet, contrasting predictions of future changes depending on single GCMs are simulated. The present study under-20

scores the relevance of uncertainty integration in climate-hydrological modeling and contributes to an improved understanding

of water availability assessment in West Africa.
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1 Introduction

Actual evapotranspiration (AET) is a key hydrological attribute to determine water availability (Chawanda et al., 2024), and to

estimate agricultural, vegetation, and drought stressors (Rind et al., 1990; Fisher et al., 2017; Miralles et al., 2025). It plays an25

essential role in the regional hydrology in the sub-humid parts of West Africa, where the rate of AET to precipitation can be

up to 80 % (Rodell et al., 2015). In tropical and perennial vegetated regions, the contribution of plant transpiration to AET is

particular high (Wei et al., 2017) given the direct linking of plant growth and leaf area index (LAI) to the canopy conductance

(Good et al., 2014; Wang et al., 2014).

Climate change impacts on the future hydrology in West Africa are projected to be substantial. It is reasonably certain that30

precipitation and temperature intensities increase for the entire West African region, specifically leading to higher mean air

temperatures, more frequent extreme heat days, and recurring sub-daily heavy precipitation events (IPCC, 2022). The change

of mean annual precipitation in West Africa is spatially contrasting, where drying in the western and wettening in the eastern

parts are projected (IPCC, 2022). The hydrological response to future climate changes is typically assessed in a climate-

hydrological modeling chain. In this, hydrological (impact) models are forced with downscaled climate projections of general35

circulation models (GCMs) under various greenhouse gas emission scenarios. Since hydrological responses to future climate

conditions are assessed using models calibrated under current climate, robust calibration strategies and model parametrisation

are essential (Krysanova et al., 2017; Hattermann et al., 2018).

The sensitivity of the calibration strategy on the regional-scaled climate impact assessment is well-documented (Huang

et al., 2020; Ismail et al., 2020; Koch et al., 2020; Mishra et al., 2020; Wen et al., 2020). These studies report impacts of simple40

(discharge only) compared to comprehensive (multi-gauge or multi-objective) calibration strategies, particularly with respect

to future discharge changes. For instance, future projected discharge can be up to 10 % higher for models from multi-objective

calibration compared to discharge only approaches (Huang et al., 2020).

These studies however relied on single-best model parametrisations for the climate impact assessment. Model equifinality

impairs robust hydrological modeling for current (Beven, 2006) and future climate (Her et al., 2019), because multiple model45

parameter sets can accurately represent the hydrological cycle. Different approaches to address parameter equifinality exist,

such as Generalized Likelihood Uncertainty Estimation (Beven and Binley, 2014), Robust Parameter Estimation (ROPE) (Bár-

dossy and Singh, 2008), or Markov Chain Monte Carlo methods (Roberts and Rosenthal, 2004), among others, with which

multiple equally-well performing parameter sets can be derived. The uncertainty contributions from GCMs typically exceed

those stemming from parameter equifinality, as shown by studies such as Her et al. (2019) or Brigode et al. (2013). Yet, the50

direction and magnitude of future hydrological changes can still vary considerably depending on the calibration strategy and

parameter sets (Mendoza et al., 2016).

Among other hydrological impact models, the Soil and Water Assessment Tool (SWAT) model and its open-source successor

SWAT+ have been widely applied for climate impact assessment in West Africa (Akoko et al., 2021). It is a process-describing

model specified to represent catchment hydrology, crop management and vegetation growth (Arnold et al., 1998). Climate55

impact studies have covered the Niger Basin (Angelina et al., 2015; Eisner et al., 2017; Krysanova et al., 2017; Animashaun

2

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



et al., 2023; Chawanda et al., 2024); the Mono River (Houngue et al., 2023); the Ouémé Basin (Bossa et al., 2012, 2014; Danvi

et al., 2018); the Volta (Kankam-Yeboah et al., 2013; Sood et al., 2013), Pra (Awotwi et al., 2021), Owabi (Osei et al., 2019),

and Vea River (Larbi et al., 2021) in Ghana; and the Tougou River (Yonaba et al., 2023). The studies indicate that precipitation

projections for West Africa are variable depending on the applied GCM, emission scenarios and future period. This variability60

translates into varying streamflow projections across the region, where the Niger Basin indicates mixed discharged trends, the

Ouémé Catchment reports decreased discharges, and streamflow increases for the Mono River Catchment.

These studies mostly focus their modeling on discharge, and AET – despite being a key driver of the regional hydrological

cycle – has been integrated in the model evaluation only partially. Few studies, such as Chawanda et al. (2024), calibrated

the SWAT+ model against discharge and AET. Most others estimate future AET from SWAT models being optimized with65

discharge-only calibration approaches (Bossa et al., 2012; Sood et al., 2013; Bossa et al., 2014; Danvi et al., 2018; Larbi

et al., 2021; Animashaun et al., 2023). However, the modeling of AET in process-describing hydrological models, such as

SWAT/SWAT+, substantially relies on parameters that also influence runoff generation, e.g., interception or soil moisture.

Hence, without explicit model calibration against AET, projections of future AET can remain constrained and potentially

misleading.70

In this study, we explain how calibration strategies with hydrological models can influence the simulation outcomes. We

demonstrate how future rates of AET and discharge can differ if or if not AET is considered in the model calibration. In

addition, this study evaluates the role of vegetation (attributed as LAI) in assessing AET. We test whether LAI can be used as

a proxy to predict future AET dynamics. To date, no study has yet discussed the implications of AET being disregarded in the

calibration but used for future assessments in West Africa.75

We evaluate the implication of three different model calibration strategies on the climate impact assessment. The strategies

include: i) a conventional single-objective optimization using only streamflow at the catchment outlet ("Q only"); ii) a multi-

objective optimization considering streamflow at the outlet and LAI at the subbasin scale ("Q + LAI"); and iii) a multi-

objective optimization integrating streamflow at the outlet, along with LAI and AET at the subcatchment scale ("Q + LAI

+ AET"). We derive multiple equally-well performing parameter sets with the ROPE algorithm to address the uncertainty80

from equifinality. ROPE is applied for single- (discharge) and multi-objective optimisation, where discharge, AET, and further

information like the vegetation attribute LAI are considered. These models are used for the climate impact assessment to

investigate the difference between single-best and multiple near-optimal parameter estimations, particularly regarding AET.

As a demonstration case, we apply the SWAT-T (for tropics) model for the Bétérou Catchment in Benin.

This study contributes to minimize uncertainties from model calibration approaches in the climate-hydrological model cou-85

pling. We make use of statistically downscaled climate model data from the Inter-Sectoral Impact Model Intercomparison

Project (ISIMIP) that provides standardized climate impact data for cross-sectoral studies. We force the hydrological model

with climate data from ISIMIP3b (five GCMs and three emission scenarios) based on the Coupled Model Intercomparison

Project Phase 6 (CMIP6) (Lange, 2019) to minimize uncertainties from downscaling, bias adjustment, and scenario framing.
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2 Methods90

Figure 1. Methods applied in the present study to evaluate different calibration strategies for climate impact assessment.

Figure 1 gives an overview of the methods applied in this study. First, the basin-scale SWAT-T model is set up for the Bétérou

Catchment in Benin. The parameter sensitivity is quantified with the elementary effects method after Morris (Morris, 1991),

and, subsequently, relevant parameters are selected. We apply the Morris method, because its computation of the elementary

effects allows to quantify and rank non-linear model responses, and identify (non-) influential parameters (Morris, 1991;

Campolongo et al., 2007). Three different calibration strategies are investigated: model optimization regarding discharge only;95

discharge and LAI; and discharge, LAI, and AET. We use the ROPE algorithm (Bárdossy and Singh, 2008) to derive multiple

well-performing parameter sets and to address parameter equifinality. We force the hydrological model with observed (Galle

et al., 2018; Schlueter et al., 2019; Vogel et al., 2018; Rauch et al., 2024) and the W5E5 meteorological data (Lange et al.,

2021). The robustness of the model optimization is checked with a cross validation and model benchmarking. Finally, the

role of the calibration strategy is evaluated with respect to the climate impact assessment, where future hydrological response100
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(discharge and AET) predicted by each of the three approaches is evaluated. The responses for near and far future climate

projections are derived and the implications of different modeling approaches are discussed.

2.1 Model description and parameter selection

The SWAT-T model is a further development of the SWAT ecohydrological model (Arnold et al., 1998). The key enhancement

of SWAT-T is the modification of the plant growth module to better represent the plant phenology in tropical regions (Ale-105

mayehu et al., 2017). The SWAT-T model leads to more accurate predictions of AET in regions with perennial plant growth

(Zhang et al., 2020; Fernandez-Palomino et al., 2021; Ferreira et al., 2021; López López et al., 2017; Merk et al., 2024). Aside

from the plant module modification, SWAT-T remains identical to SWAT. The original SWAT model has been applied for river

basins worldwide (Arnold and Fohrer, 2005; Tan et al., 2020), as well as regionally in West Africa and for different catchments

in Benin (Akoko et al., 2021). In Benin, most studies focused on the discharge simulation for the Ouémé River basin (Bossa110

et al., 2014; Poméon et al., 2018) and as its subcatchments (Giertz et al., 2006; Bossa et al., 2012; Duku et al., 2016, 2018;

Danvi et al., 2017; Togbévi et al., 2020). Remotely sensed AET has also been a primary model optimization target to predict

streamflow (Odusanya et al., 2019, 2021). To the best of our knowledge, the SWAT-T model has only been applied in Benin

for the assessment of the LAI–AET interaction (Merk et al., 2024), which demonstrates the AET prediction through LAI on

the footprint scale.115

The SWAT/SWAT-T model is a process-oriented ecohydrological model for the catchment-scale water balance estimation.

It partitions the computation of the water balance into five storages: snow, canopy storage, soil profiles, and a shallow and a

deep aquifer. The water balance in SWAT/SWAT-T is described as:

∆S =
N∑

i=1

(P −Qtotal−E−wlosses) , (1)

where ∆S is the change in storage; N is the time in days or months; P is the precipitation; Qtotal is the total runoff (in SWAT120

"water yield") as a sum of surface runoff, lateral flow, and base flow; E is AET; and wlosses are deep groundwater losses.

We use the Soil Conservation Service (SCS) curve number (CN) method to model the surface runoff. The SWAT/SWAT-T

model is spatially discretized into subbasins and further subdivided into hydrological response units (HRUs). Generally, three

methods are available to compute potential ET (E0) in SWAT/SWAT-T: the Hargreaves method (Hargreaves and Samani,

1985), the Priestley-Taylor method (Priestley and Taylor, 1972), and the Penman-Monteith method (Monteith, 1965). Once125

E0 is calculated, it is partitioned into potential plant transpiration (Tplant) and potential soil evaporation (Esoil). We use the

Penman-Monteith method since it integrates temperature- and energy-based assumptions and vegetation. Merk et al. (2024)

demonstrated that this method outperforms the other two options for AET prediction for characteristic West African land

cover types (forest and shrubland), which are also most dominant in the Bétérou Catchment. E0 after Penman-Monteith in

SWAT/SWAT-T is computed as:130

E0 =
∆ · (Rnet−G) + ρair · cp · (e0

z − ez)/ra

λ · (∆ + γ · (1 + rc/ra))
, (2)
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where λ is the latent heat of vaporization; Rnet is the net radiation; ∆ is the slope of the saturation vapor pressure-temperature

curve; ρair is the air density; cp is the specific heat at constant pressure; e0
z is the saturation vapor pressure of air at height

z; ez is the water vapor pressure of air at height z; ra is the aerodynamic resistance; and rc is the plant canopy resistance.

In SWAT/SWAT-T with E0 after Penman-Monteith, ra and rc are attributed to an alfalfa grass reference with constant values135

(Neitsch et al., 2011). For the computation of Tplant, the Penman-Monteith equation is also used, and ra and rc are derived

from an actual plant, where the plant’s modeled canopy height and LAI are considered. Esoil is then determined as Esoil =

E0−Tplant. Actual plant transpiration and soil evaporation are computed based on water availability and biophysical factors,

such as LAI, root depth, and soil properties such as field capacity. The total actual evapotranspiration (AET) is the sum of

actual plant transpiration and soil evaporation. We use the Penman-Monteith method for the computation of E0. For brevity, a140

detailed explanation of the plant growth module and LAI computation with SWAT-T is given in the supplementary material to

this study.

A total of 26 parameters have been investigated in this study (Table 1). The list of 26 parameters is gathered with a literature

review, where selected SWAT studies in Benin (Schuol and Abbaspour, 2006; Schuol et al., 2008; Bossa et al., 2012, 2014;

Duku et al., 2016; Danvi et al., 2017; Poméon et al., 2018; Hounkpè et al., 2019; Togbévi et al., 2020; Odusanya et al.,145

2019, 2021) and SWAT-T studies (Alemayehu et al., 2017; López-Ramírez et al., 2021; Fernandez-Palomino et al., 2021; Fer-

reira et al., 2021; Merk et al., 2024) have been screened. The focus was on peer-review studies, where the parameter choice

and calibration strategy is transparent. All 26 parameters in Table 1 are evaluated in the sensitivity analysis. Based on the sen-

sitivity ranking, the 15 most influential parameters are considered for the model optimization. The plant parameters FRGRW2,

LAIMX2, DLAI, T_BASE, PHU, and GSI are specified in SWAT-T for each land cover type. The Bétérou Catchment is primar-150

ily covered by forest, shrubland, and cropland. To avoid an excessive number of parameters (e.g., 5 plant parameters × 3 land

cover types), we transfer the parameter values for FRGRW2, LAIMX2, DLAI, T_BASE, PHU, and GSI for each land cover

type from Merk et al. (2024), who investigated specific sites within the Bétérou Catchment. In the model optimization, each

plant parameter is changed through a multiplier from 0.75 to 1.25 (see Tab. A4).

Insensitive parameters are not considered in the optimization but kept constant (Table 1). The parameters ALAI_MIN and155

BLAI are derived based on the maximal and minimal values of the GLASS-LAI time series, respectively. The multipliers for

the plant parameters and constant values for insensitive parameters are used in the optimization to reduce the parameter space

and address parameter equifinality.

2.2 Study site and model set up

The Bétérou catchment is the Northern most headwater catchment of the Ouémé River Basin in Benin (Figure 2). It covers an160

area of 10100 km2. The catchment is relatively flat with an altitude range from 248 m to 598 m above sea level. The land cover

is a typical West African combination mainly consisting of gallery forests (52 %), savannah (33 %), and agriculture (15 %),

where the landscape is marked by scattered mosaics of woody savannah with grassy understories. The region is in a natural

state with a small share of urban areas (<1 %) (Judex and Thamm, 2008).
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Table 1. List of parameters used with their description and a cross ("X") if the parameter is considered in the optimization in this study. The

superscripts denote the SWAT-T/West Africa study the parameter has been investigated: 1 to 16 correspond to Schuol and Abbaspour (2006);

Schuol et al. (2008); Bossa et al. (2012, 2014); Duku et al. (2016); Danvi et al. (2017); Poméon et al. (2018); Hounkpè et al. (2019); Togbévi

et al. (2020); Odusanya et al. (2019, 2021); Alemayehu et al. (2017); López-Ramírez et al. (2021); Fernandez-Palomino et al. (2021); Ferreira

et al. (2021); Merk et al. (2024), respectively. The table also lists the studies from which the parameters for the less sensitive parameter are

transferred from.

