

¹ Controls of the Latitudinal Migration of the Brazil-Malvinas

² Confluence described in MOM6-SWA14

³ Nicole Cristine Laureanti^{1,2,3}, Enrique Curchitser¹, Katherine Hedstrom⁴, Alistair Adcroft⁵, Robert
⁴ Hallberg⁶, Matthew J. Harrison⁶, Raphael Dussin⁷, Sin Chan Chou³, Paulo Nobre³, Emanuel Giarolla³
⁵ and Rosio Camayo³

⁶ ¹Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA

⁷ ²Potsdam Institute for Climate Impact Research, Potsdam, BB, Germany.

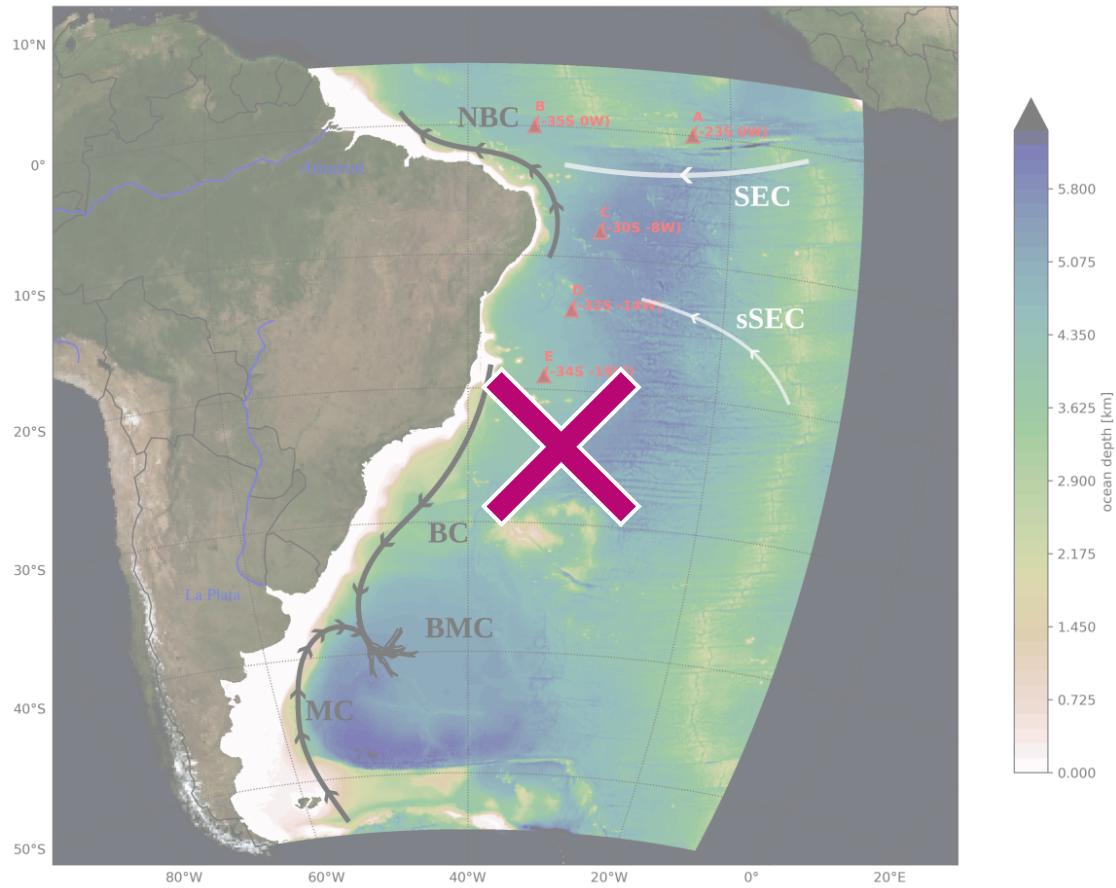
⁸ ³National Institute for Space Research (INPE), Cachoeira Paulista, SP, Brazil

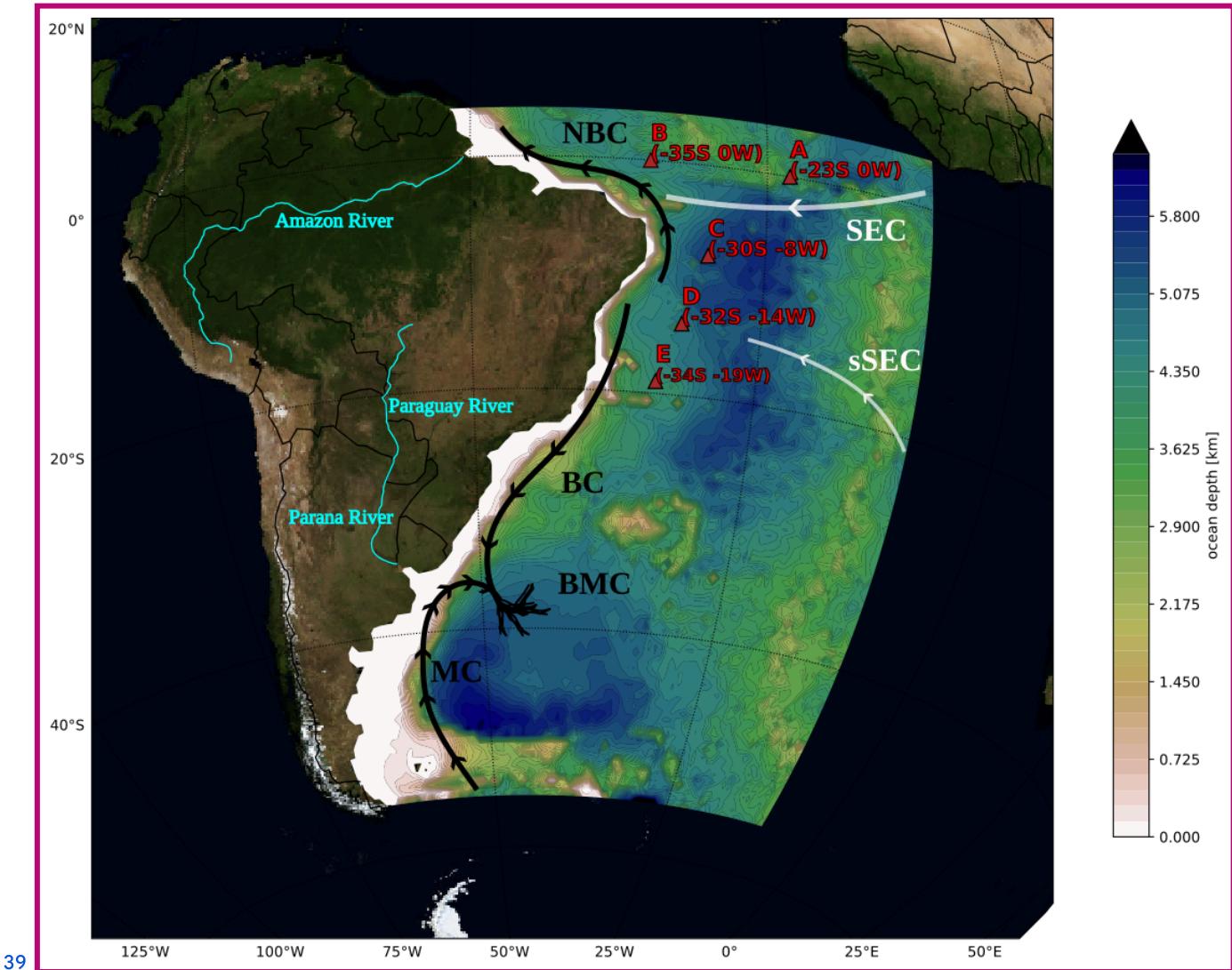
⁹ ⁴College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA

¹⁰ ⁵Princeton University, Princeton, NJ, USA

¹¹ ⁶NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

¹² ⁷UCAR, Boulder, CO, USA


¹³ Correspondence to: Nicole C. Laureanti (nicole.laureanti@pik-postdam.de)


¹⁴ **Abstract.** The distribution and productivity of nutrients, eddy formation, energy dissipation, and other ocean properties are
¹⁵ influenced by the variability of Western Boundary Currents (WBCs). In the Southwestern Atlantic, the key features are the
¹⁶ Brazil-Malvinas Confluence (BMC) and the North of Brazil Current (NBC). This work investigates them using a 20-year
¹⁷ high-resolution ocean model simulation with the Modular Ocean Model version 6 (MOM6) 1/14° configuration of the
¹⁸ Southwestern Atlantic (SWA). The results reveal a significant deviation in the path and trends of volume transport of the
¹⁹ WBCs over the decades. The ~~Brazil-Malvinas Confluence~~ (BMC)^{BMC adjacent} region gets saltier and warmer, with
²⁰ increased kinetic energy and transport. Although transport trends in the NBC indicate reduced transport, this results from
²¹ weaker wind forcing, which reduces the ~~mixing layer depth~~^{Mixed Layer Depth (MLD)} in the simulation and the subsurface
²² transport in the region. The warming in the Brazil Current region triggers a stronger southward flow, resulting in a southward
²³ shift of $0.93^\circ \pm 0.08$ of latitude/decade in the BMC separation. Working against this flow, the propagation of the Kelvin
²⁴ Waves from the Eastern Pacific Ocean induces a northern shift of the BMC, revealed by topographic Kelvin ~~waves~~^{Waves} in
²⁵ the spectral analysis. This Pacific-Atlantic inter-basin relation indicated here underscores the importance of propagating
²⁶ Pacific disturbances into the region to maintain the positioning of the BMC and its properties under a warming Atlantic
²⁷ Ocean.

²⁸ **Keywords:** Western Boundary Currents; Brazil-Malvinas; climate trends; Kelvin topographic waves

29 1 Introduction

30 Recent studies have revealed a relationship between the Southwestern Atlantic Ocean and extreme precipitation events in
31 South America (Rodrigues et al., 2019; Pezzi et al., 2022; Laureanti et al., 2024). The investigation of this ocean circulation
32 was also motivated by oil spills and other accidents polluting the Brazilian coastline, striking important naturally preserved
33 areas (Nobre et al., 2022). Climate studies in the region have focused on heat budgets and trends (Muller et al., 2021; Franco
34 et al., 2020). Improving the **description of the ocean circulation** ~~description~~ **features** in this region can result in a better
35 understanding of the dynamics, including even that of the CO₂ distribution (Valerio et al., 2021; Bonou et al., 2016). To
36 extend the knowledge of these features, this work focuses on investigating the variability and trends of the Western
37 Boundary Currents (WBCs) in the Southwestern Atlantic Ocean.

39

40 **Figure 1: The Southwestern Atlantic simulation domain.** The arrows illustrate near-surface currents: from north to south, the
 41 South Equatorial Current (SEC) and its southern branch (sSEC), the North Brazil Current (NBC), the Brazil Current (BC), the
 42 Malvinas Current (MC) and the Brazil-Malvinas Confluence (BMC). The Western Boundary Currents (WBCs) are in black. The
 43 shaded colors indicate the topography in the Southwestern Atlantic Ocean used in MOM6 simulations. The locations of the
 44 PIRATA buoys with observational data are in red. The locations of the major rivers in this domain are shown in blue. Satellite
 45 images from Blue Marble: Next Generation define the terrain contours by NASA Earth Observatory.

46 The Atlantic Ocean is an energetic region with both surface and undercurrents between the Brazilian eastern coast and the
 47 African western coast. Figure 1 illustrates the sea surface currents in this region, including the North Brazil Current (NBC)
 48 and the Brazil Current (BC), whose flow is maintained by the southern branch of the South Equatorial Current (sSEC). The
 49 sSEC redirects toward South America after originating in the Angola Gyre off the Western African Coast. The BC is
 50 ~~intercepted by~~ and the Malvinas Current (MC) ~~as it flows southward~~ confluence at a southward region (Garzoli and Bianchi,
 51 1987; Goni et al. 2011; Combes and Matano, 2014b; Barré et al. 2006; Ferrari et al. 2017; Artana and Provost 2023), forming

52 the Brazil-Malvinas Confluence (BMC). This region experiences intense oceanic mesoscale activity due to the retroflection
53 of these currents (Oliveira et al., 2009). The MC originates in higher latitudes and flows northward, driven by the Antarctic
54 Circumpolar Current (ACC) (Combes and Matano, 2014b). Meanwhile, the NBC encounters the continental shelf in
55 Northwestern Brazil, where its retroflection generates eddy propagation (Bueno et al., 2022; Garzoli et al., 2004). ~~The~~
56 ~~Western Boundary Currents (WBCs) mainly follow~~ These are recognized as WBCs, as their path is set along the coastline,
57 comprising unique dynamic properties and interactions with the continental shelf, a common characteristic in the BC, MC,
58 and NBC.

