
1 
 

Drop clustering and drop size correlations from holographic imagery 
suggest cloud droplet spectral broadening via entrainment-mixing 
 
John J. D’Alessandro1,*, Robert Wood1, Peter N. Blossey1 
 5 
1Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA 
*Current Affiliation: Laboratoire d'Optique Atmosphérique, Université de Lille, Lille, Halle du Nord, France  
 
Correspondence to: John J. D’Alessandro (john.d-alessandro@univ-lille.fr) 
 10 
Abstract. The question of how droplets rapidly grow large enough to initiate collision-coalescence has persisted for decades. 

Many theories suggest drop clustering on millimeter scales can produce sufficiently large drops (i.e., those in the 

“bottleneck” size range; ~25 to 50 µm diameters).  

A novel method is introduced to evaluate drop clustering trends particle-by-particle (i.e., the number/proximity of 

neighboring drops for given droplets, defined as drop clustering fields)—in contrast to previous studies which determine 15 

drop clustering metrics of given sample volumes. Specifically, this study evaluates the statistical likelihood that drops of a 

given size will either be associated with a significant number of neighboring drops, or be significantly isolated from 

neighboring drops.  

Observations are acquired from the HOLODEC during the Cloud System Evolution in the Trades campaign, which sampled 

subtropical marine warm clouds. The HOLODEC measures drop size distributions and the 3D spatial coordinates of 20 

droplets. Results show drops within the bottleneck size range (diameters of ~25–50 µm) are most likely to be significantly 

isolated from neighboring drops. This “isolated large drop trend” is primarily observed at subsaturated conditions, 

suggesting entrainment is the contributing factor. Holograms associated with this trend are more likely to have greater mean 

diameters, suggesting smaller drops are preferentially evaporating. However, these holograms are also more likely to have 

broader drop size distributions, larger maximum drop sizes and overly regions where precipitation reaches the lowest 25 

altitudes from the sampled cloud, suggesting entrainment-mixing drop size distribution broadening is a relevant 

precipitation-initiation mechanism. 

1 Introduction 

Explanations for the rapid production of precipitation in warm clouds (e.g., Rauber et al. 2007; Saunders 1965) have eluded 

researchers for decades, resulting in numerous theories. Condensational growth rates of droplets to diameters (D) of ~20 µm 30 

is well understood, and collision-coalescence is well-evidenced for producing drizzle/rain size drops with those significantly 

larger than 20 µm (Lamb and Verlinde, 2011). However, for the initiation of collision-coalescence to occur and produce 

precipitation, drops must first exceed sizes much larger than 20 µm (e.g., Jonas 1996). The range of drop sizes constituting 
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this “gap” is often termed the “bottleneck” size range, and the production of these drops has remained uncertain for decades. 

Proposed mechanisms producing drops within the bottleneck size range include but are not limited to the presence of giant 35 

cloud condensation nuclei (e.g., Woodcock 1953; Blyth et al. 2003; Dziekan and Pawlowska 2017; Dziekan et al. 2021), 

direct long wave cooling of droplets by emission of thermal infrared radiation near cloud top (Zeng, 2018), inhomogeneous 

mixing via entrainment (Baker et al., 1980) and various mechanisms related to turbulence (e.g., Chandrakar et al. 2024; 

Pinsky and Khain 2002; Siebert and Shaw 2017; Lu et al. 2018).  

Additional growth mechanisms involve drop clustering (i.e., positive spatial correlations between drops) in various manners 40 

(e.g., Shaw et al. 1998; Bodenschatz et al. 2010; Madival 2019). Drop clustering is suspected to occur in varying cloud types 

given sufficiently large Reynolds numbers as evidenced by in situ observations (e.g., Dodson and Small Griswold 2019; 

Larsen et al. 2018; Dodson and Small Griswold 2022; Bateson and Aliseda 2012; Kostinski and Shaw 2001; Glienke et al. 

2020), which is a consequence of processes such as inertial clustering and entrainment-mixing (Beals et al., 2015; La et al., 

2022). Previous in situ observation studies differ in their conclusions about correlations between drop clustering and drop 45 

sizes (Glienke et al., 2020; Marshak et al., 2005; Small and Chuang, 2008; Thiede et al., 2025). These observational studies 

vary in their usage of instrumentation, spatial scale analysis as well as methods for diagnosing/quantifying the degree of drop 

clustering. However, to the authors’ knowledge all previous studies have related drop sizes to the clustering of drop systems 

(i.e., sample volumes), and not to the clustering “surrounding” the individual drops being investigated. It is plausible this 

analytic paradigm fails to relate individual drops to corresponding small scale features (e.g., microscale vortices, 50 

supersaturation fields, etc.). Additionally, different biases are associated with different drop clustering metrics and counting 

statistics of droplets can often be insufficient for obtaining robust clustering diagnoses of individual sample volumes (Baker 

and Lawson, 2010; Larsen et al., 2018; Shaw et al., 2002). These conditions motivated this study to relate drop sizes directly 

to the degree of “clustering” around individual drops, focusing on the bottleneck size range. Namely, we will determine the 

likelihood that drops of a given size will have a significantly high number of drops surrounding them as well as likelihoods 55 

that they are significantly isolated from neighboring drops. Section 2 introduces the instrumentation used in this study and 

discusses the individual drop clustering diagnosis. Section 3 outlines two types of analysis performed in this study: 1) 

determining the relation of drop size to individual drop clustering and 2) correlating individual drop clustering trends with 

other parameters. Section 4 provides results and Section 5 includes further discussion of the findings. Section 6 provides 

concluding remarks. 60 

2 Instrumentation and methodology 

2.1 Instrumentation and field measurements 

Data is taken from the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Cloud 

System Evolution in the Trades (CSET) campaign, which consisted of 16 research flights targeting the stratocumulus to 
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cumulus transition over the Northeastern Pacific (Albrecht et al., 2019) using the NSF/NCAR G-V aircraft. The standard 65 

flight plan called for repeated situ sampling patterns, each of which included level legs below-, in- and above-cloud and 

sawtooth legs across cloud top. 

This study primarily relies on observations from the Holographic Detector for Clouds (HOLODEC), which acquires particle 

size distribution information for constant sample volumes of ~13 cm3 at a rate of 3.3 Hz (Fugal and Shaw, 2009). For flight 

speeds within regions relevant to this study (~130 m s-1), this results in samples obtained every ~40 m. The HOLODEC 70 

measurements provide drop size distribution information of drops with diameters from about 6–1000 µm, as well as the 3D 

spatial coordinates of the drops. The drop clustering methodology (described in Section 2.2) is applied to the HOLODEC 

measurements. 

Measurements acquired from other instruments are collocated to HOLODEC measurements, and are all reported at 1 Hz 

resolution (~130 m resolution) unless specified otherwise. This includes temperature and water vapor measurements to 75 

derive relative humidity (RH), which are acquired from the Rosemount temperature probe and Vertical-Cavity Surface 

Emitting Laser hygrometer (Zondlo et al., 2010). Because of differences in the sampling rates, 3 or 4 holograms are 

identified with the temperature and RH measurements, and this may introduce some uncertainty into the analysis. A W-band 

HIAPER Cloud Radar (HCR) having a 0.5 Hz resolution is also utilized to identify the lowest altitudes of 

condensate/precipitation in the presence of rain/drizzle. This is possible since the HCR is nadir-pointing for in-cloud flight 80 

legs. The lowest condensate/precipitation echoes are defined as the lowest range gate from the aircraft having reflectivity 

exceed -60 dBZ (no lower clouds or fog are considered). This is to explore how HOLODEC measurements correspond with 

subsiding condensate. Although no efforts are made to distinguish between precipitation and cloud base, the frequency of 

virga associated with stratocumulus clouds from CSET is predicted to be ~80% (Schwartz et al., 2019). 