Parameter Description (unit) Optimization

Parameters identified in the sensitivity analysis to be sensitive

FRGRW2
12,13,14,16 Fraction of PHU as second point on the optimal LAI curve (–) X

DLAI12,13,14,16 Fraction of total PHU when leaf area begins to decline (–) X

T_BASE12,13,14,16 Minimum temperature for plant growth (°C) X

PHU12,13,14,16 Total number of heat units needed for plant maturity (–) X

GSI10,12,16 Maximum stomatal conductance (m s–1) X

CAN_MX10,11,15,16 Maximum canopy storage (mm) X

ESCO1,2,3,5,6,7,8,9,10,11,12,13,15,16 Soil evaporation compensation factor (–) X

EPCO5,6,7,8,10,11,12,13,15,16 Plant uptake compensation factor (–) X

SOL_AWC1,2,3,4,5,6,7,8,9,10,11,12,13,14,16 Available water capacity of the soil layer (mm) X

SOL_BD2,7,8,11,14,16 Moist bulk density (g cm–3) X

GW_REVAP2,3,5,6,7,8,9,12,15,16 Groundwater re-evaporation coefficient (–) X

GWQMN1,2,3,4,5,6,7,8,9,12,15 Threshold depth of water for baseflow to occur (mm) X

RCHRG_DP1,2,3,7,8,9,12,14,15,16 Deep aquifer percolation fraction (–) X

REVAPMN1,2,3,5,7,8,9,11,12,15,16 Threshold depth of water for re-evaporation to occur (mm) X

GW_DELAY2,3,4,6,7,8,9,11,13,14,15 Ground water delay (day) X

Parameters identified in the sensitivity analysis to be less sensitive

BLAI12,13,14,16 Maximum potential leaf area index (m2 m–2) Observed data

ALAI_MIN12,13,14,16 Minimum LAI for plant during dormant period (m2 m–2) Observed data

SOL_K3,4,7,8,9,10,13,14,16 Saturated hydraulic conductivity (mm hr–1) Judex and Thamm (2008)

FRGRW1
12,13,14,16 Fraction of PHU as first point on the optimal LAI curve (–) Merk et al. (2024)

LAIMX1
12,13,14,16 Fraction of BLAI as first point on the optimal LAI curve (–) Merk et al. (2024)

LAIMX2
12,13,14,16 Fraction of BLAI as second point on the optimal LAI curve (–) Merk et al. (2024)

T_OPT12,14,16 Optimal temperature for plant growth (°C) Merk et al. (2024)

SURLAG1,2,4,5,7,8,9,12,14,15 Surface runoff lag coefficient (–) Bossa et al. (2014)

SOL_RD16 Maximum rooting depth of soil profile (mm) Merk et al. (2024)

ALPHA_BF2,3,4,6,8,9,10,11,12,13,15 Base flow alpha factor (day–1) Bossa et al. (2014)

CN21,2,3,4,5,6,7,8,9,10,11,12,13,14,16 Initial SCS runoff curve number (–) Alemayehu et al. (2017)
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Figure 2. (a) Overview of the Bétérou Catchment; (b) monthly mean values of precipitation (Bellefoungou) and daily mean values of

discharge (Bétérou); (c) and measurements of AET and LAI in Bellefoungou: an overview of observed AET dynamics (in purple), mean

monthly observed LAI (in blue) as well as the mean monthly values of GLASS LAI (in yellow). References for the data used to display the

map are also listed in the Appendix (see Table A6). The superscripts in panels (b) and (c) denote the corresponding time periods: 1 January

1996 to December 2020; 2 in (b) January 2006 to December 2020; 2 in (c) January 2008 to December 2010; 3 from July 2008 to May 2010;
4 from January 2007 to December 2015. Publisher’s remark: please note that the above figure contains disputed territories.

The agriculture in this region is combination of cash crops, such as cotton, and subsistence-driven smallholders. The culti-165

vated crops are usually crops like maize, yam, sorghum, bean, millet, or cassava (Janssens et al., 2010). The cropping calender

in this region follows the rainy season and can generally be dated from May to November – with crop specific variations in

planting and harvesting (Forkuor et al., 2014). The distinct dry and wet streamflow seasonality is typical for catchments along

the Guinean Savanna. The maximum daily average streamflow occurs in September with an estimated value of 290 m3 s-1. The

climate in the Bétérou catchment is typical for Sub-Saharan, sub-humid Africa. The annual precipitation ranges from 1100 to170

1500 mm (Mamadou et al., 2016; Bliefernicht et al., 2019). The precipitation pattern is unimodal, with a rainy season between

April and October, whereas from November to March, the dry season occurs. The annual mean daily temperature is 25 °C

(Galle et al., 2018). The soils in the Bétérou catchment consist of ferric soils with loamy sand present in the upper soil horizons

(Giertz and Diekkrüger, 2003). Generally, the AET data follows the seasonal pattern of LAI (Fig. 2c). In addition, a decrease

in AET in the wet season can be observed for this region. During this season, the atmospheric water demand is reduced due175

high air humidity resulting to low water pressure deficits as shown by Mamadou et al. (2016).
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For the model set up, we subdivided the Bétérou Catchment into 14 subbasins and 126 HRUs. The dominant land cover types

forest, shrubland, and cropland are assigned to the SWAT/SWAT-T data base of "FRSD", "RNGE", and "AGRL", respectively.

The share of cropland cover is relatively small (15 %) and data for detailed crop modeling is scarce. Thus, we apply a conceptual

approach to integrate crops. We assign the generic plant data base "AGRL". For cropland, the plant growth is not automatically180

triggered by the soil moisture index but its planting and harvesting is scheduled in the management operations to follow the

rainy season (Forkuor et al., 2014). We validate the conceptual approach by comparing the simulated LAI of croplands to the

reference of GLASS-LAI. The simulations are run for daily timesteps.

2.3 Data used in this study

The SWAT-T model is set up using the data listed in Table 2. We force the models with daily data for precipitation, temperature,185

relative humidity, solar radiation, and wind speed from two data sets. The first set of forcing data is the ISIMIP3b baseline data

set from ISIMIP3b (W5E5 data, Lange et al. (2021)). Secondly, we use observed data (AMMA-CATCH (Galle et al., 2018)

and precipitation data from KASS-D (Schlueter et al., 2019; Vogel et al., 2018)). The precipitation point observations were

regionalized to a 0.05° grid ( 5 km resolution) using a simple nearest-neighbor interpolation approach (Rauch et al., 2024). The

resulting gridded rainfall fields were then spatially averaged over each sub-catchment to produce 14 sub-catchment-specific190

rainfall time series, which served as precipitation inputs in the model setup. Both data sets (W5E5 and observed data) are used

for a separate calibration.

As a reference to SWAT-T’s simulated LAI, we use the GLASS-LAI data, because it is reasonable performance in ap-

plications worldwide (Liang et al., 2014). Typically, raw LAI data from satellite-based products (e.g., MODIS) encounter

uncertainties and noise in tropical regions (Viovy et al., 1992; Atkinson et al., 2012). The GLASS-LAI algorithm provides195

robust LAI data through tailoring MODIS and CYCLOPES products with general regression neural networks (Liang et al.,

2014). In SWAT-T, LAI is simulated for each HRU. The raster cell size of the GLASS-LAI data does not align with the HRUs.

We compute the mean GLASS-LAI value for each subbasin by averaging the values of the raster cells that cover it. We then ag-

gregate the simulated LAI at the subbasin scale to match the GLASS-LAI reference. For each subbasin, the subbasin-averaged

LAI value is calculated based on the corresponding HRUs, with the LAI weighted by the area of each HRU within the sub-200

basin. In the model evaluation, we compare the weighted-average subbasin values of the GLASS-LAI to simulated LAI. For

AET, we use FLUXCOM-AET (Jung et al., 2019), which combines MODIS, meteorological and eddy covariance tower data

to provide a global data set of energy fluxes. Similarly to LAI, the AET data is aggregated at the subbasin scale, with FLUX-

COM raster cells weighted by the area of each subbasin. In SWAT-T, AET is simulated at the HRU level and averaged at the

subbasin scale. We compare the weighted-averaged AET data from both FLUXCOM and SWAT-T at the subbasin scale. We205

use the Kling-Gupta efficiency (EKGE) after Gupta et al. (2009), percent bias (EPBIAS), and the coefficient of determination

(ER2) (see Appendix A3 for additional equations) to quantify the SWAT-T performance to model daily discharge, LAI, and

AET. Observed streamflow, GLASS-LAI, and FLUXCOM-AET data is respectively available from January 1996 to December

2020, January 2001 to December 2015, and January 2001 to December 2014. Observed precipitation data is available from
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Table 2. Overview of the data sets that are applied in this study. 1 Observed precipitation data from Rauch et al. (2024) are gridded through

nearest-neighbor from the KASS-D database; 2 Observed meteorological data covered solar radiation, temperature, wind speed, and relative

humidity.

Variable Datasets/Model Database name or source

Data for model set up

Digital elevation model Copernicus GLO-30 (30m x 30m) Copernicus (2022)

Land cover map Copernicus Global Land Service (100m x 100m) Buchhorn et al. (2020)

Soil map IMPETUS Soil Data Set Judex and Thamm (2008)

Model forcing data

Precipitation1 Gridded (0.05° x 0.05°) from KASS-D Rauch et al. (2024)

Meteorological data2 AMMA-Catch network Galle et al. (2018)

ISIMIP3b reference data W5E5 Lange et al. (2021)

Climate projections
ISIMIP3b: GFDL-ESM4, IPSL-CM6A-LR,

MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL
Lange (2019)

Data for model performance evaluation

Streamflow AMMA-Catch network (pointwise) Galle et al. (2018)

AET FLUXCOM (rastered, 0.0833° x 0.0833°) Jung et al. (2019)

LAI GLASS-LAI (rastered, 250m x 250m) Liang et al. (2021)

Januaray 1981 to December 2017. The meteorological data from the AMMA-Catch network is available from January 2006 to210

December 2020.

We use the daily meteorological data of five GCMs and three scenarios from CMIP6 for the climate impact assessment. The

selected scenarios refer to the low, medium-to-high, and high narrative SSP scenarios 1–2.6, 3–7.0, and 5–8.5, respectively,

where number before the hyphen represents the shared socio-economic pathway narrative and the number after indicates the

radiative forcing by 2100 in Wm−2. We use the climate forcing data from the ISIMIP3b initiative (Lange, 2019) with five215

GCMs (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL), since it provides bias-adjusted,

downscaled, and standardized climate data. It has been widely used by the hydrological impact modeling community, enabling

cross-sectoral comparisons. For instance, Romanovska et al. (2023) report the applicability of ISIMIP3b data for West Africa,

and assess uncertainties and impacts on agriculture for the region.

2.4 Sensitivity analysis with the Morris method220

Table 1 lists 26 parameters that have been used to assess the vegetation, AET, and discharge simulation with SWAT/SWAT-

T. We perform a sensitivity analysis to understand the parameter response complexity on the catchment-scale. Based on a

sensitivity ranking, the parameter space can be reduced to the most important parameters. We apply the elementary effects (or

Morris) method (Morris, 1991; Campolongo et al., 2007). Generally, the Morris method quantifies the parameter sensitivity
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according the elementary effect di:225

di(q) =
f(qi, ..., qi−1, qi + ∆, qi+1, ..., qk)− f(q)

∆
=

f(q + ∆ei)− f(q)
∆

, (3)

where ∆ is the parameter step size; q + ∆ei is the transformed parameter point; q = [qi, ..., qk] is any parameter of the total

sample size N ; and ei consists of a vector of zeros but one in the ith unit vector. For the computation of di, a total sample

size N is generated based on the number of parameters k. The parameters q = [qi, ..., qk] are changed one-at-a-time with

the parameter step size ∆, i.e., one parameter is varied while the others remain constant. The sample size N = r(k + 1) is230

determined based on r defined levels and parameters q. The local sensitivity of parameter qi is quantified as di(q). To quantify

and rank the sensitivity in this study, the statistical moment µi as mean of the total sample simulation are considered (Morris,

1991). Campolongo et al. (2007) suggest to use the absolute mean µ∗ to not oversee non-monotonic model responses because

of opposite signs. The statistical moments for each set j are:

µ∗i (q) =
1
r

r∑

i=1

|dj
i (q)|, (4)235

We apply Latin hypercube sampling to generate a distributed parameter space. We define r = 500 and q = 26 parameters with

which the total sample size is N = 13500. The model sensitivity is evaluated with KGE. We quantify the influence of the

SWAT-T parameters on streamflow, LAI, and AET separately, denoted as EKGE,Q, EKGE,LAI , and EKGE,AET , respectively.

Additionally, we assess the parameter sensitivity on the equally-weighted combination of all three objectives, EKGE,all:

EKGE,all = 1/3 ·EKGE,Q + 1/3 ·EKGE,LAI + 1/3 ·EKGE,AET . (5)240

The combination of separated and composed sensitivity analysis objective enhances the understanding of the parameter re-

sponse complexity. For the application of the Morris method, we integrated the approaches of Morris (1991), Campolongo

et al. (2007), and Gupta et al. (2009) into a set of MATLAB scripts.

2.5 Three calibration strategies with ROPE, evaluation and robustness check

Table 3 summarizes the calibration strategies with their level of complexity. The approaches consider i) only streamflow at the245

catchment outlet ("Q only"); ii) streamflow at the outlet and LAI at the subcatchment scale ("Q + LAI"); and iii) streamflow

at the outlet, along with LAI and AET at the subcatchment scale ("Q + LAI + AET"). For each calibration strategy, ROPE is

applied and a separate objective function EKGE,eff is defined with an equally weighted contribution EKGE,v of the considered

variable v (Tab. 3). We integrate the modeling of LAI as proxy of hydrological process representation spatially distributed in

the entire catchment. AET data for model performance evaluation is often limited or the necessary data to compute AET,250

e.g., with Penman-Monteith, is lacking. Given the LAI–AET linkage in this region (Mamadou et al., 2016), we test whether a

calibration approach with streamflow and LAI can be used to predict AET.

The robust parameter estimation (ROPE) algorithm after Bárdossy and Singh (2008) is used for the optimization of the

three modeling approaches. ROPE is a depth function-based algorithm to iteratively find parameter sets that give good model
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Table 3. Overview of model optimization approaches and forcing data.

Label Target variables Forcing data Objective function

Q-o Q Observed data EKGE,eff = EKGE,Q

QL-o Q, LAI Observed data EKGE,eff = 1/2 ·EKGE,Q +1/2 ·EKGE,LAI

QLA-o Q, LAI, AET Observed data EKGE,eff = 1/3 ·EKGE,Q +1/3 ·EKGE,LAI +1/3 ·EKGE,AET

Q-w Q W5E5 data EKGE,eff = EKGE,Q

QL-w Q, LAI W5E5 data EKGE,eff = 1/2 ·EKGE,Q +1/2 ·EKGE,LAI

QLA-w Q, LAI, AET W5E5 data EKGE,eff = 1/3 ·EKGE,Q +1/3 ·EKGE,LAI +1/3 ·EKGE,AET

predictions and are robust. The ROPE algorithm does not necessarily give the best parameter sets (global optimum), but rather255

an ensemble of different near-optimum parameters sets (Bárdossy and Singh, 2008). We apply ROPE to derive an ensemble

of good parameter sets for climate impact assessment. In addition, the limitations and dependency on a single parameter set

(equifinality) are overcome by incorporating multiple well-performing sets. We define "well-performing" if the parameter set

gives satisfactory KGE values (EKGE ≥ 0.6) according to Thiemig et al. (2013).