59

60 The wind plays a dominant role in the variability of the WBCs (Wunsch and Ferrari, 2004). It impacts the mesoscale
61 structure within the Gulf Stream, which is a WBC in the Northwestern Atlantic Ocean, affecting the Mean Kinetic Energy
62 (MKE) to Eddy Kinetic Energy (EKE) conversions along the coast (Kang et al., 2016). The wind contribution to the BMC
63 variability can be explained by the frequent passage of atmospheric fronts at those latitudes that alter the predominant wind
64 direction and cause sudden reversal of the currents throughout the water column (Campos et al., 2013; Lago et al., 2019).
65 Furthermore, specific analysis of the MC near the Patagonian shelf has demonstrated its modulation by wind stress (Guerrero
66 et al., 2014; Palma et al., 2004; Lago et al., 2019). Additionally, winds also influence the Plata River discharge impacting the
67 BC flow (Piola et al., 2005; Campos et al., 2013). Northwesterly wind-stress anomalies commonly induce heavy runoff over
68 summer, spreading river plumes meridionally. During wintertime, strong southwesterly winds intensify a northward current,
69 causing freshwater discharges from the La Plata Basin to move northward. The seasonality of the atmospheric patterns also
70 contributes to precipitation inputs, which has been considered a contributor to ocean variability (Campos et al., 2013; Lago et
71 al., 2019; Palma et al., 2004). An interannual variability influence near the La Plata Basin is also evident, where the El
72 Niño-Southern Oscillation (ENSO) impacts freshwater discharges (Combes and Matano, 2018). In addition, some studies
73 have recognized the contribution of the South Atlantic Subtropical High (SASH) and the Intertropical Convergence Zone
74 (ITCZ) for the NBC variability. The SASH is the lower-level atmospheric dominant feature of the SEC, impacting the
75 SEC-NBC transport, while the ITCZ predominantly contributes to the Equatorial currents (Lumpkin and Garzoli, 2005;
76 Valerio et al., 2021). Important features related to its variability relate to the propagation of eddies in the NBC retroflection,
77 which results in a deviation of its natural path from 4°N to 8°N (Bueno et al., 2022; Valerio et al., 2021).

78

79 The highly energetic activity imposes challenges for diagnosing SST in places adjacent to WBC in General Circulation
80 Models (GCMs) (Stock et al., 2015; Adcroft et al., 2019). The oceanic grid resolution is key for simulating the physical
81 processes, as it determines the range of perturbations reproduced by the model (Adcroft et al., 2019; Hallberg, 2013;
82 Chassignet and Xu, 2021). At least a 1/8° resolution is required to explicitly capture the mesoscale baroclinicity in the
83 Southwestern Atlantic, while a resolution higher than 1/25° is recommended for continental shelf regions (Hallberg, 2013).
84 In addition, using a high-resolution ocean bathymetry induces better heat distribution by ocean currents (Griffies et al.,
85 2015). Regional numerical simulations can provide specific diagnostics, including distinct driving mechanisms for shelf

86 circulation. For instance, studies conducted by Palma et al. (2004, 2008) explored the significance of wind and tidal motion
87 in the Patagonian Shelf. The findings indicated that south of 40°S, circulation is primarily influenced by semidiurnal tidal
88 mixing (M2, S2, N2), wind, and the MC. The tidal mixing enhances bottom friction that balances the energy input by the
89 wind stress. Similar outcomes were described in a high-resolution simulation using the Regional Ocean Modelling System
90 (ROMS) (Combes and Matano, 2014a). Local winds contribute significantly to the shelf variability, but adding tides is
91 crucial to replicating the mixing near the coastal region accurately. The MC's transport is highly correlated with the
92 upwelling at the Patagonian shelf break and exhibits an out-of-phase relationship with the BC (Combes and Matano, 2014a).
93

94 There are also important WBCs relations driven by the proximity to the coastal slopes (Hughes et al., 2019). The internal
95 variability of the currents and transport in the WBCs offers a broader number of dynamic interactions, different from those in
96 the open ocean. Tropical waves from the Pacific follow the western South American coastline, propagate, and contribute to
97 the coastal dynamics in the Southwest Atlantic Ocean. Poli et al. (2022) reveal that Kelvin wave dispersion and Rossby wave
98 propagation from the Madden-Julian Oscillation are linked to the barotropic and baroclinic components of the coastal
99 trapped waves in the Southwest Atlantic Ocean.

100

101 This study aims to extend our understanding of this region by simulating and evaluating the ocean circulation. The relevance
102 of this implementation to global climate studies is the focus on the WBCs, indicating their unique variability and potential
103 drivers. Simulating the Southwestern Atlantic WBCs with a high-resolution framework allows for determining meaningful
104 characteristics of the variability of the mesoscale circulation.

105 This article is organized as follows: The first two Sections detail the model setup and the datasets. The results initially focus
106 on evaluating surface features and vertical structures by comparing them with local observational data in Section 3.1. The
107 analysis discusses the characteristics of the meso- and large-scale circulation within the domain, assessing the contribution of
108 winds and ocean transport to the overall dynamics in the model. Section 3.2 discusses the seasonal variability and trends of
109 the WBCs. In Section 3.3, we focus on the internal and external components of the variability of WBCs. The final section
110 contains the discussion and conclusions, offering an analysis of the variability of the WBCs circulation reproduced by the
111 model.

112 2 Model and Data

113 2.1 Model Description and Configuration

114 The model used in this work is the Modular Ocean Model version 6, developed by the Geophysical Fluid Dynamics
115 Laboratory (GFDL) from the National Oceanic and Atmospheric Administration (NOAA) (Adcroft et al., 2019). The model
116 was designed to represent the ocean's general circulation. The version used in this paper is capable of running on regional
117 configurations as a result of the implementation of open boundary conditions. The horizontal grid extends from longitude

118 69°W to 9° W and from latitude 55°S to 5°N, at 1/14° resolution (approx. 7 km). The model domain uses the topography
119 displayed in Figure 1. The ocean bathymetry was interpolated from a horizontal resolution of 450 meters from the General
120 Bathymetric Chart of the Oceans (GEBCO) (Giribabu et al., 2023). The vertical discretization distributes 75 levels from 3
121 meters up to 6,500 meters of depth, varying in thickness from 2 m near the surface up to 250 m in the deep ocean. The
122 model uses the z^* vertical coordinate, which is a height-based coordinate rescaled with the free surface (Adcroft and
123 Campin, 2004). Under this setup, the model simulation started on 1st January 1997 and ended on 31st December 2016, a
124 total of 20 years. A test run made with the model with a hybrid vertical coordinate is also evaluated from 1997 until 2002, to
125 verify impacts of the vertical discretization.

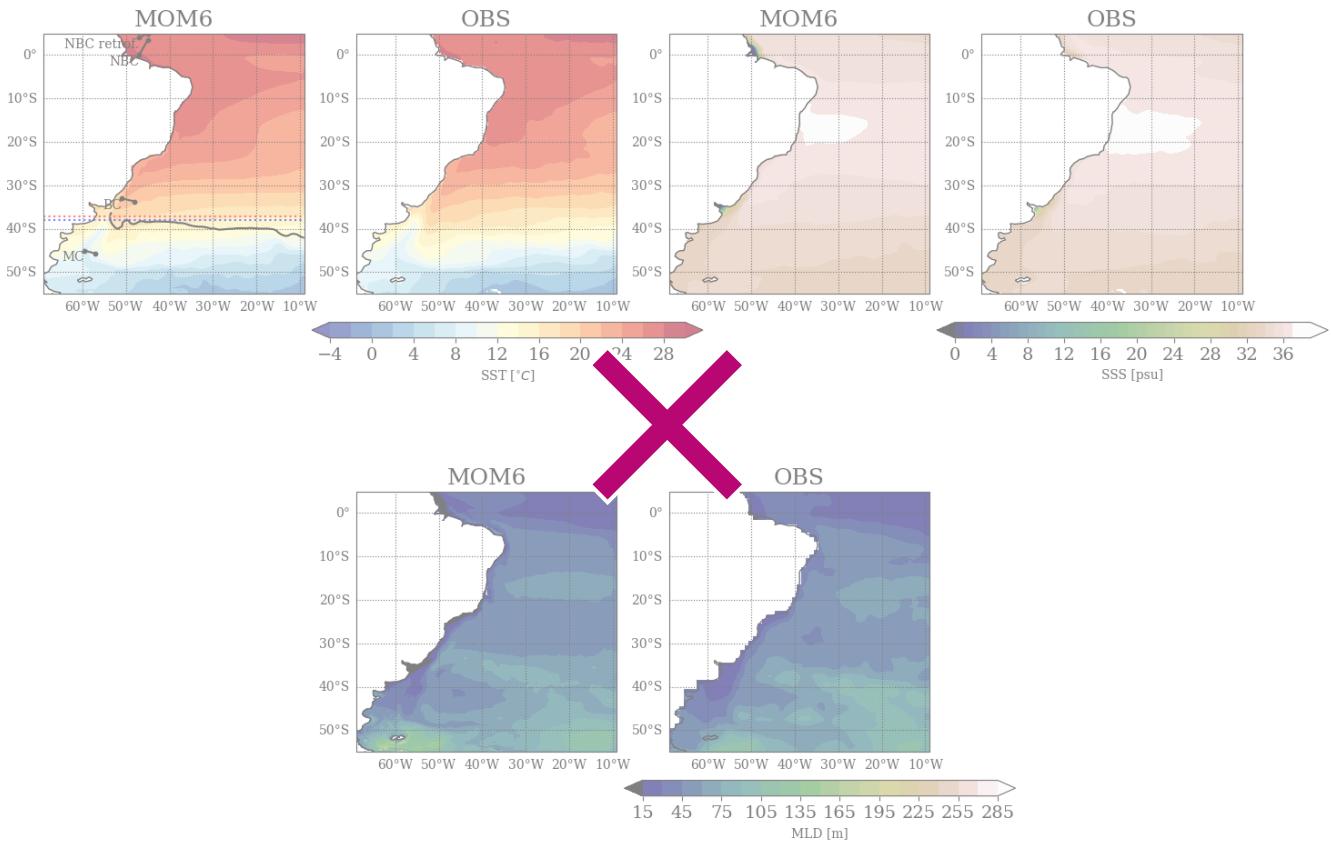
126

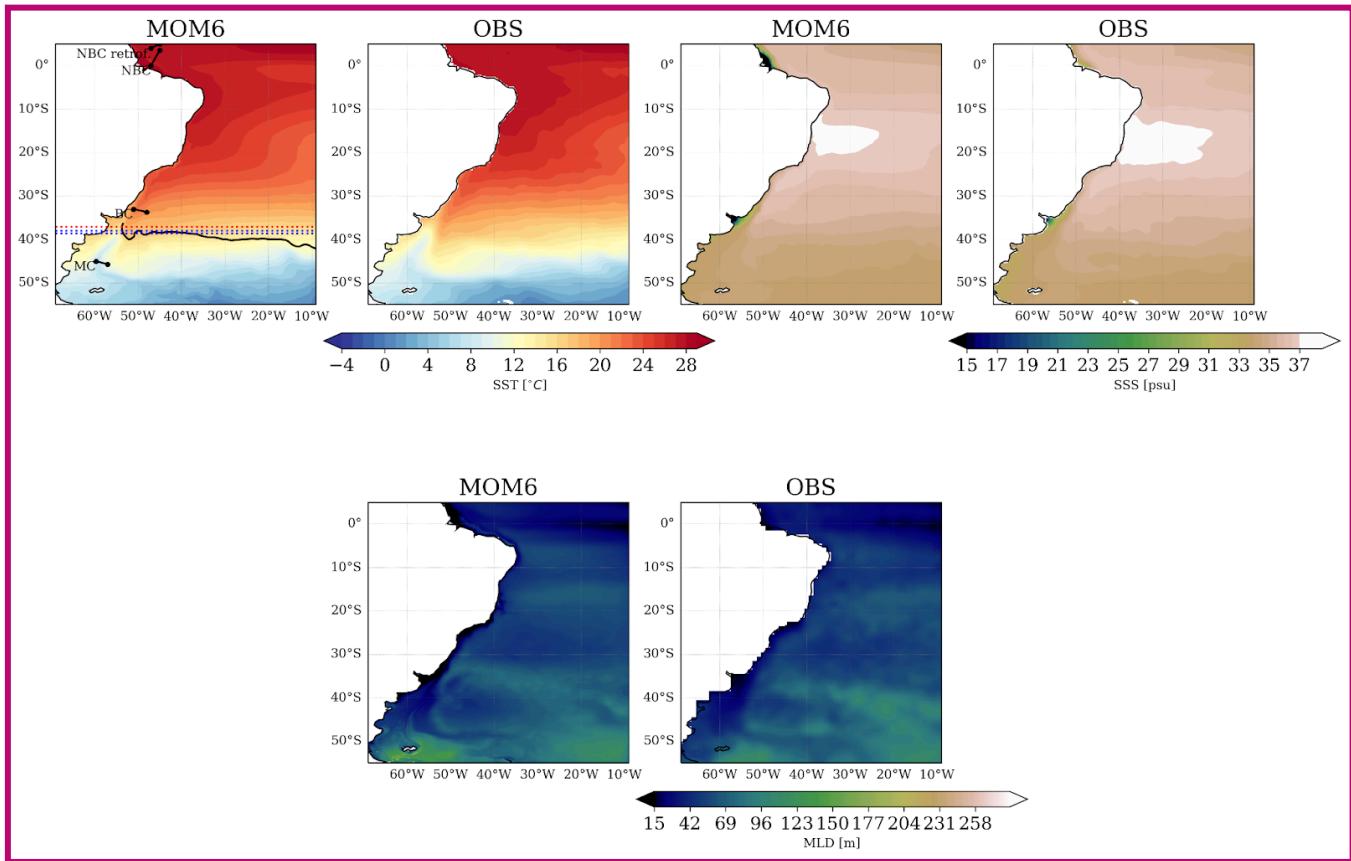
127 The model uses initial and boundary conditions data from ~~GLORYS 12v1~~^{GLORYS12v1} ocean reanalysis, developed by the
128 Copernicus Marine Environment Monitoring Service (CMEMS), with a daily frequency and an 8-km resolution (1/12°)
129 (Jean-Michel et al., 2021). The atmospheric forcing is the hourly reanalysis data from the European Centre for
130 Medium-Range Weather Forecasts (ECMWF) fifth generation (ERA5) at 25 km (Hersbach et al., 2023). Ten tidal
131 components from the global model of ocean tides TPXO (Egbert and Erofeeva, 2002) are used in the boundaries and internal
132 domain to force the barotropic conditions through parametrization. The components are four semidiurnal (M2, S2, N2, and
133 K2), four diurnal constituents (K1, O1, P1, Q1), and two long-period constituents (Mm and Mf). The freshwater discharge is
134 from the Global Flood Awareness System (GloFAS) reanalysis dataset (Zsoter et al., 2021). To assimilate natural conditions,
135 chlorophyll estimates from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS-NASA) (NASA, 2018) are inserted in the
136 opacity scheme to modify the estimate of the atmospheric radiation reaching the deepest layers. The MOM6 schemes are
137 based on the physical ocean model configuration of Ross et al. (2023). Parameterizations include the convection Energetic
138 Planetary Boundary Layer (ePBL) approximation (Reichl and Hallberg, 2018), the Fox-Kemper restratification for the
139 mixing layer (Fox-Kemper et al., 2011), while astronomical tides and the Kappa-shear scheme (Jackson et al., 2008) induces
140 interior and bottom mixing, respectively.