Although the HOLODEC data were processed for all research flights, there is limited data availability since only a few flight 85 

legs had relatively long durations in-cloud (shown below). Observations are also limited to level flight legs due to possible 

measurement biases and consistency with previous studies (Glienke et al., 2017, 2020; La et al., 2022; Larsen et al., 2018; 

Larsen and Shaw, 2018). Table 1 shows flight legs from which holograms are taken for the analysis. Data is only taken from 

flight legs that have at least 100 holograms meeting the required conditions for the analysis (Section 2.2). Note that this 

excludes <5% of all available holograms, and does not significantly impact results. 90 

 

 

 

 

 95 
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Flight legs for analysis 

Flight leg Time (UTC) Dmax > 25 µm Dmax > 30 µm 

RF02A* 16:18:40–16:31:40 679 538 

RF02B* 17:15:00–17:26:40 1241 537 

RF10A* 16:31:40–16:41:40 1487 832 

RF10B* 17:20:00–17:28:30 977 642 

RF04 17:30:00–17:42:30 224 126 

RF08 16:56:40–17:06:40 260 190 

RF11 20:18:20–20:29:10 150 93 

RF12A 21:00:00–21:19:10 148 141 

RF12B 17:50:00–18:01:40 230 119 

RF13 21:15:00–21:22:30 139 91 

RF14 17:13:20–17:25:00 135 93 

RF15 18:20:00–18:30:00 269 171 

Table 1: List of flight legs used in this paper. Flights including multiple flight legs are listed alphabetically in the 

order they occurred (shown in Flight leg column). The number of holograms having maximum drop diameters 

exceeding 25 µm and 30 µm are shown for each flight leg. The first four flight legs within the bolded box and with 

asterisks are the only ones used in the analysis in Section 4.2. These flight legs are also evaluated for drop clustering 100 

in Larsen et al. (2018). 

 

Due to different in-cloud sampling durations amongst the flight legs, 75% of all available holograms are observed in 

RF02A,B and RF10A,B (having maximum drop diameter exceeding 25 µm; Table 1). Those flight legs were evaluated in 

Larsen et al. (2018), who determined radial distribution functions using HOLODEC measurements separately for each flight 105 

leg.  

2.2 Methodology 

Whereas previous studies have quantified droplet clustering of the HOLODEC’s respective sample volumes (Glienke et al., 

2020; La et al., 2022; Larsen et al., 2018; Larsen and Shaw, 2018; Thiede et al., 2025), results here evaluate drop clustering 

on a drop-by-drop basis. In-cloud samples are defined where drop concentrations exceed 100 (per ~3.3 cm3) for consistency 110 

with previous clustering analyses of HOLODEC measurements acquired during CSET (La et al., 2022; Larsen et al., 2018; 
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Larsen and Shaw, 2018), which select this threshold to achieve adequate counting statistics when determining drop 

clustering. Note that Wood et al. (2018) found approximately half of the clouds sampled during CSET have “ultra clean” 

drop concentrations (~10 cm-3), meaning these clouds are not included in the analysis. This study also adapts a similar 

sample volume as these studies, which is smaller than that reported by the HOLODEC. The reported sample volume 115 

dimensions of approximately 1 cm × 1 cm × 13 cm are reduced to 0.6 cm × 0.6 cm × 10 cm, since drop spatial coordinates 

are more reliable within the inner portion of the sample volume (Larsen et al., 2018). An additional inner sample volume, 

defined as the guard rail and discussed in the following subsection, is applied so drop sizes are only evaluated within the 

spatial volume of 0.3 cm × 0.3 cm × 9.7 cm. Previous studies restrict their analysis to drops with D > 10 µm as they are 

assumed to have the best detectability. Drops used here are restricted to sizes of D > 12 µm as a lower limit (also for the in-120 

cloud condition), although sensitivity tests using D > 10 µm produce results consistent with those shown throughout this 

study (discussed further in Appendix B).  

2.2.1 Introduction to the Radial Distribution Function 

Multiple methods exist to quantify droplet clustering, some of which are reviewed in Shaw et al. (2002). The radial 

distribution function (g(r)) determines the number density of particles as a function of distance from a reference particle, and 125 

may be used to quantify particle clustering given three-dimensional particle spatial coordinate data is available. It can be 

expressed as 

𝑔(𝑟) = 	∑ !!(#) %⁄

(%'())"#$# *
%
+,( ,         (1) 

where ψ(r) is the number of particles surrounding the ith particle within the surrounding spherical shell volume between radii 

r - Δr/2 and r + Δr/2, V is the measurement volume over the entire hologram, N is the number of drops within the guardrails 130 

and dVr is the measurement volume enclosed within shells having radii r - Δr/2 and r + Δr/2. The equation takes advantage of 

the notion that a Poisson distribution has evenly distributed particles within a sample volume, which is represented in the 

denominator of equation 1. This means g(r) indicates a greater degree of drop clustering as values increase above 1. An 

idealized depiction of cloud drops in a hologram is shown in Fig. 1. 

 135 
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Figure 1: An idealized depiction of drops shown with different numbers of neighboring drops in a hologram. Low 

(high) drop clustering fields (DCFs) correspond to drops with a significantly low (high) number of neighboring drops 

(how significance is defined is described in the text). V is the volume of the innermost box and dV is the volume within 

the light-red shaded spherical annulus volumes of the respective droplets (variables from Eq. 1). Distances are not to 140 

scale. 

 

This study employs a guard rail approach which only computes g(r) among the ith particles that are within a certain distance 

from the measurement volume edges in order to prevent counting biases when computing pairwise correlations. The guard 

rail distance is the maximum possible shell radius used when computing the radial distribution function (r + Δr/2 in Fig. 1). 145 

A detailed overview and visualization of the radial distribution function and guard rail approach can be found in Larsen and 

Shaw (2018). Two labels within Fig. 1 are denoted “high drop clustering fields” and “low drop clustering fields” (DCFs), 

which correspond with the drops having the most and fewest neighboring drops within their respective shells. How high and 

low DCFs are diagnosed using multiple shells sizes is discussed below. 

Rather than quantify the clustering of a system (i.e, sample volume) of droplets, this study directly relates drop sizes to their 150 

respective DCFs. The proposed DCF methodology will conceptually mirror DCFs used for determining radial distribution 

functions, although clustering fields will not be computed at incremental distances away from the droplet centroids. Rather, 

DCFs will incrementally increase in size while maintaining a constant lower bound. The following section will detail the 

methodology including how droplets are diagnosed as high/low DCF. 
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2.2.2 Particle-by-Particle Methodology 155 

This study aims to directly compare how occurrence frequencies of high and low DCFs differ for different drop sizes.  The 

methodology used to classify high and low DCFs is introduced below, which is derived from the radial distribution function 

to determine clustering statistics around individual drops. If one were to determine g(r) for an individual drop (gi), the radial 

distribution function in Eq. 1 simplifies to 

𝑔+(𝑟) =
!!(#)

(%'())"#$# *
,         (2)	160 

where the summation term is no longer included. Note that total drop concentrations are still included in the denominator to 

weight the observed number of neighboring drops by the number of drops following a Poisson distribution. However, gi of 

individual drops are heavily biased by the total drop concentration term (gi is greatest at the lowest drop concentrations; 

Supplementary Fig. S1). This is because low, non-zero ψ will significantly exceed the “expected” number produced by the 

denominator term (a form of counting statistic error). Further, one can intuit that greater drop concentrations will increase 165 

likelihoods of drops neighboring each other at closer distances relative to lower drop concentrations (given constant sample 

volumes).   

In order to compare DCFs of holograms having notably different drop concentrations, we wish to remove the “expected” 

(i.e., Poisson) drop count term from consideration. Since we want to determine gi relative to other drops within their 

respective holograms, N and V can be removed since they are both constant for each respective hologram. As previously 170 

mentioned, DCFs of individual drops are not computed as functions of incremental distance from the drop centroids, but 

rather as a function of incrementally increasing shell size with a constant lower boundary. This updated individual drop 

clustering term (gdrop) is expressed as 

𝑔-#./(𝑟0+1 + 𝛿𝑟1) =
!(#%!&23#&)
-4$%!&'($&

,        (3)	

where rmin is a constant lower boundary and δrn is the width of the spherical annuli (i.e., shell), each starting at rmin whose 175 

width increases with increasing n from n = 1, …, 7 (top of Fig. 2; discussed below). Note that δr is applied differently than 

Δr in Eqs. 1&2 (illustrated below). It is crucial to maintain constant shell sizes regardless of drop size, rather than vary rmin 

according to respective drop diameters. Having rmin equal the droplet radius would result in small drops having larger shells 

compared with large drops given constant δr. A constant rmin of 50 µm is used here, since it is the maximum distance at 

which two drops having D=50 µm can neighbor each other. Note that the number of drops occurring within rmin and all drop 180 

surfaces amounts to ~0.00002% of all drops, so results are not impacted by this choice of rmin. While this rmin value means 

that the DCF may not be well-defined for drops with D>50 µm, only ~200 such drops exist in the dataset as defined below, 

and they are not considered when determining statistical likelihoods of drop sizes for given DCF ranges.  

