Comment

Response

Line 15-20

You state that “the combined ‘Q +
LAlI’ can be used as a proxy to
predict AET rates.” This is an
important claim but needs further
qualification. While your results
suggest that LAl contributes to
improved AET estimates, itis not
fully demonstrated that this proxy
relationship holds across climatic
variability or land use types. You
may consider referencing doi:
[10.1016/j.scitotenv.2020.143792],
which evaluates how dynamic
LULC influences surface runoff
and can affect AET estimates as
well.

The study covers the analysis of two different meteorological
forcing data sets, three calibration approaches, and 20 best-fit
parameter sets per modeling approach. Therefore, simulation
results are extensive. Moreover, the spatial resolution of the
satellite-based LAl and AET data is 250x250 m and
0.0833°x0.0833° (ca. 9x9 km). Comparing satellite-based and
simulated LAl and AET, the evaluation is carried out at the
subbasin scale. To summarize the evaluation, we focus on a
subbasin- and catchment scale evaluation with area-weighted
performance criteria (here Kling-Gupta efficiency). At these
scales, a clearimprovement between the approaches Q-only
and Q+LAl can be observed.

Notably, smaller scales (e.g., HRU levels) and dynamic land use
changes have not been considered given the spatial mismatch
of modeled and simulated LAl and AET. An assighment of a
satellite-based AET pixel to SWAT-T’s HRU scale is challenging
because of the different spatial resolutions.

The proposed study is an excellent example of how LULC
impacts AET estimations. We will highlight in the revised
manuscript the limitations that no explicit LULC dynamics have
been considered and include the mentioned study as a prime
example of why integration is important.

In the revised version, we have adjusted the claim already in the
abstract. More precisely, we highlight that our findings for LAl
and AET focus on subbasin- and catchment scale (line 15-20):
The results moreover demonstrate that the combined "Q

+ LAl" can be used as a proxy to predict AET rates at the
catchment scale.

The proposed study has been added to the discussion part (line
496):

Smaller scales (e.g., HRU levels) and dynamic land use changes
have not been considered given the spatial mismatch of
modeled and simulated LAl and AET. As demonstrated in
Yonaba et al. (2021), dynamic land use modeling can further
enhance the process representation of surface runoff and AET in
the region. Future research can consider a coupling of detailed
LAI, AET, and dynamic land use modeling to further enhance
robust hydrological modeling for the region.

Lines 28-30

The discussion of AET as an
“essential role in the regional
hydrology” is well-stated but
would benefit from a more precise
articulation of the mechanisms,

The major objective of the study is to discuss the relevance of
AET calibration approaches. Of course, the seasonal feedbacks
as well as the soil moisture are paramount for the regional
hydrology. We agree that the statement is “too short”.

We added the relevance of soil moisture to the statement in the
revised manuscript:




e.g., the seasonal feedbacks
between soil moisture, vegetation
phenology, and transpiration.
Currently, the sentence reads too
broadly.

In the regional hydrology in the sub-humid parts of West Africa,
AET, vegetation phenology, and soil moisture are paramount to
the land-atmosphere feedbacks (Hingerl et al., 2025). In these
mechanisms, AET plays an essential role where its rate to
precipitation can be up to 80 % (Rodell et al., 2015).

Lines 61-70

This section criticizes prior studies
for omitting AET in model
calibration. However, the critique
would be stronger if you quantified
the extent of the bias introduced
by using only discharge. For
example, whatis the typical error
in AET projections under Q-only
calibration across your GCM
ensemble? Additionally, reference
could be made to the limitations of
using discharge-only calibration in
semi-arid systems, as shown in
doi: [10.3390/land12112017].

We revised the section and added the nhumbers to make the
critique stronger. In addition, we added the proposed study to
give the reader an example of a close region to further discuss
the limitations of Q-only approaches.