With ROPE, parameter robustness is quantified using the halfspace depth function introduced by Tukey (1975). Generally,260

data depth is a quantitative approach to define how central a sampled point is in a multivariate distribution. The more central

and, thus, deep a point is located, the less the corresponding objective value differs if the point is subject to a small change,

e.g., parameter changes (Bárdossy and Singh, 2008). The calculated parameter set depth value is denoted as L in the following.

To apply the ROPE algorithm, random samples XN of N parameters and their bounds d are defined. The model is run for

each sample and its performance is quantified. A subset X∗
N of the best performing parameters is defined, e.g., the best 10 %265

of XN . The performance is evaluated with an objective function (here EKGE,eff , Tab. 3). Based on X∗
N , M new random

samples (labeled YM ) are generated according to the corresponding depth values L. A new parameter vector of YM is only

considered if it lays within the convex hull given by the depth values. The boundary of the convex hull is defined as L≥ 1.

Each new parameter vector inside the hull (L≥ 1) is considered for the sampling of the next iteration. The iterations of the

ROPE algorithm stop as soon as a convergence criteria is reached. We figured that 12 (20) iterations for the "Q only" and "Q +270

LAI" ("Q + LAI + AET") are needed to guarantee convergence. From one iteration to the next, the 10 % best parameter values

are used. After the final iteration, we consider the 20 best parameter sets for the climate impact assessment.

We calibrate against streamflow, GLASS-LAI, and FLUXCOM-AET. The calibration (validation) is defined from January

2008 to December 2011 (January 2012 to December 2015). We use eight years to enable a computational cost-efficient cal-

ibration for the total of six applied model optimizations. The period from 2006 to December 2015 is an adequate overlap of275

W5E5 and observed data to enable a fair and comprehensive comparison of the forcing data.

The model performance to predict streamflow, LAI, and AET is separately evaluated with EKGE and for each forcing data

set. For model validation, we evaluate the efficiencies EKGE , percent bias EPBIAS , and the coefficient of determination ER2

of streamflow, AET, and LAI (see Appendix A3 for supplementary equations).
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We assess the reliability of the derived parameter sets through a benchmark evaluation. For hydrological models, benchmarks280

facilitate an improved interpretation of the model performance and KGE metrics. (Schaefli and Gupta, 2007; Seibert et al.,

2018; Knoben et al., 2019, 2020). In this study, we define a lower level of expected model performance based on the interannual

mean for every calendar day ("seasonal benchmark") as suggested by Knoben et al. (2020). For this purpose, we compute

the daily mean seasonal values for discharge from the observed data of the period 2001 to 2015. For LAI and AET, the

mean seasonal values are based on the 8-daily temporal resolution for according to the GLASS-LAI and FLUXCOM-AET285

data source. Each seasonality is duplicated to be as long as the evaluation period (2008 to 2015), and, thus, represents the

identical temporal resolution of the model simulation. We compare the duplicated seasonality to the observed time series and

compute EKGE,Q, EKGE,LAI , and EKGE,AET for the entire evaluation period. We use the duplicated seasonality ("seasonal

benchmark") as a synthetic predictor to benchmark SWAT-T’s modeling performance.

2.6 Model cross validation290

The applicability of the parameter sets is evaluated with a cross validation. The parameter sets derived with observed data

input are run with model forcing of ISIMIP3b reference data W5E5; and vice-versa the W5E5-parameters with observed data

forcing. The cross validation is conducted for the evaluation period (January 2008 to December 2015) and assessed through

EKGE,Q, EKGE,LAI , and EKGE,AET . We focus the cross validation on the most comprehensive calibration approach "Q +

LAI + AET".295

2.7 Climate impact assessment

The ISIMIP3b project provides meteorological forcing data from five climate models for three future scenarios, and the cor-

responding baseline, or historical data. The baseline data set represents the observed climate characteristics, usually for the

period from 1901 to 2015, and is used as a reference point to evaluate the future climate scenarios. For meteorological changes,

we calculate the mean annual precipitation for each baseline data of the climate models. For each climate model and scenario,300

we compute the annual precipitation for each year of the near (2031 to 2050) and far (2070 to 2099) future periods. For each

period, the mean annual precipitation is calculated. The resulting mean annual precipitation per period is compared to the

mean annual precipitation of the baseline data, and the increase or decrease (compared to the baseline data) is determined.

For the temperature change, we compute the mean annual temperature for each climate model/scenario and its baseline data.

The multi-model mean is calculated from all five GCMs. For hydrological changes, we evaluate the target variables AET and305

discharge. As baseline for AET (discharge), we use the simulated mean annual AET (discharge) from the period January 2001

to December 2015 from the W5E5 forcing.
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3 Results

3.1 Sensitivity analysis

The sensitivity of the parameters is quantified with the elementary effects method after Morris (1991) whereby a ranking is310

possible. The higher the µ∗ value of a parameter is, the higher is the parameter sensitivity (Campolongo et al., 2007; Garcia

Sanchez et al., 2014). Basically, the elementary effects are calculated according to the model responses, represented as objec-

tive function KGE, to the parameter changes. Four different objectives EKGE,Q, EKGE,LAI , EKGE,AET , and EKGE,all are

defined to evaluate the parameter sensitivity when modeling discharge, LAI, AET, and the combined performance, respectively,

with SWAT-T. Figure 3 shows the values µ∗. The sensitivity analysis considers the entire evaluation period from 2001 to 2015.315

Figure 3. Ranking of the parameter sensitivity quantified with the elementary effects method. The panels (a), (b), (c), and (d) show the

parameter sensitivity with respect to all variables (EKGE,all), LAI (EKGE,LAI ), AET (EKGE,AET ), and discharge (EKGE,Q), respectively.

Each panel shows the statistical moment µ∗ for each parameter. We use different marker colors to assign groups for which each parameter is

commonly associated with. Please note the different y-axis scaling.
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The parameter sensitivity for the equally-weighted objective EKGE,all is displayed in Figure 3a. The ranking of the first 8

parameters is similar to the discharge-only analysis in Figure 3c indicating a strong influence of the discharge performance

EKGE,Q in EKGE,all. The ranking 9 to 15 is assigned to relevant plant, soil, and AET parameters that are sensitive for

EKGE,LAI and EKGE,AET .

Figure 3b summarizes the sensitivity ranking with respect to LAI. The LAI parameters (DLAI, T_BASE, FRGRW2, PHU,320

LAIMX2, LAIMX1; green circles) are generally the most sensitive, together with the SOL_AWC (soil; in purple) and GSI

(AET; in red) parameters. The sensitivity ranking confirms the linkage of LAI and AET in the region. The plant growth depends

on water and temperature stresses in SWAT/SWAT-T. The water stress is a function of AET and water availability, in which

the parameters SOL_AWC and GSI are pivotal. The other soil and AET parameters are less influential, while groundwater and

runoff parameters are irrelevant for predicting LAI.325

The sensitivity for the discharge modeling is summarized in Figure 3c. It can be observed that the most sensitive parameters

are the groundwater (GWQMN, RCRG_DP, GW_REVAP, REVAPMN) and soil parameters (SOL_AWC, SOL_BD), where

GWQMN is most influential. It governs the water depth for which baseflow can occur and partitions the flow into surface and

baseflow contributions. Large GWQMN values allow more surface runoff and less baseflow – and vice versa for small values.

The streamflow at the Bétérou gauge is seasonal and connected to the dry and wet precipitation periods. The groundwater330

parameters, and GWQMN in particular, are essential to model the low flows in the dry season. Figure 3c shows that the

groundwater parameters have more impact on the discharge modeling than the runoff (CN_2, CH_K2, HRU_SLP, SURLAG,

CH_N2) or plant parameters. Similar findings of the strong groundwater relevance in tropical regions are also reported in the

SWAT-T application of López-Ramírez et al. (2021).

The sensitivity ranking in Figure 3d highlights the soil (SOL_AWC, SOL_BD) and AET (ESCO, GSI, EPCO, CAN_MX)335

parameters to be most sensitive for AET modeling. The AET parameters directly govern the calculation of AET. The soil

parameters determine the soil water and availability and, thus, indirectly contribute to the actual amount of AET. The plant

parameters are comparably less influential, yet are relevant. The contribution of the plant parameters affirm the significance of

LAI for AET in this region. Groundwater and runoff parameters are not substantial for AET prediction.

The sensitivity analysis is applied to identify relevant parameters and reduce the parameter space for a more efficient op-340

timization. Overall, 15 parameters are selected that are substantial for the prediction of discharge, LAI, and AET. The final

parameters are listed in Table 1.

3.2 Performance of model optimization approaches and robustness check

The models are forced with observed and W5E5 data. The derived parameter sets from the W5E5 forcing are used for the cli-

mate impact assessment. The purposes of the optimization with observed input data are to demonstrate the general performance345

potential of the ROPE algorithm and to enable a parameter cross validation for the models with W5E5 parameters. We select

the 20 best runs from the ROPE optimization for the subsequent model applications. In the following analysis, Figure 4 shows

the comparison of simulated and observed discharge, LAI, and AET. Table 4 summarizes the quantitative model performance

as KGE values for the calibration and validation periods.
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Figure 4. Mean annual seasonality of simulated (a) discharge, (b) LAI, and (c) AET from each calibration strategy. Each curve in (a), (b),

and (c) represents the mean variables value (discharge, LAI, AET) from n = 20 parameter sets from ROPE. Panels (d), (e), and (f) show

scatter plots for discharge, LAI, AET, respectively, of model forcing with observed data. Marker colors indicate the calibration strategy. The

mean value of the 20 parameter sets from ROPE is displayed. Label letters represent the calibration variables (Q = discharge, L = LAI, A

= AET). The suffix "-o" ("-w") indicates a model forcing with observed data (W5E5 data). Similarly to LAI, panels (g), (h), and (i) show

the scatter plots for simulated discharge, LAI, AET, respectively, with model forcing with W5E5 data. The dashed gray 1:1 line in (d) to (i)

represents the theoretical best fit. Scatter plots for discharge show daily, for AET and LAI 8-daily points. The time series are presented for

the entire evaluation period (2008 to 2015) in all panels.

Overall, the mean annual patterns of discharge, LAI, and AET are moderately well represented in all optimization approaches350

and with both forcing datasets (Fig. 4a to Fig. 4c). For discharge, the performance of the daily simulation is tied to the forcing

data, as spotlighted by the scatter plots in Figure 4d and Figure 4g. The discharge simulation with observed data align well with
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the 1:1 line in Figure 4d, i.e., it mimics the recorded streamflow accurately. In contrary, the discharge simulation with W5E5

shows a spread in the scatter, where single high flow events are recorded, but not modeled; and vice-versa for single simulated

high flow events. The performance quantification according to KGE is given in Table 4. Model optimization with observed355

data (EKGE,Q = 0.49 to 0.92, Tab. 4, calibration and validation) outperforms the W5E5 model optimization (EKGE,Q = 0.10 to

0.64, calibration and validation). The variation in performance can be explained with differences in the input precipitation data

sets. For instance, the precipitation intensity in 2010 is too low in W5E5 compared to the observation data (see Figure A7). In

this period, the simulated discharge is underestimated with W5E5.

Table 4. Model performance for daily simulation as KGE [-] for forcing with observation network data and W5E5 data. KGE values are

given for the calibration (January 2008 to December 2011) and validation (January 2012 to December 2015) for each strategy. The table lists

the minimal, median, and maximal KGE values per variable and calibration (from 20 parameter sets).

Strategy Calibration Validation

Q LAI AET Q LAI AET

Obs. data forcing

Q 0.87, 0.88, 0.91 0.36, 0.74, 0.85 0.53, 0.73, 0.77 0.49, 0.81, 0.92 0.24, 0.73, 0.81 0.59, 0.84, 0.91

Q + LAI 0.82, 0.84, 0.85 0.81, 0.84, 0.88 0.71, 0.75, 0.80 0.57, 0.74, 0.88 0.75, 0.80, 0.82 0.81, 0.86, 0.90

Q + LAI + AET 0.82, 0.85, 0.90 0.78, 0.85, 0.87 0.75, 0.78, 0.80 0.39, 0.85, 0.90 0.75, 0.80, 0.83 0.86, 0.88, 0.90

W5E5 forcing

Q 0.60, 0.62, 0.64 0.25, 0.62, 0.86 0.50, 0.67, 0.77 0.10, 0.43, 0.50 0.36, 0.61, 0.81 0.55, 0.71, 0.81

Q + LAI 0.59, 0.61, 0.64 0.82, 0.86, 0.88 0.68, 0.73, 0.78 0.33, 0.45, 0.49 0.74, 0.80, 0.82 0.72, 0.78, 0.83

Q + LAI + AET 0.56, 0.60, 0.63 0.84, 0.86, 0.88 0.71, 0.75, 0.77 0.41, 0.46, 0.49 0.77, 0.80, 0.83 0.77, 0.79, 0.83

Figure 4b shows the mean annual LAI pattern from all 20 parameter sets for each optimization approach. Simulated LAI360

is compared to GLASS-LAI (8-daily) in Figure 4e and 4h for model forcing with observed and W5E5 data, respectively. The

performance to model LAI is particularly good in the modeling approaches with LAI as target variable ("Q + LAI" and "Q +

LAI + AET") for both forcing data sets. In the growing phase, a small underestimation compared to GLASS-LAI is generally

present. However, the plant maturity and leaf senescence are modeled well with "Q + LAI" and "Q + LAI + AET". The

performance metrics EKGE,LAI ranges from 0.75 (validation) to 0.88 (calibration) for these approaches (Tab. 4). For "Q only",365

the LAI modeling is less adequate, particularly for the W5E5 forcing, where the models fail to simulate plant maturity and leaf

senescence. The LAI calibration varies from EKGE,LAI = 0.25 to EKGE,LAI = 0.86 (Tab. 4) for discharge-only approaches ("Q-o"

and "Q-w").

Similar to LAI, Figure 4c shows the modeled mean annual AET pattern as an average of the 20 parameter sets. Overall,

the simulated mean AET mimics well the annual pattern of FLUXCOM reference. The SWAT-T model can represent the two370

"AET peaks" in the beginning and end of the rainy season, as well as the "AET dip" in the middle of the rainy season. However,

the FLUXCOM-AET values are continuously underestimated. It can be observed that "Q only" particularly underestimates the

reference AET and even fails to mimic the second "AET peak" due to the lack of LAI representation in this period. The
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scatter plots in Figure 4f and Figure 4i confirm SWAT-T’s capability to predict AET, but also the simulated underestimation

to FLUXCOM-AET. Generally, the optimization approaches with AET ("Q + LAI + AET") result in very good performance375

values for both forcing data sets (EKGE,AET = 0.75 to EKGE,AET = 0.90, Tab. 4). If the model is calibrated with respect to discharge

and LAI, adequate AET predictions are possible. For the "Q + LAI", EKGE,AET varies between 0.71 to 0.90 (Tab. 4).

The investigation of multiple parameter sets confirms that the modeling performance of SWAT-T is tied to the forcing data,

particularly for discharge. Figure 5 shows the empirical cumulative distribution functions for the 20 best runs from the ROPE

optimization for the calibration period. In the figure, the performance of the seasonal benchmark of discharge, LAI, and AET380

is integrated. The performance distribution of the parameter sets to model discharge is evaluated in Figure 5a. Two distinct

Figure 5. Empirical cumulative distribution functions (CDF) for the model performance metrics (a) EKGE,Q, (b) EKGE,LAI, and (c) EKGE,AET.