Figure 2 shows an idealized depiction of DCFs within a hologram having multiple shells, where shell sizes increase with a 

constant lower boundary (rmin) following gdrop (eq. 3). This is seen when comparing δr1 and δr2 in Fig. 2. 185 
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Figure 2: Idealized depiction of high and low drop clustering fields (DCFs) using multiple shells as determined by 

gdrop. DCFs are only shown for select drops (D1–D5). The usage of shells follows the proposed methodology and not 

following RDF (i.e., the lower bound r [rmin] stays constant). The upper left lists the concentric shell size range of radii 

from 0.09–0.15 cm, with each consecutive shell size increasing in distance from rmin by 0.01 cm. Note that only two 190 

shell sizes are shown for simplicity, although the proposed methodology includes seven concentric shell sizes. The 

upper right panel denotes how high and low DCFs are sorted for their respective maximum to minimum values. Note 

that D4 and D5 have the same values of gdrop, and are therefore randomly sorted (discussed in text). The red shading 

denotes drops not included in the analysis, since the same number of high DCFs and low DCFs must be available 

from each hologram (discussed in text). Distances are not to scale. 195 

The different shell sizes allow for computation of varying “degrees” of high and low DCFs, where shell sizes are integer 

multiples of rmin + δr1 (top row of Fig. 2). The lowest DCF values are assigned to drops that do not have any neighbors 

within the largest possible shell size (i.e., r + δrn). Drops diagnosed as having “low DCFs” are then sorted by the largest shell 

size that does not contain any neighbors for each hologram. Drops diagnosed as having “low DCFs” are then sorted by the 

largest shell size that does not contain any neighbors for each hologram. This is depicted in Fig. 2 where D1 has the lowest 200 

DCF, since it is the only drop with no neighboring drops in all available shell sizes. D4 and D5 have identical clustering 

fields, with no drops in the smaller shells. They are then randomly sorted following D1, due to their identical clustering 

fields. To further discretize low DCFs, when multiple drops have no neighboring drops within their respective shells of the 

same size, they are sorted by the number of drops within the maximum shell size of each drop (i.e., rmin + δr = 0.15 cm). For 

example, assume there are drops Da and Db and both have no neighboring drops within the 0.13 cm shell (i.e., 0.005–0.13 cm 205 

from the droplet centroid). Da and Db have one drop and three drops within the 0.15 cm shell (i.e., 0.005–0.15 cm from the 

droplet centroid), respectively. Therefore, Da is sorted before Db and has the lower DCF. This means low DCF are primarily 
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sorted by the largest shell size in which no neighboring drops exist, and when shell sizes are the same, they are sorted by the 

number of neighboring drops within the maximum shell size. These conditions as well as others (discussed below) are 

detailed in Table 2. 210 

Drop clustering field (DCF) Classification 

Step Primary conditions Secondary conditions 
1. Determine in-
cloud holograms 

Nouter > 100 per hologram (28 cm-3) - 

2. Determine 
individual drop 
clustering 

Determine gdrop for all drops having 12<D<50 µm 
for all shell sizes (i.e., r+δr). 

- 

- High DCFs Low DCFs High DCFs Low DCFs 
3. Determine high 
and low drop 
clustering fields 
(DCFs) 

Select maximum gdrop amongst 
all shell sizes meeting ‘N for ψ’ 
condition below 

ψ = 0 for 
maximum shell 
size, meeting ‘N 
for shell size’ 
condition below 

Drops having D>50 µm are 
not included in ψ 

Shell size not considered 
if drop with D>50 µm is 
within shell 

Additional conditions categorizing high DCFs (top two rows) and low DCFs (bottom two rows) 
N for ψ N<110 N: 110-175 N: 175-230 N: 230-280 N>280 

Minimum ψ 
for high 
DCFs 

ψ=2 ψ=3 ψ=4 ψ=5 ψ=6 

N for shell 
size 

N<85 N: 85-140 N: 140-180 N: 180-300 N>300 

Minimum 
shell size for 
low DCFs 

rmin+δr=0.12 cm rmin+δr=0.11 cm rmin+δr=0.10 cm rmin+δr=0.09 cm rmin+δr=0.09 cm 

4. Sort high and 
low DCFs 
separately 

Sort by maximum gdrop from 
greatest to lowest values 

Sort by shell 
size from 
maximum to 
minimum shell 
sizes 

- If shell sizes are identical, 
sort drop by ψ(rmin+rmax), 
where ψ(rmin+rmax) = 0.15 
cm 

5. Final data 
filtering 

Trim sorted array having a greater number of 
elements (i.e., drops) such that Nhigh_DCF = Nlow_DCF 

Only use holograms with more than 3 DCF pairs  
(i.e., Nhigh_DCF > 3 and Nlow_DCF > 3) 

6. Monte Carlo – 
DCF methodology 

Shuffle drop sizes amongst drops within the inner guardrails for each hologram 1000 times (i.e., simulations). This 
creates a counterfactual of no DCF – drop size relationship. Then compare actual DCF – drop size relationships 
with simulations. 

Variables 

Nouter: Number of drops in 0.6x0.6x10 cm sample volume 
N: Number of drops within guardrail sample volume (0.3x0.3x9.7 
cm) 
ψ: Number of drops within a shell having r = rmin+δr 
D: Drop diameter 
gdrop: Equation 3 

Nhigh_DCF: Number of drops with high DCFs 
Nlow_DCF: Number of drops with low DCFs 
rmin: 0.005 cm from drop centroid 
δrmax: 0.145 cm from rmin 
δrn=1,2,…,6,7: 0.085, 0.095,…,0.135, 0.145 cm 

Table 2: All conditions of the Monte Carlo drop clustering field (DCF) classification method which classifies drops as 

having either high DCFs or low DCFs. The thickest bolded conditions are associated with Step 3. The middle thick 

bolded box surrounds conditions associated with the DCF classification of individual drops (Steps 3&4). Both 
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primary and secondary conditions must be met for data to be included in the analysis. The final step references the 

DCF – drop size Monte Carlo analysis, discussed in Section 3.1. Variable names are provided in the lowest row. 215 

Determining high DCFs requires more nuanced consideration, since the shell size and the number of neighboring drops must 

be considered. Since both terms are considered in gdrop, the maximum gdrop is selected among all shell sizes when diagnosing 

high DCFs. Supplementary Figure S2 shows how different gdrop rank amongst each other for varying ψ(rmin + δr) and shell 

sizes. 

Utilizing larger shell sizes allows for the ability to diagnose increasingly isolated drops. However, larger shell sizes 220 

consequently decrease the guardrail distances, which limits the available sample volume (depicted as r + δr in Fig. 2). The 

upper bound of 0.15 cm is therefore chosen to both ideally diagnose isolated drops while producing a sufficient sample of 

drops within the bottleneck size range.  

At this point, the high and low DCF conditions are still insufficient to completely separate drops into the two categories. For 

example, D4 and D5 in Fig. 2 only have one drop in the larger shell and no drops in the smaller shell. By the current 225 

definitions, these drops would meet the requirements to be categorized as both low and high clustering drops. To ensure 

drops are appropriately categorized, an additional set of conditions is shown in the tan shading of Table 2. First: for a given 

N, a minimum number of neighboring drops within the largest shell is required to be considered a high DCF (top two rows). 

The rationale is that a crude consideration of counting statistics can be used to help discretize the drop clustering categories 

by applying this consideration towards high DCFs. This is also useful since it prevents a single neighboring drop within a 230 

relatively small shell to be potentially selected as the maximum gdrop.  

The second set of conditions requires a sufficiently large shell size for classifying low DCFs (bottom two rows of the tan 

shaded region of Table 2). Namely, the definition of a low DCF drop changes with the total drop population N within a 

sample volume, such that the size of the shell that contains no neighboring drops is required to be larger as N decreases as 

shown in Table 2. One can intuit that lower drop concentration environments will produce greater likelihoods of isolated 235 

drops at the smallest shell sizes compared to high drop concentration environments, warranting this condition. Even applying 

these two sets of conditions does not exhaustively discretize high and low DCFs categories for all possible combinations of 

shell size and neighboring drops. Therefore, those drops which meet both conditions are designated as high DCFs. Note 

again that sorting the DCFs (top right panel in Fig. 2) allows for the ability to focus on the highest and lowest DCFs. Results 

will primarily focus on the highest and lowest DCFs, which avoids considering these “problematic” DCFs (i.e., those 240 

meeting both conditions). DCFs not meeting the conditions in Tables 2&3 are categorized as “Neither”.  

