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Abstract. A sound understanding of regional scale hydrological processes and influencing factors is indispensable for 

sustainable water resources management. It requires differentiation between natural heterogeneities, direct anthropogenic 10 

effects, and climate change impacts. In addition, an integral perspective is required comprising both surface and groundwater 

bodies. This study aimed at determining the key drivers for the spatial variance of hydrological behaviour, at gaining an 

understanding why long-term trends of observed behaviour often differ in spite of spatial proximity and similar boundary 

conditions, and at investigating the added value of merging stream discharge and groundwater head data for the analysis.  

A set of 292 time series of stream discharge and groundwater head from a 36,000 km2 region in South Germany, covering a 15 

43 years period, was subjected to a principal component analysis. The first six components were analysed in more detail. All 

together they explained 77.8% of the total variance. The first component grasped mean behaviour. Three components 

reflected various facets of climate patterns. Land use effects were not found to be significant when the common dependence 

of land use and hydrology on climate patterns was factored out. Two further components described the damping of the 

hydrological input signal in the subsurface. One of these differentiated between porous substrates and fractured or karstified 20 

hardrocks. Damping of the input signal was very closely related to direction and strength of long-term trends. Trends were 

the most clearly visible in deep groundwater time series which are suggested to be used as early warning indicators with 

regard to climate change rather than shallow groundwater or stream discharge. In general, the combined analysis of stream 

discharge and groundwater head proved to be very efficient, benefitting from complementary sensitivities toward single 

processes and effects, and is highly recommended for future analyses. 25 

1 Introduction 

For climate change risk assessment of water resources a sound understanding of both general as local conditions is required. 

The latter is usually based on monitoring of temporal patterns of hydrological behaviour at numerous sites. Scientists and 

water resources managers are then confronted with the task to relate observed heterogeneities between sites to the respective 

influencing factors. In particular, direct anthropogenic effects need to be identified and to be delineated from natural 30 
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variability. In addition, anticipated climate change effects need to be tagged. In that regard proven early warning indicators 

would be very helpful.  

The European Water Framework Directive (WFD) requires a regular inspection of the “good quantitative” status of water 

bodies. To that end usually trend analyses of long-term hydrological time series are performed. They often yield inconsistent 

results, often strongly differing even between adjacent sites and in spite of similar boundary conditions and of a lack of 35 

evidence of any direct anthropogenic effects (e.g., Tsypin et al., 2024). In Central Europe a series of dry and warm years 

started in 2018, resulting in pronounced declines of groundwater head, lake water level and terrestrial water storage at large 

(Bakke et al., 2020; Boergens et al., 2020). Hydrological response differed widely between sites (Bakke et al., 2020). During 

the last years recovery was observed at many sites, although at different speed and to different degrees. In contrast, Wunsch 

et al. (2022) predict a continuous decline of groundwater levels in Germany for the next decades. In fact, gravimetric data of 40 

the GRACE mission indicate an earlier onset and a still ongoing decrease of total water storage (Xanke and Liesch, 2022). 

This discrepancy is all the more critical as global hydrological models failed to reproduce long-term changes detected by 

GRACE in various regions of the globe (Scanlon et al., 2018), and models differ substantially in terms of groundwater 

recharge prediction (Gnann et al., 2023). This raises serious concerns about our ability to predict and to determine climate 

change impacts on hydrological processes and urgently calls for clarification. 45 

Local assessment of water resources by authorities as well as by scientists should rely on a sound scientific basis. The last 

decades have witnessed a plethora of studies aiming at a better understanding of the drivers of spatial heterogeneity of 

stream flow behaviour (Tarasova et al., 2024). Current knowledge comprises a variety of factors of influence, derived from 

numerous studies, usually focussing on single or a few effects. For real world settings differentiating between and weighing 

various effects is required. To that end, a major source of information is the observed variability of behaviour at different 50 

sites by relating the observed behaviour in terms of the temporal evolution of stream discharge or groundwater head to 

catchment characteristics. 

Respective studies usually agree in terms of the role of climate indicators, that is, mean values of precipitation and 

evapotranspiration, their spatial and seasonal patterns, the percentage of snow, the duration and timing of snow cover, etc. 

(Tarasova et al., 2024; He et al., 2024). Beyond that, however, results are far from unambiguous. Often land use/land cover 55 

or vegetation patterns have been identified as key indicators at various scales (Zhao et al., 2010; Baroni et al., 2013; He et 

al., 2024). Topography-related predictors proved valuable predictors in some studies (Zhao et al., 2010; Tarasova et al., 

2024; Liu et al., 2024). The prominent role of soil properties has been emphasized, e.g., by Vereecken et al. (2022), Zhao et 

al. (2010) and Joshi and Mohanty (2010), which is vehemently disputed by Gao et al. (2023). Rather few studies tried to 

relate geology and aquifer properties to stream flow patterns (Dal Molin et al., 2020; Liu et al., 2024). Although many 60 

studies reported on successful applications of various indicators in terms of better understanding and prediction of spatial 

patterns of stream flow dynamics, others raise serious doubts on their general usefulness beyond single case studies (Jakisch 

et al., 2021; Gao et al., 2023; Istalkar and Biswal, 2024). 
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Streams and groundwater are different facets of the same hydrological system. Nevertheless, there is a clear dichotomy in 

terms of scientific communities and authorities, scientific journals, conferences, and models (Berkowitz and Zehe, 2020). 65 

This seems in the first place to be due to historical reasons and path dependencies rather than on hard scientific reasons. In 

fact numerous studies show that explicit consideration of the tight coupling between streams and groundwater head is a 

prerequisite for a sound system understanding (e.g., Berghuijs and Slater, 2023). Here we go a step further and hypothesize, 

that stream discharge and groundwater head dynamics are nothing than two poles along a common gradient, being subject to 

the same processes, although at different degrees. Consequently we hypothesize that much can be learnt about groundwater 70 

processes from stream discharge dynamics, and vice versa.  

