
Comment Response 
Line 15–20 
 
You state that “the combined ‘Q + 
LAI’ can be used as a proxy to 
predict AET rates.” This is an 
important claim but needs further 
qualification. While your results 
suggest that LAI contributes to 
improved AET estimates, it is not 
fully demonstrated that this proxy 
relationship holds across climatic 
variability or land use types. You 
may consider referencing doi: 
[10.1016/j.scitotenv.2020.143792], 
which evaluates how dynamic 
LULC influences surface runoff 
and can affect AET estimates as 
well. 

The study covers the analysis of two different meteorological 
forcing data sets, three calibration approaches, and 20 best-fit 
parameter sets per modeling approach. Therefore, simulation 
results are extensive. Moreover, the spatial resolution of the 
satellite-based LAI and AET data is 250x250 m and 
0.0833°x0.0833° (ca. 9x9 km). Comparing satellite-based and 
simulated LAI and AET, the evaluation is carried out at the 
subbasin scale. To summarize the evaluation, we focus on a 
subbasin- and catchment scale evaluation with area-weighted 
performance criteria (here Kling-Gupta efficiency). At these 
scales, a clear improvement between the approaches Q-only 
and Q+LAI can be observed. 
 
Notably, smaller scales (e.g., HRU levels) and dynamic land use 
changes have not been considered given the spatial mismatch 
of modeled and simulated LAI and AET. An assignment of a 
satellite-based AET pixel to SWAT-T’s HRU scale is challenging 
because of the different spatial resolutions. 
 
The proposed study is an excellent example of how LULC 
impacts AET estimations. We will highlight in the revised 
manuscript the limitations that no explicit LULC dynamics have 
been considered and include the mentioned study as a prime 
example of why integration is important. 
 
In the revised version, we have adjusted the claim already in the 
abstract. More precisely, we highlight that our findings for LAI 
and AET focus on subbasin- and catchment scale (line 15-20): 
The results moreover demonstrate that the combined "Q 
+ LAI" can be used as a proxy to predict AET rates at the 
catchment scale. 
 
The proposed study has been added to the discussion part (line 
496): 
Smaller scales (e.g., HRU levels) and dynamic land use changes 
have not been considered given the spatial mismatch of 
modeled and simulated LAI and AET. As demonstrated in 
Yonaba et al. (2021), dynamic land use modeling can further 
enhance the process representation of surface runoff and AET in 
the region. Future research can consider a coupling of detailed 
LAI, AET, and dynamic land use modeling to further enhance 
robust hydrological modeling for the region. 
 
 

Lines 28–30 
 
The discussion of AET as an 
“essential role in the regional 
hydrology” is well-stated but 
would benefit from a more precise 
articulation of the mechanisms, 

The major objective of the study is to discuss the relevance of 
AET calibration approaches. Of course, the seasonal feedbacks 
as well as the soil moisture are paramount for the regional 
hydrology. We agree that the statement is “too short”. 
 
We added the relevance of soil moisture to the statement in the 
revised manuscript:  



e.g., the seasonal feedbacks 
between soil moisture, vegetation 
phenology, and transpiration. 
Currently, the sentence reads too 
broadly. 

In the regional hydrology in the sub-humid parts of West Africa, 
AET, vegetation phenology, and soil moisture are paramount to 
the land-atmosphere feedbacks (Hingerl et al., 2025). In these 
mechanisms, AET plays an essential role where its rate to 
precipitation can be up to 80 % (Rodell et al., 2015).  
 

Lines 61–70 
 
This section criticizes prior studies 
for omitting AET in model 
calibration. However, the critique 
would be stronger if you quantified 
the extent of the bias introduced 
by using only discharge. For 
example, what is the typical error 
in AET projections under Q-only 
calibration across your GCM 
ensemble? Additionally, reference 
could be made to the limitations of 
using discharge-only calibration in 
semi-arid systems, as shown in 
doi: [10.3390/land12112017]. 

We revised the section and added the numbers to make the 
critique stronger. In addition, we added the proposed study to 
give the reader an example of a close region to further discuss 
the limitations of Q-only approaches. 
 