We will revise the section (lines 65-70):

Most others estimate future AET from SWAT models being
optimized with discharge-only calibration approaches (Bossa et
al., 2012; Sood et al., 2013; Bossa et al., 2014; Danvi et al.,
2018; Larbi etal., 2021; Animashaun et al., 2023, Zouré et al.,
2023). However, the modeling of AET in process-describing
hydrological models, such as SWAT/SWAT+, substantially relies
on parameters that also influence runoff generation, e.g.,
interception or soil moisture. As shown by our study in the
following, calibration approaches without AET calibration
resultin a future AET increase of 4.0% compared to an
increase of 9.2% when AET is integrated in the model
optimization. Hence, without explicit model calibration against
AET, projections of future AET can remain constrained and
potentially misleading.

Lines 88-90

The assertion that this study
“contributes to minimize
uncertainties from model
calibration approaches” should be
reworded. Rather than claiming
uncertainty minimization, a more
accurate statement might be that
the study demonstrates how
calibration strategies affect model
spread and projections.

We thank the referee for this important feedback. The statement
is worded in a simplified way and clarification certainly
improves the quality of the manuscript.

In the revised version, we avoid the statement about uncertainty
minimization and focus on a more accurate statement. The
section is adjusted to (line 85):

This study demonstrates the implications of calibration
strategies on the model spread and projection for AET
estimation.

Lines 104-108

The explanation of SWAT-T
improvements over SWAT is
helpful, but further clarification is
needed on how the tropical
phenology routines specifically
alter AET dynamics. For instance,
how does the model account for
year-round biomass retention or
multi-modal LAl cycles? Please
consider adding a brief example or
case insight.

In the SWAT-T model, different states of vegetation growth are
represented. The start of the plant growth from dormancy is
triggered by soil moisture changes in the shift from dry to wet
period, plant maturity is modeled in the wet season, and leaf
senescence as well as vegetation dormancy are accounted for.
As an example, we added Figure A8 to the Appendix of the
article. The figure shows the weighted average of LAl across the
catchment.

The manuscriptis lengthy, and the focus is on the implications
of the calibration approaches. We have highlighted the case
study of Alemayehu et al. (2017) and refered to their study for
the reader for a detailed plant phenology with SWAT-T.




We adjusted the section in the manuscript:

The key enhancement of SWAT-T is the modification of the plant
growth module to better represent the plant phenology in
tropical regions (Alemayehu et al., 2017). A detailed
explanation of the advances as well as a comprehensive
case study of SWAT-T is presented in Alemayehu et al. (2017).
In brief, the SWAT-T model leads to more accurate predictions of
AET in regions with perennial plant growth (Zhang et al., 2020;
Fernandez-Palomino et al., 2021; Ferreira et al., 2021; Lopez
Lopezetal., 2017; Merk et al., 2024).

Lines 144-154

The plant parameters were fixed
based on prior literature, but it is
unclear whether those parameter
values are transferable across
different land covers or years.
Given that some of these
parameters (e.g., LAIMX2, PHU)
can be sensitive to local
agronomic practices and
interannual climate variability, this
approach could bias calibration.
Have you evaluated the
robustness of this transfer? Could
a partial re-optimization for these
parameters improve model skill?

We applied a sensitivity analysis (Morris method) to identify the
most relevant parameters for Q, LAl, and AET modeling. We
fixed the less-sensitive parameters to decrease the parameter
space.

We checked whether the transfer from literature is appropriate
and observed promising fits for LAl across the three main land
cover types. The transferred parameters were derived in region
which is located within the Bétérou Catchment (Merk et al.,
2024). Given this spatial proximity, the transfer is applicable.
Further calibration can improve the model’s performance. Still,
our modeling approach has shown strong agreement of
simulated and satellite-based LAI.

However, the transfer is not necessarily applicable to other
regions, given different climates or agronomic practices. We
have not checked the robustness of the fixed parameters. The
transfer of LAl parameters can not be guaranteed due to
regional properties, such as climate, vegetation type, and
agronomic practices.

Lines 165-175

The land use representation for
croplands through “AGRL” seems
overly simplified. Since croplands
cover a substantial portion of the
catchment, this may limit the
realism of AET dynamics,
particularly in peak growing
periods. Have you considered
applying crop-specific growth
curves or incorporating a dynamic
planting calendar?