In particular, the study aims 

• at determining the key drivers for differing dynamics of discharge and groundwater head at different sites; 

• at gaining an understanding why long-term trends of discharge and groundwater often differ in spite of spatial 

proximity and similar boundary conditions, 75 

• at assessing in a systematic way similarities and dissimilarities between stream discharge and groundwater head 

dynamics. 

Empirical studies on hydrological behaviour face the challenge how to determine hydrological behaviour in a quantitative 

way. It has been suggested to use selected features of the hydrographs as “signatures” which should be “meaningful” (Gupta 

et al., 2008). They need to be defined in advance but are hardly ever checked for relevance. Here we use an approach that 80 

makes full use of the total information content provided by hydrological time series without any arbitrary pre-selection. To 

that end we apply principal component analysis to a merged data set of stream discharge and groundwater head time series 

from a region that exhibits high heterogeneity in terms of topography, land use, and geology. 

2 Data 

The study region comprises the northern half of the Federal state of Bavaria in South Germany, between 48.5° and 50.5° 85 

north latitude and 9.0° and 13.6° east longitude (Fig. 1) with a total area of 36,000 km2. To rule out effects of melting 

glaciers and distinct nival zones, the region south of the Danube River with tributaries from the Alpine region was excluded 

from the analysis. Altitude of the selected region varies between 100 m a.s.l. in the Northwest and 1456 m a.s.l. in the 

Southeast (Fig. 1). Geological strata in the subsurface encompass a wide range of various geological units from Precambrian 

hardrocks to Quarternary deposits. Correspondingly, both porous and fractured or karst bedrock aquifers are found. 90 
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Figure 1: Location of the sampling sites in the Northern half of the Federal State of Bavaria, Germany. 

 

Annual mean temperature varied between 4.3°C (Großer Falkenstein mountain) and 9.9°C (town of Kitzingen), and annual 95 

mean precipitation between 601 mm/a (town of Würzburg) and 1510 mm/a (Großer Arber mountain) from 1981 to 2010 

(Deutscher Wetterdienst 2024). The region is characterized by a heterogeneous mosaic of land use classes, where arable 

fields prevail in the lowlands, and forests at higher altitude. Mean population density is about 160 population per km2, which 

is about 67% that of Germany and 146% that of the European Union. The largest town of the region is Nürnberg with 

526,000 inhabitants. 100 

The study was performed on a set of time series of stream discharge and groundwater head of the long-term monitoring 

program run by the Bavarian State Authority of the Environment (LfU Bayern). Measurement sites were selected to rule out 

direct strong anthropogenic impacts. The data covered a period of 43 full calendar years 1980 – 2022. For the principal 

component analysis a large data set of synchronous and gapless time series was required. Measurements were aggregated to 

daily mean intervals. Thus time series with coarser time resolution or with data gaps needed to be interpolated. To minimise 105 

any resulting bias an autocorrelation analysis was performed for each time series separately. To account for irregular 
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sampling intervals or data gaps, autocorrelation was determined for blocks of seven (discharge) or ten days (groundwater 

head) lag width, analogously to the approach used for semivariograms in geostatistics. In a next step a series of target dates 

was defined, that is, every week’s Monday from January 1, 1980, to December 31, 2022, summing up to 2243 days of 

measurements per site. For each site a corresponding time series was established by linear interpolation to the target dates as 110 

long as distance to nearest day in the observed data did not exceed the lag width of autocorrelation of 0.5. Thus the risk was 

minimised that interpolation would smooth out existent structures like interim peaks. Consequently, for smooth time series 

longer data gaps were accepted as for very responsive time series. Eventually, gapless time series were generated for 207 

gauging stations and 85 groundwater wells, summing up to 292 time series in total. 

Shapefiles of the river catchments were provided by the Bavarian State Authority of the Environment (LfU Bayern). 115 

Catchment area varied between 3 km2 and 23,031 km2 with a median of 164 km2, and the first and third quartile of 74 km2 

and 412 km2. Stream network data were downloaded from OpenStreetMap (2023). Digital elevation data at 200 m and 1000 

m resolution were provided by Bundesamt für Kartographie und Geodäsie (2023; 2024). Land use was accessed using 

Corine data as of the year of 2000, that is, from the middle of the study period 1980 – 2022, compiled by Umweltbundesamt 

(2016). Raster data of mean climate data for the 1980-2022 period at 1 km resolution were downloaded from Deutscher 120 

Wetterdienst (2023), including precipitation, number of snow days (snow cover of 1 cm at least measured in the morning), 

and potential evapotranspiration according to Allen et al. (1998).  

Based on these data the catchments of the gauging stations were characterized by mean elevation, 1980-2022 mean values of 

meteorological variables, and the share of arable land, grassland, forest, wetlands, freshwater and built-up area. 

Correspondingly, land use was determined within a radius of 500 m around each groundwater well. 125 

3 Method 

Principal component analysis (PCA) of time series has been widely used in atmospheric sciences since the late 1940s where 

it is termed the “Empirical Orthogonal Functions” approach (Hannachi et al., 2007). It is also known as “Karhunen-Loève 

decomposition” in statistics (Joliffe, 2002). It is now increasingly used for analysis of multi-temporal remote sensing data. In 

contrast, it has rarely been used in hydrology. Gottschalk (1985) presented an early application to stream flow data, and 130 

Longuevergne et al. (2007) to groundwater head data.  

Application of PCA to data sets of time series can serve various purposes. E.g., in atmospheric sciences and remote sensing 

it is often used to determine the “key features” in comprehensive data sets. In this study PCA is applied to identify and 

delineate single factors of influence in a set of time series that are subjected to numerous effects synchronously, and to relate 

these components to processes. In mathematical terms PCA performs an eigenvalue decomposition of the covariance matrix 135 

of the set of time series into a set of orthogonal components that are used to generate orthogonal (i.e., uncorrelated) synthetic 

time series of the same length as that of the genuine observations. Each of these components is assigned an eigenvalue which 

https://doi.org/10.5194/egusphere-2025-3827
Preprint. Discussion started: 22 September 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

is proportional to the share of variance of the total data set explained by the respective component. Principal components are 

sorted by eigenvalues in descending order.  