We will revise the section (lines 65-70): 
Most others estimate future AET from SWAT models being 
optimized with discharge-only calibration approaches (Bossa et 
al., 2012; Sood et al., 2013; Bossa et al., 2014; Danvi et al., 
2018; Larbi et al., 2021; Animashaun et al., 2023, Zouré et al., 
2023). However, the modeling of AET in process-describing 
hydrological models, such as SWAT/SWAT+, substantially relies 
on parameters that also influence runoff generation, e.g., 
interception or soil moisture. As shown by our study in the 
following, calibration approaches without AET calibration 
result in a future AET increase of 4.0% compared to an 
increase of 9.2% when AET is integrated in the model 
optimization. Hence, without explicit model calibration against 
AET, projections of future AET can remain constrained and 
potentially misleading. 
 

Lines 88–90 
 
The assertion that this study 
“contributes to minimize 
uncertainties from model 
calibration approaches” should be 
reworded. Rather than claiming 
uncertainty minimization, a more 
accurate statement might be that 
the study demonstrates how 
calibration strategies affect model 
spread and projections. 

We thank the referee for this important feedback. The statement 
is worded in a simplified way and clarification certainly 
improves the quality of the manuscript. 
 
In the revised version, we avoid the statement about uncertainty 
minimization and focus on a more accurate statement. The 
section is adjusted to (line 85): 
This study demonstrates the implications of calibration 
strategies on the model spread and projection for AET 
estimation. 
 
 

Lines 104–108 
 
The explanation of SWAT-T 
improvements over SWAT is 
helpful, but further clarification is 
needed on how the tropical 
phenology routines specifically 
alter AET dynamics. For instance, 
how does the model account for 
year-round biomass retention or 
multi-modal LAI cycles? Please 
consider adding a brief example or 
case insight. 

In the SWAT-T model, different states of vegetation growth are 
represented. The start of the plant growth from dormancy is 
triggered by soil moisture changes in the shift from dry to wet 
period, plant maturity is modeled in the wet season, and leaf 
senescence as well as vegetation dormancy are accounted for. 
As an example, we added Figure A8 to the Appendix of the 
article. The figure shows the weighted average of LAI across the 
catchment. 
 
The manuscript is lengthy, and the focus is on the implications 
of the calibration approaches. We have highlighted the case 
study of Alemayehu et al. (2017) and refered to their study for 
the reader for a detailed plant phenology with SWAT-T. 
 



We adjusted  the section in the manuscript: 
 
The key enhancement of SWAT-T is the modification of the plant 
growth module to better represent the plant phenology in 
tropical regions (Alemayehu et al., 2017). A detailed 
explanation of the advances as well as a comprehensive 
case study of SWAT-T is presented in Alemayehu et al. (2017). 
In brief, the SWAT-T model leads to more accurate predictions of 
AET in regions with perennial plant growth (Zhang et al., 2020; 
Fernandez-Palomino et al., 2021; Ferreira et al., 2021; López 
López et al., 2017; Merk et al., 2024). 
 

Lines 144–154 
 
The plant parameters were fixed 
based on prior literature, but it is 
unclear whether those parameter 
values are transferable across 
different land covers or years. 
Given that some of these 
parameters (e.g., LAIMX2, PHU) 
can be sensitive to local 
agronomic practices and 
interannual climate variability, this 
approach could bias calibration. 
Have you evaluated the 
robustness of this transfer? Could 
a partial re-optimization for these 
parameters improve model skill? 

We applied a sensitivity analysis (Morris method) to identify the 
most relevant parameters for Q, LAI, and AET modeling. We 
fixed the less-sensitive parameters to decrease the parameter 
space. 
 
We checked whether the transfer from literature is appropriate 
and observed promising fits for LAI across the three main land 
cover types. The transferred parameters were derived in region 
which is located within the Bétérou Catchment (Merk et al., 
2024). Given this spatial proximity, the transfer is applicable. 
Further calibration can improve the model’s performance. Still, 
our modeling approach has shown strong agreement of 
simulated and satellite-based LAI. 
 
However, the transfer is not necessarily applicable to other 
regions, given different climates or agronomic practices. We 
have not checked the robustness of the fixed parameters. The 
transfer of LAI parameters can not be guaranteed due to 
regional properties, such as climate, vegetation type, and 
agronomic practices. 
 

Lines 165–175 
 
The land use representation for 
croplands through “AGRL” seems 
overly simplified. Since croplands 
cover a substantial portion of the 
catchment, this may limit the 
realism of AET dynamics, 
particularly in peak growing 
periods. Have you considered 
applying crop-specific growth 
curves or incorporating a dynamic 
planting calendar? 