We chose the “AGRL” representation for crop fields due to two
reasons. First, we had no access to the spatial distribution of
the crops in the catchment. We relied on the cropping calendar
presented by Forkour et al. (2014). They published a cropping
calendar consisting of the six most prominent crops in the area.
Based on this calendar, we derived an “average” crop
representation. We assigned the “AGRL” crop type from the
SWAT data base, but adjusted the corresponding LAI
parameters in the plant.dat-file.

Second, we evaluated the “average” crop against satellite-
based LAl and AET prior the model optimization. We observed a
good agreement of the “average” crop to the reference.

Thus, we argue that while the crop representation is simplified,
itis still appropriate and applicable. For areas with higher
cropland share, like the lower parts of the Ouémé river in Benin,
this approach may not be applicable.

Lines 195-205

The aggregation of GLASS-LAI and

The aggregation is necessary because of the spatial mismatch
of GLASS-LAI and FLUXCOM-AET and the simulated model
outputs. As gridded datasets, GLASS-LAIl and FLUXCOM-AET




FLUXCOM-AET data to the
subbasin scale is described
clearly. However, you should
mention potential scale
mismatches between remote
sensing and model HRUs. This
aggregation likely introduces
smoothing effects that may
obscure localized land-
atmosphere feedbacks. Please
discuss whether this mismatch
may influence LAI-AET correlation
strength.

inherently represent mean conditions over each pixel.
Consequently, fine-scale variability and localized land-
atmosphere processes are smoothed in the aggregated values.

Each dataset has been validated for different regions. As a
matter of fact, local land-atmosphere processes are smoothed
in this dataset. Many hydrological questions require us to
upscale us to larger spatial domains (e.g., catchment scale) and
in this context the “smoothed” representation provided by
GLASS-LAI and FLUXCOM-AET remains appropriate for
assessing broader patterns, even though localized feedbacks
may be attenuated.

A comparison of GLASS-LAI to modeled LAl with SWAT-T can be
found in Merk et al. (2024). We tested the FLUXCOM-AET
accordingly before its application in this study, see Figure 1 in
the Supplemental Figures section. These comparisons show
that, while some smoothing is unavoidable, the aggregated
datasets are still suitable for examining LAI-AET relationships at
the sub-basin scale.

In the discussion part, we discuss the aggregation of LAI-GLASS
and FLUXCOM-AET. We further adjusted the manuscript (line
499 and following):

While this approach allows for a spatially explicit evaluation that
reflects land cover variability within the Bétérou catchment, it
also introduces some information loss, e.g., from the
aggregation of AET heterogeneity. This is particularly important
in the process representation of the LAI-AET interaction for
localized land-atmosphere feedbacks. The subbasin-level
evaluation offers a practical compromise, where spatial context
is preserved at a scale appropriate for hydrological modeling.

Lines 225-235

The explanation of the Morris
method is mathematically
accurate, but its description
interrupts the methodological
flow. Consider moving equations
to the Supplementary Material or
shortening the derivation here.
Focus instead on the reasoning for
using Morris over Sobol or other
variance-based methods.

Thank you for this recommendation.

We moved the equation part to the Supplementary Material and
highlighted the rationale behind the choice for the Morris
method.

The following paragraph has been added to the manuscript:
The application of the Morris method allows the quantification
of the parameter sensitivity through statistical means (u*-
values) of the elementary effects (Morris, 1991; Campolongo

et al., 2007). While the elementary effects are a local sensitivity
measure, the computation of multiple elementary effects for
varying parameter subsets enables a quasi-global sensitivity
analysis (Saltelli et al., 2008). Compared to other sensitivity
approaches, itis moreover computationally efficient due to its
one-at-a-time sampling strategy (Pianosi et al., 2016).

Lines 254-266

The role of half-space depth in
ROPE is well explained, but please

The convergence was assessed in a simplified approach. We
defined the convergence if the KGE of the best run to the last run
does not change more than AKGE=0.05. To be on the safe side,
we defined enough iterations rather than a stopping criterion.




clarify how convergence was
assessed. Did you apply any
stopping criteria based on
performance plateauing? Were all
final parameter sets within the
convex hull? Details like these
improve transparency and
reproducibility.