In order to perform drop-by-drop comparisons, the same number of high and low DCFs are selected from each hologram to 

control for environmental conditions. Namely, by selecting the same number of high and low DCFs from each hologram, we 
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control for environmental factors and bulk properties (e.g., RH, N, etc.) since the same number of high and low DCFs will be 

associated with any given environmental/microphysical variable. To achieve this, the DCF category with the greater number 245 

of drops is reduced (randomly) to have the same number of drops as the lower category (Step 5 in Table 2). Sampling with 

replacement of the smaller drop category in order to retain a greater number of droplets is also possible. However, the 

current methodology results in approximately one third of drops having high DCFs, low DCFs and DCFs within these two 

ranges (shown below). And since results will primarily focus on the highest and lowest DCFs (Section 3), there is no need 

for sampling with replacement. The requirement of at least 4 high and low DCFs within each hologram (secondary condition 250 

of Step 5 in Table 2) will be discussed in relation to the Monte-Carlo – DCF methodology (Step 6) below, and results in ~5% 

of available holograms being discarded.  

The conditions used to classify high and low DCFs are chosen in order to separate drops into terciles of those having high 

DCFs, low DCFs and DCFs meeting neither condition. This “tercile approximation”; is shown in Fig. 3B, which shows N in 

the x-axis and drop concentrations associated with high DCFs (red points), low DCFs (blue points) and neither (green points) 255 

for their respective holograms (NDCF_categories). The one-to-one line and the one-to-three line are shown by the dotted and 

dashed lines, respectively. Since the same number of drops from high and low DCFs are selected from each hologram, the 

lower value of these two (i.e., the number of drops used in the analysis) is shown by the black points. The drop 

concentrations used in the analysis approximately follow the one-to-three line, signifying that terciles are approximately 

captured among DCFs for all the holograms.  260 
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Figure 3: A) Histogram of available holograms throughout the campaign. Different distributions account for 

holograms with different maximum drop diameters (Dmax). B) The number of high DCFs, low DCFs and DCFs 

meeting neither category (NDCF_category) related to the holograms’ drop concentrations (N). Note that N refers to drop 

concentrations with D>12 µm. 265 

 

Figure 3A shows the total number of holograms used in this study (blue bars). Since the focus of this study is on drops in the 

bottle-neck drop size range, the total number of holograms with maximum drop diameters (Dmax)>25 µm, Dmax>30 µm and 

Dmax>35 µm are also provided to illustrate the number of available holograms used in the following analysis. Only 

holograms with Dmax>25 µm will be analyzed in this study. 270 

3 Statistical testing for drop clustering 

Up to this point, a methodology has been introduced to classify high DCFs (i.e., those with a high number of neighboring 

drops) and low DCFs (i.e., drops notably isolated from surrounding drops). DCFs are categorized relative to the drop 

concentrations of their respective holograms, meaning high DCFs will likely contain fewer drops in holograms with low 

drop concentrations compared with high DCFs in holograms having high drop concentrations. This section introduces two 275 

A

0 100 200 300 400
N (cm-3)

0

1000

Nu
m

be
r o

f
Ho

lo
gr

am
s All holograms

Dmax>25 µm
Dmax>30 µm
Dmax>35 µm

0 100 200 300 400
N (cm-3)

0

50

100

150

200

250

N
DC

F_
ca

te
go

ry
 (c

m
-3

)

B
High DCF
Low DCF
Neither
Drops used in analysis
One-to-one
One-to-three

https://doi.org/10.5194/egusphere-2025-3831
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



13 
 

methodologies to evaluate the relationships of drop sizes to their respective DCFs—both of which rely on some form of 

Monte Carlo analysis. Section 3.1 is a description of how the statistical likelihood of DCFs are determined in relation to their 

respective drop sizes. Section 3.2 introduces a methodology to discern which environmental/microphysical parameters are 

most notably related to DCF signals of interest.  

3.1 Methodology #1: Monte Carlo-DCF methodology 280 

To determine how high and low DCFs relate to drop sizes (i.e., whether clustering tends to be greater around larger and/or 

smaller drops), a statistical methodology using Monte Carlo simulations is applied to each hologram. This will be referred to 

as the Monte Carlo-DCF methodology, and is shown in the final step of Table 2. Namely, for each simulation the drop sizes 

within the inner guardrail sample volume are randomly shuffled amongst the drops within this sample volume. Only the drop 

sizes are randomly sorted while the original drop spatial coordinates remain unchanged — meaning the DCFs will be 285 

identical for each hologram. This is to provide a counterfactual where no relationship between DCFs and drop sizes exists. 

The same number of drops meeting the high/low DCF classification are then randomly selected from each hologram. DCFs 

of the actual drop sizes are then related to those of the randomly assigned drop sizes from the Monte Carlo simulations. One 

thousand Monte Carlo simulations are run for all holograms used in this study. Findings directly applying this methodology 

are provided in Section 4.1. 290 

3.2 Methodology #2: Monte Carlo-Hologram Comparison methodology 

The drop clustering method above allows us to examine the relationship between drop size and its DCF as a function of 

some environmental variable (e.g., whether the holograms come from subsaturated or supersaturated regions). However, this 

requires the manual selection of holograms when exploring DCF–drop size relationships and may result in Type-I errors 

(illustrated in Section 4). A second methodology is proposed here to discern which variables are most notably associated 295 

with correlations between DCFs and drop sizes, without the need to manually select specific holograms. This is called the 

Monte Carlo-Hologram Comparison methodology.  

For each simulation using this Monte Carlo-Hologram Comparison methodology, a specified number of holograms are 

randomly selected from the set of available holograms. DCF–drop size relationships are then determined for this set of 

holograms using the Monte Carlo-DCF methodology from Section 3.1. Simulations are separated into one of two categories: 300 

those where an “isolated large drop trend” (i.e., all drops within bottleneck range are most likely to be isolated from other 

drops) is observed and those where it is not. In other words, the former category contains simulations having high 

likelihoods of isolated large drops (HILD) and the latter category contains simulations not possessing this signal (OTHER). 

The associated environmental/bulk microphysical variables are also recorded from the simulation sets of the two categories, 

and are then compared with each other to determine likelihoods that these variables are associated with this isolated large 305 

drop trend. Namely, normalized frequency distributions of the given variable are produced for each of the two categories, 
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and the difference between the distributions is computed over each size bin. This methodology is outlined in Table 3, and a 

step-by-step description of the methodology is provided in Appendix A.  

 

Monte Carlo – Hologram Comparison methodology 

Step Details 
1. Randomly sample X holograms from 
available holograms 

Compute 20,000 Monte Carlo simulations 

2. Run sets of simulations using different 
X (i.e., batch sizes) 

Batch sizes = 100, 200, 300,… , 2200 (each set is 20,000 simulations) 

- Categories HILD OTHER 
3. Classify simulations as those with a 
high likelihood of isolated large drops 
(HILD) or those not capturing this trend 
(OTHER) 

Percentiles (all 
conditions must be met 
to be included in a 
category) 

D: 25–30 µm > 95th  
D: 30–37.5 µm > 95th  
D: 37.5–50 µm > 90th  

D: 25–30 µm < 80th  
D: 30–37.5 µm < 80th  
D: 30–37.5 µm < 80th  

4. Remove batch sizes having low 
statistical power 

For a batch size to be considered, there must be at least 100 HILD and 100 
OTHER simulations available 

5. Produce normalized frequency 
distributions for each set of simulations 

Produce distributions separately for HILD and OTHER simulations for each 
batch size 

6. Compute the difference of HILD and 
OTHER distributions for each batch size 

- 

 310 

Table 3: Components of the Monte Carlo-Hologram methodology. Details/further clarification of the methodology 

are described in the text and in Appendix A. 

 

Only holograms from flight legs RF02A,B and RF10A,B are included in the Monte Carlo-Hologram Comparison 

methodology, because the random selection of holograms will consequently draw from these flight legs having significantly 315 

more holograms. This is also done in order to perform separate flight leg comparisons, which will become evident in Section 

4.2. Note that each individual simulation above may include holograms from multiple flight legs. A more detailed 

description of the Monte Carlo-Hologram Comparison methodology is provided in Section 4.2 and Appendix A. 