We chose the “AGRL” representation for crop fields due to two 
reasons. First, we had no access to the spatial distribution of 
the crops in the catchment. We relied on the cropping calendar 
presented by Forkour et al. (2014). They published a cropping 
calendar consisting of the six most prominent crops in the area. 
Based on this calendar, we derived an “average” crop 
representation. We assigned the “AGRL” crop type from the 
SWAT data base, but adjusted the corresponding LAI 
parameters in the plant.dat-file.  
Second, we evaluated the “average” crop against satellite-
based LAI and AET prior the model optimization. We observed a 
good agreement of the “average” crop to the reference. 
 
Thus, we argue that while the crop representation is simplified, 
it is still appropriate and applicable. For areas with higher 
cropland share, like the lower parts of the Ouémé river in Benin, 
this approach may not be applicable.  

Lines 195–205 
 
The aggregation of GLASS-LAI and 

The aggregation is necessary because of the spatial mismatch 
of GLASS-LAI and FLUXCOM-AET and the simulated model 
outputs. As gridded datasets, GLASS-LAI and FLUXCOM-AET 



FLUXCOM-AET data to the 
subbasin scale is described 
clearly. However, you should 
mention potential scale 
mismatches between remote 
sensing and model HRUs. This 
aggregation likely introduces 
smoothing effects that may 
obscure localized land-
atmosphere feedbacks. Please 
discuss whether this mismatch 
may influence LAI-AET correlation 
strength. 

inherently represent mean conditions over each pixel. 
Consequently, fine-scale variability and localized land–
atmosphere processes are smoothed in the aggregated values. 
 
Each dataset has been validated for different regions. As a 
matter of fact, local land-atmosphere processes are smoothed 
in this dataset. Many hydrological questions require us to 
upscale us to larger spatial domains (e.g., catchment scale) and 
in this context the “smoothed” representation provided by 
GLASS-LAI and FLUXCOM-AET remains appropriate for 
assessing broader patterns, even though localized feedbacks 
may be attenuated. 
 
A comparison of GLASS-LAI to modeled LAI with SWAT-T can be 
found in Merk et al. (2024). We tested the FLUXCOM-AET 
accordingly before its application in this study, see Figure 1 in 
the Supplemental Figures section. These comparisons show 
that, while some smoothing is unavoidable, the aggregated 
datasets are still suitable for examining LAI-AET relationships at 
the sub-basin scale. 
 
In the discussion part, we discuss the aggregation of LAI-GLASS 
and FLUXCOM-AET. We further adjusted the manuscript (line 
499 and following): 
While this approach allows for a spatially explicit evaluation that 
reflects land cover variability within the Bétérou catchment, it 
also introduces some information loss, e.g., from the 
aggregation of AET heterogeneity. This is particularly important 
in the process representation of the LAI-AET interaction for 
localized land-atmosphere feedbacks. The subbasin-level 
evaluation offers a practical compromise, where spatial context 
is preserved at a scale appropriate for hydrological modeling.  
 

Lines 225–235 
 
The explanation of the Morris 
method is mathematically 
accurate, but its description 
interrupts the methodological 
flow. Consider moving equations 
to the Supplementary Material or 
shortening the derivation here. 
Focus instead on the reasoning for 
using Morris over Sobol or other 
variance-based methods. 

Thank you for this recommendation. 
We moved the equation part to the Supplementary Material and 
highlighted the rationale behind the choice for the Morris 
method. 
 
The following paragraph has been added to the manuscript: 
The application of the Morris method allows the quantification 
of the parameter sensitivity through statistical means (μ*-
values) of the elementary effects (Morris, 1991; Campolongo 
et al., 2007). While the elementary effects are a local sensitivity 
measure, the computation of multiple elementary effects for 
varying parameter subsets enables a quasi-global sensitivity 
analysis (Saltelli et al., 2008). Compared to other sensitivity 
approaches, it is moreover computationally efficient due to its 
one-at-a-time sampling strategy (Pianosi et al., 2016). 
 