This is computational costly but given 15 parameters and 3
optimization objectives (Q, LAI, AET), we wanted to allow
enough time for the convergence to be met.

The ROPE algorithm defines the samples for the next iteration
based on a depth function (half space depth function). This
depth function requires a high computational demand for 15
parameters yet is robust to sample within the convex hull. All
parameter sets are within the convex hull.

Lines 300-310

You use the W5ES5 simulation
period (2001-2015) as a baseline.
However, earlier you mentioned
that observed data go back to
1981. Why was a shorter baseline
chosen, especially given that
longer baselines can reduce noise
in climate signal detection?

We appreciate the reviewer’s observation. We selected the
period 2001 to 2015 as a baseline to ensure consistency across
all data sets used in the study. In the 15 years span, the
interannual climate variability is well captured and no
significant climate change trend is observed. In the
preprocessing of the data, no significant noise was further
detected.

Lines 361-375

The seasonal patterns of AET are
well captured in the model,
particularly the mid-season dip.
However, your explanation that
this dip is “due to lack of LAl
representation” in Q-only is
somewhat superficial. Could the
effect also arise from
misrepresented soil moisture
dynamics or canopy interception?

We also evaluated the soil moisture response for the simulation
of the current climate conditions, see for example Figure 2.

The different modeling strategies simulate similar patterns of
soil moisture. More precisely, the soil moisture dynamics are
similar among the strategies since all of them are calibrated
against discharge which has the most influence on soil moisture
in the SWAT/SWAT-T model.

Canopy interception Ecan is linked to LAl in SWAT/SWAT-T with
the formula:
LAI

Ecan - Imax * m
Where Imax is the maximum canopy interception (model
parameter, CAN_MX), LAl is the computed LAI, and LAl is the
maximum LAI (model parameter, BLAI). Therefore, inappropriate
modeling of LAI (e.g, very small values for LAI) influences
canopy interception.

Given the soil moisture is similar among the strategies and
canopy interception is linked to LAI, we concluded that the
“AET-dip” representation is strongly due to limits in LAI
modeling.

Lines 395-405

The cross-validation results show
that W5E5-derived parameters can
be used with observed forcing.
However, the validation for LAI
shows noticeable degradation.
This suggests that model
structural limitations may
constrain LAl robustness under

We appreciate the reviewer’s observation and the important
aspect of LAl it points out.

LAl modeling in SWAT/SWAT-T is linked to temperature. The LAI
parameters T_BASE and T_OPT govern the temperature stress
on plant growth. Moreover, T_BASE parameter influences the
heat units necessary for plant growth.

Given the dependency of LAl on temperature, the robustness for
climate impact assessment is crucial. The manuscript is
adjusted to (line 404):




different climates. Could you
expand on the implications of this
for future climate scenario
modeling?

Given the dependency of LAl on temperature in SWAT-T, its
robustness for climate impact assessment is crucial. For
climate impact assessment, multiple LAl parameter sets can be
used to avoid the reliance on single LAl parameter sets and
increase the LAl parameter robustness.

Lines 425-435

You evaluate GCM ensemble
spread and precipitation changes,
but the connection between these
meteorological changes and
hydrological sensitivity is
underexplored. For example, how
does GCM precipitation variability
translate into spread in Q or AET
for the different calibration
approaches? A more integrated
uncertainty decomposition would
be valuable here.

Thank you for this important observation. The used GCM’s from
ISIMIP represent a range of low to high climate sensitivity.

We added an additional analysis (Table 1 and Table 2) to the
manuscript to evaluate how meteorological changes from
GCMs translate into changes for Q and AET. This way, we hope
to improve the quality of the evaluation.

The tables are added to the Supplemental Tables section below
to the appendix of the manuscript.

Throughout, there is a lack of
critical reflection on the limitations
of remote sensing products used
for LAl and AET. While GLASS-LAI
and FLUXCOM are high-quality
datasets, they carry uncertainties,
especially in tropical canopies. A
brief paragraph discussing these
limitations would strengthen the
credibility of your validation
approach.