 

4 Results 320 

4.1 Initial DCF – drop size relationships 

Figure 4 shows results from the Monte Carlo-DCF methodology for different sampling conditions overlying the respective 

panels (bold text). Results hereafter are restricted to holograms having maximum drop diameters Dmax>25 µm. The overlying 

elongated panels (A–D) show the percentiles of actual drop sizes having either high or low DCFs (red and blue markers, 
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respectively) in relation to those of the Monte Carlo simulations. These panels show whether drops of a certain size are 325 

more/less likely to be associated with a given DCF category, where higher (lower) percentiles are associated with drop sizes 

being more (less) likely to be associated with either high or low DCFs. Specifically, the actual occurrence frequencies of 

drops having high and low DCFs within the respective drop size bin ranges (lightly shaded dotted lines) are directly related 

to occurrence frequencies from the Monte Carlo simulations. These occurrence frequencies are shown in Fig. 4A1–D1, 

where the thick red and blue lines are the actual occurrence frequencies of drops having high and low DCFs, respectively. 330 

The Monte Carlo occurrence frequencies are shown as thin red and blue lines, although they are often overlapped by the 

actual DCF distributions.  

To help clarify the findings, we first focus on the top left panels: Figure 4A shows percentile results for all drops categorized 

as high and low DCFs amongst all holograms used in this study. A few “statistically significant” drop size ranges can be 

found, i.e., DCFs either below or exceeding the 5th and 95th percentiles, respectively (represented by the diamonds and stars). 335 

However, all of the drop sizes exceeding 25 µm are associated with relatively high percentiles of low DCFs, including a 

statistically significant drop size range from 30–37.5 µm. To better illustrate the comparison between the actual and Monte 

Carlo distributions, the 30–37.5 µm drop size bin from Fig. A1 is magnified and displayed in the middle of the figure. The 

Monte Carlo distributions can now be seen as the thin red and blue lines (although giving a partial appearance of purple lines 

due to their overlap), corresponding to the high and low DCFs, respectively. The actual low DCF frequency (thick blue line) 340 

exceeds most of the Monte Carlo frequencies (thin blue lines), specifically exceeding over 95% of them. This means drops 

within this size range are significantly likely to have a low DCF, i.e., to be isolated from the nearest drops. 

Section 2 discussed how drops with varying degrees of high and low DCFs are sorted. And since the same number of high 

and low DCFs are selected from each hologram, percentiles of DCF “degrees” can be obtained for direct comparison with 

each other. To focus on drops with increasingly higher DCFs (i.e., larger maximum values of gdrop) and lower DCFs (drops 345 

with greater distances from the nearest drops), Fig. 4B shows results restricted to DCFs above the 50th percentile, and Fig. 

4D shows results in the upper tercile (DCFs>67th percentile). To help understand the degrees of high/low DCFs and how 

they are selected from the sorted DCF values, the results in Fig. 4A,A1 correspond with analyzing drops D1–4 from the 

hologram in Fig. 2 (green shaded drops in top right panel), and results in Fig. 4B,B1 correspond with only analyzing drops 

D1&3.  350 

Results from panel A are considered our exploratory analysis by looking at all available data. Excluding the lowest drop size 

bin, a trend of increasing percentiles with increasing drop size is observed for low DCFs (blue markers). Because of this, we 

hypothesize large drops (D>25 µm) should be associated with the lowest DCFs, likely because dry air preferentially 

evaporates small droplets due to their greater surface area to volume ratio relative to larger drops. We test this hypothesis by 

looking at drops with increasingly lower DCFs (Panels B and D). Consistent with the hypothesis, DCF percentiles increase 355 

for large drops moving from panels A to B and finally D—as seen by the increasing number of blue diamonds and stars. 

Namely, percentiles of large drops having low DCFs increases with lower DCFs. In other words, drops within the bottleneck 

size range are most likely to be significantly isolated from surrounding drops. This finding is further suggested by results 
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with the moderate DCF values below the 50th percentiles (Fig. 4C), which show no significant differences of low DCFs 

between the observations and Monte Carlo simulations for large drops (i.e., no increased likelihoods of large drops having 360 

low DCFs, seen by blue points for D>25 µm).  

 

 
 

Figure 4: A) Percentiles of drop occurrence frequencies in relation to Monte Carlo–DCF simulations for all drops 365 

from all holograms used in the analysis – described in further detail in the text. Red markers correspond to drops 

with high DCFs and blue markers correspond to drops with low DCFs. Similar results are shown but restricted to 

higher and lower DCFs than the respective holograms’ median values (i.e., degrees of high and low DCFs > 50th 

percentiles); B), below the median values (C) and in the upper tercile (D). Markers are denoted by multiple marker 

shapes, where points correspond to percentiles ranging from the 5th–95th, diamonds correspond to percentiles below 370 

(exceeding) the 5th (95th) percentiles, and stars correspond to percentiles below (exceeding) the lowest (highest) 

simulated frequencies (bottom legend). The number of drops in each DCF category is shown underlying the 
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respective percentile plots (thick lines; A1–D1), which also include thin red and blue lines denoting results from the 

Monte Carlo simulations. Note that Monte Carlo simulation frequencies nearly overlap those of the observed DCF 

categories. Results are restricted to holograms having Dmax >25. The number of holograms having different Dmax are 375 

shown immediately below the respective percentile panels.   

 

Results in Fig. 4 were taken from all available holograms, meaning drops were selected from all holograms regardless of 

environmental or other external conditions. This is why the number of holograms remains unchanged underlying each pair of 

panels. Figure 5A,C shows results separated into relatively large regions (~100 m) of subsaturated and supersaturated 380 

conditions (RH<99.5% and RH>100.5%, respectively) and Fig. 5B,D shows results separated by relatively low and high 

drop concentrations. Results here are limited to DCF percentiles in the upper tercile (similar to Fig. 4D). Findings show that 

the increased likelihoods of large drops being isolated from neighboring drops are observed for subsaturated conditions and 

relatively low drop concentrations (low DCF exceed the 95th percentile for D>25 µm in 5A,B). Both of these conditions are 

expected with entrainment, as environmental dry air engulfed into the cloud commonly decreases drop concentrations (via 385 

inhomogeneous mixing). However, most samples from CSET have these relatively low drop concentrations, which are 

expected in marine environments (including the CSET measurements: Wood et al. 2018; Bretherton et al. 2019). The vast 

majority of high drop concentrations come from flight legs #3 and #4 (both with median N exceeding 115 cm-3, not shown), 

which will be discussed further below. 

 390 
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Figure 5: Similar to Fig. 4, except holograms are separated into subsaturated conditions (RH<99.5%; A), low drop 

concentrations (N<115 cm-3; B), supersaturated conditions (RH>100.5%; C) and high drop concentrations (N>115 

cm-3; D). 

 395 

Due to the limited number of flight legs available for analysis, an analysis of DCFs for separate flight legs is warranted. This 

is to determine whether macro-scale features not evident from localized in situ measurements may correspond to this isolated 

large drop trend. Two examples are a dependence on cloud regime or background aerosol conditions. Aerosol properties 

cannot be determined locally due to major biases associated with in-cloud measurements from instrumentation such as 

aerosol spectrometers and cloud condensation nuclei counters (e.g., Hudson and Frisbie 1991). As previously mentioned, 400 

75% of available holograms having Dmax>25 µm are from flight legs RF02A,B and RF10A,B (Table 1). Figure 6 focuses on 

these flight legs—showing percentile data similar to Fig. 4&5 but for each of these flight legs separately. 
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Figure 6: Similar to Fig. 4&5 but shown for flight legs RF02A,B and RF10A,B (A&A1, B&B1, C&C1 and D&D1, 405 

respectively).  

 

Amongst the four flight legs, the isolated large drop trend is only observed for RF02A and RF10B (Fig. 6A,D). This will be 

motivation to focus attention on DCF trends for these two flight legs in the following section.  