For PCA the time series of observations need to be synchronous, that is, to have the same time axis. To ensure equal 140 

weighing of all time series irrespective of absolute values and amplitudes, observed data are normalized to zero mean and 

unit variance prior PCA. Thus, information about absolute values is not considered by PCA. 

Assigning principal components to real-world processes is partly based on the analysis of loadings, that is, bivariate 

correlation between components and time series. Note that in this study loadings were not weighted by eigenvalues of the 

respective principal component, unlike in some other studies. In addition, the time series of scores of the component are used 145 

for identification of the respective processes. When PCA is applied to a regional set of measurements the same or similar 

observables, the first principal component (PC1) often grasps the mean behaviour, that is, averaged over all sites. Subsequent 

principal components then describe typical patterns of deviation from mean behaviour at single sites due to specific effects. 

Thus to ease interpretation, plots of two synthetic time series are studied for each principal component, one generated by 

adding the effect of the respective principal component to that of PC1, and the other by subtracting it from PC1. Thus the 150 

effect of the respective principal components can be studied, e.g., with respect to shifting seasonal patterns, reducing or 

increasing peak values, etc. compared to mean behaviour.  

All analyses have been performed and all graphs have been generated in R (R Core Team, 2022) using different versions 

(4.1.3, 4.3.0, 4.3.1) and the Kendall (McLeod, 2011), proj4 (Urbanek, 2022), sf (Pebesma, 2018), raster (Hijmans, 2023), 

and vioplot (Adler et al., 2022) package. 155 

4 Results 

Here only the first six principal components are described in more detail which account for at least 2% of explained variance 

each. Altogether they explain 77.8% of the total variance. The distributions of loadings for stream discharge and 

groundwater head data taken together are approximately symmetrical with respect to the mean value for most principal 

components (Fig. 2). However, the first principal component (PC1) is a major exception where only one single groundwater 160 

head time series exhibited a slightly negative loading. Significant differences between loadings of stream discharge and 

groundwater head (Wilcoxon text, p <0.05) were found only in seven out of 292 principal components in total (PC1, PC2, 

PC4, PC6, PC9, PC12, PC14). Based on the eigenvalues of these principal components, PC1 and PC2 together explain 87% 

of the differences between these two groups. Beyond that, the two groups differ in terms of the variance range of loadings: 

PC3, PC5 and PC6 exhibit larger variance for the discharge time series, and PC2 and PC4 for groundwater head time series. 165 
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Figure 2: Loadings of the studied time series on the first six principal components, differentiating between stream discharge and 

groundwater head. 

 170 

4.1 PC1: Mean behaviour 

The first principal components grasped 51.1% of the total variance of the data set (Table 1). Scores of PC1 are very closely 

related to the time series of means of all z-normalized observed time series (r = 0.96), as has been often found in similar 

studies (Hohenbrink et al., 2016; Lischeid et al., 2021; Thomas et al., 2012). Note that differing from the usual practice of 

EOF application to anomalies in climatology, mean behaviour had not been subtracted beforehand in this study. Whereas 175 

PC1 grasps the communalities of most of the observed time series, subsequent principal components describe typical 

patterns of deviation from the time series of PC1 scores, e.g., in terms of amplitude size, shift in seasonal patterns, or the 

like. 

Time series of stream discharge mostly exhibit very high positive correlation with this mean behaviour (Fig. 2). But that 

holds only for a minor proportion of groundwater head time series. Part of the bias of PC1 toward stream discharge is due to 180 

the fact that these time series constitute 71% of the total number of analysed time series. On the other hand, though, 

groundwater data exhibited much more pronounced variance of PC1 loadings. Thus, differences between time series of 

ground water head are much more pronounced compared to those of stream discharge. 
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Table 1: Overview of the first six principal components 185 

Principal 

component 

Explained variance Cumulative 

explained variance 

Interpretation 

PC1 51.1% 51.1% Mean time course 

PC2 11.3% 62.5% Damping of hydrological input signals 

PC3 5.3% 67.7% West-east climatic gradient 

PC4 4.4% 72.2% Loose sediments vs. karstified or 

fractured bedrock 

PC5 3.4% 75.6% Snow pack 

PC6 2.2% 77.8% Interannually and regionally varying 

seasonal patterns 

 

4.2 PC2: Damping 

Whereas PC1 visualizes the differences between stream discharge and groundwater head time series (Fig. 2), PC2 provides 

information about the most important underlying process, explaining 11.3% of the variance of the total data set (Table 1). 

Correspondingly, except for the sign, similar features in terms of distribution of loadings (Fig. 2) are found for PC1 and PC2. 190 

This applies to the different ranges of loadings for the two groups as well as for the overlapping ranges of loadings, 

indicating a smooth transition between these two groups rather than a clear distinction.  

The effects of all other single principal components add to that of PC1. This is accounted for by comparing two synthetic 

time series, on the one hand, adding the effect of P2 to that of PC1, and on the other hand subtracting that of PC2 from PC1 

(Fig. 3). As the share of variance is the square of the correlation coefficient, the chosen factors of ±0.7 ≈±√0.5 assign equal 195 

weight to PC1 and PC2. This implies an overestimation of the effect of PC2 compared to the loadings for most of the time 

series, but it helps to better understand the related effect.  
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Figure 3: Effect of PC2 on modifying temporal dynamics of discharge and groundwater head time series (selected period; upper 200 
panel), autocorrelation function (lower left panel), and frequency spectrum (lower right panel). 

 

The upper panel of Fig. 3 shows a section of the total study period as an example. Adding PC2 values to those of PC1 results 

in a much smoother time course, attenuated peaks and clearly delayed recovery afterwards compared to negative loadings on 

PC2. The lower left panel represents the respective autocorrelations functions for the total 43 years study period. For positive 205 

loadings on PC2 the autocorrelation function exhibits a much more delayed decay compared to positive loadings, confirming 

that PC2 grasps in the first place the degrees of smoothness of the related time series (Table 1). There is a tendency of more 

pronounced stream discharge damping in larger catchments, indicated by a positive, although weak correlation between 

https://doi.org/10.5194/egusphere-2025-3827
Preprint. Discussion started: 22 September 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

catchment area and PC2 loadings (r = 0.18). Large positive loadings, indicating pronounced damping, are only found at sites 

with large depth to groundwater. The reverse inference, however, does not apply. Correspondingly, loadings on PC2 are not 210 

significantly correlated with depth to groundwater.  