We thank the reviewer for this important suggestion. This
referee comment aligns with the feedback from Referee #2 in
[https://doi.org/10.5194/egusphere-2025-3836-RC2]. We
therefore respond similar to both referee comments:

GLASS-LAI and FLUXCOM-AET are both widely used and are
considered high quality. In tropical regions, remote sensing can
be influenced due to cloud cover. The cloud influence is
particularly prominent in MODIS-derived LAl products.
Therefore, we used the more robust GLASS-LAI product. The
FLUXCOM product integrated eddy covariance observations, yet
these are unevenly distributed across climate zones.

As mentioned before, a comparison of GLASS-LAI to modeled
LAl with SWAT-T can be found in Merk et al. (2024). We tested
the FLUXCOM-AET accordingly before its application in this
study, see figure below. Given this promising validation, the
products still carry inherent uncertainties.

We have added a paragraph discussing the limitations and
uncertainties with GLASS-LAI and FLUXCOM-AET.

We now explicitly acknowledge that these uncertainties may
influence the representation of LAl and AET at the sub-basin
scale. Including this discussion clarifies the scope of our
validation and improves transparency regarding data
limitations.

The following paragraph is added to the manuscript after line
502:

The application of satellite-based GLASS-LAI and FLUXCOM-
AET data for a tropical catchment like the Bétérou Catchment
carries uncertainties. Generally, GLASS-LAl and FLUXCOM-AET
are both widely used and are considered high quality. Yet,
satellite-based datasets in tropical regions can be subject to




cloud contamination and reflectance noise (Viovy et al., 1992;
Atkinson et al., 2012) or the lack of observation networks for
validation (Weerasinghe et al., 2020). For the Bétérou region, the
GLASS-LAI dataset shows promising applicability when
compared to monitored data (Merk et al., 2024). FLUXCOM-AET
has been extensively validated against eddy covariance (EC)
measurements across a wide range of climatic conditions,
supporting its general reliability (Jung et al., 2019). This study
relies on a pointwise validation of FLUXCOM-AET and GLASS-
LAI. While this approach does not fully capture spatial
heterogeneity or all sources of uncertainty, it provides a
consistent and pragmatic basis for model evaluation in data-
scarce tropical regions. This approach ensures that the
validation framework remains robust and fit for purpose.

Finally, regarding language and
terminology throughout the
manuscript, | believe that phrases
such as “to guarantee
convergence,” “mimics well,” and
“modeling potential” could be
rephrased to enhance precision.
For instance, “the model
performance plateaus after 12
iterations” is preferable to “to
guarantee convergence.” Similarly,
instead of “mimics well,” you could
say “closely reproduces.”

We highly appreciate the reviewer’s feedback on language and
wording. We screened through the manuscript and adjusted
poor phrasing to improve the readability.




Supplemental Figures

6 50
St 1 -
5 40
E 4r 12
=] o L
ES 1%
—= || E 20}
w ot | E
{ —_
\tm
1§ < 107
0 : : : : : 0 : :
Jan 2008 Jan 2009 Jan 2010 Jan 2008 Jan 2009 Jan 2010
—_ (c)
£ 150
3
- AET-obs (in: a, b, ¢)
= FLUXCOM-RS (in: a, c)
5 100} FLUXCOM-RS+M (in: a, b, c)
E GLEAMv3.S (in:a, b, c)
£ MOD16A4 (in: b, ¢}
£ GLDAS-NOAH (in: c)
= 50 MERRA2 (in: c)
w
<
o - -
Jan 2008 Jan 2009 Jan 2010

Figure 1 Comparison of monitored AET (AET-obs, black line) to multiple satellite-based and
reanalysis AET products at the forested footprint for different temporal scales a) daily, b) 8-daily
sum, and c) monthly sum. Please note the varying y-axis scales for readability.
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Figure 2 Average soil moisture for the 14 subbasins (letters a-n) for model forcing with obs-data.



Supplemental Tables

Table 1 Meteorological (AP for precipitation change in percent; AT for temperature change in
degree Celsius) and hydrological changes (AQ and AE for discharge and AET changes in percent,
respectively) for the GCMs and SSP scenarios (short names for GCMs and SSPs are used for
layout purposes; MMM = multi-model mean) and the underlying calibration strategies (1=Q-only;
2=Q+LAl; 3=Q+LAI+AET) for the near-future period.