4.2 Monte Carlo simulations – Hologram comparisons 410 

Manually selecting holograms (e.g., separating results by holograms in sub-/supersaturated environments) may not be the 

best way to determine which variables are associated with the isolated large drop trend. Further, this approach may result in a 

particularly egregious case of p-hacking (i.e., testing combinations until “satisfactory” results are obtained; possibly resulting 

in Type-I errors). To mitigate this, we employ a different Monte Carlo analysis where each simulation randomly selects a 

number of holograms and determines the DCF–drop size likelihoods as in Fig. 4–6.  415 

Multiple simulation sets are run to perform comparisons of holograms similar to those in Fig. 4&5, which is detailed in 

Table 3. Each simulation set selects a different number of holograms (i.e., batch size) for the simulations. A variety of batch 
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sizes ranging from 100 to 2200 are used since it is unclear which/how many samples are the main contributors to the isolated 

large drop trend. Results are separated into two categories: (1) High likelihood of Isolated Large Drops (HILD) and (2) those 

with lower likelihoods (OTHER). The drop bins used to determine likelihoods are kept consistent with those in Fig. 4–6, and 420 

the conditions of each category are shown in Table 3. Note the less stringent threshold applied to the 37.5–50 µm diameter 

bin (exceeding the 90th percentile rather the 95th as for the 25–30 µm and 30–37.5 µm bins) approximately doubles the 

available number of simulations in the HILD category. This “lax” condition we argue is applicable due to the relatively low 

number of drops in this largest D bin. In order to improve the empirical power of the sample sets (i.e., number of simulations 

rejecting the null hypothesis divided by the total number of simulations), simulation sets must have at least 100 HILD 425 

simulations and 100 OTHER simulations to be included in the analysis. Normalized frequency distributions of relevant 

parameters are then produced for each simulation set. These distributions are separately produced for HILD and OTHER 

simulations, and the difference of these two distributions is computed over all respective bins. Distributions are normalized 

since the Monte Carlo sampling captures different numbers of HILD and OTHER simulations for each simulation set (Seen 

in Fig. A1A in Appendix A). Further description and illustration of the methodology is provided in Appendix A.  430 

 

Figure 7 shows the difference in the normalized frequency distributions (i.e., HILD – OTHER) for multiple parameters as 

box plots of all available simulation sets. Results are separately shown for the analysis applied to all holograms having Dmax 

> 25 µm (red box plots) and for Dmax > 30 µm (blue box plots) to test for consistency. Each simulation set has a separate 

batch size, and there are 17 simulation sets for Dmax > 25 µm and 10 simulation sets for Dmax > 30 µm (discussed in Appendix 435 

A). The gray lines are histograms showing the number of holograms with Dmax > 25 µm, which correspond to the right 

ordinates. Note that a cubic interpolation is applied to the histograms, which have the same bin sizes as the overlying box 

plots. The HILD – OTHER differences show how given parameters are related to the isolated large drop trend. For example, 

positive values of HILD – OTHER show that a greater number of holograms possessing values of a given parameter are 

associated with the isolated large drop trend, and vice versa. We reminder the reader that results here are only shown for 440 

flight legs RF02A,B and RF10A,B. Supplementary Figure S3 is similar to Fig. 7 except all twelve flight legs are used, and 

all major trends discussed below are still observed. 
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Figure 7: Differences in the normalized frequency distributions of HILD and OTHER for number of flight leg 445 

samples (A), RH (B), N (C), number weighted mean diameter (mean D) (D), the standard deviation of drop diameter 

(σD) (E) and Dmax (F). Results are displayed as box plots containing differences for all simulation sets (described in the 

text and Appendix A). Red and blue box plots display simulation set differences selecting from holograms with 

Dmax>25 µm and Dmax>30 µm, respectively. The dashed line is shown where the difference equals 0. Colored shading 

overlying and underlying the dashed line corresponds to upper and lower bound confidence intervals, respectively. 450 

Confidence intervals are displayed as the maximum and minimum 80th percentiles of statistical significance taken 

from the 25th, 50th and 75th percentile differences for each respective bin (i.e., corresponding to simulations sets of the 

bottom, middle dot and top of the box plots, respectively). A description of how significance is determined as well as 

justification for selecting an 80th percentile level of significance is provided in Appendix A. The grey lines show 

histograms of the respective variables from the dataset corresponding to the right ordinates. Histograms have the 455 

same bin sizes as the overlying box plots and have a cubic interpolation applied to them. 
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The HILD – OTHER differences for number of samples within flight legs, RH and N (Fig. 7A,B,C) are consistent with 

trends from Fig. 5&6. The HILD simulations have a greater number of samples taken from flight legs RF02A and RF10B 

(Fig. 7A), consistent with flight legs capturing the isolated large drop trend in Fig. 6. The HILD simulations also have a 460 

greater number of subsaturated samples as well as a greater number of relatively low drop concentrations (N<115 cm-3), 

consistent with trends in Fig. 5. Trends are broadly consistent between those selecting holograms from different Dmax 

datasets (red and blue box plots).  

The HILD – OTHER differences are shown for the number weighted mean diameter (mean D) in Fig. 7D. The HILD 

simulations are primarily associated with the largest mean D (>23 µm), which is consistent with our theory of smaller 465 

droplets preferentially evaporating due to their greater surface area to volume ratio. To explore whether there is any evidence 

of entrainment-mixing drop size distribution broadening, HILD – OTHER differences are similarly shown for the standard 

deviation of drop diameters (σD) (Fig. 7E) and for Dmax (Fig. 7F). Positive differences are associated with the largest σD 

(σD>5 µm), consistent with entrainment-mixing drop size distribution broadening. Finally, positive differences are observed 

for relatively large Dmax, ranging from 35–45 µm. However, holograms with Dmax exceeding 45 µm are not associated with 470 

the isolated drop trend. This either suggests entrainment-mixing broadening is only capable of producing drop diameters 

within this approximate range, or the methodology fails to adequately capture a signal from holograms containing Dmax 

exceeding 45 µm due to the relatively small sample size of such holograms (92). Using all available flight legs only 

increases the available number of holograms by 40. The relation of these trends to the presence of drizzle will be revisited 

later on.  475 

Findings so far have displayed results for all flight legs in combination. However, the isolated large drop trend may be a 

consequence of macro-scale features associated with given flight legs (e.g., aerosol fields), and trends in Fig. 7 may simply 

correspond to the respective flight legs while other trends are epiphenomenal. To explore this possibility, the remaining 

results will look at how the isolated large drop trend is associated with different flight legs. Figure 8 shows HILD – OTHER 

differences similar to Fig. 7 but for separate flight legs (rows). The columns show HILD – OTHER for different variables. 480 

As in Fig. 7, samples are restricted to RF02A,B and RF10A,B due to the notably greater number of available holograms 

from these flight legs. This is because it is difficult to determine which flight legs have the most “notable” isolated large drop 

trend for flight legs with varying numbers of in-cloud samples, since more holograms will be pulled from flight legs with 

more measurements. Histograms of the variables’ occurrence frequencies in Fig. 8 are shown for each flight leg separately in 

Supplementary Fig. S4. 485 
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Figure 8: A) Similar to Fig. 7 except shown for separate flight legs (rows). The panels show HILD – OTHER 

differences for RH (A), σD (B), Dmax (C), and ranked distance from the aircraft to the lowest return echo (described in 

the text; D). Distances in D) are ranked from 0 (highest altitude) to 100 (lowest altitude) for each respective flight. 490 

 

Focusing first on results for RH (Fig. 8A), positive HILD – OTHER are only observed in the bin of 96–99% for RF02A and 

RF10B, the two flight legs associated with the isolated large drop trend (Fig. 6). Results shown for σD (Fig. 8B) similarly 

show positive HILD – OTHER for the largest σD values for these two flight legs. This is similarly restricted to the two flight 

legs associated with the isolated large drop trend. This suggests that the isolated large drop trend is related to the reported 495 

microphysical properties and not macro-scale features of the flight legs. Results for Dmax (Fig. 8C) also capture positive 

HILD – OTHER for Dmax from 35–45 µm for these two flight legs, although it is also captured for RF02B (2nd row). The 

trend is relatively weak in RF10B, especially since positive HILD – OTHER are also seen for Dmax from 30–35 µm (4th row). 

This weak trend may be due to the fact that drizzle is weakening the signal, since a clear precipitation signal of this flight leg 

visible from radar imagery (not shown). This is possibly suggested by the differences in boxplots for the Dmax datasets >25 500 

µm and >30 µm. The positive HILD – OTHER signal is weaker when selecting among the Dmax >30 µm dataset, which 
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could be selecting from a greater number of samples influenced by descending drizzle drops/collision-coalescence compared 

to the Dmax >25 µm dataset.  