The smoothing effect can be described as a low-pass filtering effect: For the negative loading on PC2 about 60% of the 

variance is assigned to the high-frequency range right of the steep slope of the annual cycle (Fig. 3, lower right panel). In 

contrast, for the positive loading on PC2 nearly 70% of the variance is due to the low-frequency part beyond the annual cycle 

(Fig. 3, lower right panel). The smoother a time series the higher the probability that subsequent values increase or decrease 215 

monotonically which inevitably results in trends. In fact Fig. 4 shows a close relationship between PC2 loadings and sign 

and strength of trends both for time series of discharge (r = -0.55) and of groundwater head (r = -0.83). To allow direct 

comparison between both groups and to account for different ranges of stream discharge at different gauges, trend strength is 

given in terms of standard deviation for the entire 43 year study period. 

 220 

 

Figure 4: Strength of trends 1980-2022 of stream discharge and groundwater head time series versus loading on PC2. 

 

4.3 PC3: West-east climate gradient 

The third principal component covers 5.3% of the data set’s variance (Table 1). In contrast to PC2, PC3 primarily depicts 225 

differences between various stream discharge time series, whereas loadings are close to zero for all groundwater wells (Fig. 

2). One important feature is the fact that depending on size and sign of PC3 loadings single peaks deflect either in the 
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positive or negative direction (Fig. 5, upper panel). In general, PC3 describes primarily short-living deviations from mean 

behaviour. Compared to other principal components (e.g., Fig. 3), the time series of PC scores exhibit very short 

autocorrelation and reach the zero line after 3 weeks (not shown). In terms of seasonal patterns, positive loadings come along 230 

with a delayed decrease in spring (Fig. 5, lower left panel). Among all principal components PC3 loadings of streams exhibit 

the closest relationships with arable (r = - 0.73) and forest (r = 0.53) land use in the respective catchments. More closely, 

though, correlate PC3 loadings with altitude (r = 0.82), annual mean precipitation (r = 0.85), number of snow days (r = 0.90) , 

and annual mean potential evapotranspiration (r = -0.84). All of the aforementioned features are closely related with eastings 

which in turn correlates with PC3 loadings (r = 0.75) (Fig. 5, lower right panel).  235 
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Figure 5: Effect of PC3 on modifying temporal dynamics of discharge and groundwater head time series (upper panel), seasonality 

(lower left panel), and spatial pattern of PC3 loadings (lower right). 

 240 

Due to pronounced collinearity between these different predictors multivariate linear regression was performed with 

stepwise elimination of non-significant predictors (p > 0.1). It was performed on the total data set as well as on the stream 

gauge and groundwater well data separately. Out of nine candidate predictors only longitude proved to be significant in all 

cases (Table 2). In addition, annual mean precipitation and annual mean potential evapotranspiration were identified as 

significant predictors for PC3 loadings for the stream data, or for merged stream and well data. In contrast, none of the three 245 
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land use classes added predictive power to the model. In total, the regression model explained 25.5% of the variance of 

groundwater well loadings on PC3, and 31.6% for the other two models, respectively. It is concluded that PC3 reflects slight 

shifts of the temporal dynamics of meteorological observables from west to east, that is, roughly along the prevailing wind 

direction in this region (Table 1). 

 250 

Table 2: P values of various predictors for loadings on PC3 in multivariate regression models. “n.s.” = not significant. 

 Steams and wells Streams only Wells only 

Intercept <0.001 <0.001 < 0.001 

Longitude < 0.001 < 0.001 < 0.001 

Latitude n.s. n.s. n.s. 

Annual mean precipitation 0.040 0.040 n.s. 

Annual mean potential evapotranspiration 0.025 0.025 n.s. 

Number of snow days n.s. n.s. n.s. 

Percentage of arable fields n.s. n.s. n.s. 

Percentage of grassland n.s. n.s. n.s. 

 

4.4 PC4: Porous versus hard rock aquifers 

About 4.4% of the data set’s variance is attributable to the fourth principal component (Table 1). Like for PC2, groundwater 

head loadings exhibit a much wider span compared to streams (Fig. 2), indicating that the respective process affects 255 

groundwater more than streams. Negative loadings are associated with a very flashy behaviour, that is, pronounced single 

short-living spikes, but rapidly levelling off to an almost stable level within short time (Fig. 6, upper panel). In contrast, the 

time series with the positive loadings is characterized by a smoother behaviour with extended draining periods in the 

growing season, indicating a much more pronounced buffer capacity against falling dry (Fig. 6, upper panel). 

Correspondingly, positive loadings come along with more pronounced memory effects, that is, higher autocorrelation, at the 260 

scale of up to 13 weeks. Zero crossing of the autocorrelation function after 3 and 9 months, a minimum after 6 months and a 

maximum at 12 months illustrate the pronounced seasonal pattern that is virtually absent for the negative PC4 loading which 

rapidly decays within two to three weeks (Fig. 6, lower left panel). This component seems to differentiate between two types 

of aquifers: Most porous aquifers exhibit positive loadings on PC4, and most fractured or karstic hard rock aquifers negative 

loadings (Fig. 6, lower right panel). Loadings of unconsolidated and hard rocks differed significantly (p < 0.05; Wilcoxon 265 

test). Further differentiation of hard rock aquifers into karstic (n = 15) and fractured (n = 30) rocks did not reveal significant 

differences between these two groups. We conclude that this principal component provides strong evidence that karstic and 

https://doi.org/10.5194/egusphere-2025-3827
Preprint. Discussion started: 22 September 2025
c© Author(s) 2025. CC BY 4.0 License.



14 

 

fractured rocks exhibit a lower water retention capacity compared to porous aquifers due to a lack of fine-grained material in 

the voids of consolidated rocks (Table 1). 