141 2.2 Data for Validation

142 The 20-year simulation is assessed by comparing mean fields with observational data. The World Ocean Atlas (WOA)
143 temperature and salinity climatology (Locarnini et al., 2019; Zweng et al., 2019) and the Surface Mixed Layer Depth (MLD)
144 climatology from de Boyer Montégut et al. (2004) correspond to the datasets of coarser resolution with a 1° resolution. A
145 local comparison relates the model results to the observational data from 4 buoys from the Pilot Research moored Array in
146 the Tropical Atlantic (PIRATA) project (Servain et al., 1998). The dataset consists of time series and vertical profiles of
147 temperature and salinity over the tropical Atlantic, with five moored buoys in the tropical Atlantic, two on the equator that
148 have data from January 1998 to recent years, and the other three are placed southern, with measurements starting in August
149 2005. The buoys are A: 0°S 23°W, B: 0°S 35°W, C: 8S° 30°W, D: 14°S 32°W, and E: 19°S 34°W and their locations are
150 shown in Figure 1. The ~~GLORYS 12v1~~^{GLORYS12v1} reanalysis, used as forcing and for comparison with model outputs,

151 provides comparable results in high-resolution daily data. Besides the assimilative schemes, this reanalysis uses
152 ERA-Interim and ERA5 data in the surface and the dynamical core from NEMO in 50 standard levels (Jean-Michel et al.,
153 2021). The mean winds from ERA5 are compared against the 0.125° QuickSCAT (QSCAT) satellite data, available between
154 1999 and 2009 (Hoffman and Leidner, 2005).


155 3 Results


156 3.1 Evaluation of the Simulation Mean State

157 3.1.1 Ocean Surface

158 Surface variables often characterize the main features that develop in the ocean. Figure 2 displays the mean surface variables
159 from model outputs compared to observations. The fields originate from different horizontal resolutions, with a coarser
160 resolution for the observations, resulting in a lack of representation of higher-resolution structures, especially near the
161 coastline. Overall, the results indicate a good representation of the mean state fields. The central South Atlantic is the region
162 with the most similar SST patterns. The major differences appear in the open sea with colder SST in the eastern equatorial
163 Atlantic in the model. The difference in the BMC is negative and less than 1°C, which is more accurate than the one obtained
164 with the global 1/4° version of the model, with a positive bias greater than 2°C, using the same vertical model coordinate
165 (Adcroft et al., 2019), highlighting the benefits of increasing the horizontal resolution.

166

168

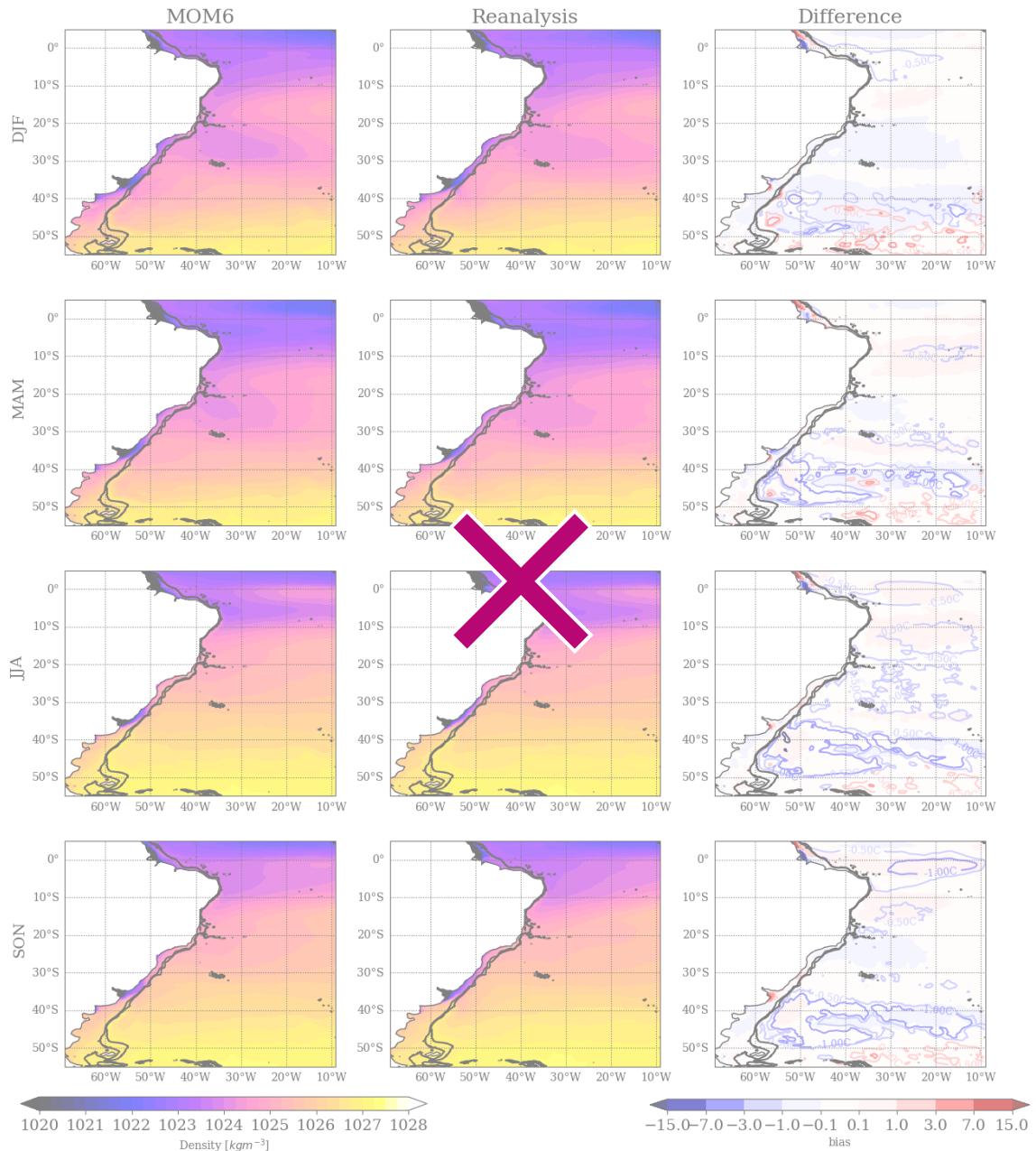
169 **Figure 2:** Sea Surface Temperature (top row), Salinity (middle row), and Mixed Layer Depth (bottom row), 20-year mean from the
 170 simulation (left) and WOA observations (right). In (a), the illustrated black line is the 10°C isotherm at 200 m, where it meets with
 171 the 1000 m isobath, an estimate proposed by Garzoli and Bianchi (1987) to indicate the BMC separation in the model. The dotted
 172 curves represent the mean BMC separation using (red) ~~GLORYS12~~^{GLORYS12v1} reanalysis and (blue) the obtained from
 173 satellite observational sets by Goni et al. (2011).

174

175 The model captures the development of the BMC, with the location of the temperature gradients in the region. The
 176 northward propagation of surface cold waters through the MC ends at approximately 37°S. The confluence with the BC
 177 appears within this region, which is close to estimates from observational data (Figure 1; Goni et al., 2011; Lumpkin and
 178 Garzoli, 2011). A similar gradient is found in the observations, but cooler temperatures emerge near the La Plata Basin coast.
 179 The model shows extra fresher waters near the La Plata and the Amazon Basins, indicating that the salinity is close to zero
 180 downstream of the basins. The model presents less salty waters than the observations at around 10-20°S, which appears to be
 181 related to the river discharges. However, the freshwater inputs look trapped in shallower depths on the coastline, and
 182 according to the ocean circulation (Figure 1), the fresher water inputs flow south for the La Plata River and northwest for the
 183 Amazon River. The MLD pattern diagnosed by the ePBL's model scheme is consistent with the patterns of the observations
 184 despite the impacts of the river on the coastline circulation.

185

186 Contrasting patterns between the shallow and deepest regions appear from comparing the model seasonal averages with
187 reanalysis from ~~GLORYS12s~~GLORYS12v1 with similar horizontal resolution (Jean-Michel et al., 2021). Figure 3 shows the
188 sea surface density for each trimester, estimated by the equation of state for ocean models considering temperature and
189 salinity (Wright, 1997). There is a higher consistency in the seasonal density between the fields far from the coast. Some
190 differences in temperature contours emerge in the northwestern and southwestern South Atlantic, where the model keeps
191 colder equatorial waters during most seasons. Although the difference in the temperature field has maximum values of -1°C
192 to the south of 30°S, especially during March to May (MAM) and June to August (JJA), it reproduces a weaker variance in
193 the density field. The difference in density in the tropics is unrelated to the temperature variations and indicates the presence
194 of freshwater inputs from the rivers, as indicated in Figure 2.


195


196 The most significant differences in density appear in the shallow areas in the Amazon region, which exhibits variability
197 related to the river's seasonality. The contrasting heavy rainfall related to the ITCZ displacement is related to the region's
198 variability (Valerio et al., 2021). It contributes significantly to the mean flow from December to February (DJF) until MAM,
199 with fewer discharges during JJA and September to November (SON). The difference in the density fields (Figure 3)
200 indicates that the model representation of the river discharges is more coherent during MAM, the period of higher freshwater
201 discharge. The model's salinity distribution is counterbalanced in the other drier seasons, showing reduced salinity in the
202 Amazon River basin and increased in the extreme northwest of the domain. Thus, deviations in the mixing of the river
203 discharges imply the appearance of a ~~dipole~~core of higher density northwest of the domain ~~and a lower density in the~~
204 Amazon basin in Figure 3. The density is higher in the model ~~with~~when more saline waters ~~than the reanalysis are found~~ and
205 lower ~~in~~when more fresher waters appear.