GCM SSP AP AT AQ1 AQ2 AQ3 AE1 AE2 AE3
SSP1 5.1 1.2 -3.2 -6.8 -9.0 2.3 2.8 4.4
GFDL SSP3 -7.9 1.4 -51.2 | -49.9 -51.8 1.6 1.1 2.6
SSP5 -2.6 1.2 -30.9 | -30.1 -32.1 0.9 0.7 2.2
SSP1 7.9 1.5 -6.5 -9.8 -11.6 8.1 8.0 9.5
IPSL SSP3 6.6 1.8 -13.4 | -16.9 -17.7 10.9 11.3 12.6
SSP5 7.0 1.8 -11.7 | -14.9 -16.6 8.4 9.2 10.7
SSP1 -2.1 0.9 -31.1 | -29.0 -31.2 2.1 1.5 3.3
MPI SSP3 9.1 0.5 7.0 1.3 -2.6 1.6 1.0 2.7
SSP5 0.1 0.6 -12.0 | -12.7 -14.5 -1.5 -2.0 -0.6
SSP1 11.5 1.4 21.4 11.1 9.8 5.9 6.7 8.1
MRI SSP3 13.3 1.2 26.7 13.1 8.8 4.2 4.9 6.3
SSP5 19.6 1.6 48.1 27.5 22.5 4.1 5.1 6.4
SSP1 8.7 1.9 2.9 -4.5 -6.0 9.4 10.5 11.8
UKESM | SSP3 13.2 2.2 24.8 12.7 9.1 10.2 10.5 11.7
SSP5 11.2 1.9 22.5 10.0 7.3 9.0 9.5 10.5
SSP1 6.3 1.4 -3.3 -7.8 -9.6 5.5 5.9 7.4
MMM SSP3 7.0 1.4 -1.2 -7.9 -10.8 5.7 5.8 7.2
SSP5 7.2 1.4 3.2 -4.0 -6.7 4.2 4.5 5.8

Table 2 Same analysis as in Table 1 for the far-future evaluation

GCM SSP AP AT AQ1 AQ2 AQ3 AE1 AE2 AE3
SSP1 -4.5 1.3 -34.8 | -34.0 -36.0 0.3 0.3 2.0
GFDL SSP3 -14.8 3.2 -60.1 | -59.7 -60.9 -0.4 -1.2 -0.2
SSP5 -17.2 3.7 -65.2 | -64.2 -65.1 -0.3 -1.8 -1.1
SSP1 7.6 1.6 -6.0 -11.4 -13.1 8.1 8.3 9.7
IPSL SSP3 18.4 4.3 -9.4 -11.0 -11.6 22.9 22.5 23.7
SSP5 21.3 54 -11.8 -6.5 -7.2 28.1 24.3 25.9
SSP1 -3.3 0.9 -31.1 | -29.9 -32.0 0.9 0.6 2.3
MPI SSP3 8.3 1.9 4.9 -3.0 -4.7 1.6 2.8 4.0
SSP5 21.7 1.5 101.1 | 75.6 71.0 -6.3 -6.1 -5.0
SSP1 -1.3 1.8 -23.9 | -25.2 -26.9 3.1 3.6 5.2
MRI SSP3 -2.7 3.6 -33.5 | -33.1 -33.8 5.7 5.5 6.7
SSP5 -8.0 4.7 -51.2 | -45.1 -45.9 7.4 4.2 5.2
SSP1 7.4 2.0 7.3 -1.6 -4.3 7.7 8.2 9.6
UKESM | SSP3 8.9 4.5 3.7 -1.8 -3.6 10.8 10.6 11.8
SSP5 17.8 5.8 19.1 14.8 12.1 17.3 15.6 16.9
SSP1 1.2 1.5 -17.7 | -20.4 -22.4 4.0 4.2 5.8
MMM SSP3 3.7 3.5 -18.8 | -21.7 -22.9 8.1 8.0 9.2
SSP5 7.2 4.2 -1.6 -5.1 -7.0 9.2 7.2 8.4
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