The CDF in each panel is computed from the KGE values of the 20 best parameter sets per calibration strategy and forcing data. Blue lines

represent the CDFs for W5E5 forcing, red lines for observed data forcing. The line styles indicates the calibration strategy. The label letters

represent calibrations variables (Q = discharge, L = LAI, A = AET). The suffix "-o" ("-w") indicates model forcing with observed data (W5E5

data). The pink line in each panel represents the KGE values for the seasonal benchmark after Knoben et al. (2020).

clusters can be identified: the distribution of the W5E5-based parameters (in blue, with EKGE,Q from 0.54 to 0.64) and based

on the observed data set (in red, with EKGE,Q from 0.81 to 0.91). The W5E5 modeling results in a performance as good as the

seasonal discharge benchmark (pink line, KGE = 0.63). Notably, the model outperforms the seasonal discharge benchmark,

if the observed data set is applied. Figure 5b shows the distribution with respect to EKGE,LAI. The values of EKGE,LAI from385

discharge-only (Q-o, Q-w) decline rapidly, while the other approaches yield equally good parameter sets for LAI. Figure 5c

displays the distribution functions of EKGE,AET. All parameter sets for the "Q + LAI" and "Q + LAI + AET" approaches result

in values of EKGE,AET ≥ 0.68. In contrary, only a small subset of the "Q-only" approach yields EKGE,AET ≥ 0.68. Figure 5

highlights that the ROPE algorithm is applicable to derive multiple equally-good parameter sets for LAI and AET modeling.
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Yet, the SWAT-T model can’t beat the benchmark for LAI or AET. GLASS-LAI and FLUXCOM-AET are reanalysis outputs390

based on a data assimilation of observations and satellite-based data, such as MODIS data. Both data sets inherit observed

seasonal patterns and are processed to mimic reality (Liang et al., 2014; Jung et al., 2019). Their benchmark is thus hard to

outperform for a physical-describing model like SWAT-T.

3.3 Model cross validation

Figure 6. Cross validation of the best parameters of the "Q + LAI + AET" calibration strategy. Each line contains n = 20 runs from the

optimization with ROPE. The color indicates the model forcing ("F-") data, where red and blue represent forcing with observed ("-o") and

W5E5("-w") data, respectively. The line style displays the parameter set origin ("P-"). Straight lines indicate the parameters are derived

with observed forcing data ("-o"), dashed lines represent parameter sets from W5E5 forcing ("-w"). The upper and lower row show the

performance for the calibration (January 2008 to December 2011) and validation (January 2012 to December 2015) period, respectively. The

median of the distribution is equal to F(x) = 0.5.

We assess the applicability of the W5E5-parameters with a parameter cross validation. Figure 6 shows the evaluation of the395

cross validation for "Q + LAI + AET". If the model is run with W5E5 parameters and observed data forcing (red dashed lines

in Fig. 6), the resulting metrics EKGE,Q and EKGE,AET are mainly ≥ 0.6, which aligns with a satisfactory to good modeling
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performance according Thiemig et al. (2013). The median EKGE,Q for the calibration and validation period is 0.70 and 0.69,

respectively, which also outperforms the seasonal discharge benchmark (KGE = 0.63). For the prediction of LAI, EKGE,LAI

varies for the W5E5-parameters (red dashed lines in Fig. 6b,e), where the median of EKGE,LAI is 0.48 (calibration) and 0.42400

(validation). The variation for W5E5 parameters and observed forcing can be explained through the final parameter values (see

Tab. A4). For W5E5 optimization, the T_BASE and PHU parameter values are smaller than for observed data forcing. Lower

T_BASE and PHU values trigger an earlier start of the plant growth along with a shorter period of maturity. If the input data is

replaced, even small temperature changes can influence the growth start and plant maturity.

3.4 Future changes of relevant meteorological variables405

Figure 7. Mean projected meteorological changes of the daily mean temperature and annual precipitation for the near (2031-2050; no filled

markers) and far (2070-2099, filled markers) future periods compared to the ISIMIP3b baseline (here 1971-2000) for five GCMs and three

emission scenarios. The marker colors blue, yellow, and purple refer to SSP1–2.6, SSP3–7.0, and SSP5–8.5, respectively. Multi-model mean

is the ensemble mean of the five GCMs.

Figure 7 compares the future changes of precipitation and temperature of the climate models to their baseline data. For all

climate models and scenarios, the average temperature is projected to increase between 0.5 to 5.8 °C in the future. All climate

models indicate a temperature increase of more than 3 °C for the higher emission scenarios (SSP3–7.0 and SSP5–8.5) in the

far future (filled orange and purple symbols), with highest change values of 5.8 °C and 5.4 °C modeled by UKESM1-0-LL and
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IPSL-CM6A-LR, respectively. The temperature increase for the low emission scenario (SSP1–2.6) is comparably smaller (0.9410

to 2.0 °C) in the near and far future. The multi-model mean temperature change for this region ranges from 1.2 °C (SSP1–2.6,

far future) to 4.2 °C (SSP5–8.5, far future). The mean temperature is expected to get warmer especially in the dry period of the

year (January to June and October to December), where a prolongation of the dry and hot period (historically from February

to May) to January to June is projected (Figure A1).

The precipitation projection is mixed with increases and decreases in the future, where the multi-model precipitation mean415

varies between increases of 1.2 % (SSP1–2.6) and 7.2 % (SSP5–8.5). For the SSP1–2.6 scenarios, the precipitation changes

are ±10 % in the near and far future, except for the near future in the MRI-ESM2-0 model. Positive precipitation changes for

selected scenarios are higher than 15 % in UKESM1-0-LL, IPSL-CM6A-LR, MPI-ESM1-2-HR, and MRI-ESM2-0 GCMs.

The GFDL-ESM4 model (circles) mainly projects precipitation decreases. The change in precipitation is most substantial in

the rainy season. From all GCMs, an increase in the amount of monthly precipitation is projected for August, September,420

and October (see Figure A2). The change values are summarized in Tab. A1. The future changes of solar radiation, relative

humidity, and wind speed for the near and far future are displayed in Figure A4 to Figure A6.

3.5 Climate impact assessment and comparison of modeling approaches

The focus of this comparative study is the analysis of the implications of different modeling approaches on the prediction of

future hydrological changes, particularly of AET and discharge. We evaluate the future discharge and AET response to climatic425

changes for the near (2031-2050) and far (2070-2099) future period. Generally, the climate change signal for AET is similar

across all calibration strategies, where the multi-model mean values of AET indicate future increases. Yet, the future annual

AET can vary dependent on the calibration strategy, the underlying GCM, the scenario, and the future period. Figure 8 shows

the annual AET for the applied GCM-SSP sets and the multi-model mean of all GCMs for the near and far future period. The

analysis proves that the discharge only strategy ("Q only", blue boxcharts) predicts lower annual AET rates compared to the430

integrated optimization approaches for each applied GCM-SSP set and for the multi-model mean values for annual AET. The

lower rates of AET for "Q only" is furthermore evident if the future AET values are compared to the respective AET baseline.

The change rates of annual AET from "Q only" to "Q + LAI + AET" are close for the near future period. While "Q only"

predicts an increase of annual AET of 5.5 %, 5.7 %, and 4.2 %, "Q + LAI + AET" results in increases of 7.4 %, 7.2 %, and

5.8 % for the SSP1–2.6, SSP 3–7.0, and SSP5–8.5 scenarios (near period, multi-model mean values, Tab. 5), respectively. For435

the far future period, the change rates are generally higher for "Q + LAI + AET" than "Q only". However, for the SSP5–8.5

scenario, the future change of AET for "Q only" is 9.2 % compared to an increase of 8.4 % for "Q + LAI + AET". Figure

8 moreover indicates that "Q + LAI" results in predictions of annual AET which are close to "Q + LAI + AET". Thus, "Q +

LAI" can approximate AET rates on the catchment scale even if AET is not integrated in the parameter estimation. The LAI

computation can be used as a proxy for AET because the plant growth and AET processes are directly connected in SWAT-T.440

The future annual AET rates also depend on the GCM model. For the near future (Fig. 8), the range of predicted annual

AET is smaller (750 to 1000 mm) than compared to the far future GCM model applications (710 to 1120 mm, Fig. 8). The

modeling with GFDL-ESM4 and MPI-ESM-1-2-HR result in comparably smaller annual AET rates, while the simulations
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Figure 8. Future annual AET simulated with the five GCM and three SSP scenarios and the multi-model ensemble evaluation for (a) the

near-future period (2031-2050) and (b) the far-future period (2070-2099). Colors indicate the calibration "Q only"/"Q-w" (blue), "Q +

LAI"/"QL-w" (yellow), and "Q + LAI + AET"/"QLA-w" (pink). Each box for GCM-SSP contains n = 20 projected mean annual AET values

from the 20 best parameter sets. For the multi-model ensembles, each box contains n = 100 values (5 GCMs x 20 parameter sets). Stars

highlight the multi-model mean values for each calibration process and SSP scenario. Dashed horizontal lines indicate the simulated mean

annual AET from the period 2001 to 2015 with W5E5 forcing. Colors represent the corresponding calibration strategy. Label letters for the

horizontal lines indicate the calibrations variables (Q = discharge, L = LAI, A = AET). The suffix "-w" stands for the forcing with W5E5.

forced by IPSL-CM6A-LR, MRI-ESM2-0, and UKESM1-0-LL indicate higher annual AET values for the near future. For the

far future period, high annual AET rates are particularly predicted with IPSL-CM6A-LR. The GCM forecasts for the far future445

an increase in precipitation and temperature (Fig. 7), which translates to available water and energy for AET. The simulation

with forcing data from the MPI-ESM2-0 model shows distinct differences between the SSP scenarios, where the also future

decreases of annual AET rates can occur. For the far future, the MPI-ESM2-0 model simulates the low temperature changes

(∆T ≤ 2 °C, Fig. 7), and, thus, the increase in AET is the lowest with MPI-ESM2-0 compared to the other GCM applications.
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Figure 9. Future monthly AET values for the 5 GCMs and emission scenarios (a) SSP1–2.6, (b) SSP3–7.0, and (c) SSP5–8.5 for the near-

future period (2031-2050). Each box contains n = 100 monthly AET values (5 GCMs x 20 parameter sets). Colors indicate the calibration

process "Q only" (blue), "Q + LAI" (yellow), and "Q + LAI + AET" (pink). The crosses represent the monthly mean AET values from the

corresponding calibration strategy.

The differences in predicting annual AET are explained with variations in monthly AET dynamics. Figure 9 and Figure 10450

show the monthly mean AET for the calibration approaches for the near and far future period, respectively. The figures also

display the monthly mean AET values from the each model optimization forced with W5E5 data (black cross). The analysis

shows for which months the calibration approaches predict different AET rates. For the near future period (Fig. 9), the monthly

AET rates predicted with "Q only" are lower in the period from August to December. This period describes the end of the wet

and transition into the dry period. Given the discharge-centered optimization, the model does not represent the plant and soil455

water processes in this period. The smaller AET rates for "Q only" are evident for all three SSP scenarios in the near future

period. Concurrently, the predicted mean seasonal values from "Q + LAI" mimics the "Q + LAI + AET" where only small

differences per month are computed.
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Figure 10. Future monthly AET values for the 5 GCMs and emission scenarios (a) SSP1–2.6, (b) SSP3–7.0, and (c) SSP5–8.5 for the far-

future period (2070-2099). Each box contains n = 100 monthly AET values (5 GCMs x 20 parameter sets). Colors indicate the calibration

process "Q only" (blue), "Q + LAI" (yellow), and "Q + LAI + AET" (pink). The crosses represent the monthly mean AET values from the

corresponding calibration strategy.

For the far future period (Fig. 10), the pattern of monthly mean AET differences is similar to the predictions of the near

future period. The monthly AET rates of "Q only" are underestimated from August to December. The analysis for the far future460

period moreover shows large variations within each calibration strategy itself. The box charts are wider in the far period, than

in the near period evaluations, particularly for SSP5-8.5 (see Fig. 10c). The chart sizes indicate that within each calibration

strategy, the range of monthly AET varies, and, thus, the forcing from the GCMs is varying, too. The comparison of future

monthly mean AET values to the monthly AET rates from the W5E5 optimization points out differences particularly in April

for all calibration approaches and SSP scenarios. The contrasting high rates of future monthly AET in April is related to the465

strong increase of temperature in the future spring months (see Fig. A1). In April, the warmer climate overlaps with the onset

of the rainy season, which eventually catalyzes the AET generation.
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Figure 11. Mean future changes in annual AET and discharge for the GCM and emission scenarios as well as the multi-model mean for the

calibration approaches (a) "Q only", (b) "Q + LAI", and (c) "Q + LAI + AET". Each marker represents the mean change computed from the

20 best parameter runs. The colors indicate the emission scenario. The markers represent the GCM. Filled (non-filled) corresponds to the

far-future (near-future) period.

Generally, the future rate of AET is computed to increase for the Bétérou Catchment based on the GCMs integrated in the

ISIMIP3 project. Depending on the calibration strategy and the SSP scenario, the multi-model mean changes range from 4.0 %

("Q only", SSP1–2.6, far period) to 9.2 % ("Q + LAI + AET", SSP3–7.0, far period; and "Q only", SSP5–8.5, far period) as470

indicated from the multi-model mean values in Figure 11 and Tab. 5. The projected changes of AET (multi-model mean) are

lower for "Q only" than "Q + LAI + AET". The overview of future changes in Figure 11 and Tab. 5 indicates high AET increases

particularly for the IPSL-CM6A-LR, which projects high precipitation and temperature increase. Negative AET changes are

computed only partially and mainly with forcing from MPI-ESM-1-2-HR (Figure 11a).

For discharge, the future changes can be positive and negative depending on the underlying GCM forcing and calibration475

strategy. The application of the MPI-ESM1-2-HR model data results in a strong increase of discharge (up to 101.1 %, SSP5–

8.5, "Q only"). The forcing data of GFDL-ESM4 yields mostly decreases of future discharge due to projected precipitation

decreases and temperature increases of >3 °C. For the near future, the discharge changes from "Q only" range from −3.3 to

3.2 % (multi-model mean, Tab. 5). For "Q + LAI" and "Q + LAI + AET", the multi-model mean changes of discharges are

simulated from −7.9 to −4.0 % and from −10.8 to −6.7 %, respectively. For the far-future period, the multi-model mean480

changes of discharge show a substantial decrease independent of the calibration strategy, where the change rates for "Q + LAI

+ AET" are the lowest due to the higher simulated evaporative demand. The changes are−18.9 to−1.6 % for "Q only",−21.7

to −5.1 % for "Q + LAI", and −22.9 to −7.0 % for "Q + LAI + AET".
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Table 5. Mean future changes in annual AET ∆E and discharge ∆Q for the GCM and emission scenarios as well as the multi-model mean

for the calibration approaches "Q only", "Q + LAI", and "Q + LAI + AET". The mean changes are computed from the 20 best parameter

runs. The annual AET changes are denoted as ∆E in this table for readability.