Lines 254–266 
 
The role of half-space depth in 
ROPE is well explained, but please 

The convergence was assessed in a simplified approach. We 
defined the convergence if the KGE of the best run to the last run 
does not change more than ∆KGE=0.05. To be on the safe side, 
we defined enough iterations rather than a stopping criterion. 



clarify how convergence was 
assessed. Did you apply any 
stopping criteria based on 
performance plateauing? Were all 
final parameter sets within the 
convex hull? Details like these 
improve transparency and 
reproducibility. 

This is computational costly but given 15 parameters and 3 
optimization objectives (Q, LAI, AET), we wanted to allow 
enough time for the convergence to be met. 
The ROPE algorithm defines the samples for the next iteration 
based on a depth function (half space depth function). This 
depth function requires a high computational demand for 15 
parameters yet is robust to sample within the convex hull. All 
parameter sets are within the convex hull. 
  

Lines 300–310 
 
You use the W5E5 simulation 
period (2001–2015) as a baseline. 
However, earlier you mentioned 
that observed data go back to 
1981. Why was a shorter baseline 
chosen, especially given that 
longer baselines can reduce noise 
in climate signal detection? 

We appreciate the reviewer’s observation. We selected the 
period 2001 to 2015 as a baseline to ensure consistency across 
all data sets used in the study. In the 15 years span, the 
interannual climate variability is well captured and no 
significant climate change trend is observed. In the 
preprocessing of the data, no significant noise was further 
detected. 

Lines 361–375 
 
The seasonal patterns of AET are 
well captured in the model, 
particularly the mid-season dip. 
However, your explanation that 
this dip is “due to lack of LAI 
representation” in Q-only is 
somewhat superficial. Could the 
effect also arise from 
misrepresented soil moisture 
dynamics or canopy interception? 

We also evaluated the soil moisture response for the simulation 
of the current climate conditions, see for example Figure 2.  
 
The different modeling strategies simulate similar patterns of 
soil moisture. More precisely, the soil moisture dynamics are 
similar among the strategies since all of them are calibrated 
against discharge which has the most influence on soil moisture 
in the SWAT/SWAT-T model. 
 
Canopy interception Ecan is linked to LAI in SWAT/SWAT-T with 
the formula: 

𝐸𝑐𝑎𝑛 = 𝐼𝑚𝑎𝑥 ∗
𝐿𝐴𝐼

𝐿𝐴𝐼𝑚𝑎𝑥
 

Where Imax is the maximum canopy interception (model 
parameter, CAN_MX), LAI is the computed LAI, and LAImax is the 
maximum LAI (model parameter, BLAI). Therefore, inappropriate 
modeling of LAI (e.g, very small values for LAI) influences 
canopy interception.  
 
Given the soil moisture is similar among the strategies and 
canopy interception is linked to LAI, we concluded that the 
“AET-dip” representation is strongly due to limits in LAI 
modeling. 
 

Lines 395–405 
 
The cross-validation results show 
that W5E5-derived parameters can 
be used with observed forcing. 
However, the validation for LAI 
shows noticeable degradation. 
This suggests that model 
structural limitations may 
constrain LAI robustness under 

We appreciate the reviewer’s observation and the important 
aspect of LAI it points out. 
LAI modeling in SWAT/SWAT-T is linked to temperature. The LAI 
parameters T_BASE and T_OPT govern the temperature stress 
on plant growth. Moreover, T_BASE parameter influences the 
heat units necessary for plant growth. 
 
Given the dependency of LAI on temperature, the robustness for 
climate impact assessment is crucial. The manuscript is 
adjusted to (line 404): 



different climates. Could you 
expand on the implications of this 
for future climate scenario 
modeling? 

Given the dependency of LAI on temperature in SWAT-T, its 
robustness for climate impact assessment is crucial. For 
climate impact assessment, multiple LAI parameter sets can be 
used to avoid the reliance on single LAI parameter sets and 
increase the LAI parameter robustness. 
 

Lines 425–435 
 
You evaluate GCM ensemble 
spread and precipitation changes, 
but the connection between these 
meteorological changes and 
hydrological sensitivity is 
underexplored. For example, how 
does GCM precipitation variability 
translate into spread in Q or AET 
for the different calibration 
approaches? A more integrated 
uncertainty decomposition would 
be valuable here. 

Thank you for this important observation. The used GCM’s from 
ISIMIP represent a range of low to high climate sensitivity.  
 