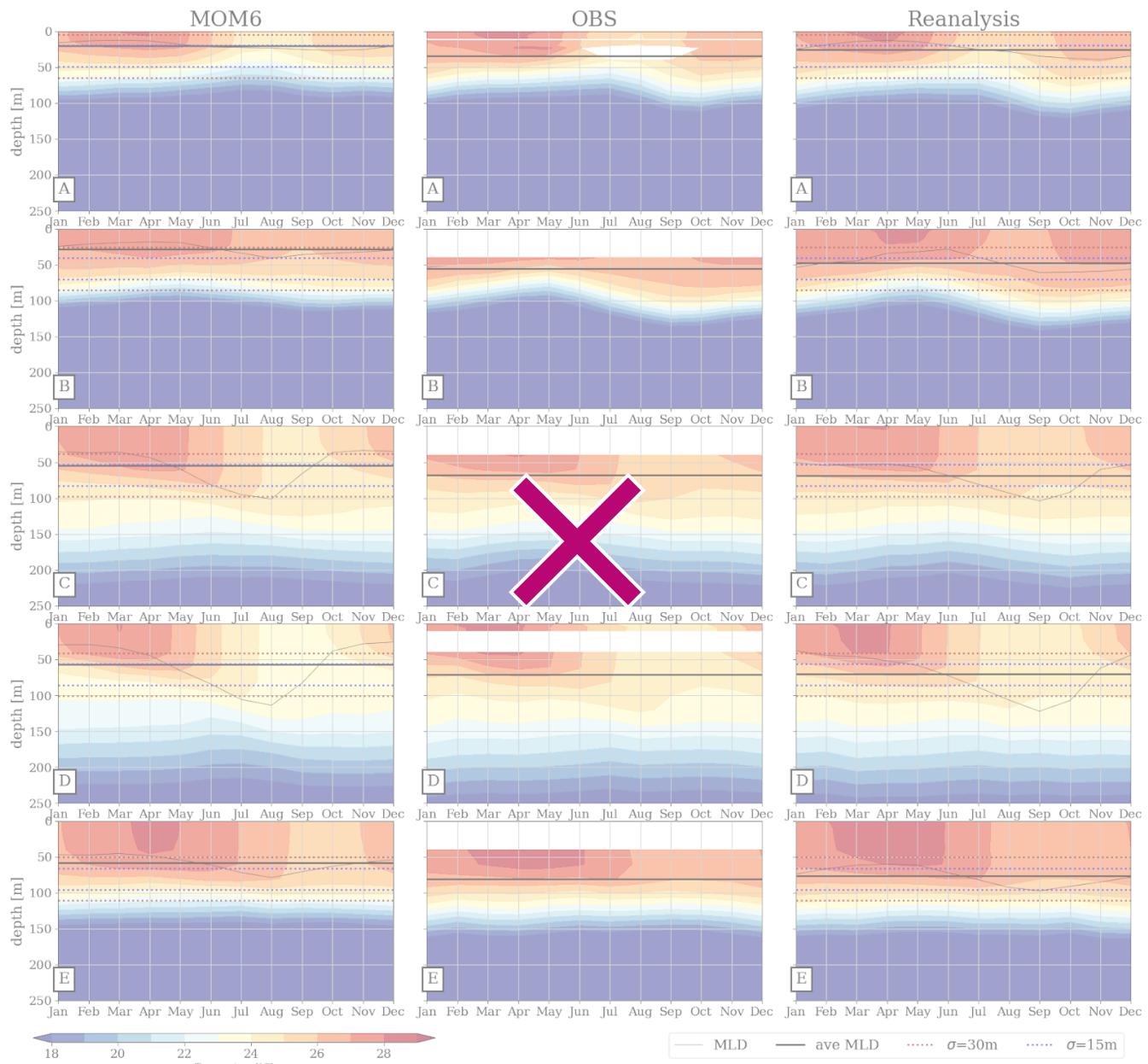
206

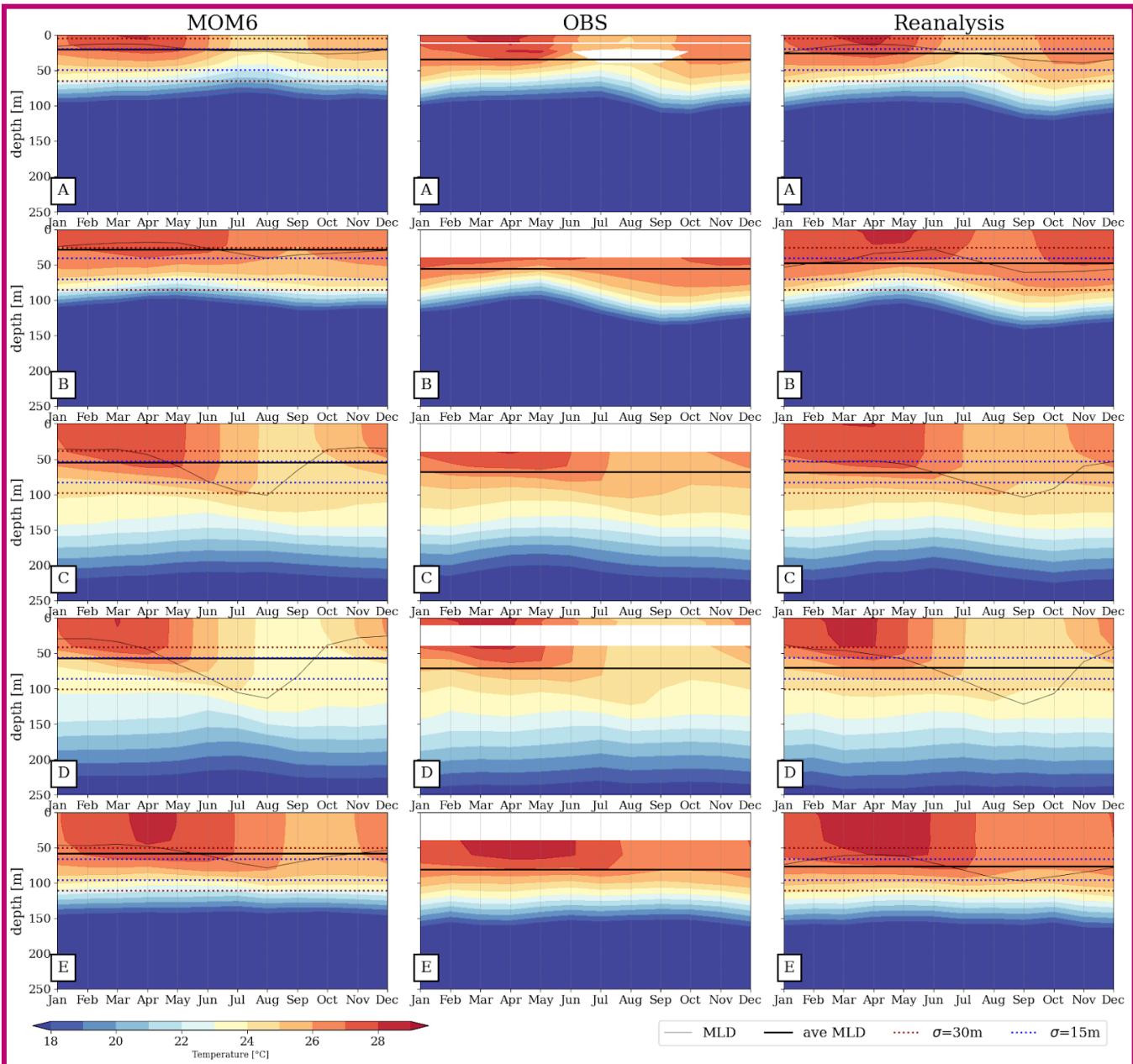
207 Like the Amazon, the river seasonality implies modifications in the river discharges in the La Plata Basin. The model
208 overestimates the density downstream of the La Plata Basin due to more saline waters on the southwest coast, mostly during
209 SON. During winter (JJA), strong runoff ~~during winter~~ is enabled by the frequent passage of atmospheric systems when the
210 intense rainfall and wind spread the freshwater discharges of the river plume (Campos et al., 2013; Lago et al., 2019; Piola et
211 al., 2005).

212

214

215 **Figure 3: Seasonal mean surface density for the MOM6 simulation, the reanalysis (GLORYS12^{GLORYS12v1}) and error. Each**
 216 **row shows a season, from the top to the bottom, DJF, MAM, JJA, and SON, marking the transition from austral summer to**
 217 **spring. The means consider the period from 1997 until 2017. The contours in the right column show the temperature errors in the**
 218 **open ocean (depth ≥ 1000 m), with contours at ± 0.5 , 1.0, and 3.0°C. The thick black contours indicate the 200 and 1000 m isobaths.**

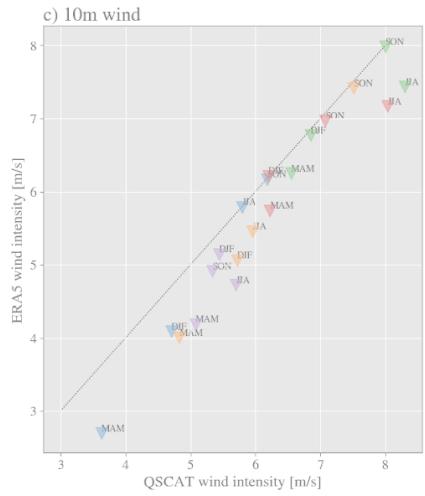

219

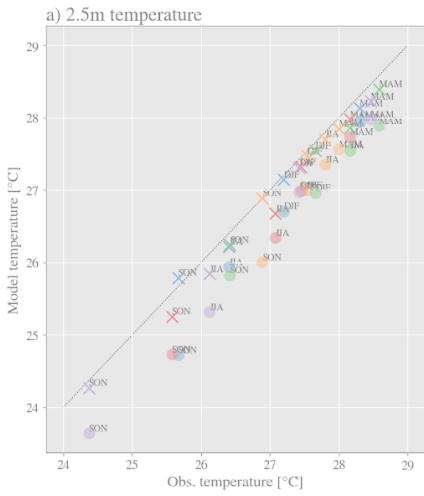

220 The importance of determining the advancement of freshwater plumes into the open ocean in both basins has been described
221 in the literature (Valerio et al., 2021; Campos et al., 2013). Although the surface fields based on the 20-year model averages
222 exhibited bias constrained by the coastline, the freshwater plumes accurately display the river seasonality. The river
223 discharges simulated by the model represent the impact on the MLD seen in Figure 2. In addition, the salinity variations near
224 the Amazon and La Plata basins also considerably impact the surface density comparable to the reanalysis (Figure 3).
225 Although a similar resolution increases the consistency of the results in the basins, unbalanced freshwater amounts still
226 occur. The results indicate that the amount of freshwater on the surface and the lower density contribute to less mixing in
227 shallower depths. ~~The similarity of the results far from the coast~~ At higher depths, the similarity of the results, especially in
228 MLD and density patterns, indicates that ~~this~~ the unbalanced freshwater ~~influence is primarily local~~ influences the appearance
229 of local biases more strongly at the ~~delta~~ ~~deltas~~ of the Amazon and La Plata Rivers ~~and does not lead to a general bias~~.
230 However, there are still biases near the BMC and in tropical regions that may be due to other factors.

231 3.1.2 ~~Temperature~~ Vertical Structure of Temperature and Seasonal Variability

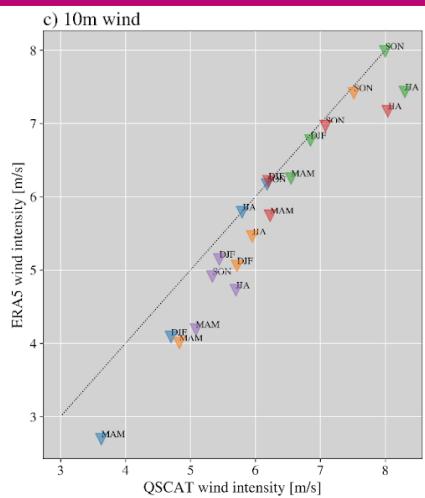
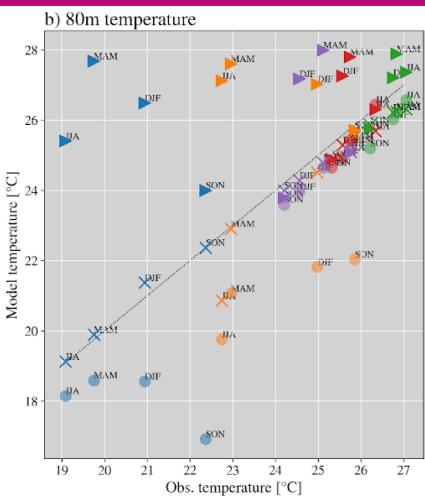
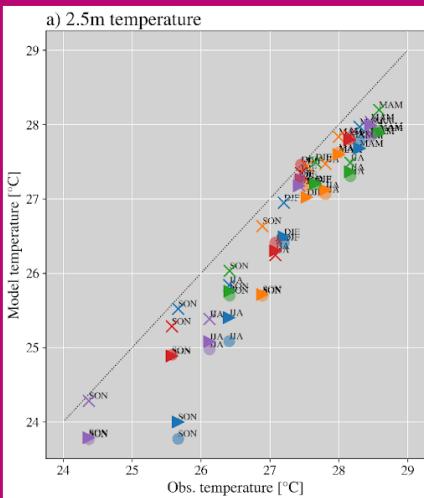
232 ~~Temperature profiles~~ Profiles of potential temperature in Figure 4 characterize the vertical structure in the ocean model
233 against the reanalysis and the PIRATA buoys observations. The depth of the 18°C isotherm compared to the buoys evidences
234 the conformity in the vertical structure. The 18°C isotherm in the A and B observations shows deeper seasonal fluctuations
235 during SON, so the model fails in reproducing the structure. During the warmer season, MAM, when the warmer waters
236 reach deeper layers in the observations, the model remains cooler until the wintertime. This effect reduces the MLD in the
237 model, which shows a 30 m shallower MLD (Figure 4, right column) than the other datasets in the buoy sites (Figure 4, left
238 and center). The difference is even more critical at the buoy B site, where the MLD is more than 30 m shallower in the
239 model.

240




242

243 Figure 4: Mean annual cycle of the vertical profile of temperature and MLD at PIRATA buoy sites. The colors display the
 244 temperature, and the lines are the MLD. The letters identify the buoy sites from A to E. MOM6 outputs are on the left column,
 245 observed data from the PIRATA buoys are in the center, and reanalysis products are on the right. The MLD for observation and
 246 reanalysis are estimated with the $\Delta T = 0.2^\circ\text{C}$ temperature threshold from a near-surface value and the 10 m. Missing data appears
 247 at different depths in the observations and are shown in white. The dashed lines highlight depths above/below the mean
 248 buoy-estimated MLD in blue with a difference of 15 m and in red 30 m.