GCM Q only Q + LAI Q + LAI + AET

Near Far Near Far Near Far

∆Q ∆E ∆Q ∆E ∆Q ∆E ∆Q ∆E ∆Q ∆E ∆Q ∆E

SSP1–2.6

GFDL-ESM4 −3.2 2.3 −34.8 0.3 −6.8 2.8 −34.0 0.3 −9.0 4.4 −36.0 2.0

IPSL-CM6A-LR −6.5 8.1 −6.0 8.1 −9.8 8.0 −11.4 8.3 −11.6 9.5 −13.1 9.7

MPI-ESM-1-2-HR −31.1 2.1 −31.1 0.9 −29.0 1.5 −29.9 0.6 −31.2 3.3 −32.0 2.3

MRI-ESM2-0 21.4 5.9 −23.9 3.1 11.1 6.7 −25.2 3.6 9.8 8.1 −26.9 5.2

UKESM1-0-LL 2.9 9.4 7.3 7.7 −4.5 10.5 −1.6 8.2 −6.0 11.8 −4.3 9.6

Multi-model mean −3.3 5.5 −17.7 4.0 −7.8 5.9 −20.4 4.2 −9.6 7.4 −22.4 5.8

SSP3–7.0

GFDL-ESM4 −51.2 1.6 −60.1 −0.4 −49.9 1.1 −59.7 −1.2 −51.8 2.6 −60.9 −0.2

IPSL-CM6A-LR −13.4 10.9 −9.4 22.9 −16.9 11.3 −11.0 22.5 −17.7 12.6 −11.6 23.7

MPI-ESM-1-2-HR 7.0 1.6 4.9 1.6 1.3 1.0 −3.0 2.8 −2.6 2.7 −4.7 4.0

MRI-ESM2-0 26.7 4.2 −33.5 5.7 13.1 4.9 −33.1 5.5 8.8 6.3 −33.8 6.7

UKESM1-0-LL 24.8 10.2 3.7 10.8 12.7 10.5 −1.8 10.6 9.1 11.7 −3.6 11.8

Multi-model mean −1.2 5.7 −18.9 8.1 −7.9 5.8 −21.7 8.0 −10.8 7.2 −22.9 9.2

SSP5–8.5

GFDL-ESM4 −30.9 0.9 −65.2 −0.3 −30.1 0.7 −64.2 −1.8 −32.1 2.2 −65.1 −1.1

IPSL-CM6A-LR −11.7 8.4 −11.8 28.1 −14.9 9.2 −6.5 24.3 −16.6 10.7 −7.2 25.9

MPI-ESM-1-2-HR −12.0 −1.5 101.1 −6.3 −12.7 −2.0 75.6 −6.1 −14.5 −0.6 71.0 −5.0

MRI-ESM2-0 48.1 4.1 −51.2 7.4 27.5 5.1 −45.1 4.2 22.5 6.4 −45.9 5.2

UKESM1-0-LL 22.5 9.0 19.1 17.3 10.0 9.5 14.8 15.6 7.3 10.5 12.1 16.9

Multi-model mean 3.2 4.2 −1.6 9.2 −4.0 4.5 −5.1 7.2 −6.7 5.8 −7.0 8.4

4 Discussion

4.1 Optimization strategy and hydrological modeling485

This study primarily focus on the variability of future AET depending on the calibration strategy in hydrological modeling. For

this purpose, three calibration methods with different levels of complexity and information indices ("Q only", "Q + LAI", and

"Q + LAI + AET") are evaluated. Similar to previous comparative studies (Huang et al., 2020; Ismail et al., 2020; Koch et al.,

2020; Mishra et al., 2020; Wen et al., 2020), the analysis of simple to comprehensive calibration strategies is investigated, in
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this study with particularly for AET. The different calibration complexities from "Q only" to "Q + LAI + AET" also serve as a490

proxy for a benchmark test with lower and upper arguments, as suggested by Seibert et al. (2018). The integration of an "AET

only" approach may add another layer of "upper benchmark". Yet, we also assess the calibration strategy impacts on discharge

changes for the region. Disregarding discharge in the hydrological modeling can imply large discharge variability (Odusanya

et al., 2019; Sarmiento et al., 2025). We have thus avoided to include "AET only" to minimize discharge uncertainties.

Model evaluation in this study is based on in-situ monitoring and satellite-derived reanalysis datasets (GLASS-LAI and495

FLUXCOM-AET). GLASS-LAI and FLUXCOM-AET have been validated by Merk et al. (2024) for two distinct loca-

tions within the Bétérou Catchment. GLASS-LAI and FLUXCOM-AET rely on models and assumptions, and are provided

at a coarser resolution than the hydrological model. To address scale differences, the SWAT-T outputs, GLASS-LAI and

FLUXCOM-AET data were spatially projected onto the same units. While this approach allows for a spatially explicit eval-

uation that reflects land cover variability within the Bétérou catchment, it also introduces some information loss, e.g., from500

the aggregation of AET heterogeneity. The subbasin-level evaluation offers a practical compromise, where spatial context is

preserved at a scale appropriate for hydrological modeling.

The hydrological cycle in the Western African region is driven by precipitation, AET, and discharge (Rodell et al., 2015).

Although soil moisture is a key internal state variable in hydrological modeling, we have not included soil moisture products

for the model validation. Accurate simulations of the dynamics of AET and discharge has been shown to reliably represent the505

hydrological behavior in the Ouémé catchment (Odusanya et al., 2021). We thus focused the model evaluation on discharge,

AET, and LAI, and excluded soil moisture to minimize additional uncertainty and potential conflicts between observational

variable constraints.

We integrate LAI as a proxy for vegetation in the hydrological modeling. The relevance of LAI on the AET and discharge

estimation in sub-humid regions has been highlighted prior, e.g., in Alemayehu et al. (2017); Hoyos et al. (2019); Ferreira510

et al. (2021); López-Ramírez et al. (2021). Previous studies for the region, like Poméon et al. (2018) or Odusanya et al. (2021),

include AET in the hydrological modeling of the Ouémé River in Benin, while others have focused on "Q only" approaches

(Bossa et al., 2014; Danvi et al., 2018). We demonstrate that a detailed LAI modeling can predict adequate AET outputs.

The evaluation of modeled discharge from the ROPE application yields different KGE ranges depending on the forcing data.

For calibration with data from the observation network, the maximum EKGE,Q (validation) is 0.91 (0.92), 0.85 (0.88), and 0.90515

(0.90) for "Q only", "Q + LAI", and "Q + LAI + AET", respectively. These results align with findings from other studies;

for instance, Afféwé et al. (2025) report 0.83 (0.77) with HBV model, or Herzog et al. (2021) validate the Parflow-CLM

model with a mean KGE value of 0.82. The strong KGE performance confirms that the ROPE algorithm and the SWAT-T are

well-suited for discharge calibration in the Bétérou Catchment.

However, it is still essential to calibrate the hydrological impact model with the W5E5 forcing dataset if the bias-adjusted520

ISIMIP3b GCM outputs are used. In this study, the maximum EKGE,Q from calibration (validation) are 0.64 (0.50), 0.64 (0.49),

and 0.63 (0.49) for "Q only", "Q + LAI", and "Q + LAI + AET", respectively. We assume the KGE values are smaller compared

to the observed data due to the W5E5 data forcing, particularly precipitation. The W5E5 data set represents the seasonality

accurately well, but it lacks the depiction on sub-seasonal variations and single rainfall events for the Bétérou Catchment
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in West Africa. Similar results with CMIP6 are reported by Wang et al. (2022) for the Congo River in Africa who figured525

challenges in discharge representation through CMIP6 climate data. However, we benchmark the discharge performance with

the seasonal benchmark after Knoben et al. (2020), which shows an adequate behavioral modeling of discharge. Combined

with the parameter cross validation, the W5E5-models are applicable and can still represent the mean seasonal patterns of the

hydrological cycle in Bétérou. We thus recommend benchmarking and cross validation with observed data if the ISIMIP3b is

used for future studies in West Africa.530

The model optimization and selection of the 20 parameter sets for the climate impact assessment are based on the perfor-

mance metrics KGE, which is a robust criteria to asses the runoff generated within a catchment (Gupta et al., 2009). Single

metrics can however overlook pitfalls of the model structure and defer the model and parameter choice (Schaefli and Gupta,

2007; Knoben et al., 2019; Hallouin et al., 2020; Cinkus et al., 2023). We apply multiple parameter sets, the benchmarking after

Knoben et al. (2020), and parameter cross validation to increase the reliability of the single-metrics based model choice for535

climate impact assessments. Looking ahead, the model optimization can include further performance criteria to assess specific

features of hydrological process in the region, such as the Nash-Sutcliff Efficiency (NSE) or the logarithmic NSE, among many

others, to better include high or low flows, respectively.

4.2 Climate future data and meteorological changes

We used five GCMs with three SSP scenarios from ISIMIP3b (based on CMIP6) equally weighted, where we followed the con-540

ventional model democracy approach. Model democracy in climate impact studies can be crucial (Knutti, 2010). However, the

use of multiple GCM-scenario combinations helps to reduce structural GCM model uncertainty, while enhancing transparency

and comparability. For example, the application of CMIP6 data in this study for the Bétérou Catchment in Benin enables com-

parisons with similar assessments in this region, such as the findings of Yonaba et al. (2023) for the Tougou Basin in Burkina

Faso. Both studies indicate substantial increases in projected discharge under the MPI-ESM1-2-HR model, with changes up to545

101.1 % in this study and up to 117 % in (Yonaba et al., 2023).

However, assuming all GCM models perform reasonably well globally is critical, since poorly performing GCMs can in-

fluence ensemble-based hydrological impact statements (Flato et al., 2014). Hattermann et al. (2018) highlight that GCMs

are major source of uncertainty in the climate-hydrological impact modeling. Consequently, the influence of the calibration

strategy on future AET is likely to be smaller compared to the GCM model uncertainty. Nevertheless, our study demonstrates550

that the future changes of AET strongly depend on the calibration strategy. Thus, disregarding AET during model calibration

may introduce an additional layer of uncertainty other than the GCM uncertainty.

The application of multiple ISIMIP3b GCMs offers a transparent and standard way to understand climate changes and hy-

drological responses across studies, and to avoid uncertainties from individual downscaling and bias corrections. Romanovska

et al. (2023) demonstrate the potential benefits of the ISIMIP3b climate data since its multi-model mean ensembles can even555

outperform individual models when compared to observed precipitation in Western Africa. The seasonal patterns of temper-

ature and precipitation in the GCM historical data closely align with those observed in the monitoring network. The monthly

values are similar, and qualitatively meet the criteria suggested by (Krysanova et al., 2017; Hattermann et al., 2018). The me-
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teorological changes for the Bétérou Catchment in Benin indicate a clear projection for temperature, but a divers picture for

precipitation. For temperature, all GCMs forecast increases of 0.5 to 5.8 °C, which generally aligns with the changes projected560

with CMIP6 for the West African Region (Almazroui et al., 2020).

The projected precipitation derived from the ISIMIP3b data set indicates a diversified scatter of changes. The multi-model

mean values indicate small (1.2 %, SSP1–2.6) to large (7.2 %, SSP5–8.5) precipitation increases. Yet, the variability between

single models is distinct. Substantially wetter periods are indicated by MPI-ESM1-2-HR, IPSL-CM6A-LR, and UKESM1-

0-LL, while GFDL-ESM4 and MRI-ESM2-0 project drier future rainfall. The ensemble spread in CMIP6 precipitation pro-565

jections can be attributed to differences in how models simulate the West African Monsoon (Almazroui et al., 2020). Similar

precipitation variability for West Africa has also been reported in other climate forcing datasets. For example, Nikulin et al.

(2012) found substantial spreads in CORDEX precipitation projections that are also linked to the complex monsoon dynamics.

4.3 Hydrological changes

The annual AET is generally predicted to increase independent of the GCM, the time period (near-, far future), or the calibration570

strategy ("Q only", "Q + LAI", "Q + LAI + AET"). For the low emission scenario (SSP1–2.6), the multi-model mean changes

range from 4.0 % to 7.4 % across all calibration strategies. The high emission scenario (SSP5–8.5) predicts multi-model mean

changes of 4.2 % to 9.2 %. Previous impact studies for the Ouémé region report increases, but also decreases in future AET for

the region (Bossa et al., 2012, 2014; Danvi et al., 2018). However, these studies relied on models calibrated against discharge,

without explicitly including AET in the calibration. As our results demonstrate, disregarding AET from calibration can defer575

the simulated amount of future AET, where "Q only" simulates lower future annual AET changes than "Q + LAI" or "Q + LAI

+ AET". These findings align with Mishra et al. (2020), who demonstrate the influence of the AET calibration strategy on the

climate impact assessment for the Upper Godavari in India.

Differences in projected AET across the calibration approaches are most pronounced between August and December. The

calibration strategy has a smaller impact on AET simulation during the early part of the year, which is the shift from dry to wet580

period. The seasonal AET pattern in Bétérou is characterized by two peaks (April to June and September to November) with a

notable dip during the peak rainy season (June to September). This mid-season decline is primarily caused by cloud cover and

rainfall, which limit solar radiation and thus reduce AET. SWAT-T can simulate AET dynamics in the beginning of the season

(January to July), which is largely independent of the calibration strategy. However, from August onward, the AET simulation

becomes more sensitive to the calibration strategy, demonstrating the need for carefully adjusted model parameters. The soil585

(e.g., SOL_AWC, SOL_BD), AET (e.g., GSI), and plant growth (DLAI, T_BASE, FRGRW2) parameters can be essential to

realistically represent post-monsoon and dry-season AET in Bétérou.

The analysis of future discharge changes shows increases and decreases depending on the GCM, emission scenario, and eval-

uation period. The different projections are largely attributed to the complexity of how GCMs simulate precipitation dynamics

and projections of the West African Monsoon (Paeth et al., 2011). Consequently, the model forcing with MPI-ESM-1-2-HR590

outputs can also result in high future discharges (change of 101.1 % for "Q only", SSP5–8.5, far future). Similar substantial

discharge changes with MPI-ESM-1-2-HR are also reported by Yonaba et al. (2023) for a catchment in Burkina Faso. This
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GCM projects substantial precipitation increases with minor temperature changes for the West African region. Overall, the

analysis of the multi-model mean for future discharge changes essentially indicates a decrease of discharge for the Bétérou

region. The multi-model mean changes vary from 22.9 % to 3.2 %. Discharge decreases for the Ouémé region have also been595

found in other studies (Bossa et al., 2012, 2014; Danvi et al., 2018). The decreases can potentially be attributed to the increase

in temperature, which intensify the evaporative demand.

In this study, the evaluation of hydrological changes is focused on the primary components of the hydrological cycle AET

and discharge in the Bétérou Catchment. These variables provide a robust basis for interpretation, since they are reasonably

well constrained by observations. Other water balance components, such as the partitioning into surface runoff, lateral flow, and600

baseflow, are not specifically investigated at this stage. Soil moisture dynamics are not analyzed in detail, because no particular

calibration or validation has been conducted. Looking ahead, a comprehensive analysis of the water balance components will

be conducted with a special focus on soil moisture, the partitioning of the flow components, and hydrological variables.

5 Conclusion

The broad implication of this research is the demonstration of how different the response of future AET to climate change can605

be depending on the calibration strategy with an ecohydrological impact model. Although being relevant for the hydrological

cycle and water availability estimation, AET often remains disregarded in model calibration in the framework of climate impact

assessment in West Africa. We investigate the role of different calibration strategies on future AET projections under different

GCM and emission scenario combinations for the demonstration site Bétérou in West Africa using the ecohydrological model

SWAT-T.610

This study couples comprehensive parameter estimation with climate impact assessment, and uses multiple near-optimal

parameter sets for each calibration strategy. This ensemble-based approach avoids reliance on a single best-fit solution and

explicitly accounts for model parameter equifinality. This way, the robustness of the future projections is increased and the

influence of the calibration strategy can be spotlighted.