 270 

 

Figure 6: Effect of PC4 on modifying temporal dynamics of discharge and groundwater head time series (selected period; upper 

panel), autocorrelation function (lower left panel) and effect of aquifer type on PC4 loadings (lower right panel). 
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4.5 PC5: Snow pack 275 

The fifth principal component covers 3.4% of the variance of the data set (Table 1). Time series which load positively on this 

component are characterized by a delayed increase of discharge or groundwater head during the dormant season and a 

delayed decrease in spring and summer compared (Fig. 7, upper panel and lower left panel). In contrast, time series with 

strong negative loadings already reach the maximum plateau in January and drain rapidly after week 13 (Fig. 7, lower left 

panel).  280 
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Figure 7: Effect of PC5 on modifying temporal dynamics of discharge and groundwater head time series (upper panel), mean 

seasonal patterns (lower left panel), and relationship between loadings and mean number of snow days per year (lower right 

panel). 285 

 

In terms of spatial patterns the mountainous region in the Southeast clearly stands out with high positive loadings (Fig. 7, 

lower right panel). Large parts of this region are at an altitude of more than 100 m a.s.l. (cf. Fig. 1) where perpetual snow 

packs develop for up to more than 180 days per year on average (Fig. 7, lower right panel). In contrast, a number of 100 

snow days per year is exceeded only on single mountain tops along the northeastern and northern border of the study region, 290 

and is considerably less for the rest of the region. Thus a designation as a “snow pack component” for short is justified 

(Table 1). 

 

4.6 PC6: Shift of seasonal patterns 

The sixth principal component explains 2.2% of the variance of the data set (Table 1). It is slightly more relevant with 295 

respect to the spatial pattern of stream discharge compared to that of groundwater head time series. However, the difference 

is not as pronounced as for, e.g., PC2, PC3 or PC4 (Fig. 2). 

The time series of PC6 scores exhibits two major features: On the one hand it exhibits single short spikes both in upward or 

downward direction, mostly during the dormant season (Fig. 8). On the other hand, it is characterized by a seasonal pattern 

with a maximum usually during the first half of the year, and a minimum in the second half (Fig. 8, upper panel). This results 300 

in a shift forward of the seasonal cycle for positive loadings, and a shift backward for negative loadings (Fig. 8, lower left 

panel). However, the exact timing of the seasonal pattern as well as the sign of component scores differs strongly between 

years. E.g., PC6 exhibits positive scores during the first four months of the year in 1990 (Fig. 8, upper panel), indicating a 

delay of early growing season depression of stream discharge and groundwater head (Fig. 8, lower left panel). In contrast, 

scores are negative in early 1992 (Fig. 8, upper panel), indicating an inverse effect. Later on PC6 scores are around zero for 305 

the whole growing season of 1992 (Fig. 8, upper panel), indicating no effect at all. 

 

https://doi.org/10.5194/egusphere-2025-3827
Preprint. Discussion started: 22 September 2025
c© Author(s) 2025. CC BY 4.0 License.



17 

 

 

Figure 8: Effect of PC6 on modifying temporal dynamics of discharge and groundwater head time series (upper panel), mean 

seasonal patterns (lower left panel), and relationship between loadings and mean number of snow days per year (lower right 310 
panel). 

 

In regards to spatial patterns, highest positive loadings were found in the northwestern part of the study region (Fig. 8, lower 

right panel). In addition, positive loadings prevail close to the western and eastern border. Here peak altitude exceeds 900 m 

a.s.l. in the Northwest (Rhön mountains) and 1000 m a.s.l. in the East (Fichtelgebirge mountains and Bavarian Forest 315 

mountains; Fig. 1). In contrast, negative loadings are abundant in the middle and southern part (cf. Fig. 1) where altitude is 
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only 656 m a.s.l. at maximum (Frankonian Alb). To summarise, PC6 seems to depict mainly shifts of the onset of the 

growing season, differing between years and regions (Table 1). 

5 Discussion 

We applied principal component analysis to a comprehensive data set of time series of groundwater head and stream 320 

discharge to identify the key drivers of spatial heterogeneity of hydrological behaviour in a 36,000 km2 region. Whereas the 

determination of principal components is unambiguous, assigning meaning to the components in terms of processes and 

effects might always be a matter of debate. Note that the same approach can be used without any interpretation, e.g., to check 

for anthropogenic effects (Lehr and Lischeid, 2020). In contrast, in this study we did our best to constrain all interpretations 

by using information on spatial patterns of loadings and impacts of components on temporal dynamics in the short term, in 325 

terms of seasonal patterns and of long-term behaviour. However, common definitions of processes do not necessarily 

translate directly to orthogonal components (Hannachi et al., 2007). On the other hand, it is very unlikely that orthogonal 

patterns as determined by PCA could develop in real-world data sets only by chance. In any case there is no hard proof for 

the presented interpretations. Thus all conclusions should be considered valid only until better explanations are found. 

Only the first six principal components have been analysed in more detail, covering 77.8% of the total variance of the data 330 

set. The remaining components grasp only small shares of variance, that is, less than 2% each. In addition, these components 

tend to be less stable (Lehr and Lischeid, 2020) and often describe local patterns which are relevant for a small subset of 

sites only (Lischeid et al., 2021).  

About 51.1% of the variance of the observed groundwater head and discharge dynamics was described by one single 

principal component which reflected the similarities of all time series. Correspondingly, the vast majority of observed time 335 

series exhibited positive correlation with this principal component (Fig. 2). Similar findings have been reported from other 

regions, e.g., by Lehr and Lischeid (2020) and Lischeid et al. (2021). Note that the approach followed in this study differs 

from the common application of Empirical Orthogonal Functions in climatology, where mean behaviour is subtracted from 

the observations and only the remaining residuals (called “anomalies”) are subjected to the analysis. 