We added an additional analysis (Table 1 and Table 2) to the 
manuscript to evaluate how meteorological changes from 
GCMs translate into changes for Q and AET. This way, we hope 
to improve the quality of the evaluation. 
 
The tables are added to the Supplemental Tables section below 
to the appendix of the manuscript. 

Throughout, there is a lack of 
critical reflection on the limitations 
of remote sensing products used 
for LAI and AET. While GLASS-LAI 
and FLUXCOM are high-quality 
datasets, they carry uncertainties, 
especially in tropical canopies. A 
brief paragraph discussing these 
limitations would strengthen the 
credibility of your validation 
approach. 

We thank the reviewer for this important suggestion. This 
referee comment aligns with the feedback from Referee #2 in 
[https://doi.org/10.5194/egusphere-2025-3836-RC2]. We 
therefore respond similar to both referee comments: 
 
GLASS-LAI and FLUXCOM-AET are both widely used and are 
considered high quality. In tropical regions, remote sensing can 
be influenced due to cloud cover. The cloud influence is 
particularly prominent in MODIS-derived LAI products. 
Therefore, we used the more robust GLASS-LAI product. The 
FLUXCOM product integrated eddy covariance observations, yet 
these are unevenly distributed across climate zones. 
 
As mentioned before, a comparison of GLASS-LAI to modeled 
LAI with SWAT-T can be found in Merk et al. (2024). We tested 
the FLUXCOM-AET accordingly before its application in this 
study, see figure below. Given this promising validation, the 
products still carry inherent uncertainties.  
We have added a paragraph discussing the limitations and 
uncertainties with GLASS-LAI and FLUXCOM-AET.  
We now explicitly acknowledge that these uncertainties may 
influence the representation of LAI and AET at the sub-basin 
scale. Including this discussion clarifies the scope of our 
validation and improves transparency regarding data 
limitations. 
 
The following paragraph is added to the manuscript after line 
502: 
The application of satellite-based GLASS-LAI and FLUXCOM-
AET data for a tropical catchment like the Bétérou Catchment 
carries uncertainties. Generally, GLASS-LAI and FLUXCOM-AET 
are both widely used and are considered high quality. Yet, 
satellite-based datasets in tropical regions can be subject to 



cloud contamination and reflectance noise (Viovy et al., 1992; 
Atkinson et al., 2012) or the lack of observation networks for 
validation (Weerasinghe et al., 2020). For the Bétérou region, the 
GLASS-LAI dataset shows promising applicability when 
compared to monitored data (Merk et al., 2024). FLUXCOM-AET 
has been extensively validated against eddy covariance (EC) 
measurements across a wide range of climatic conditions, 
supporting its general reliability (Jung et al., 2019). This study 
relies on a pointwise validation of FLUXCOM-AET and GLASS-
LAI. While this approach does not fully capture spatial 
heterogeneity or all sources of uncertainty, it provides a 
consistent and pragmatic basis for model evaluation in data-
scarce tropical regions. This approach ensures that the 
validation framework remains robust and fit for purpose. 
 

Finally, regarding language and 
terminology throughout the 
manuscript, I believe that phrases 
such as “to guarantee 
convergence,” “mimics well,” and 
“modeling potential” could be 
rephrased to enhance precision. 
For instance, “the model 
performance plateaus after 12 
iterations” is preferable to “to 
guarantee convergence.” Similarly, 
instead of “mimics well,” you could 
say “closely reproduces.” 

We highly appreciate the reviewer’s feedback on language and 
wording. We screened through the manuscript and adjusted 
poor phrasing to improve the readability. 

 
  



Supplemental Figures 

 

Figure 1 Comparison of monitored AET (AET-obs, black line) to multiple satellite-based and 
reanalysis AET products at the forested footprint for different temporal scales a) daily, b) 8-daily 
sum, and c) monthly sum. Please note the varying y-axis scales for readability. 

 

Figure 2 Average soil moisture for the 14 subbasins (letters a-n) for model forcing with obs-data. 



Supplemental Tables 
Table 1 Meteorological (∆P for precipitation change in percent; ∆T for temperature change in 
degree Celsius) and hydrological changes (∆Q and ∆E for discharge and AET changes in percent, 
respectively) for the GCMs and SSP scenarios (short names for GCMs and SSPs are used for 
layout purposes; MMM = multi-model mean) and the underlying calibration strategies (1=Q-only; 
2=Q+LAI; 3=Q+LAI+AET) for the near-future period. 