To test this assumption, results in Fig. 8D are shown for the lowest radar detection of cloud, and the values are ranked from 0 

(highest altitude) to 100 (lowest altitude) for each respective flight. We assume regions of the cloud with the lowest reaching 505 

condensate are likely associated with those producing the largest drops, since they will take longer to evaporate during 

descent. We also assume this variable has a greater “memory” for precipitation-initiation detection, since relatively larger 

drops are often either swept in/out or fall in/out of any given hologram. The lowest altitudes detecting condensate are shown 

in meters for each respective flight, with the two lowest values from the flight legs associated with the isolated large drop 

trend (top and bottom rows). Values are ranked since ranges of the lowest condensate vary considerably among the flight 510 

legs (Fig. S4D), and ranking also produces uniform distributions so that 25% of samples are within each of the four bins. 

Note that positive HILD – OTHER are observed at the largest ranked values for the two flight legs associated with the 

isolated large drop trend (8D; top and bottom row). The largest difference is observed for RF10B which far exceeds the 

uncertainty bounds, the flight leg with condensate reaching the lowest altitudes as well as the clearest precipitation signal 

amongst the four flight legs from visible inspection of radar reflectivity (not shown).  515 

5 Implications of findings 

The cumulative results from Fig. 7&8 suggest that the isolated large drop trend is related to entrainment-mixing, and 

presents evidence for entrainment-mixing drop size distribution broadening and its relevance for precipitation initiation. 

Alternative precipitation initiation mechanisms consistent with the paradigm of isolated large drops include “Ostwalt 

ripening” (e.g., Çelik and Marwitz 1999; Wood et al. 2002) and the turbulent sorting of droplets enhancing supersaturation 520 

within regions of high vorticity (Shaw et al., 1998). However, neither mechanism accounts for the isolated large drop trend 

occurring primarily in subsaturated conditions. Thus, results appear to be most consistent with entrainment-mixing drop size 

broadening.  

At first consideration, the isolated large drop trend could solely be the result of smaller drops preferentially evaporating due 

to their greater surface area to volume ratio relative to larger drops (where drops are impacted by micro-scale 525 

temperature/vapor fields). However, holograms experiencing this trend are also associated with broader drop size 

distributions (Fig. 7E) and larger drops than holograms not exhibiting this trend (Fig. 7F). Further, this trend is associated 

with portions of the cloud where precipitation/condensate reaches the lowest altitudes from the respective cloud (which may 

invalidate the presence of Ostwald ripening assuming the parcels’ locations vary considerably over timescales on the order 

of hours; Fig. 8D). The totality of findings here is therefore consistent with entrainment-mixing drop size broadening as a 530 

relevant precipitation-initiation mechanism (e.g., Lasher-Trapp et al. 2005; Hoffmann et al. 2019). It should be 

acknowledged that the bottleneck size range is loosely defined among previous studies, often defining the lower bound 

diameter ranging between 20–40 µm and the upper bound diameter ranging from 40–80 µm (Glienke et al., 2017; Grabowski 

and Wang, 2013; La et al., 2022; Pruppacher and Klett, 1996; Taraniuk et al., 2008). Results here are restricted primarily to 
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the lower bound, due to the low sample size of drops at the larger end of the bottleneck range. Because of this, results may 535 

primarily capture a diffusional-growth process only relevant to relatively smaller bottleneck droplets — and caution should 

be taken before disregarding alternative precipitation-initiation mechanisms not associated with the isolated large drop trend. 

A sensitivity test slightly increasing the guardrail dimensions to be 0.4 cm × 0.4 cm × 9.8 cm (and accordingly the outer 

sample volume increased to 0.7 cm × 0.7 ×10.1 cm) was performed with the hope of sampling more/larger bottleneck drops. 

Unfortunately, due to the commonly observed quasi-exponential decrease in drop concentrations with increasing drop size 540 

beyond D~20 µm (shown for drops having high and low DCFs in Fig. 4A1), an “adequate” number of large bottleneck drops 

was still not captured. Additional sensitivity tests/suspected uncertainties are discussed in Appendix B. 

6 Concluding remarks  

The purpose of this study is to present a new analytic paradigm for exploring possible correlations between drop clustering 

and drop size, which are theorized to be associated with varying microphysical processes such as precipitation initiation. A 545 

novel method is introduced here to evaluate drop clustering on a drop-by-drop basis, in contrast to previous studies 

evaluating drop clustering in relation to its “system” (i.e., sample volume). Measurements are acquired using the HOLODEC 

probe, which is ideal for evaluating drop clustering due to the constant 3D sample volume size for each hologram. All 

droplets are first labeled as either (1) having a significantly high number of neighboring drops, (2) being significantly 

isolated from other drops or (3) meeting neither condition. Then Monte Carlo simulations are run, randomizing the drop 550 

sizes in each respective hologram while preserving the drop locations. This allows us to determine likelihoods of drops 

having a given size as being either associated with a significant number of neighboring drops or as being significantly 

isolated from other drops. Results here show drops having sizes within the bottleneck size range (D~25–50 µm) are most 

likely to be significantly isolated from the nearest drops.  

Additional analysis is performed to determine under which conditions holograms are associated with this “isolated large 555 

drop” trend. Holograms in subsaturated conditions and having low drop concentrations are associated with this trend, both of 

which suggest the isolated large drop trend is directly related to the presence of entrainment. These standalone findings could 

simply be the result of smaller drops preferentially evaporating due to their greater surface area to volume ratio relative to 

larger drops. However, holograms associated with the isolated large drop trend also have broader drop size distributions, 

larger maximum drop sizes and also tend to overlie regions where cloud condensate/precipitation reaches the lowest 560 

altitudes. The totality of these findings suggests entrainment-mixing drop size broadening is a relevant precipitation initiation 

process, which has been suggested in previous modeling studies highlighting the ability of entrainment-mixing to produce 

“precipitation embryos” (e.g., Hoffmann et al., 2019; Lasher-Trapp et al., 2005). Notably, the isolated large drop trend is 

localized to a few flight legs, which may suggest its relevance is restricted to condition(s) beyond those analyzed here (e.g., 

background aerosol properties).   565 

Previous studies using similar holography measurements have found no correlation between the occurrence of drops in the 

bottleneck size range and drop clustering when diagnosed over individual sample volumes (e.g., Glienke et al., 2020; La et 
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al., 2022; Thiede et al., 2025). However, this study differs from past studies by not diagnosing the clustering of a collection 

of droplets, but rather determining the likelihoods that drops are either significantly isolated or surrounded by a significant 

number of droplets. This methodology therefore allows for the ability to evaluate “sub-volume” drop spatial inhomogeneities 570 

and can potentially capture signals of interest in Poisson distributed environments. An additional notable departure from 

these past studies is that the particle-by-particle clustering is only diagnosed on spatial scales of millimeters, whereas those 

studies also consider centimeter scale drop spatial inhomogeneities when diagnosing clustering.  

Although CSET provides the largest publicly available dataset of processed HOLODEC measurements currently available 

(acknowledging 3D drop spatial coordinate data of HOLODEC measurements from the Aerosol and Cloud Experiments in 575 

the Eastern North Atlantic (ACE-ENA) campaign are unavailable), findings are still limited by the relatively low number of 

holograms available from the campaign. Uncertainties are further highlighted by the relatively few drops within the 

bottleneck size range, whose concentrations commonly decrease quasi-exponentially with increasing drop size beyond ~20 

µm for standard in-cloud measurements. Applying the proposed methodology to a greater number of holograms from a 

greater number of environments is crucial towards continued evaluation of drop clustering in relation to drops in the 580 

bottleneck size range. Additional future work should be put towards constraining the entrainment-mixing broadening 

mechanism and its relevance pertaining to precipitation initiation. 

Appendix A: Illustration of Monte Carlo-Hologram Comparison methodology 

The Monte Carlo-Hologram Comparison methodology discussed here will follow step-by-step those listed in Table 3 

(Section 3.2). Figure A1 shows multiple panels which aid in illustrating the methodology.  585 
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Figure A1: A) Number of simulations in the HILD (solid lines) and OTHER (dashed lines) categories for all batch 

sizes. Results are shown for the Dmax>25 µm (red lines) and Dmax>30 µm (blue lines) datasets. Shading corresponds to 

batch sizes which are included in the analysis in Section 4.2. B) Normalized occurrence frequencies of RH samples 

shown from all HILD (red line) and OTHER (blue dashed line) simulations for the 800 hologram batch size from the 590 

Dmax>30 µm dataset. C) the difference of the HILD and OTHER normalized occurrence frequency over all bins. 