249

250 The temperature at shallow and deeper regions shown at the buoy sites in Figure 5 explains the reduced heat entrainment
251 from the surface layers in the model ~~due to different factors~~. Near the surface, the model temperature is approximately $\leq 1^{\circ}\text{C}$
252 lower than the reanalysis and the buoys through the seasons (Figures 3 and 5a). The model presents a well-defined seasonal
253 cycle near the surface (Figure 5a), ~~with warmer temperatures when a warmer surface appears during MAM and cooler in JJA~~
254 and SON. More contrasting outliers are in the 80 m depth layer (Figure 5b). ~~Compared to the model, the observations at sites~~
255 ~~A and B present 2°C warmer temperatures during SON and 1°C warmer during DJF, with the buoys in the tropical region~~
256 ~~revealing higher temperatures obtained with the hybrid coordinate compared to the z^* coordinate.~~ In the other buoy sites (C,
257 D, and E), far from the equatorial region (Figure 1), ~~where the water column is deeper, and (Figure 1),~~ the model presents a
258 reduced bias. ~~The challenge of reproducing~~ Reproducing the 80 m temperature in the equatorial region is ~~observed a challenge~~
259 even in the reanalysis (Figure 5b). Compared to the model in z^* , the observations at sites A and B present 2°C warmer
260 temperatures during SON and 1°C warmer temperatures during DJF. This divergence for site B starts in JJA, getting colder
261 by more than 2°C than the observations in SON. For buoy A, the most divergent seasons are SON and DJF.

262 The heat entrainment capability of the model in the equatorial region is enhanced by changing the vertical coordinate from
263 z^* to the hybrid coordinate. This is shown by comparisons of the z^* and hybrid coordinates for the 5-year run (Figure 5b).
264 This vertical discretization allows the warmer structure at 80 m to be reproduced on SON, although the temperatures in other
265 seasons remain high. A more qualified description of these mechanisms and additional adjustments can be disclosed in the
266 following studies. For comparison, Supplementary Figure 1 shows that the temperature distribution remains the same for the
267 model in the z^* coordinate over the entire simulation period.

268

269

270 **Figure 5: Seasonal 2.5-m and 80-m temperatures and 10-m winds, compared against observations.** The graphs display the
 271 temperature at 2.5 m (a) and 80 m (b) for the model and reanalysis compared to PIRATE buoy observations. In (c), the
 272 atmospheric forcing for the model, 10-m wind from ERA5, compared to QSCAT satellite observation (Hoffman and Leidner,
 273 2005). Colors distinguish the buoy sites from A to E. The model data is marked with circles, while the reanalysis from Glorys
 274 is plotted with two vertical discretizations: MOM6z takes the z-coordinate system and MOM6hyb uses a hybrid system. The
 275 same period of 5 years is considered for the model data. The reanalysis from GLORYS12v1 is marked with crosses and ERA5
 276 triangles. The seasons are named as DJF, MAM, JJA, and SON.

277

278 The tendency of the model to underestimate the entrainment of seasonal heat at the equator indicates a concern about the
 279 ITCZ displacement. The latitudinal ITCZ displacement causes the most intensive surface heating during MAM (Valerio et
 280 al., 2021), reproduced with lower bias by the model considering observations (Figures 3 and 5a). This enables the

281 development of stratification and heating of the deeper layer in the following seasons. However, although the model
282 reproduces the warmer temperatures during MAM and JJA, the deeper layers remain cooler until SON (Figure 5b). This
283 deviation indicates that although the model receives the seasonal heat at the surface, it gets under-mixed during the stratified
284 period. In contrast, for the reanalysis **and the hybrid MOM6 set-up** to reproduce the heating and the accordant stratification
285 structure during SON, the 80 m-depth waters are slightly warmer than the buoys for sites A and B.

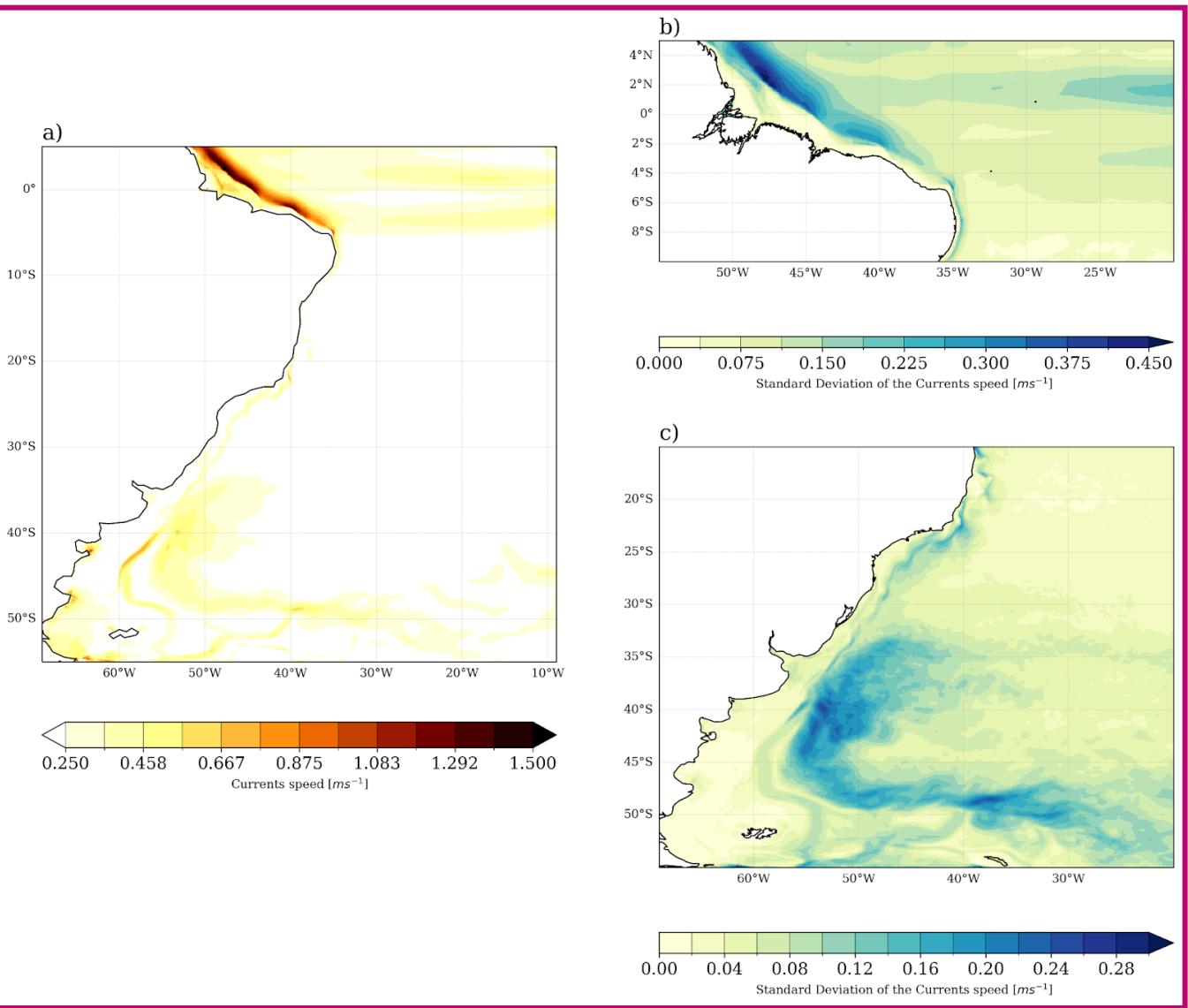
286

287 The seasonal ITCZ displacement impacts wind speed in the buoy sites, which is a misleading diagnostic that can interfere
288 with ocean currents and mixing. The model wind forcing (ERA5) is compared to QSCAT satellite observations in Figure 5c
289 to observe this effect. Although the ITCZ depends most on the wind structure during DJF and MAM in the equatorial region,
290 ERA5 wind is slower than the observations through all seasons. During the warm season, buoy sites A, B, and E present
291 wind forcing almost 1 m/s slower. The wind pattern, which contributes to the vertical mixing, suggests that equatorial region
292 temperature biases ~~occurs~~occur due to the lack of a wind-driven source.

293

294 The deviation of mixing **temperature and freshwater** in the adjacent layers ~~and the freshwater discharges~~ can be a response to
295 the vertical coordinate system. ~~The heat uptake bias in the z coordinate system is higher in comparison to the hybrid~~
296 ~~coordinate, as indicated in (Adcroft et al., 2019). In addition,~~ (Figure 5b) and to the weaker ERA5 10m-wind, compared to
297 the estimates from satellite observations (Figure 5c), ~~leads~~. The winds **lead** to less mixing in the bottom layers since it
298 dissipates the wind stress, the main energy source to the currents, and subsequent horizontal transport. These ~~weaker~~
299 ~~winds~~**factors** can also contribute to the salinity differences in the northwestern part of the domain. Lighter density is placed
300 in the Amazon Basin due to the weak zonal winds ~~contributing to constraining freshwater discharges to~~ and a lack of mixing,
301 resulting in the fresher water patterns in the surface. In turn, the lack of advection of freshwater results in salty and more
302 dense waters ($> 7 \text{ kgm}^{-3}$) in the northwest corner of the domain (Figure 3).

303 3.1.3 Meso- and Large-scale Circulation


304 The ocean circulation comprises the distribution of the current speeds and energy, potentially related to the tracer exchanges
305 in the domain. The analysis in this study allows the observation of meso- and large-scale circulation as represented by the
306 model. The 20-year mean surface current speed model outputs in Figure 6a display the mean natural path of the main
307 currents, depicted in Figure 1: SEC, NBC, BC, and the MC, distinguished from the mean flow. The BC is observed through
308 the warm high-speed currents on the mid-western Atlantic flowing southward from 20°S. The MC surrounds the east of the
309 Patagonian Shelf on the Argentinean coast south of 40°S, and the eastward flow in 50°S marks the origin of the South
310 Atlantic Current. The mean speed field also allows the appearance of high-speed currents in the BMC, between 35°S and
311 45°S. In the northwest, the flow of the NBC and the connection with the SEC is also pronounced. The NBC is north of 5°N
312 and to the northwest. Thus, the model places the ocean currents that agree with the general location described by others
313 (Lumpkin and Garzoli, 2005; Oliveira et al., 2009).

314

315 The current speed standard deviation for the two main WBCs reveals that the model can reproduce the variability of these
316 features in various different shallow parts of the domain (Figure 6b and c). The NBC is the most prominent current in the
317 domain, and the speed reaching 1.5 m/s and the standard deviation of 0.45 m/s indicate larger variability. This dynamic
318 background induces the formation of mesoscale structures through the NBC retroflection (Bueno et al., 2022; Garzoli et al.,
319 2004). Part of this variability is due to the topographic gradient but also induced by the seasonal cycle and the river
320 discharges of the Amazon River. Another contributing factor is the SEC's high speed (> 0.45 m/s) and deviation (> 0.15 m/s)
321 in equatorial waters. The SEC maintains East-West oceanic transport, suffering from the seasonal effect drift due to the trade
322 winds, which decreases its intensity during DJF compared to JJA (Lumpkin and Garzoli, 2005). The propagation of
323 mesoscale eddies also induces the intense variability noted near the BMC. The high speed and deviation are constraints in an
324 area where the retroflection of the MC propagates eddies to the west. This region is known for the shelf-break upwelling,
325 where the significant depth gradient and the proximity to the MC contribute to the enhanced mixing and upwelling (Figure
326 1).