The analysis shows that the calibration strategy can influence the future AET projections. The simulated mean annual AET615

substantially varies depending on the calibration strategy for the baseline (2001 to 2015) and future periods (2031 to 2050

and 2070 to 2099). The annual AET is smaller for discharge-only calibration compared to "Q + LAI" and "Q + LAI + AET"

approaches. The relative future AET changes of the GCM-ensemble mean for low emission scenarios (SSP1–2.6) range from

∆E = 4.0% (discharge only) to ∆E = 7.4% (AET in calibration) in the near-future period. For high emission scenarios (SSP5–

8.5) and the far-future period, the future change of AET is ∆E = 9.2% (disregarding AET in model calibration) to ∆E = 8.4%620

(AET in calibration). The differences in future AET changes from the calibration strategy are tied to the simulation of the mean

seasonal AET values. Disregarding AET in calibration results in lower AET predictions for the wet to dry transition period

(August to December). This study moreover highlights the value of plant growth (LAI) for AET estimation. Given the high

transpiration rates in the region, vegetation dynamics (LAI) can serve as a proxy for AET when direct calibration is not feasible.
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This study aligns with the well-document findings the application of the ISIMIP3b (CMIP6) data can have for climate impact625

assessment in West Africa. The baseline forcing data set W5E5 captures the precipitation pattern of the Bétérou Catchment rea-

sonably well, yet can have implications in representing individual rainfall events. For instance, model calibration using W5E5

forcing shows lower performance compared to simulations driven by observed meteorological data for discharge simulation.

Additionally, some GCMs can be more sensitive to the regional affecting West African Monsoon. This leads to higher precip-

itation projections, which consequently results in high future discharge increases (up to ∆Q = 101.1% for certain GCMs; "Q630

only").

In hydrological climate impact assessment, GCM uncertainty remains most challenging. Yet, our findings underscore the

value of a robust hydrological model calibration for impact assessment. We address the model and parameter uncertainties

in the climate-hydrological modeling chain, and highlight how disregarding detailed AET calibration can lead to biased AET

impact assessments. The presented methodology can be transferred to other AET-dominant regions. Looking ahead, integrating635

additional remotely sensed or satellite-based data, such as soil moisture or ensemble AET data, can further reduce modeling

uncertainties and improve the reliability of future AET and discharge assessments.
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Appendix A: Appendix

A1 Appendix A1 - Figures

Figure A1. Daily average temperature projections (multi-model mean) in three climate change scenarios (SSP1–2.6, SSP3–7.0, SSP5–8.5).

Figure A2. Seasonal cycle of monthly precipitation projections (multi-model mean) in three climate change scenarios (SSP1–2.6, SSP3–7.0,

SSP5–8.5). Blue circles represent the monthly mean precipitation from ISIMIP3b baseline (1951 to 2015). Black crosses are used to highlight

the multi-model monthly mean values.
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Figure A3. Seasonal cycle of average temperature projections (multi-model mean) in three climate change scenarios (SSP1–2.6, SSP3–7.0,

SSP5–8.5). Blue circles represent the monthly mean temperature from ISIMIP3b baseline (1951 to 2015). Black crosses are used to highlight

the multi-model monthly mean values.

Figure A4. Seasonal cycle of monthly humidity projections (multi-model mean) in three climate change scenarios (SSP1–2.6, SSP3–7.0,

SSP5–8.5). Blue circles represent the monthly mean humidity from ISIMIP3b baseline (1951 to 2015). Black crosses are used to highlight

the multi-model monthly mean values.
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Figure A5. Seasonal cycle of monthly solar radiation projections (multi-model mean) in three climate change scenarios (SSP1–2.6, SSP3–

7.0, SSP5–8.5). Blue circles represent the monthly mean radiation from ISIMIP3b baseline (1951 to 2015). Black crosses are used to highlight

the multi-model monthly mean values.

Figure A6. Seasonal cycle of monthly wind speed projections (multi-model mean) in three climate change scenarios (SSP1–2.6, SSP3–7.0,

SSP5–8.5). Blue circles represent the monthly mean wind speed from ISIMIP3b baseline (1951 to 2015). Black crosses are used to highlight

the multi-model monthly mean values.
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Figure A7. Hydrograph for the calibration period for observed forcing data (W5E5 forcing data) in the upper (lower) panel. Each panel

shows the simulated hydrograph for the 20 best parameters of the "Q + LAI + AET" approach, the observed streamflow, and precipitation.

Figure A8. Time series of LAI/AET for the calibration period for observed forcing data (W5E5 forcing data) in the left (right) panels.

Each panel shows the simulated LAI/AET for the 20 best parameters of the "Q + LAI + AET" approach and the references GLASS-

LAI/FLUXCOM-AET.
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A2 Appendix A2 - Tables640

Table A1. Projected changes of precipitation (∆P ) and temperature (∆T ) for the underlying GCM, emission scenario, and future period.

GCM SSP1–2.6 SSP3–7.0 SSP5–8.5

Near Far Near Far Near Far

∆P ∆T ∆P ∆T ∆P ∆T ∆P ∆T ∆P ∆T ∆P ∆T

GFDL-ESM4 5.1 1.2 −4.5 1.3 −7.9 1.4 −14.8 3.2 −2.6 1.2 −17.2 3.7

IPSL-CM6A-LR 7.9 1.5 7.6 1.6 6.6 1.8 18.4 4.3 7.0 1.8 21.3 5.4

MPI-ESM-1-2-HR −2.1 0.9 −3.3 0.9 9.1 0.5 8.3 1.9 0.1 0.6 21.7 1.5

MRI-ESM2-0 11.5 1.4 −1.3 1.8 13.3 1.2 −2.7 3.6 19.6 1.6 −8.0 4.7

UKESM1-0-LL 8.7 1.9 7.4 2.0 13.2 2.2 8.9 4.5 11.2 1.9 17.8 5.8

Multi-model mean 6.3 1.4 1.2 1.5 7.0 1.4 3.7 3.5 7.2 1.4 7.2 4.2

Table A2. Overview of the mean EPBIAS values (in %) of the 20 parameter sets.

Approach
Observation Network W5E5 dataset

Calibration Validation Calibration Validation

Q LAI AET Q LAI AET Q LAI AET Q LAI AET

Q -1.2 3.4 15.8 -13.6 7.7 6.6 -6.8 25.5 24.6 -25.5 24.8 21.5

Q + LAI -2.5 8.7 20.2 -18.2 11.4 10.3 -8.9 10.8 20.6 -19.6 11.3 17.3

Q + LAI + AET 0.8 7.2 17.5 -11.1 10.9 7.6 -3.5 9.6 18.8 -10.4 10.4 15.7

Table A3. Overview of the mean ER2 values (no unit) of the 20 parameter sets.

Approach
Observation Network W5E5 dataset

Calibration Validation Calibration Validation

Q LAI AET Q LAI AET Q LAI AET Q LAI AET

Q 0.79 0.70 0.68 0.85 0.59 0.74 0.40 0.53 0.65 0.26 0.58 0.71

Q + LAI 0.73 0.90 0.82 0.80 0.81 0.87 0.40 0.93 0.73 0.24 0.89 0.81

Q + LAI + AET 0.75 0.90 0.82 0.82 0.80 0.85 0.38 0.92 0.73 0.23 0.88 0.81
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A3 Appendix A3 - Supplementary equations

The equations for the Kling-Gupta efficiency EKGE , percent bias (EPBIAS), and coefficient of determination ER2 are shown

in the following. In this, r is the linear correlation between observations and simulations; σsim and σobs are the standard

deviation of the simulations and observations, respectively; and µsim and µobs are the mean value for the simulations and

observation, respectively; n is the number of observations; and Qsim,i (Qobs,i) is the simulated (observed) discharge at time i.645

EKGE = 1−
√

(r− 1)2 +
(

σsim

σobs
− 1
)2

+
(

µsim

µobs
− 1
)2

, (A1)

EPBIAS = 100×
∑n

i=1(Qsim,i−Qobs,i)∑n
i=1 Qobs,i

, (A2)

ER2 =

( ∑n
i=1(Qobs,i−µobs)(Qsim,i−µsim)√∑n

i=1(Qobs,i−µobs)2
√∑n

i=1(Qsim,i−µsim)2

)2

. (A3)
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A4 Appendix A4 - Final parameters

Table A4. Final parameters for each calibration approach and forcing data. The table lists the minimal, median, and maximal parameter value

from the best performing 20 sets. The superscripts denote: 1 parameter change is a multiplier, i.e., the original parameter p is multiplied:

pnew = porig + porig × pchange, based on the parameter values from Judex and Thamm (2008); 2 parameter change is a multiplier, i.e., the

original parameter p is multiplied: pnew = porig × pchange, based on the parameter values from Merk et al. (2024).

Parameter Forcing: observed data Forcing: W5E5 data

Q only Q + LAI Q + LAI + AET Q only Q + LAI Q + LAI + AET

ESCO 0.16, 0.45, 0.80 0.28, 0.54, 0.78 0.14, 0.34, 0.77 0.28, 0.49, 0.80 0.19, 0.57, 0.85 0.25, 0.64, 0.86

EPCO 0.20, 0.40, 0.84 0.27, 0.42, 0.77 0.21, 0.47, 0.58 0.42, 0.56, 0.75 0.24, 0.40, 0.70 0.23, 0.43, 0.52

GWQMN 1325, 1642, 1857 1345, 1593, 1713 952, 1318, 1649 1012, 1197, 1514 1147, 1311, 1479 1141, 1303, 1483

GW_DELAY 1.2, 16.7, 43.3 6.0, 21.4, 40.1 7.7, 45.9, 56.2 5.4, 8.1, 11.0 8.0, 10.1, 16.0 5.3, 8.3, 16.3

GW_REVAP 0.04, 0.10, 0.13 0.04, 0.12, 0.19 0.07, 0.14, 0.18 0.07, 0.10, 0.13 0.07, 0.11, 0.15 0.08, 0.10, 0.13

RCHRG_DP 0.03, 0.12, 0.18 0.06, 0.11, 0.17 0.06, 0.15, 0.19 0.04, 0.07, 0.13 0.05, 0.11, 0.14 0.04, 0.07, 0.16

REVAPMN 515, 751, 955 399, 754, 1137 464, 855, 1280 506, 703, 1169 640, 788, 1132 671, 895, 1213

SOL_AWC1 -0.23, 0.19, 0.44 -0.09, 0.14, 0.28 0.04, 0.21, 0.45 -0.10, 0.08, 0.34 -0.31, -0.08, 0.33 -0.19, 0.17, 0.40

SOL_BD1 0.09, 0.20, 0.32 0.16, 0.30, 0.38 0.25, 0.30, 0.32 0.05, 0.15, 0.28 -0.04, 0.12, 0.26 -0.13, 0.08, 0.29

CAN_MX 0.94, 4.47, 7.68 1.94, 5.72, 7.86 2.38, 4.39, 8.42 1.42, 3.56, 6.49 1.57, 5.37, 7.77 2.74, 6.36, 9.31

FRGRW2
2 0.81, 0.91, 1.04 0.82, 0.90, 1.00 0.78, 0.86, 0.96 0.85, 0.92, 1.07 0.75, 0.91, 1.03 0.77, 0.88, 0.98

DLAI2 0.77, 0.89, 1.06 0.86, 0.97, 1.02 0.87, 0.98, 1.06 0.80, 0.94, 1.04 0.83, 0.96, 1.03 0.83, 0.94, 1.03

T_BASE2 0.78, 0.97, 1.16 0.99, 1.10, 1.22 0.87, 1.04, 1.21 0.91, 1.02, 1.16 0.85, 1.00, 1.13 0.84, 0.94, 1.12

GSI2 0.84, 1.03, 1.18 0.82, 1.02, 1.19 0.81, 1.03, 1.13 0.86, 0.95, 1.05 0.88, 1.00, 1.12 0.84, 1.04, 1.10

PHU2 0.86, 0.94, 1.16 1.05, 1.12, 1.20 1.01, 1.14, 1.23 0.97, 1.08, 1.14 0.91, 0.99, 1.13 0.94, 1.06, 1.14
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A5 Appendix A5 - Water balance components650

Table A5. Overview of the multi-model mean values of the water balance components. The baseline reference is the evaluation period 2001

to 2015 simulated with W5E5. The values show the mean value for each GCM, emission scenario, and the 20 sets of parameters in mm yr-1.

The changes to the baseline (in brackets) are percentage changes. Precipitation is the mean annual precipitation for the near- and far-future

period. SWAT-T computes "Water Yield" as the sum of surface runoff, lateral flow, and baseflow. Percolation serves as proxy for groundwater

recharge when using SWAT-T.

Near future Far future

Q Q + LAI Q + LAI + AET Q Q + LAI Q + LAI + AET

SSP1–2.6

Precipitation 1246 1246 1246 1175 1175 1175

AET 858 (+5.6) 900 (+5.9) 917 (+7.2) 846 (+4.0) 886 (+4.2) 925 (+8.3)

Water Yield 182 (−15.6) 180 (−18.4) 168 (−18.8) 181 (−15.6) 180 (−18.4) 201 (−3.0)

Percolation 221 (−6.6) 162 (−9.2) 158 (−9.8) 185 (−22.0) 130 (−26.7) 154 (−12.0)

SSP3–7.0

Precipitation 1238 1238 1238 1203 1203 1203

AET 860 (+5.7) 898 (+5.8) 915 (+7.1) 880 (+8.2) 918 (+8.0) 932 (+9.1)

Water Yield 180 (−16.7) 177 (−19.6) 167 (−19.2) 179 (−16.8) 177 (−19.6) 167 (−19.2)

Percolation 216 (−8.6) 160 (−10.1) 157 (−10.3) 180 (−23.9) 127 (−28.3) 124 (−29.4)

SSP5–8.5

Precipitation 1241 1241 1241 1244 1244 1244

AET 847 (+4.2) 888 (+4.5) 904 (+5.7) 889 (+9.3) 911 (+7.2) 926 (+8.3)

Water Yield 216 (+0.5) 213 (−3.0) 200 (−3.0) 217 (+0.5) 213 (−2.9) 201 (−3.0)

Percolation 227 (−4.4) 169 (−5.2) 166 (−5.1) 201 (−15.1) 157 (−11.8) 153 (−12.0)

A6 Appendix A6 - References of the study site map

Table A6. Overview of the data use for the study site map.

Data Database name or source

Topography Copernicus GLO-30 (Copernicus, 2022)

Land use map Copernicus Global Land Service (Buchhorn et al., 2020)

Water bodies ArcGIS Pro 2.7.3 (ESRI)

Countries and cities ArcGIS Pro 2.7.3 (ESRI)

Catchment extents Derived with ArcGIS Pro 2.7.3 (ESRI)

39

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Author contributions. FM, TS, FA, MR, JB, MD reviewed and edited the manuscript; FM, TS, FA, MD conceived and designed the study;

FM, TS, FA, MR, JB acquired the data; FM, TS, FA performed the data analysis and model development and simulations; FM, TS, FA, MR,

JB, MD evaluated the simulations and models. FM wrote the manuscript draft.

Competing interests. The authors declare that they have no conflict of interest.655

Acknowledgements. The authors want to thank the BMBF ("Bundesministerium für Bildung und Forschung") for the funding of the FURI-

FLOOD research project ("Current and future risks of urban and rural flooding in West Africa", Grant No.: 01LG2086B). We would like to

thank our partners involved in the FURIFLOOD project for their support. This work was further supported by the European Union’s Horizon

Europe research and innovation program as part of the UAWOS project ("Unmanned Airborne Water Observing System", Grant Agreement

No.: 101081783).660

40

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Afféwé, D. J., Merk, F., Bodjrènou, M., Rauch, M., Usman, M. N., Hounkpè, J., Bliefernicht, J.-G., Akpo, A. B., Disse, M., and

Adounkpè, J.: Impact of Precipitation Uncertainty on Flood Hazard Assessment in the Oueme River Basin, Hydrology, 12, 138,

https://doi.org/10.3390/hydrology12060138, 2025.