Whereas the first component grasps the similarities, all other components describe deviations from that observed at single 340 

sites. Each of these components reflects specific modifications of common behaviour which is used for assignment to 

processes. Correspondingly, the distributions of loadings on these components are approximately symmetrical with respect 

to zero (Horel, 1981; Hannachi et al., 2007). In the following subsections the assignment of components to processes is 

discussed. Note that each site is characterized by a site-specific set of the contributions of the various principal components, 

i.e., the loadings. The different effects captured by the principal components add onto each other. For example, the effects of 345 

climate patterns captured by PC3, PC5 and PC6 are further modified by PC2 and PC4, that is, the effects of signal 

propagation through the vadose zone. Thus adjacent sites will have similar loadings on the climate-related PC3, PC5 and 

PC6, but can differ considerably in regard to PC2 and PC4 due to small-scale variations of subsurface properties. 
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5.1 Climate patterns 

Among the first six principal components PC3, PC5 and PC6 exhibited clearly larger ranges and higher variability of 350 

loadings of stream discharge time series compared to those of groundwater head (Fig. 2). This provides an indication that the 

respective processes affect stream discharge more than groundwater head which in turn points to processes located at or 

close to the input boundary of the hydrological system. We ascribed these components to various climate effects. All 

together they cover 10.9% of the total variance, or 21.2% of spatial variance, that is, from total variance after subtracting the 

share of the first component.  355 

Indices related to climate rank the highest among catchments indices used to understand the drivers of spatial variability of 

stream discharge dynamics (Tarasova et al., 2024; He et al., 2024; Addor et al., 2018) and to model stream discharge 

(Istalkar and Biswal, 2024). Correspondingly, based on remote sensing data, Joshi and Mohanty (2010) report that rainfall 

patterns explained 88% of the variance of observed topsoil moisture patterns in the subhumid Southern Great Plains region. 

In contrast, empirical studies relating regional climate patterns to groundwater head dynamics are made difficult due to 360 

pronounced memory effects (Cuthbert et al., 2019) which mask subtle regional gradients. Thus, e.g., Longuevergne et al. 

(2007) followed a similar approach like in this study, that is, to firstly determine spatial patterns of groundwater head 

dynamics using principal component analysis (termed Karhunen-Loève transform in their study) and then relating these 

spatial patterns to those of climate and other effects. 

In our study, roughly half of the variance covered by the climate components is accounted for by the third component (PC3). 365 

Whereas the map of loadings shows a clear west-east gradient, time series of positive compared to those of negative loadings 

do not exhibit clear systematic patterns. This lack of a clear pattern indicates that some major precipitation events are 

restricted either to the western or to the eastern part of the region (Fig. 5). Note that the PCA does not consider absolute 

values of discharge or groundwater head. Thus close correlation of PC3 loadings with annual mean values of precipitation, 

potential evapotranspiration and number of snow days must not be interpreted as direct causal effects. Instead, it points 370 

indirectly to typical shifts in the temporal patterns related to the gradients of mean climatic values. One example is provided 

by Fig. 5 depicting a systematic delay of discharge and groundwater head peaks in spring and early summer in the eastern 

part compared to the western part which is ascribed to a slightly more nival runoff and groundwater recharge regime in the 

higher altitude regions in the East (Fig. 1). 

Similar spatial shifts in the temporal dynamics of climatic variables affecting stream discharge and groundwater head 375 

dynamics have been found even in regions without corresponding topographical gradients in North Germany (Thomas et al. 

2012, Lehr and Lischeid 2020, Lischeid et al. 2021). Two of these studies have been performed in overlapping regions: The 

PCA of stream discharge by Thomas et al. (2012) identified climatic gradients ranking first and second among the causes of 

spatial variability, and transformation of the hydrological input signals in the subsurface ranking third. In contrast, the latter 

effect ranked first, and climatic gradients second and third in the study of groundwater head time series performed by 380 
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Lischeid et al. (2021). This confirms the statement at the beginning of this subsection that stream discharge is more sensitive 

to the dynamics of input signals, and that of groundwater head more to the subsurface transformation of the input signal. 

The impacts of snow cover on hydrological dynamics are more clearly visible in PC5, i.e., in the more pronounced seasonal 

shift of runoff and groundwater recharge toward the summer and the spatial focus on high altitudes (Fig. 7) with a large 

number of snow days. The latter presumably is only indirectly causally related to the seasonal shift described by PC5: Rather 385 

than the number of snow days per se the length of periods of perpetual snow pack is more relevant for the seasonal offset of 

groundwater recharge and stream discharge. Note that PC5 is obviously restricted to the effect of snow cover, whereas PC3 

captures the effects of spatial gradients of other climatic variables like precipitation and potential evapotranspiration as well. 

Especially for high altitude sites in the eastern part of the study region both effects add to each other.  

The last out of three climate-related components, PC6 (Fig. 8), does neither depict an annually recurring phenomenon like 390 

PC5 nor large scale spatial shifts of the dynamics of climate variables like PC3, but rather shifts of seasonal patterns that 

differ between sub-regions and between years. Thus it depicts some of the space-time variance of climatic variables in 

addition to that grasped by PC3 and PC5 but cannot directly be related to a single process. 

5.2 Land use effects 

Land use is commonly considered a major driver of spatial variance of stream discharge (Tarasova et al., 2024). It has often 395 

been shown and is widely agreed upon that built-up areas exert major impacts on stream flow (Mensah et al., 2022). In our 

study, however, the share of built-up areas did exceed 10% of catchment area only for 25 out of 292 sites. Correspondingly, 

we did not find any significant impact on principal component loadings. In the following we will focus on the effect of 

different vegetation types. 

Our analysis considered only patterns in time but not absolute values. This limits the generalisability of our findings in terms 400 

of land use effects. On the other hand, though, we expected to find differing temporal patterns, e.g., an earlier onset of 

groundwater recharge and stream discharge in arable land after harvest of winter crops compared to forested areas. Although 

our analysis revealed a significant correlation of the share of arable land or forest cover with loadings on PC3, in particular 

for stream discharge, the effect of PC3 was not consistent with expected effects of land use. Rather than shifts in the seasonal 

patterns that could be related to that of evapotranspiration of different land use classes PC3 only affected short-lived 405 

responses of flood peaks (Fig. 5). It would not be plausible that forests sometimes enhance, sometimes suppress flood peaks 

compared to arable fields. In addition various climate variables and altitude correlated much more closely with PC3 loadings 

compared to land use classes. Thus we conclude that the apparent effect of land use on stream discharge has to be ascribed to 

the dependence of land use on climate which in turn affects stream discharge rather than a direct causal relationship.  

