Projecting changes in rainfall-induced landslide susceptibility across China under climate change

Jinqi Wang 1,2, Hao Fang 2,3,4, Kai Liu 1,2*, Yi Yue 2, Ming Wang 1,2, Bohao Li 1,2, Xiaoyi Miao 1,2

*Corresponding author: Kai Liu (liukai@bnu.edu.cn)

Contents of this file

Supplementary Table S1 Supplementary Figs. S1 to S5

¹ Joint International Research Laboratory of Catastrophe Simulation and Systemic Risk Governance, Beijing Normal University, Zhuhai 519087, China

² School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China.

³ Zhejiang Institute of Geosciences, Hangzhou 310007, China

⁴ Qiantang Institute of Geosciences, Hangzhou 310007, China

Supplementary Table

Supplementary Table S1: Comparison of simulated precipitation and observed precipitation (The root mean square error

(RMSE) for different models)

ID	Model	RMSE	Mean RMSE (574.60)
1	IPSL-CM6A-LR	561.81	RMSE ≤ Mean RMSE
2	BCC-CSM2-MR	567.90	
3	MPI-ESM1-2-HR	568.80	
4	INM-CM5-0	568.86	
5	ACCESS-CM2	569.07	
6	NESM3	569.17	
7	CanESM5	569.96	
8	UKESM1-0-LL	570.11	
9	CNRM-ESM2-1	570.14	
10	KIOST-ESM	570.22	
11	EC-Earth3	570.34	
12	HadGEM3-GC31-LL	570.76	
13	EC-Earth3-Veg-LR	570.87	
14	CNRM-CM6-1	571.33	
15	MIROC-ES2L	571.73	
16	FGOALS-g3	571.80	
17	GISS-E2-1-G	572.02	
18	NorESM2-LM	572.61	
19	ACCESS-ESM1-5	573.04	
20	INM-CM4-8	573.18	
21	MRI-ESM2-0	575.14	RMSE ≤ Mean RMSE
22	IITM-ESM	576.75	
23	MPI-ESM1-2-LR	577.33	
24	GFDL-ESM4	577.53	
25	NorESM2-MM	577.96	
26	MIROC6	578.38	
27	CESM2	579.36	
28	CMCC-ESM2	580.93	
29	TaiESM1	581.35	
30	CMCC-CM2-SR5	596.12	
31	KACE-1-0-G	607.04	

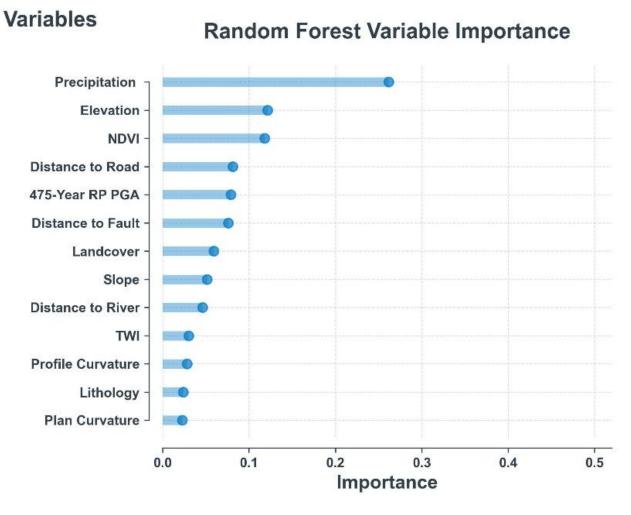
Notes:

- (1) RMSE is calculated using the formula provided above, which compares simulated and observed annual precipitation totals for each model.
- (2) Mean RMSE is 574.60, representing the average RMSE across all models.

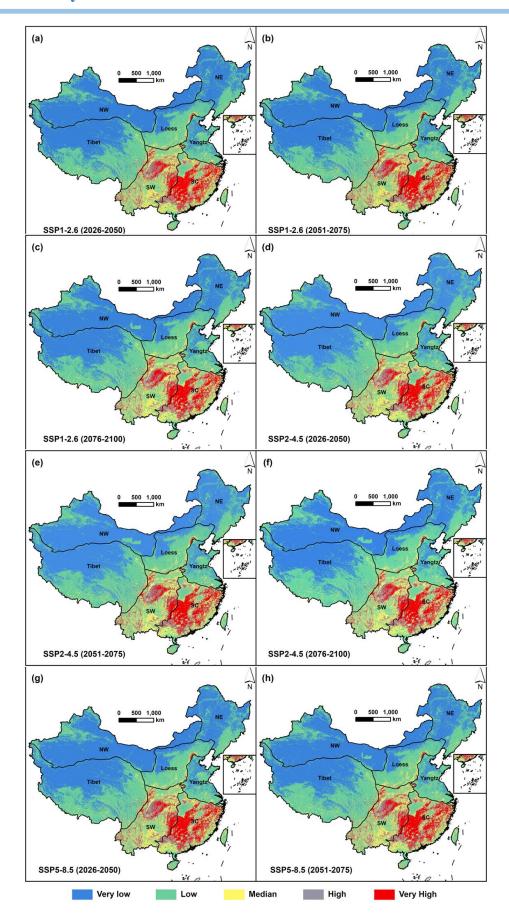
(3) Models with an RMSE ≤ mean RMSE are considered to have better simulated accuracy relative to the overall dataset.