Akoko, G., Le, T. H., Gomi, T., and Kato, T.: A Review of SWAT Model Application in Africa, Water, 13, 1313,665

https://doi.org/10.3390/w13091313, 2021.

Alemayehu, T., van Griensven, A., Woldegiorgis, B. T., and Bauwens, W.: An improved SWAT vegetation growth module and its evaluation

for four tropical ecosystems, Hydrology and Earth System Sciences, 21, 4449–4467, https://doi.org/10.5194/hess-21-4449-2017, 2017.

Almazroui, M., Saeed, F., Saeed, S., Nazrul Islam, M., Ismail, M., Klutse, N. A. B., and Siddiqui, M. H.: Projected Change in Temperature

and Precipitation Over Africa from CMIP6, Earth Systems and Environment, 4, 455–475, https://doi.org/10.1007/s41748-020-00161-x,670

2020.

Angelina, A., Gado Djibo, A., Seidou, O., Seidou Sanda, I., and Sittichok, K.: Changes to flow regime on the Niger River at Koulikoro under

a changing climate, Hydrological Sciences Journal, 60, 1709–1723, https://doi.org/10.1080/02626667.2014.916407, 2015.

Animashaun, M. I., Oguntunde, P. G., Olubanjo, O. O., and Akinwumiju, A. S.: Assessment of climate change impacts on the hy-

drological response of a watershed in the savanna region of sub-Saharan Africa, Theoretical and Applied Climatology, 152, 1–22,675

https://doi.org/10.1007/s00704-023-04372-w, 2023.

Arnold, J. G. and Fohrer, N.: SWAT2000: current capabilities and research opportunities in applied watershed modelling, Hydrological

Processes, 19, 563–572, https://doi.org/10.1002/hyp.5611, 2005.

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT

PART I: MODEL DEVELOPMENT, Journal of the American Water Resources Association, 34, 73–89, https://doi.org/10.1111/j.1752-680

1688.1998.tb05961.x, 1998.

Atkinson, P. M., Jeganathan, C., Dash, J., and Atzberger, C.: Inter-comparison of four models for smoothing satellite sensor time-series data

to estimate vegetation phenology, Remote Sensing of Environment, 123, 400–417, https://doi.org/10.1016/j.rse.2012.04.001, 2012.

Awotwi, A., Annor, T., Anornu, G. K., Quaye-Ballard, J. A., Agyekum, J., Ampadu, B., Nti, I. K., Gyampo, M. A., and Boakye, E.: Cli-

mate change impact on streamflow in a tropical basin of Ghana, West Africa, Journal of Hydrology: Regional Studies, 34, 100 805,685

https://doi.org/10.1016/j.ejrh.2021.100805, 2021.

Bárdossy, A. and Singh, S. K.: Robust estimation of hydrological model parameters, Hydrology and Earth System Sciences, 12, 1273–1283,

2008.

Beven, K.: A manifesto for the equifinality thesis, Journal of Hydrology, 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.

Beven, K. and Binley, A.: GLUE: 20 years on, Hydrological Processes, 28, 5897–5918, https://doi.org/10.1002/hyp.10082, 2014.690

Bliefernicht, J., Waongo, M., Salack, S., Seidel, J., Laux, P., and Kunstmann, H.: Quality and Value of Seasonal Precipitation Fore-

casts Issued by the West African Regional Climate Outlook Forum, Journal of Applied Meteorology and Climatology, 58, 621–642,

https://doi.org/10.1175/JAMC-D-18-0066.1, 2019.

Bossa, A., Diekkrüger, B., and Agbossou, E.: Scenario-Based Impacts of Land Use and Climate Change on Land and Water Degradation

from the Meso to Regional Scale, Water, 6, 3152–3181, https://doi.org/10.3390/w6103152, 2014.695

Bossa, A. Y., Diekkrüger, B., Igué, A. M., and Gaiser, T.: Analyzing the effects of different soil databases on modeling of hydrological

processes and sediment yield in Benin (West Africa), Geoderma, 173-174, 61–74, https://doi.org/10.1016/j.geoderma.2012.01.012, 2012.

41

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter instability: A source of additional uncertainty in estimating the hydro-

logical impacts of climate change?, Journal of Hydrology, 476, 410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.

Buchhorn, M., Smets, B., Bertels, L., de Roo, B., Lesiv, M., Tsendbazar, N., Li, L., and Tarko, A.: Copernicus Global Land Service: Land700

Cover 100m: version 3 Globe 2015-2019: Product User Manual, https://doi.org/10.5281/zenodo.3938963, 2020.

Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environmental Modelling

& Software, 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.

Chawanda, C. J., Nkwasa, A., Thiery, W., and van Griensven, A.: Combined impacts of climate and land-use change on future water resources

in Africa, Hydrology and Earth System Sciences, 28, 117–138, https://doi.org/10.5194/hess-28-117-2024, 2024.705

Cinkus, G., Mazzilli, N., Jourde, H., Wunsch, A., Liesch, T., Ravbar, N., Chen, Z., and Goldscheider, N.: When best is the enemy of

good – critical evaluation of performance criteria in hydrological models, Hydrology and Earth System Sciences, 27, 2397–2411,

https://doi.org/10.5194/hess-27-2397-2023, 2023.

Copernicus: Copernicus DEM, https://doi.org/10.5270/ESA-c5d3d65, 2022.

Danvi, A., Giertz, S., Zwart, S. J., and Diekkrüger, B.: Comparing water quantity and quality in three inland valley wa-710

tersheds with different levels of agricultural development in central Benin, Agricultural Water Management, 192, 257–270,

https://doi.org/10.1016/j.agwat.2017.07.017, 2017.

Danvi, A., Giertz, S., Zwart, S., and Diekkrüger, B.: Rice Intensification in a Changing Environment: Impact on Water Availability in Inland

Valley Landscapes in Benin, Water, 10, 74, https://doi.org/10.3390/w10010074, 2018.

Duku, C., Zwart, S. J., and Hein, L.: Modelling the forest and woodland-irrigation nexus in tropical Africa: A case study in Benin, Agriculture,715

Ecosystems & Environment, 230, 105–115, https://doi.org/10.1016/j.agee.2016.06.001, 2016.

Duku, C., Zwart, S. J., and Hein, L.: Impacts of climate change on cropping patterns in a tropical, sub-humid watershed, PloS one, 13,

https://doi.org/10.1371/journal.pone.0192642, 2018.

Eisner, S., Flörke, M., Chamorro, A., Daggupati, P., Donnelly, C., Huang, J., Hundecha, Y., Koch, H., Kalugin, A., Krylenko, I., Mishra, V.,

Piniewski, M., Samaniego, L., Seidou, O., Wallner, M., and Krysanova, V.: An ensemble analysis of climate change impacts on streamflow720

seasonality across 11 large river basins, Climatic Change, 141, 401–417, https://doi.org/10.1007/s10584-016-1844-5, 2017.

Fernandez-Palomino, C. A., Hattermann, F. F., Krysanova, V., Vega-Jácome, F., and Bronstert, A.: Towards a more consistent eco-

hydrological modelling through multi-objective calibration: a case study in the Andean Vilcanota River basin, Peru, Hydrological Sciences

Journal, 66, 59–74, https://doi.org/10.1080/02626667.2020.1846740, 2021.

Ferreira, A. d. N., de Almeida, A., Koide, S., Minoti, R. T., and de Siqueira, M. B. B.: Evaluation of Evapotranspiration in Brazilian Cerrado725

Biome Simulated with the SWAT Model, Water, 13, 2037, https://doi.org/10.3390/w13152037, 2021.

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A.,

Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G., and

Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural

management, and water resources, Water Resources Research, 53, 2618–2626, https://doi.org/10.1002/2016WR020175, 2017.730

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., and Collins, W.: Evaluation of Climate Models, in: Climate Change

2013 – The Physical Science Basis, edited by Change, I. P. o. C., pp. 741–866, Cambridge University Press, ISBN 9781107057999,

https://doi.org/10.1017/CBO9781107415324.020, 2014.

Forkuor, G., Conrad, C., Thiel, M., Ullmann, T., and Zoungrana, E.: Integration of Optical and Synthetic Aperture Radar Imagery for

Improving Crop Mapping in Northwestern Benin, West Africa, Remote Sensing, 6, 6472–6499, https://doi.org/10.3390/rs6076472, 2014.735

42

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Galle, S., Grippa, M., Peugeot, C., Moussa, I. B., Cappelaere, B., Demarty, J., Mougin, E., Panthou, G., Adjomayi, P., Agbossou, E. K.,

Ba, A., Boucher, M., Cohard, J.-M., Descloitres, M., Descroix, L., Diawara, M., Dossou, M., Favreau, G., Gangneron, F., Gosset, M.,

Hector, B., Hiernaux, P., Issoufou, B.-A., Kergoat, L., Lawin, E., Lebel, T., Legchenko, A., Abdou, M. M., Malam-Issa, O., Mamadou, O.,

Nazoumou, Y., Pellarin, T., Quantin, G., Sambou, B., Seghieri, J., Séguis, L., Vandervaere, J.-P., Vischel, T., Vouillamoz, J.-M., Zannou,

A., Afouda, S., Alhassane, A., Arjounin, M., Barral, H., Biron, R., Cazenave, F., Chaffard, V., Chazarin, J.-P., Guyard, H., Koné, A.,740

Mainassara, I., Mamane, A., Oi, M., Ouani, T., Soumaguel, N., Wubda, M., Ago, E. E., Alle, I. C., Allies, A., Arpin-Pont, F., Awessou,

B., Cassé, C., Charvet, G., Dardel, C., Depeyre, A., Diallo, F. B., Do, T., Fatras, C., Frappart, F., Gal, L., Gascon, T., Gibon, F., Guiro, I.,

Ingatan, A., Kempf, J., Kotchoni, D., Lawson, F., Leauthaud, C., Louvet, S., Mason, E., Nguyen, C. C., Perrimond, B., Pierre, C., Richard,

A., Robert, E., Román-Cascón, C., Velluet, C., and Wilcox, C.: AMMA–CATCH, a Critical Zone Observatory in West Africa Monitoring

a Region in Transition, Vadose Zone Journal, 17, 1–24, https://doi.org/10.2136/vzj2018.03.0062, 2018.745

Garcia Sanchez, D., Lacarrière, B., Musy, M., and Bourges, B.: Application of sensitivity analysis in building energy simulations: Combining

first- and second-order elementary effects methods, Energy and Buildings, 68, 741–750, https://doi.org/10.1016/j.enbuild.2012.08.048,

2014.

Giertz, S. and Diekkrüger, B.: Analysis of the hydrological processes in a small headwater catchment in Benin (West Africa), Physics and

Chemistry of the Earth, Parts A/B/C, 28, 1333–1341, https://doi.org/10.1016/j.pce.2003.09.009, 2003.750

Giertz, S., Diekkrüger, B., Jaeger, A., and Schopp, M.: An interdisciplinary scenario analysis to assess the water availability and water

consumption in the Upper Ouémé catchment in Benin, Advances in Geosciences, 9, 3–13, https://doi.org/10.5194/adgeo-9-3-2006, 2006.

Good, S. P., Soderberg, K., Guan, K., King, E. G., Scanlon, T. M., and Caylor, K. K.: d2 H isotopic flux partitioning of evap-

otranspiration over a grass field following a water pulse and subsequent dry down, Water Resources Research, 50, 1410–1432,

https://doi.org/10.1002/2013WR014333, 2014.755

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Impli-

cations for improving hydrological modelling, Journal of Hydrology, 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hallouin, T., Bruen, M., and O’Loughlin, F. E.: Calibration of hydrological models for ecologically relevant streamflow predictions: a

trade-off between fitting well to data and estimating consistent parameter sets?, Hydrology and Earth System Sciences, 24, 1031–1054,

https://doi.org/10.5194/hess-24-1031-2020, 2020.760

Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from Temperature, Applied Engineering in Agriculture, 1, 96–99,

https://doi.org/10.13031/2013.26773, 1985.

Hattermann, F. F., Vetter, T., Breuer, L., Su, B., Daggupati, P., Donnelly, C., Fekete, B., Flörke, F., Gosling, S. N., Hoffmann, P., Liersch,

S., Masaki, Y., Motovilov, Y., Müller, C., Samaniego, L., Stacke, T., Wada, Y., Yang, T., and Krysnaova, V.: Sources of uncertainty in

hydrological climate impact assessment: a cross-scale study, Environmental Research Letters, 13, 015 006, https://doi.org/10.1088/1748-765

9326/aa9938, 2018.

Her, Y., Yoo, S.-H., Cho, J., Hwang, S., Jeong, J., and Seong, C.: Uncertainty in hydrological analysis of climate change: multi-parameter vs.

multi-GCM ensemble predictions, Scientific reports, 9, 4974, https://doi.org/10.1038/s41598-019-41334-7, 2019.

Herzog, A., Hector, B., Cohard, J.-M., Vouillamoz, J.-M., Lawson, F. M. A., Peugeot, C., and de Graaf, I.: A parametric sensitivity anal-

ysis for prioritizing regolith knowledge needs for modeling water transfers in the West African critical zone, Vadose Zone Journal, 20,770

https://doi.org/10.1002/vzj2.20163, 2021.

43

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Houngue, N. R., Almoradie, A. D. S., Thiam, S., Komi, K., Adounkpè, J. G., Begedou, K., and Evers, M.: Climate and Land-Use Change

Impacts on Flood Hazards in the Mono River Catchment of Benin and Togo, Sustainability, 15, 5862, https://doi.org/10.3390/su15075862,

2023.

Hounkpè, J., Diekkrüger, B., Afouda, A. A., and Sintondji, L. O. C.: Land use change increases flood hazard: a multi-modelling ap-775

proach to assess change in flood characteristics driven by socio-economic land use change scenarios, Natural Hazards, 98, 1021–1050,

https://doi.org/10.1007/s11069-018-3557-8, 2019.

Hoyos, N., Correa-Metrio, A., Jepsen, S. M., Wemple, B., Valencia, S., Marsik, M., Doria, R., Escobar, J., Restrepo, J. C., and Velez, M. I.:

Modeling Streamflow Response to Persistent Drought in a Coastal Tropical Mountainous Watershed, Sierra Nevada De Santa Marta,

Colombia, Water, 11, 94, https://doi.org/10.3390/w11010094, 2019.780

Huang, S., Shah, H., Naz, B. S., Shrestha, N., Mishra, V., Daggupati, P., Ghimire, U., and Vetter, T.: Impacts of hydrological model calibration

on projected hydrological changes under climate change—a multi-model assessment in three large river basins, Climatic Change, 163,

1143–1164, https://doi.org/10.1007/s10584-020-02872-6, 2020.

IPCC: Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Re-

port of the Intergovernmental Panel on Climate Change, in: Africa, pp. 1285–1456, Cambridge University Press, Cambridge,785

https://doi.org/10.1017/9781009325844.011, 2022.

Ismail, M. F., Naz, B. S., Wortmann, M., Disse, M., Bowling, L. C., and Bogacki, W.: Comparison of two model calibration ap-

proaches and their influence on future projections under climate change in the Upper Indus Basin, Climatic Change, pp. 1227–1246,

https://doi.org/10.1007/s10584-020-02902-3, 2020.