Results are shown for all batch sizes from the Dmax>30 µm dataset, where increasing warmer lines correspond to 

larger batch sizes. D) HILD – OTHER for the 96%–99% bin (purple shading in (C)) for all batch sizes included in 

the analysis. Results are shown for the Dmax>25 µm (red line) and Dmax>30 µm (blue line) datasets. The shading shows 

a range of confidence intervals, where the uppermost portion corresponds to the 95th percentile degree of significance 595 
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and the lowermost portion corresponds to the 80th percentile. Uncertainty is determined using a permutation method, 

where samples are randomly sampled from the HILD and OTHER datasets 10,000 times. 

 

This methodology incorporates a Monte Carlo sampling method in order to determine which holograms are associated with 

the isolated large drop trend. A number of holograms (i.e., batch size) are sampled randomly 20,000 times from the available 600 

dataset. This is done for two datasets: 1) all holograms with Dmax>25 µm and 2) all holograms with Dmax>30 µm, to check for 

consistency in the reported trends. Since there is no prior information available for what batch size is most appropriate to 

capture the isolated large drop trend, the batch size varies from 100 to 2200 holograms (Step 2 of Table 3). All of the 

simulations are classified as either possessing the isolated large drop trend (HILD), or as a category indicating the trend is 

not captured with high confidence (OTHER). Conditions for these classifications are shown in Step 3 of Table 3, where 605 

percentiles are determined following the Monte Carlo-DCF methodology. Note also that these conditions correspond to the 

same bottleneck drop size ranges as the large drop size bins from Fig. 4–6.  

Figure A1A shows the number of simulations meeting the HILD and OTHER classifications (solid and dashed lines, 

respectively) for the Dmax>25 µm and Dmax>30 µm datasets (red and blue lines, respectively). Results show the number of 

HILD (OTHER) simulations increases with increasing (decreasing) batch size. Note that the smallest and largest batch sizes 610 

will have relatively few simulations meeting one of the category types. These simulations are not considered in the 

methodology, and only batch sizes having a minimum of 100 simulations meeting both categories are used in the analysis 

(Step 4 of Table 3). This is shown by the red and blue shading for the respective Dmax datasets. These simulations are not 

considered in order to increase the empirical power of the simulation sets (i.e., number of simulations rejecting the null 

hypothesis divided by the total number of simulations). Note the arrow in Fig. A1A points to the batch size with the 615 

maximum empirical power for the Dmax>30 µm dataset (800), which will be referenced below. 

For each batch size, the holograms from all the simulations meeting either HILD or OTHER conditions are combined to 

produce normalized frequency distributions for their respective categories (Step 5 in Table 3). To illustrate this, distributions 

for RH are shown for HILD and OTHER simulations in Fig. A1B (red and dashed blue lines, respectively) for the 800 

hologram batch size and Dmax>30 µm dataset. Due to the hypothesized impact of RH on the isolated large drop trend (and 620 

validated in Section 4.1), we focus on RH for an exploratory analysis of the Monte Carlo-Hologram Comparison 

methodology. The distributions are nearly identical due to the randomized hologram selection method, as well as the 

inability to discern which holograms contribute to the isolated large drop trend and which holograms do not. However, 

differences become apparent when taking the difference of HILD and OTHER distributions over each respective bin (Step 6 

in Table 3), which is shown in Fig. A1C. Results here are shown for all simulation sets from the Dmax>30 µm dataset with 625 

batch sizes meeting the empirical power condition in Step 4 of Table 3 (i.e., blue shading in Fig. A1A), where simulation 

sets with smaller (larger) batch sizes have colder (warmer) lines. Amongst all the simulation sets, there is a peak in the HILD 

– OTHER difference at RH of 96–99% (purple shading). This is consistent with results in Fig. 5, where the isolated large 

drop trend is observed for subsaturated conditions. Figure A1D shows HILD – OTHER of the 96–99% RH bin for all batch 

https://doi.org/10.5194/egusphere-2025-3831
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



29 
 

sizes, corresponding to the values in the purple shading of Fig. A1C. Unlike Fig. A1C, results from the Dmax>25 µm bin are 630 

also included (red line). Uncertainty bounds are also shown, using a permutation method where 10,000 simulations randomly 

sample the same number of holograms in the HILD and OTHER simulation sets and then similarly computing the difference 

of their distributions to discern statistical significance. The shading shows confidence intervals where the upper boundary 

corresponds to the 95th percentiles and the lower boundary corresponds to the 80th percentiles. Note that only 50% (75%) of 

differences for the Dmax>30 µm (Dmax>25 µm) batch sizes have differences exceeding the 95th percentile, seen by overlying 635 

stars above the respective batch sizes. Once again, this is likely due to the random selection of holograms and the inability to 

discern which samples are inherently associated with the isolated large drop trend. For this reason, the lower boundary of 

80th percentiles are used in Section 4.2 to test for statistical significance.  

Appendix B: Uncertainties and Sensitivity Tests 

Due to multiple components involved in the methodology, numerous sensitivity tests were devised to test the robustness of 640 

the isolated large drop trend. Supplementary Table S1 lists all such tests, and describes the rationale of the respective tests. 

Select uncertainties are further discussed here and are separately discussed for (1) uncertainties related to instrumentation 

and methodology and (2) uncertainties inherent in atmospheric phenomenon.  

First considering uncertainty related to instrumentation uncertainty: the HOLODEC is associated with detection uncertainties 

of the spatial coordinates of drops: which are 0.001 cm in the x- and y-dimensions, and is maximized in the z-dimension (the 645 

longest dimension) at distances of 0.01 cm (Yang et al., 2005). However, 0.01 cm is precisely the interval range for 

incremental shell size increase, so uncertainties are not expected to significantly impact results.  

The shell sizes are determined based on the HOLODEC sample volume size and consideration of drop concentrations in the 

sample environments. Specifically, maximum shell sizes are determined by considering the hologram sample volume size 

and the minimum shell sizes are determined by an intuitive consideration (i.e., crude consideration of counting statistics) that 650 

greater drop concentrations will allow increased resolution of DCF at smaller distances from the drops. Testing for different 

maximum shell sizes is particularly relevant since major trends discussed here occur at lower drop concentrations and for 

drops with the greatest isolation from neighboring drops (i.e., for the largest shell sizes). Unfortunately, increasing the shell 

size requires shrinking the guardrails which decreases the total number of available drops. However, sensitivity tests where 

the maximum shell size is increased to 0.16 cm and 0.17 cm still capture the isolated large drop trend (not shown). 655 

Shifting towards potential uncertainties related to cloud processes: similarly sized drops should follow similar trajectories, 

particularly drops within the stokes regime (D<~60 µm) where drop trajectories are partially a function of their size (Rogers 

and Yau, 1996). We can speculate that drops within this regime will be more likely to follow similar trajectories as similarly 

sized drops, and ultimately neighbor each other. This would result in smaller drops more likely to have neighboring drops, 

since these drops are more numerous than drops in the bottleneck range. Results evaluating the likelihood of drops having 660 

different sizes neighboring the inner drops (i.e., the likelihood of drop sizes within the shells of drops having a specified drop 

size range) is shown in Supplementary Fig. S5. Evidence can be seen for drops neighboring those of similar sizes, 
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particularly for drops having D~20 µm (Fig. S5A). However, we suspect this is not a source of error/bias since if this were 

the case, the isolated large drop trend would also be observed (if not more likely observed) for holograms having high drop 

concentrations as well as those not limited to subsaturated environments. Further, the trend is observed at low drop 665 

concentrations where a greater number of similarly sized large drops are observed. 

We suspect the largest uncertainty arises from the limited dataset of available holograms. Holograms available for the 

analysis are taken from twelve flight legs within nine research flights, and 75% of the holograms are from four flight legs 

within two research flights. Another factor not explored here is the relation of these bottleneck trends to aerosol-cloud 

interactions. While broad aerosol characteristics can be determined for given flight legs, the inability to diagnose such 670 

characteristics in-cloud due to droplet contamination is a major limiting factor.  

Code and Data Availability Statement  
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