327

329

330 **Figure 6: Mean sea surface currents (m/s) (a) and standard deviation of the mean speed (m/s) for the NBC (b) and the BMC (c)**
 331 **regions. The standard deviation considers the monthly variability of speed in the domain.**

332

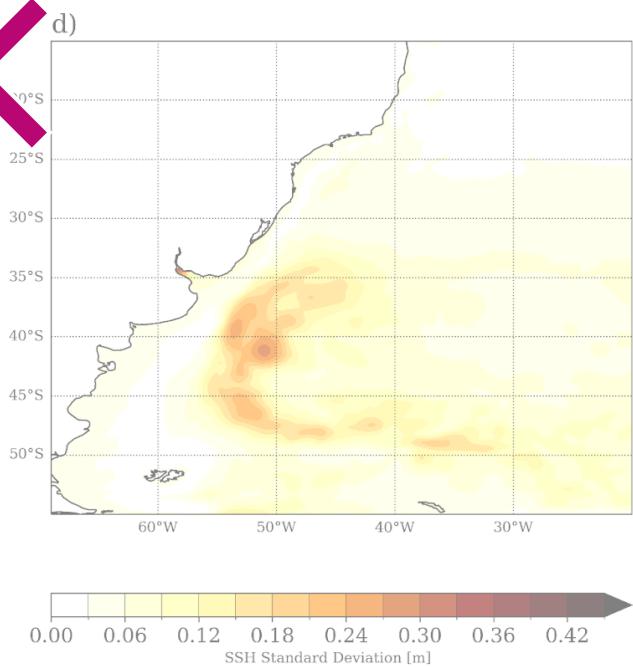
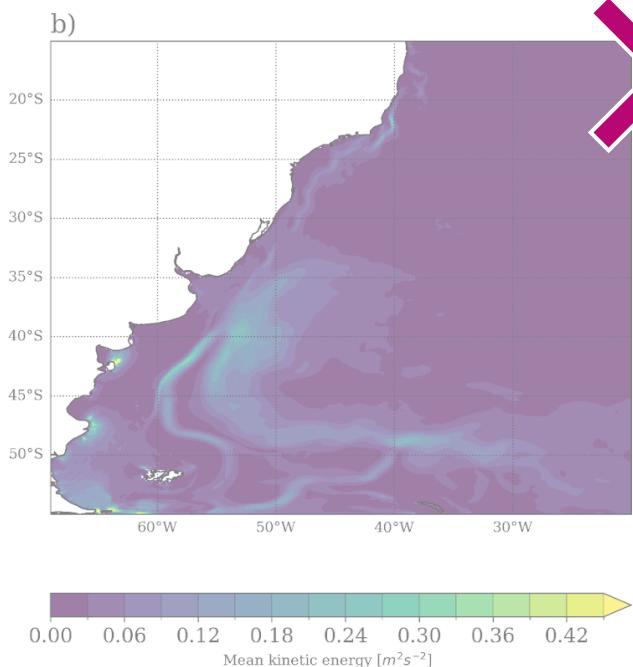
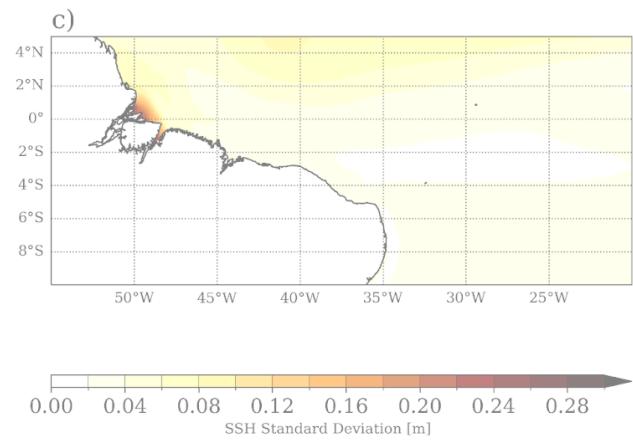
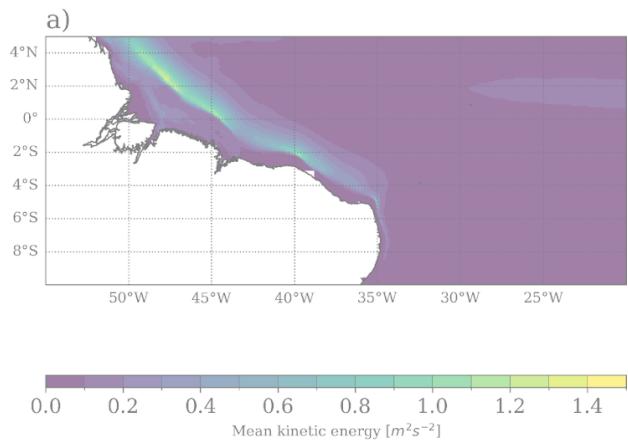
333 The presence of eddies relates to the transference from mean potential to mean kinetic energy, observed by the **SSHSea**
 334 **Surface Height (SSH)** variability and MKE in Figure 7. The MKE pattern displays the highest values where the highest
 335 speed is placed, as expected for both **WBCs**, but the variability in the SSH is observed only in the BMC (Figure 7d). The
 336 high-resolution benefits the maintenance of the MKE distribution, particularly in the BMC, where the eddies are the major
 337 variability driver. To the west of 55°W, the Patagonian Shelf circulation is guided by the interaction of semidiurnal and
 338 diurnal tidal components with the bottom friction and wind stress (Palma et al., 2004, 2008). The speed of the currents in the

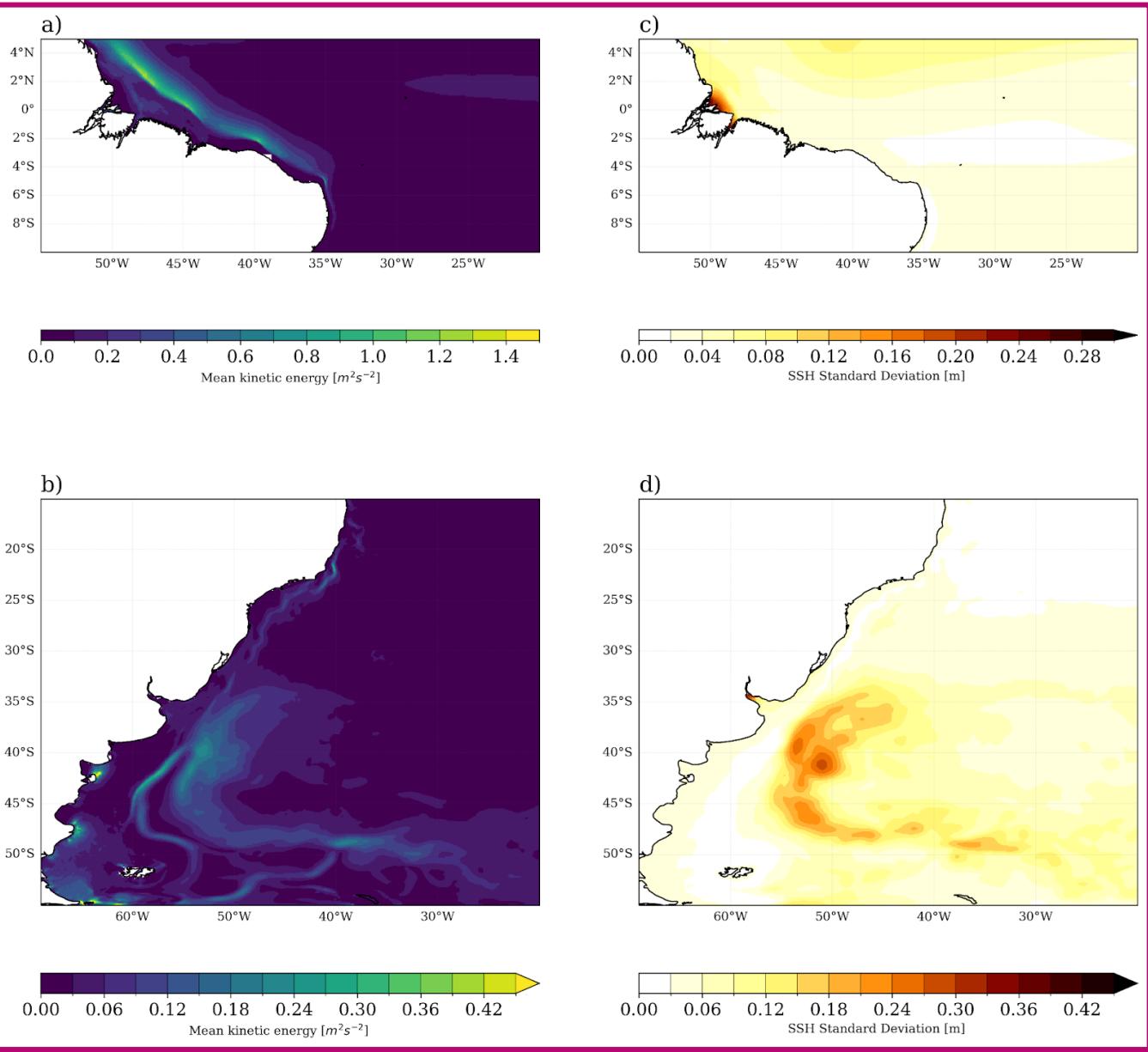
339 southern Patagonian Shelf in the model output represents this dynamical effect (Figure 6a). In other parts of the domain, the
340 variability in the SSH is higher only in the river mouth. This indicates the influence of barotropic tides, which intensely
341 modify the SSH in shallower regions. ~~As it shows fewer SSH deviations, the propagation of eddies in the NBC in this~~
342 ~~simulation is reduced. Distinguishing aspects found for each WBC are covered in the following sections.~~ The MKE
343 distribution and intensity of $> 0.2 \text{ m}^2/\text{s}^2$ are similar to observations (Oliveira et al., 2009), and the distribution agrees with
344 reanalysis (Poli et al., 2022). ~~The high variability in the BMC occurs due to the physical processes related to the confluence~~
345 ~~of the BC and MC, which, near the Patagonian shelf, promote eddy formation due to the continental slope. As it shows fewer~~
346 ~~SSH deviations, the propagation of eddies in the NBC in this simulation is reduced. This suggests that the energy cascade~~
347 ~~primary process may not only drive eddy formation in this region but also other physical dissipative processes.~~ The
348 ~~distinguished aspects found for the NBC and the BMC are covered in different sections in the following chapter, where this~~
349 ~~study evaluated the seasonal variability and trends.~~

350 4. Seasonal Variability and Trends of the WBCs

351 4.1 Brazil-Malvinas Confluence

352 The BMC variability depends on mesoscale variability and eddy propagation, often diagnosed by the standard deviation of
353 the SSH. In Figure 6 the model patterns are consistent with those analyzed by Oliveira et al. (2009), using observed data
354 from drifting buoys interpolated onto a $0.5^\circ \times 0.5^\circ$ grid. The model also shows similarity with the observed MKE field from
355 other studies (Oliveira et al., 2009, Combes and Matano, 2014a) (Figure 7). Several authors have emphasized the importance
356 of wind stress in maintaining the barotropic component of the circulation of the northern Patagonian Shelf (Lago et al., 2019;
357 Campos et al., 2013; Palma et al., 2008, 2004; Combes and Matano, 2018). The most prominent influence is during the
358 well-mixed period (JJAS) rather than in the stratified period (JFMA), when the baroclinic component is more relevant (Lago
359 et al., 2019). This effect can be diagnosed in the climatological field in Figure 7. The presence of eddies in the annual
360 average enhances the standard deviation of SSH and reveals the baroclinic component. The barotropic component is related
361 to the total MKE distribution in the annual average in Figure 7c. It is confirmed that the main variability of the velocity fields
362 is related to eddy propagation, which drives the SSH variability. The model consistently preserves the circulation features of
363 the BMC even in regions close to shallow shelves.





364


365 The model captures the seasonal behavior of the BC and the MC, revealing the density variations through the seasons in
366 Figure 3. This implies that the MC takes a northern place during the colder seasons in this hemisphere (JJA, SON) while the
367 BC advances during the warmer seasons (DJF, MAM). This is also evident in the seasonal cycle of the BC and MC transport
368 (Figure 8) and in the number of extremes per season (Figure 10). The model registered below-average transport for the MC
369 from October through April and above-average transport from May through September. The BC has the opposite cycle, and
370 above-average southward transport occurs from December until April. The seasonal cycle is similar to what was found by

371 Combes and Matano (2014b) with ROMS simulations. Despite this, ROMS presents a higher MC mean transport of around
372 73.1 Sv at 41°S compared to MOM6's 60.3 Sv transport at 45°S (Figure 8). The BC transport is higher in this simulation,
373 around 57.9 Sv, while ROMS registers 40 Sv at 33°S.

374

375 The transport of the BC and MC shows a high interannual variability, as depicted in Figure 8. ~~Different authors have~~
376 ~~indicated that both currents~~They can widely vary their transport from 510 to 88 Sv, with smaller transport in the BC (Goni et
377 al., 2011). The increased MC transport induces the seasonal negative temperature bias in the 20-year mean temperature
378 patterns from MAM until SON (Figure 3). Besides, the transports show a negative trend, more than 10 times higher than the
379 trend obtained with observations (Goni et al., 2011). This could imply a systematic error in the simulation. Studies indicated
380 that adjustments in the model bottom friction modify the mean northern ACC transport, inducing changes in the mean BMC
381 (Combes and Matano, 2014a; Peterson, 1992; Combes and Matano, 2014b). As in this simulation, the ACC transport is given
382 through reanalysis data, the bottom friction is the parameter that could interfere with the MC variability. However, the BC
383 offers a balanced higher southward trend, which other studies have indicated as a consequence of Atlantic Ocean warming
384 (Lumpkin and Garzoli, 2011; Risaro et al., 2020).