Janssens, M., Deng, Z., Mulindabigwi, V., and Röhrig, J.: Agriculture and food, in: Impacts of global change on the hydrological cycle in West790

and Northwest Africa, edited by Speth, P., Christoph, M., and Diekkrüger, B., Springer, Berlin and Heidelberg, ISBN 978-3-642-12956-8,

2010.

Judex, M. and Thamm, H.-P., eds.: Impetus Atlas Benin: Research results 2000 - 2007, University of Bonn, Department of Geography, Bonn,

3rd edition edn., ISBN 978-3-9810311-5-7, 2008.

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The795

FLUXCOM ensemble of global land-atmosphere energy fluxes, Scientific data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8, 2019.

Kankam-Yeboah, K., Obuobie, E., Amisigo, B., and Opoku-Ankomah, Y.: Impact of climate change on streamflow in selected river basins

in Ghana, Hydrological Sciences Journal, 58, 773–788, https://doi.org/10.1080/02626667.2013.782101, 2013.

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta

efficiency scores, Hydrology and Earth System Sciences, 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.800

Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., and Woods, R. A.: A Brief Analysis of Conceptual Model Structure Uncertainty

Using 36 Models and 559 Catchments, Water Resources Research, 56, https://doi.org/10.1029/2019WR025975, 2020.

Knutti, R.: The end of model democracy?, Climatic Change, 102, 395–404, https://doi.org/10.1007/s10584-010-9800-2, 2010.

Koch, H., Chaves Silva, A. L., Liersch, S., Gonçalves de Azevedo, José Roberto, and Hattermann, F. F.: Effects of model calibration on

hydrological and water Effects of model calibration on hydrological and water resources management simulations under climate change805

in a semi-arid watershed, Climatic Change, pp. 1247–1266, https://doi.org/10.1007/s10584-020-02917-w, 2020.

Krysanova, V., Vetter, T., Eisner, S., Huang, S., Pechlivanidis, I., Strauch, M., Gelfan, A., Kumar, R., Aich, V., Arheimer, B., Chamorro, A.,

van Griensven, A., Kundu, D., Lobanova, A., Mishra, V., Plötner, S., Reinhardt, J., Seidou, O., Wang, X., Wortmann, M., Zeng, X., and

44

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Hattermann, F. F.: Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins

worldwide—a synthesis, Environmental Research Letters, 12, 105 002, https://doi.org/10.1088/1748-9326/aa8359, 2017.810

Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geoscientific Model Development, 12,

3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.

Lange, S., Christoph Menz, Stephanie Gleixner, Marco Cucchi, Graham P. Weedon, Alessandro Amici, Nicolas Bellouin, Hannes Müller

Schmied, Hans Hersbach, Carlo Buontempo, and Chiara Cagnazzo: WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0),

https://doi.org/10.48364/ISIMIP.342217, 2021.815

Larbi, I., Hountondji, F. C. C., Dotse, S.-Q., Mama, D., Nyamekye, C., Adeyeri, O. E., Djan’na Koubodana, H., Odoom, P. R. E., and Asare,

Y. M.: Local climate change projections and impact on the surface hydrology in the Vea catchment, West Africa, Hydrology Research, 52,

1200–1215, https://doi.org/10.2166/nh.2021.096, 2021.

Liang, S., Zhang, X., Xiao, Z., Cheng, J., Liu, Q., and Zhao, X.: Global LAnd Surface Satellite (GLASS) Products, Springer International

Publishing, Cham, ISBN 978-3-319-02587-2, https://doi.org/10.1007/978-3-319-02588-9, 2014.820

Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W., Zhang, X., Zhao, X., and Zhou, J.: The Global Land Surface

Satellite (GLASS) Product Suite, Bulletin of the American Meteorological Society, 102, E323–E337, https://doi.org/10.1175/BAMS-D-

18-0341.1, 2021.

López López, P., Sutanudjaja, E. H., Schellekens, J., Sterk, G., and Bierkens, M. F. P.: Calibration of a large-scale hydrological

model using satellite-based soil moisture and evapotranspiration products, Hydrology and Earth System Sciences, 21, 3125–3144,825

https://doi.org/10.5194/hess-21-3125-2017, 2017.

López-Ramírez, S. M., Mayer, A., Sáenz, L., Muñoz-Villers, L. E., Holwerda, F., Looker, N., Schürz, C., Berry, Z. C., Manson, R., As-

bjornsen, H., Kolka, R., Geissert, D., and Lezama, C.: A comprehensive calibration and validation of SWAT-T using local datasets,

evapotranspiration and streamflow in a tropical montane cloud forest area with permeable substrate in central Veracruz, Mexico, Journal

of Hydrology, 603, 126 781, https://doi.org/10.1016/j.jhydrol.2021.126781, 2021.830

Mamadou, O., Galle, S., Cohard, J.-M., Peugeot, C., Kounouhewa, B., Biron, R., Hector, B., and Zannou, A. B.: Dynamics of water vapor and

energy exchanges above two contrasting Sudanian climate ecosystems in Northern Benin (West Africa), Journal of Geophysical Research:

Atmospheres, 121, https://doi.org/10.1002/2016JD024749, 2016.

Mendoza, P. A., Clark, M. P., Mizukami, N., Gutmann, E. D., Arnold, J. R., Brekke, L. D., and Rajagopalan, B.: How do hydrologic modeling

decisions affect the portrayal of climate change impacts?, Hydrological Processes, 30, 1071–1095, 2016.835

Merk, F., Schaffhauser, T., Anwar, F., Tuo, Y., Cohard, J.-M., and Disse, M.: The significance of the leaf area index for evapotranspira-

tion estimation in SWAT-T for characteristic land cover types of West Africa, Hydrology and Earth System Sciences, 28, 5511–5539,

https://doi.org/10.5194/hess-28-5511-2024, 2024.

Miralles, D. G., Vilà-Guerau de Arellano, J., McVicar, T. R., and Mahecha, M. D.: Vegetation-climate feedbacks across scales, Annals of the

New York Academy of Sciences, 1544, 27–41, https://doi.org/10.1111/nyas.15286, 2025.840

Mishra, V., Shah, H., López, M. R. R., Lobanova, A., and Krysanova, V.: Does comprehensive evaluation of hydrological mod-

els influence projected changes of mean and high flows in the Godavari River basin?, Climatic Change, 163, 1187–1205,

https://doi.org/10.1007/s10584-020-02847-7, 2020.

Monteith, J. L.: Evaporation and the environment, Symposia of the Society for Experimental Biology, pp. 205–234, 1965.

Morris, M. D.: Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, 33, 161–174,845

https://doi.org/10.1080/00401706.1991.10484804, 1991.

45

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil & Water Assessment Tool Theoretical Documentation Version 2009,

2011.

Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., Christensen, O. B., Déqué, M., Fernandez, J., Hänsler, A., van

Meijgaard, E., Samuelsson, P., Sylla, M. B., and Sushama, L.: Precipitation Climatology in an Ensemble of CORDEX-Africa Regional850

Climate Simulations, Journal of Climate, 25, 6057–6078, https://doi.org/10.1175/JCLI-D-11-00375.1, 2012.

Odusanya, A. E., Mehdi, B., Schürz, C., Oke, A. O., Awokola, O. S., Awomeso, J. A., Adejuwon, J. O., and Schulz, K.: Multi-site calibration

and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria, Hydrology and Earth

System Sciences, 23, 1113–1144, https://doi.org/10.5194/hess-23-1113-2019, 2019.

Odusanya, A. E., Schulz, K., Biao, E. I., Degan, B. A., and Mehdi-Schulz, B.: Evaluating the performance of streamflow simulated by an855

eco-hydrological model calibrated and validated with global land surface actual evapotranspiration from remote sensing at a catchment

scale in West Africa, Journal of Hydrology: Regional Studies, 37, 100 893, https://doi.org/10.1016/j.ejrh.2021.100893, 2021.

Osei, M. A., Amekudzi, L. K., Wemegah, D. D., Preko, K., Gyawu, E. S., and Obiri-Danso, K.: The impact of climate and land-use

changes on the hydrological processes of Owabi catchment from SWAT analysis, Journal of Hydrology: Regional Studies, 25, 100 620,

https://doi.org/10.1016/j.ejrh.2019.100620, 2019.860

Paeth, H., Hall, N. M., Gaertner, M. A., Alonso, M. D., Moumouni, S., Polcher, J., Ruti, P. M., Fink, A. H., Gosset, M., Lebel, T., Gaye,

A. T., Rowell, D. P., Moufouma-Okia, W., Jacob, D., Rockel, B., Giorgi, F., and Rummukainen, M.: Progress in regional downscaling of

west African precipitation, Atmospheric Science Letters, 12, 75–82, https://doi.org/10.1002/asl.306, 2011.

Poméon, T., Diekkrüger, B., Springer, A., Kusche, J., and Eicker, A.: Multi-Objective Validation of SWAT for Sparsely-Gauged West African

River Basins—A Remote Sensing Approach, Water, 10, 451, https://doi.org/10.3390/w10040451, 2018.865

Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Monthly

Weather Review, 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.

Rauch, M., Bliefernicht, J., Maranan, M., Fink, A. H., and Kunstmann, H.: Geostatistical Simulation of Daily Rainfall Fields—Performance

Assessment for Extremes in West Africa, Journal of Hydrometeorology, 25, 1425–1442, https://doi.org/10.1175/JHM-D-23-0123.1, 2024.

Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., and Ruedy, R.: Potential evapotranspiration and the likelihood of future drought, Journal870

of Geophysical Research: Atmospheres, 95, 9983–10 004, https://doi.org/10.1029/JD095iD07p09983, 1990.

Roberts, G. O. and Rosenthal, J. S.: General state space Markov chains and MCMC algorithms, Probability Surveys, 1,

https://doi.org/10.1214/154957804100000024, 2004.

Rodell, M., Beaudoing, H. K., L’Ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A.,

Chambers, D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J., Lettenmaier, D. P., Liu, W. T., Robertson, F. R.,875

Schlosser, C. A., Sheffield, J., and Wood, E. F.: The Observed State of the Water Cycle in the Early Twenty-First Century, Journal of

Climate, 28, 8289–8318, https://doi.org/10.1175/JCLI-D-14-00555.1, 2015.

Romanovska, P., Gleixner, S., and Gornott, C.: Climate data uncertainty for agricultural impact assessments in West Africa, Theoretical and

Applied Climatology, 152, 933–950, https://doi.org/10.1007/s00704-023-04430-3, 2023.

Sarmiento, P., Huang, J., Schaffhauser, T., and Disse, M.: Increased water availability and high flows in an ungauged Kenyan catch-880

ment: A comprehensive SWAT+ model evaluation for climate change assessment, Journal of Hydrology: Regional Studies, 60, 102 497,

https://doi.org/10.1016/j.ejrh.2025.102497, 2025.

Schaefli, B. and Gupta, H. V.: Do Nash values have value?, Hydrological Processes, 21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.

46

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Schlueter, A., Fink, A. H., Knippertz, P., and Vogel, P.: A Systematic Comparison of Tropical Waves over Northern Africa. Part I: Influence

on Rainfall, Journal of Climate, 32, 1501–1523, https://doi.org/10.1175/JCLI-D-18-0173.1, 2019.885

Schuol, J. and Abbaspour, K. C.: Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa, Advances in

Geosciences, 9, 137–143, https://doi.org/10.5194/adgeo-9-137-2006, 2006.

Schuol, J., Abbaspour, K. C., Srinivasan, R., and Yang, H.: Estimation of freshwater availability in the West African sub-continent using the

SWAT hydrologic model, Journal of Hydrology, 352, 30–49, https://doi.org/10.1016/j.jhydrol.2007.12.025, 2008.

Seibert, J., Vis, M. J. P., Lewis, E., and van Meerveld, H. J.: Upper and lower benchmarks in hydrological modelling, Hydrological Processes,890

32, 1120–1125, https://doi.org/10.1002/hyp.11476, 2018.

Sood, A., Muthuwatta, L., and McCartney, M.: A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin,

Water International, 38, 297–311, https://doi.org/10.1080/02508060.2013.792404, 2013.

Tan, M. L., Gassman, P. W., Yang, X., and Haywood, J.: A review of SWAT applications, performance and future needs for simulation of

hydro-climatic extremes, Advances in Water Resources, 143, 103 662, https://doi.org/10.1016/j.advwatres.2020.103662, 2020.895

Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., and de Roo, A.: Hydrological evaluation of satellite-based rainfall estimates over the Volta

and Baro-Akobo Basin, Journal of Hydrology, 499, 324–338, https://doi.org/10.1016/j.jhydrol.2013.07.012, 2013.

Togbévi, Q. F., Bossa, A. Y., Yira, Y., Preko, K., Sintondji, L. O., and van der Ploeg, M.: A multi-model approach for analysing wa-

ter balance and water-related ecosystem services in the Ouriyori catchment (Benin), Hydrological Sciences Journal, 65, 2453–2465,

https://doi.org/10.1080/02626667.2020.1811286, 2020.900

Tukey, J. W.: Mathematics and the Picturing of Data, Proceedings of the 1975 International Congress of Mathematics, pp. 523–531, 1975.

Viovy, N., Arino, O., and Belward, A. S.: The Best Index Slope Extraction ( BISE): A method for reducing noise in NDVI time-series,

International Journal of Remote Sensing, 13, 1585–1590, https://doi.org/10.1080/01431169208904212, 1992.

Vogel, P., Knippertz, P., Fink, A. H., Schlueter, A., and Gneiting, T.: Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall

over Northern Tropical Africa, Weather and Forecasting, 33, 369–388, https://doi.org/10.1175/WAF-D-17-0127.1, 2018.905

Wang, A., Miao, Y., Kong, X., and Wu, H.: Future Changes in Global Runoff and Runoff Coefficient From CMIP6 Multi–Model Simulation

Under SSP1–2.6 and SSP5–8.5 Scenarios, Earth’s Future, 10, https://doi.org/10.1029/2022EF002910, 2022.

Wang, L., Good, S. P., and Caylor, K. K.: Global synthesis of vegetation control on evapotranspiration partitioning, Geophysical Research

Letters, 41, 6753–6757, https://doi.org/10.1002/2014GL061439, 2014.

Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., and Lee, X.: Revisiting the contribution of transpiration to global terrestrial910

evapotranspiration, Geophysical Research Letters, 44, 2792–2801, https://doi.org/10.1002/2016GL072235, 2017.

Wen, S., Su, B., Wang, Y., Zhai, J., Sun, H., Chen, Z., Huang, J., Wang, A., and Jiang, T.: Comprehensive evaluation of hydrolog-

ical models for climate change impact assessment in the Upper Yangtze River Basin, China, Climatic Change, 163, 1207–1226,

https://doi.org/10.1007/s10584-020-02929-6, 2020.

Yonaba, R., Mounirou, L. A., Tazen, F., Koïta, M., Biaou, A. C., Zouré, C. O., Queloz, P., Karambiri, H., and Yacouba, H.: Future climate915

or land use? Attribution of changes in surface runoff in a typical Sahelian landscape, Comptes Rendus. Géoscience, 355, 411–438,

https://doi.org/10.5802/crgeos.179, 2023.

Zhang, H., Wang, B., Liu, D. L., Zhang, M., Leslie, L. M., and Yu, Q.: Using an improved SWAT model to simulate hydro-

logical responses to land use change: A case study of a catchment in tropical Australia, Journal of Hydrology, 585, 124 822,

https://doi.org/10.1016/j.jhydrol.2020.124822, 2020.920

47

https://doi.org/10.5194/egusphere-2025-3836
Preprint. Discussion started: 16 September 2025
c© Author(s) 2025. CC BY 4.0 License.