That does not imply that land use would not affect hydrological processes at all. Effects of crop type on topsoil moisture 410 

dynamics have been proven at the field scale (Zhao et al., 2010; Baroni et al., 2013; Hohenbrink et al., 2016; Scholz et al., 

2024) and at the regional scale (Joshi and Mohanty, 2010), and on stream discharge at the regional scale (Thomas et al., 
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2012). In contrast, Lehr and Lischeid (2020) and Lischeid et al. (2021) could not prove any effect on groundwater head 

dynamics at the regional scale.  

The current literature reflects in fact contradictory findings in regard to land use effects on stream discharge. A plethora of 415 

modelling studies have been performed assuming clear effects (Dwarakish et al., 2015; Mensah et al., 2022). Thorough tests 

of that hypothesis, though, ranked land use effects fairly low compared to other effects (He et al., 2024; Duarte et al., 2024), 

or did not even find any clear effects at all (Istalkar and Biswal, 2024; Addor et al., 2018). Niehoff et al. (2002) found that 

land use affected runoff generation only under specific conditions. To conclude, and consistent with our findings, land use 

effects on stream discharge seem to be rather weak and hard to identify in regional studies. This is presumably all the more 420 

true for land use effects on groundwater head dynamics. 

5.3 Subsurface processes 

Soil data are often considered decisive for hydrological processes (Tarasova et al., 2024; Vereecken et al., 2022) but have 

not been included here. This is partly due to the problems associated with the use of soil maps for hydrological studies 

(Jakisch et al., 2021). In addition, detailed information of the complete vadose zone would have been needed, not only of the 425 

uppermost soil layers. Hohenbrink and Lischeid (2015) have shown that the effects of different texture classes in 

heterogeneous soils balance each other out, thus information of a single layer would be of little value for assessing 

groundwater recharge at greater depth. Gao et al. (2023) even go so far to state that “soil hydraulic properties are an effec t 

rather than a cause of water movement”, being optimised in long-term processes of co-evolution of soils and vegetation. 

They see this as a major reason for the often found poor correlation between soil properties and hydrological processes. Our 430 

study considered only very limited information about subsurface properties, that is, a differentiation between thick 

unconsolidated sediments, fractured and karstified bedrock. Thus our data do not allow any inferences on the effects of soil 

properties. Neither does our analysis allow for any inferences on the role of surface runoff and interflow which might 

contribute to rapid stream response to heavy rainstorms.  

Loadings of groundwater head time series on PC2 and PC4 exhibited much larger range and variability than those of stream 435 

discharge (Fig. 2). This points to processes at greater depth. But it does not necessarily imply that these processes would be 

irrelevant for a thorough understanding of the runoff dynamics. In total these two components explained 15.7% of the 

variance, that is, 31% of spatial variance when the contribution of PC1 is factored out. The second PC reflects the different 

degrees of damping of hydrological input signals, similar to the findings in other groundwater studies (Lehr and Lischeid, 

2020; Lischeid et al., 2021). Mostly negative loadings of stream discharge time series on PC2 does not imply negative but 440 

much weaker damping compared to the average of all time series. This component is the only one, except PC1, that clearly 

separates stream discharge and groundwater time series (Fig. 2). However, Fig. 2 shows considerable overlap of loadings of 

these two groups, highlighting a continuum between discharge and groundwater head time series with smooth transitions in 

between. Although from a different perspective these results support the call by Berkowitz and Zehe (2020) to overcome the 

separation of these “two water worlds”. 445 
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Remarkably, damping of the hydrological signal does not increase continuously along the entire flow path from the vadose 

zone via groundwater to receiving streams. Rather, the strongest damping is observed only in groundwater at greater depth 

below surface which is usually at greater distance from the streams. Thus it can be concluded that damping is restricted to 

vertical seepage flux in the vadose zone but does not apply for lateral groundwater flow: Only the former exhibits 

pronounced short-term dynamics whereas the latter is fairly stable at the scale of years and decades. The correlation between 450 

catchment area size and stream discharge loadings on PC2 might be due to a tendency to greater depth to groundwater being 

more prevalent in larger catchments than in small headwater catchments. But note that this correlation was found to be rather 

weak in this study.  

The degree of damping observed in groundwater head time series has been found to be related to the thickness of the 

unsaturated zone in other studies (Liesch and Wunsch, 2019; Lischeid et al., 2021). In this study, however, there was no 455 

significant correlation between depth to groundwater and PC2 loadings, in particular for shallow depth groundwater. The 

intensity of damping of hydrological signals in the subsurface depends on soil and vadose texture (Sawicz et al., 2011; 

Hohenbrink and Lischeid, 2015), soil structure, organic carbon content, etc. as well. In addition, any depth dependences are 

blurred in confined aquifers (Lischeid et al., 2017a). In view of these complexities it is remarkable that 11.3% of the variance 

of temporal dynamics is captured by a single principal component.  460 

However, the validity of a single principal component to grasp the damping of hydrological signals, as has been found by 

Hohenbrink and Lischeid (2015) and Lischeid et al. (2021) seems to be restricted to unconsolidated sediments. In this study 

a second component was identified that differentiated between unconsolidated sediments on the one hand and fractured or 

karstified bedrocks on the other hand (Fig. 6). The latter group does not only exhibit a lesser degree of damping, as 

postulated, e.g., by Liesch and Wunsch (2019) and Olarinoye et al. (2022), but in particular exhibits sharp decreases in the 465 

falling limb of the hydrograph (Fig. 6), almost as a mirror image of the rising limb. Thus overall signal transformation 

resembles more that of water flow in a pipe rather than in a porous medium. Correspondingly the autocorrelation function 

rapidly falls off (Fig. 6). The same pattern has been found, e.g., for discharge in the highly karstic Baget catchment by 

Sivelle et al. (2022).  