Formula:

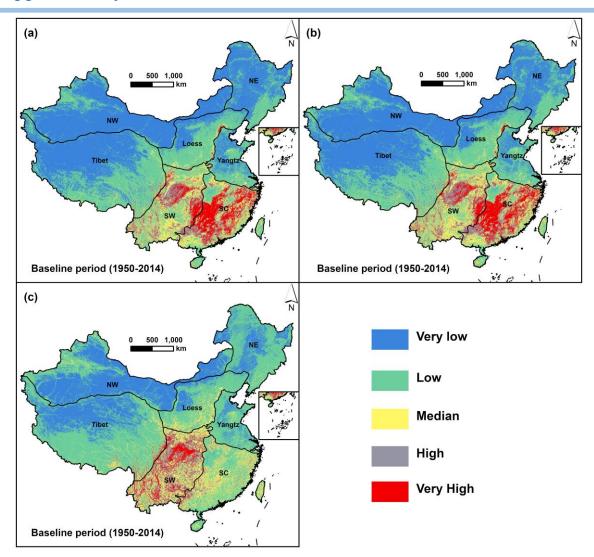
The RMSE is calculated as follows:

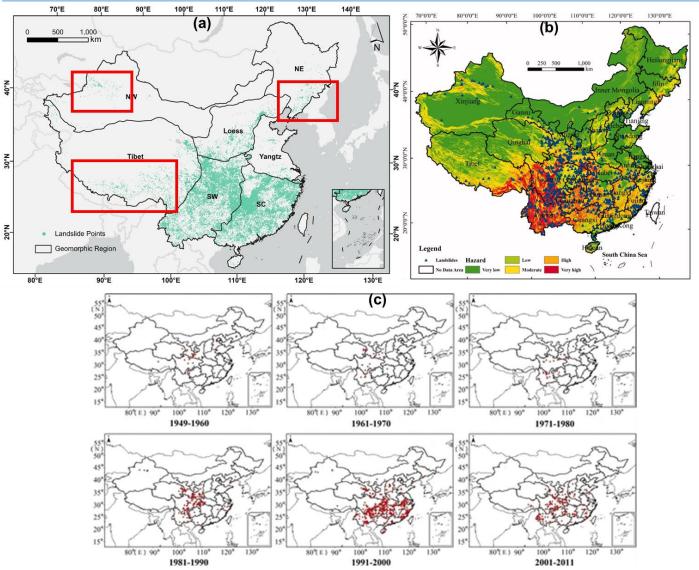

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (O_i - P_i)^2}$$

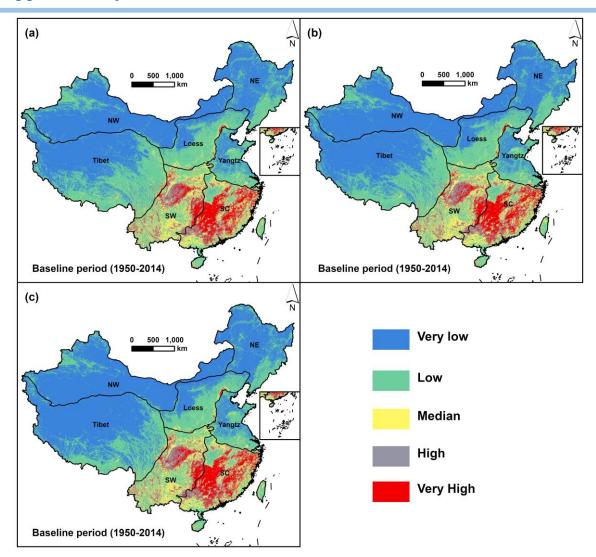
Where:


(1)n is the number of grid cells (pixels) in the raster,

 $(2)O_i$ is the observed precipitation at the i-th grid cell,


 $(3)P_i$ is the predicted precipitation at the i-th grid cell.


Supplementary Fig. S1: Relative importance of landslide conditioning factors as determined by the random forest (RF) model.


Supplementary Fig. S2: Spatial pattern of landslide susceptibility in China during future periods: near-term future (2026–2050), mid-term future (2051–2075), and long-term future (2076–2100) under SSP1-2.6, SSP2-4.5, and SSP5-

Supplementary Fig. S3: Landslide susceptibility maps illustrating the effect of thematic accuracy (i.e., completeness of small landslide records) on model results. (a) Baseline map constructed from the complete inventory (AUC = 0.97); (b) Map after removing 50% of the small landslides from the inventory (AUC = 0.97); (c) Map after completely excluding small landslides from the inventory (AUC = 0.96).

Supplementary Fig. S4: Comparison of landslide inventories. (a) Landslide points used in this study; (b) National-scale landslide inventory from Liu and Miao (2018); (c) National-scale landslide inventory from Liu et al. (2013).

Supplementary Fig. S5: Landslide susceptibility maps generated from inventories with different levels of completeness in Northwest (NW), Northeast (NE), and Tibet regions (AUC = 0.97). (a) Baseline map using the complete inventory; (b) Map after randomly removing 50% of landslide points in the target regions (AUC = 0.97); (c) Map after randomly removing 75% of landslide points in the target regions (AUC = 0.97).