GCM SSP  ∆P ∆T ∆Q1 ∆Q2 ∆Q3 ∆E1 ∆E2 ∆E3 

GFDL 
SSP1 5.1 1.2 -3.2 -6.8 -9.0 2.3 2.8 4.4 
SSP3 -7.9 1.4 -51.2 -49.9 -51.8 1.6 1.1 2.6 
SSP5 -2.6 1.2 -30.9 -30.1 -32.1 0.9 0.7 2.2 

IPSL 
SSP1 7.9 1.5 -6.5 -9.8 -11.6 8.1 8.0 9.5 
SSP3 6.6 1.8 -13.4 -16.9 -17.7 10.9 11.3 12.6 
SSP5 7.0 1.8 -11.7 -14.9 -16.6 8.4 9.2 10.7 

MPI 
SSP1 -2.1 0.9 -31.1 -29.0 -31.2 2.1 1.5 3.3 
SSP3 9.1 0.5 7.0 1.3 -2.6 1.6 1.0 2.7 
SSP5 0.1 0.6 -12.0 -12.7 -14.5 -1.5 -2.0 -0.6 

MRI 
SSP1 11.5 1.4 21.4 11.1 9.8 5.9 6.7 8.1 
SSP3 13.3 1.2 26.7 13.1 8.8 4.2 4.9 6.3 
SSP5 19.6 1.6 48.1 27.5 22.5 4.1 5.1 6.4 

UKESM 
SSP1 8.7 1.9 2.9 -4.5 -6.0 9.4 10.5 11.8 
SSP3 13.2 2.2 24.8 12.7 9.1 10.2 10.5 11.7 
SSP5 11.2 1.9 22.5 10.0 7.3 9.0 9.5 10.5 

MMM 
SSP1 6.3 1.4 -3.3 -7.8 -9.6 5.5 5.9 7.4 
SSP3 7.0 1.4 -1.2 -7.9 -10.8 5.7 5.8 7.2 
SSP5 7.2 1.4 3.2 -4.0 -6.7 4.2 4.5 5.8 

 
Table 2 Same analysis as in Table 1 for the far-future evaluation 

GCM SSP  ∆P ∆T ∆Q1 ∆Q2 ∆Q3 ∆E1 ∆E2 ∆E3 

GFDL 
SSP1 -4.5 1.3 -34.8 -34.0 -36.0 0.3 0.3 2.0 
SSP3 -14.8 3.2 -60.1 -59.7 -60.9 -0.4 -1.2 -0.2 
SSP5 -17.2 3.7 -65.2 -64.2 -65.1 -0.3 -1.8 -1.1 

IPSL 
SSP1 7.6 1.6 -6.0 -11.4 -13.1 8.1 8.3 9.7 
SSP3 18.4 4.3 -9.4 -11.0 -11.6 22.9 22.5 23.7 
SSP5 21.3 5.4 -11.8 -6.5 -7.2 28.1 24.3 25.9 

MPI 
SSP1 -3.3 0.9 -31.1 -29.9 -32.0 0.9 0.6 2.3 
SSP3 8.3 1.9 4.9 -3.0 -4.7 1.6 2.8 4.0 
SSP5 21.7 1.5 101.1 75.6 71.0 -6.3 -6.1 -5.0 

MRI 
SSP1 -1.3 1.8 -23.9 -25.2 -26.9 3.1 3.6 5.2 
SSP3 -2.7 3.6 -33.5 -33.1 -33.8 5.7 5.5 6.7 
SSP5 -8.0 4.7 -51.2 -45.1 -45.9 7.4 4.2 5.2 

UKESM 
SSP1 7.4 2.0 7.3 -1.6 -4.3 7.7 8.2 9.6 
SSP3 8.9 4.5 3.7 -1.8 -3.6 10.8 10.6 11.8 
SSP5 17.8 5.8 19.1 14.8 12.1 17.3 15.6 16.9 

MMM 
SSP1 1.2 1.5 -17.7 -20.4 -22.4 4.0 4.2 5.8 
SSP3 3.7 3.5 -18.8 -21.7 -22.9 8.1 8.0 9.2 
SSP5 7.2 4.2 -1.6 -5.1 -7.0 9.2 7.2 8.4 
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