We did not find a significant difference between karstic limestone and fractured hardrock aquifers. This could partly at least 470 

be due to the small sample size and large within-groups variety. On the other hand there is no clear physical reason why 

water flow in large voids in karstic rocks should differ from those in fractured rocks. In any case this aspect deserves to be 

investigated in more detail in larger data sets. 

5.4 Trends 

We found diverging trends both for stream discharge and for groundwater head time series over the 43 years study period. 475 

These trends were closely related to PC2 loadings (Fig. 4), that is, the degree of smoothness of the time series. The same has 

been found for a region in North Germany by Lischeid et al. (2021) and Tsypin et al. (2025). These trends could neither be 

related to corresponding trends of climate variables nor to direct anthropogenic effects (Lischeid et al., 2021). Rather, the 
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smoother the time series the more became trends visible which were masked by short-term dynamics in less smooth time 

series. Similar findings have been reported, e.g., for 215 wells in France by Baulon et al. (2022), and for nine wells with 480 

more than 100 years data each in middle Europe by Liesch and Wunsch (2019). Correspondingly, Dong et al. (2019) found 

more pronounced trends for groundwater level at greater depth in a data set comprising readings from more than 10,000 

wells in the US. Boutt (2016) reported on significant trends only in 12% of precipitation stations, but in 60% of groundwater 

wells in a region in New England (USA).  

Pronounced trends found in particular in smooth time series visualize a more generic phenomenon that is masked by short-485 

term dynamics in less damped time series. In contradiction to common perceptions deep groundwater dynamics rather than 

those of shallow groundwater or stream discharge should be regarded as an early warning in terms of climate change effects 

on hydrological systems (Lischeid et al., 2021). That has to be accounted for when interpreting the results of trend analyses, 

e.g., as is demanded by the European Water Directive. Whether a trend becomes clear highly depends on the presence or 

absence of masking high-frequency patterns which are less abundant in deep groundwater head data.  490 

Similar negative trends of deep groundwater head data have been observed in Northeast Germany (Lischeid et al., 2021) and 

are consistent with trends of total water storage determined by the GRACE mission for Central and South Europe in the last 

two decades (Xanke and Liesch, 2022; Kvas et al., 2024). These trends are traced back to climate drivers and are likely to 

continue until 2100 at least (Wunsch et al., 2022). They seem to be driven more by an increase of evapotranspiration rather 

than by a decrease of precipitation, as has been found by Sobaga et al. (2024) in 45 years lysimeter data in France, and by 495 

Bruno and Duethmann (2024) in stream data all over Germany. These patterns being consistent at large scales confirm the 

suitability of using deep groundwater head data as early warning tools in spite of the fact that the spatial density of 

groundwater monitoring sites is often inferior to that of stream gauges, not the least due to construction costs and 

accessibility.  

Local effects like groundwater abstraction or land subsidence could modify that pattern at single sites. The data for this 500 

study, however, have been provided from a groundwater monitoring network which had been designed explicitly to exclude 

such effects. 

6 Conclusions 

A data set of weekly readings of stream discharge and groundwater from 292 sites, covering a 43 years period (1980-2022) 

from a 36,000 km2 region in South Germany was analysed to identify the prevailing drivers of spatial variance of 505 

hydrological behaviour. The region is characterized by a large variety of land use and geological strata, comprising porous 

aquifers as well as fractured and karstic hard rock aquifers. The first six components of a principal component analysis 

explained 77.7% of the variance. Roughly half of the variance was covered by the first principal components which captured 

the similarities of the set of time series. 
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According to the second principal component, differences between groundwater head and stream discharge were nearly 510 

exclusively due to different degrees of damping of the observed dynamics, with highest degrees observed at wells with high 

depth to groundwater table. The fourth component differentiated between porous aquifers on the one hand and fractured and 

karstic aquifers on the other hand, pointing to a more pipeflow-like behaviour in major conduits of the latter.  

The higher the degree of damping, the more pronounced were negative trends both for groundwater head and stream 

discharge for the whole 43 years period. These trends were attributed to a long-term increase of evapotranspiration. In 515 

contradiction to common perceptions the consequences were the most clearly discernible in smooth deep groundwater time 

series rather than in stream discharge were the long-term trends are masked by pronounced short-term responses to single 

events.  

Three principal components (third, fifth and sixth) reflected various effects of climatic gradients on hydrological behaviour: 

A general west-east gradient, which was driven by prevailing westerlies and a general topographic gradient; gradients of 520 

duration and height of snow cover, depending on altitude; and relative shifts of seasonality between years and sub-regions. 

These effects were more clearly visible in discharge than in groundwater head time series. Land use was closely related to 

topography and related to climatic patterns as well. Beyond this, though, no independent effect of land use on hydrological 

behaviour could be proven. 

In spite of large heterogeneities in terms of geology, land use and related landscape features at the scale of the analysis the 525 

principal component analysis yielded surprisingly clear results. Groundwater head and stream discharge proved to be rather 

two poles along a common gradient of damping of the hydrological input signal rather than distinct systems. Spatial variance 

of stream discharge compared to that of groundwater head provided more information about the hydrological input dynamics 

due to climate effects. In contrast, spatial variance of groundwater head data was more closely related to subsurface 

processes. Nevertheless, groundwater head dynamics rather than stream discharge revealed the consequences of an increase 530 

of evapotranspiration during the last decades. Thus a more pronounced understanding can be gained by merging stream and 

groundwater data which highlight different facets of the same hydrological system. We strongly recommend joint analyses to 

make more efficient use of existing monitoring data. 

Data availability 

Time series of stream discharge and groundwater head can be accessed via the state authority’s web page at 535 

www.gkd.bayern.de. Specific requests, e.g., in terms of stream network data, should be addressed to 

datenstelle@lfu.bayern.de. Meteorological data can be downloaded from Deutscher Wetterdienst (2023; 2024). Digital 

elevation models of the study region are provided by Bundesamt für Kartographie und Geodäsie (2023; 2024). 
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