386

387 **Figure 7: Standard deviations of the Mean Kinetic Energy ($m^2 s^{-2}$) (a,b) and SSH (m) (c,d) in the regions of the WBCs. In the**
 388 **latter, fields are std concerning the monthly variability from 1997 until 2017.**

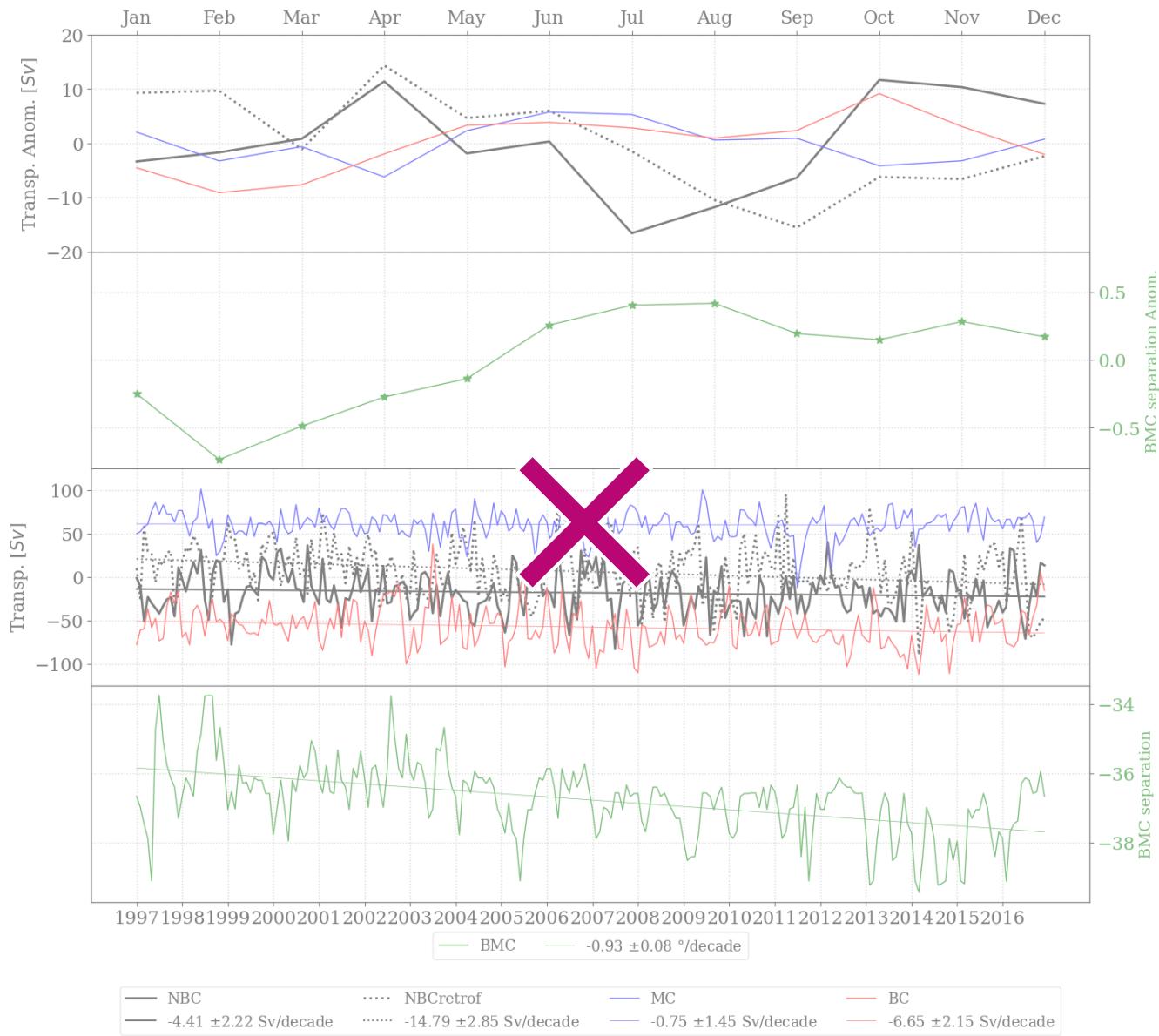
389 Although the BMC separation occurs on average between the latitudes 37°S and 39°S (Goni et al., 2011), several studies
 390 have recorded climatic trends of a southward shift in the BMC position. The trend is induced by the intense warming
 391 observed in this ocean (Risaro et al., 2022; Franco et al., 2020), but the intensity of this relation and variability is still
 392 uncertain. According to Goni et al. (2011), with satellite observations, this trend has a rate of 1.5° per decade between
 393 1993-2008. Lumpkin and Garzoli (2011) indicated a varying rate between 0.6 to 0.9° per decade with data from 1992 until

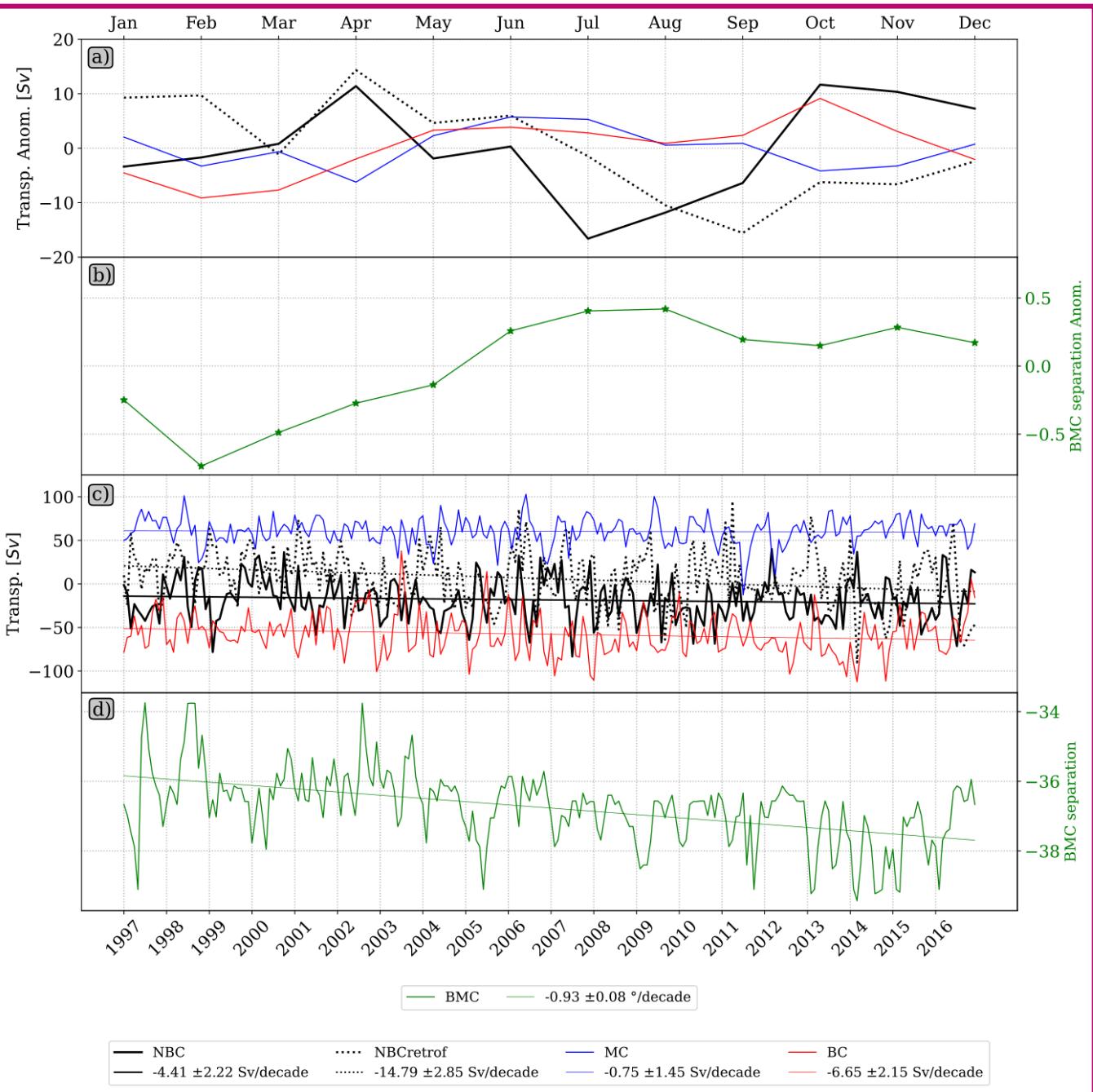
394 2007. A numerical model used by Combes and Matano (2014b) revealed a displacement of 0.62° per decade, which the
395 study related to the weakening of the ACC.

396

397 The BMC separation obtained from model outputs is the latitude where the 1000 m isobath meets the 10°C isotherm at 200
398 m, which, according to Garzoli and Bianchi (1987), depicts a location of enhanced time-space variability of the front
399 separation. For the 20-year MOM6 simulation, the mean BMC separation is at $36.76^{\circ}\text{S} \pm 0.77^{\circ}$, as depicted in Figure 2. The
400 plot shows the mean position obtained with ~~Glorys~~GLORYS12v1 for the same period and by Goni et al. (2011), which
401 considered satellite observations from 1993 until 2008. The model simulation is slightly ($\approx 1^{\circ}$) more northerly than the other
402 estimates in the plot. Using ROMS, Combes and Matano (2014b) estimate that the BMC separation is $\approx 2^{\circ}$ farther south,
403 around 39°S . ~~The same reanalysis from GLORYS12v1 has been used in other studies have depicted a similar BMC~~
404 ~~separation near 38°S (Artana et al., 2019; 2021).~~

405


406 The 20-year simulation outputs allow for the characterization of trends in this ocean, which is important for diagnosing the
407 variability of the mean state. The model overestimated the BMC separation trend over the years compared to observations.
408 The simulation registers a $-0.93^{\circ}/\text{decade}$ deviation, while Goni et al. (2011) obtained different results based on observations
409 of SST and SSH, with values of -0.39° and -0.81° per decade, respectively. Lumpkin and Garzoli (2011) indicate a trend
410 between 0.6 and $0.9^{\circ}/\text{decade}$ for 1992–2007. Despite the higher trend, the model mean BMC separation is close to other
411 estimates (Figure 2), indicating that the model seasonal bias is compensated and the MC positioning is stable in this
412 simulation.


413

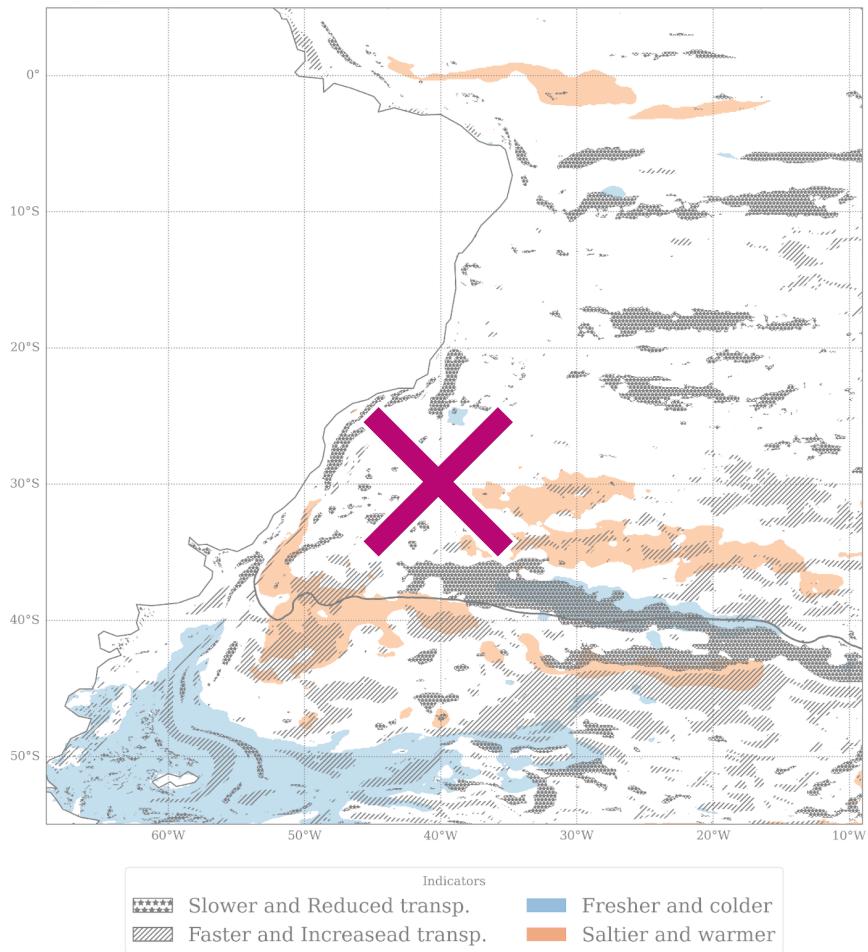
414 The trends of surface variables in Figure 9 depict important patterns in the BMC region. The temperature in the BMC is very
415 similar to the pattern obtained with satellite observations for the 1982–2017 period (Risaro et al., 2020). The temperature is
416 warmer in most BMC vicinities, while it is cooler in the southern part of the domain, representing more than 0.5 std.
417 Enhancing the polar northward flow from the Drake Passage contributes to the negative SST and SSS trend, resulting in
418 fresher and colder waters. In the BMC region, surface speed trends present a similar pattern; accordingly, warmer and saltier
419 waters are faster and have increased transport, while colder and fresher waters are slower. This agrees with the number of
420 BMC separation location extremes in Figure 10, which reduces significantly through the years, confirming the southward
421 movement. In a warmer environment, the transport generated by the BMC presents stronger initial energy, but its track has a
422 southward displacement.

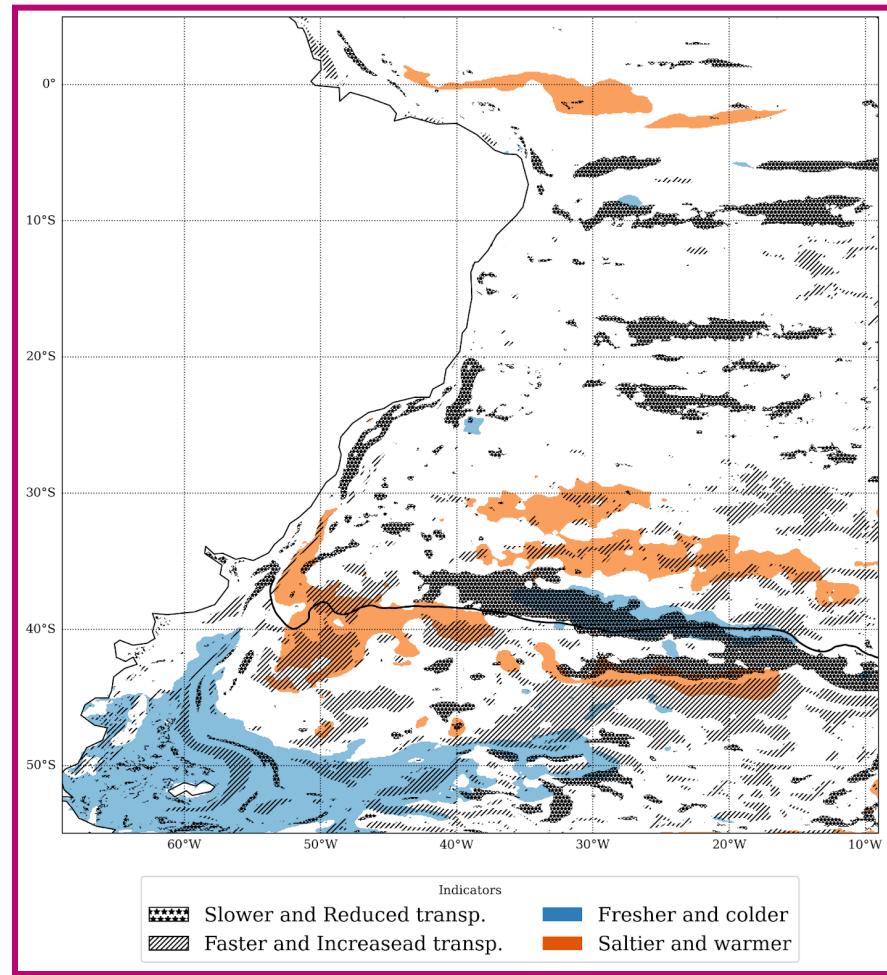
423

424 Concerning the patterns far from the coast, there is a warming longitudinal trend pattern at 35°S extending from 35°W until
425 15°W , evident in the model but not in the observations (Risaro et al., 2020). The region is known for its constant westward
426 flow and propagation of eddy from the Agulhas Current (Guerra et al., 2018). This indicates an intensification of the
427 transport to the north of 35°S in comparison to what is observed farther south.

430

431 **Figure 8: Ocean transport of the WBCs in the domain and the latitudinal displacement of the BMC separation. The first row**
 432 **shows the mean monthly transport anomalies for each WBC, and the second row shows the mean monthly BMC separation**
 433 **anomalies. The third row depicts the interannual transport for the WBC, and the bottom row shows the BMC positioning. The**
 434 **ocean transport is vertically integrated between latitudes 0° and 3.5°N for the NBC and 4° and 5°N for its retroflection, whereas it**


435 is at latitudes 45°S and 33°S for the MC and BC, respectively. The transects are depicted in Figure 2. The positive transport flows
436 northward and east, and the negative transport flows south and west.


437 4.2 North Brazil Current

438 The NBC presents high variability associated with the propagation of eddies (Bueno et al., 2022; Garzoli et al., 2004). The
439 model, however, underestimates the SSH variability in the NBC retroflection, which suggests there is weaker transport from
440 the SEC to the NBC. Some authors use zonal transport estimates based on NBC propagation and retroflection sections to
441 verify this diagnosis (Garzoli et al., 2004). The region is marked by intense currents, registering transport of 16 ± 2 Sv for
442 the NBC and 22 ± 2 Sv for the retroflection obtained by Garzoli et al. (2004). Accordingly, the estimates for the same
443 sections with MOM6 outputs indicate that the 20-year average transport is around 18.4 Sv for the NBC. For its retroflection,
444 however, the transport series initiated with an amount of ~~225~~ 22 Sv but indicated an average of 5.9 Sv. Garzoli et al. (2004)
445 considered a 15-month mean by local sounders measurements, registering a seasonal cycle with more intense transport
446 during ASO, less intense during MAM for the NBC, and the opposite for its retroflection. The MOM6 simulation fails to
447 reproduce any of these characteristics for the retroflection (Figure 8a).

448

449 With a maximum latitude at 5°N, ~~this~~ the simulation in ~~this~~ domain cannot fully develop the NBC retroflection and its eddies
450 ~~since~~ as its natural path can deviate from 4°N to 8°N (Bueno et al., 2022; Valerio et al., 2021). ~~Accordingly, the~~ The negative
451 trend of the NBC retroflection ~~indicates~~ reveals that NBC reduced its transport but ~~changed~~ its path ~~through~~ in the model, but
452 it also indicates that its path has deviated over the years and ~~relocated~~ moved outside the model's domain. Despite that,
453 features like temperature, salinity, and transport of the currents in the NBC and tropical region are precisely described during
454 MAM. The bias appearing during JJA is maintained through the colder seasons (Figure 3). This ~~represents the~~ indicates a
455 lack of mixing, which can be either due to the influence of the wind speed (Figure 5c) or the use of a z-coordinate vertical
456 structure. Another limiting factor is the wind intensity, which contributes to wind stress and mixing. Reduced wind speed has
457 proven insufficient for mixing and could lead to reduced (Figure 5b). Interactions of the winds and the currents are important
458 for mixing and eddy kinetic energy supply (Song et al., 2020). Thus, insufficient winds could reduce eddy formation, thereby
459 reducing the seasonal NBC retroflection transport.

461

462 **Figure 9: Trends in the WBCs.** Trends of different surface variables simulated by the model. Trends originate from a 36-month
 463 running mean smoothed series of standardized anomalies (Risaro et al., 2020). Colored regions are significant at a 95%
 464 confidence level, according to Mann-Kendall's test. The trends by decade are normalized, and the colors display anomalous
 465 patterns above 0.5 std.

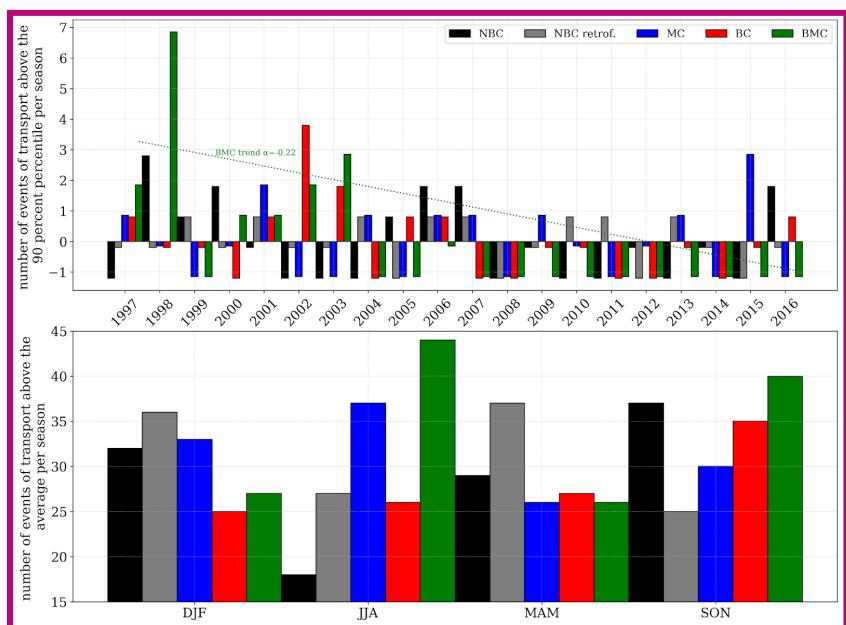
466

467 Although this simulation cannot fully represent the development of the NBC retroreflection, investigating this deviation is
 468 crucial to determine the variability of some climate patterns in the equatorial region, such as the storm track, the AMOC, and
 469 the ITCZ. The absence of eddy propagation (Figure 7) and transport (Figure 8) in the region, for instance, might indicate
 470 deviation in the dynamical structure of the model. Nevertheless, the model conserves large-scale SEC transport since the
 471 mean NBC eastward transport resembles values slightly closer than those obtained from local measurements (Garzoli et al.,
 472 2004). Still, many other factors could disfavor the propagation of NBC eddies. The proximity to the northern boundary is a
 473 critical limiting factor, since this front could change its position through the years. However, it is also important to indicate
 474 that the negative trend observed in the region can be related to atmospheric mechanisms and trends.

475


476 The trends in Tropical Atlantic Ocean waters indicate elevated temperature and salinity, as shown in Figure 9. This trend is
477 not associated with transport and speed patterns. The Amazon River flow increases the transport and current speed in the
478 northwestern part of the domain. The merged patterns of current speed and transport attenuate the eccentricity of the currents
479 in the region, as revealed in Figure 8b. Thus, while the ~~North Brazil Current (NBC)~~^{NBC} and its retroflection experience a
480 reduction in transport, they exhibit an increase in speed. The lack of stratification, as shown in Figure 4, suggests an
481 inefficient transport of momentum to the sub-surface layers. This may also be influenced by external forcings or the
482 redistribution of flow pathways out of the domain.

483 4.3 Evaluation of external and internal forcings


484 The WBCs in the Southwestern Atlantic domain feature intense variability and trends. This has been indicated by trends in
485 the mean state of the surface variables (Figure 9), along with a tendency toward reduced extreme transport (Figure 10).
486 Furthermore, extreme transports in the BC/MC are associated with the displacement of the BMC. In 1998, a year of an
487 elevated number of extreme BMC displacements, the signal that enhances the southward movement of the BMC is unrelated
488 to the transport amount toward the region. Thus, external teleconnections also generate modulations of the currents in the
489 region. This section further investigates the components of this modulation.

490

491 External forcing, such as atmospheric teleconnections, can explain the mixed signals of the trend, indicating that the
492 influence is not driven strictly by local forcings. Combes and Matano (2018) observed that the La Plata Basin flows are
493 linked to the interannual variability of the ENSO. The correlation coefficients between the WBCs and climate indices
494 indicate the susceptibility of the MC to Eastern Pacific Ocean variability, with significant correlation between its transport
495 and the Nino1.2 and the PDO indices of 0.14 and 0.18, respectively. The BMC also presents a significant correlation of 0.26
496 with the Nino1.2 index. These relations combine tropical and extratropical teleconnections with atmospheric components
497 that drive turbulence and freshwater discharge in the domain. ~~The result is~~ (Combes and Matano, 2018), resulting in strong
498 MC and northern BMC in response to rising temperatures in the Eastern Pacific.

499

500

501 **Figure 10: Registries of extreme transport events in the WBCs. The graphics show the events from 1997 to 2016 with transport**

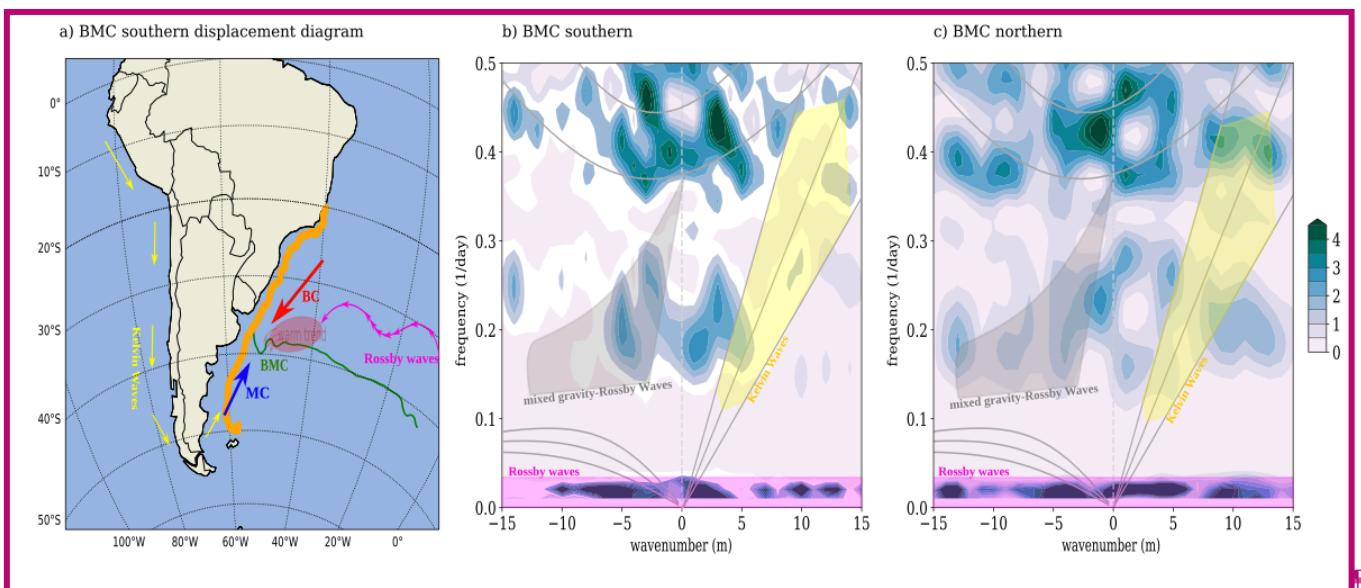
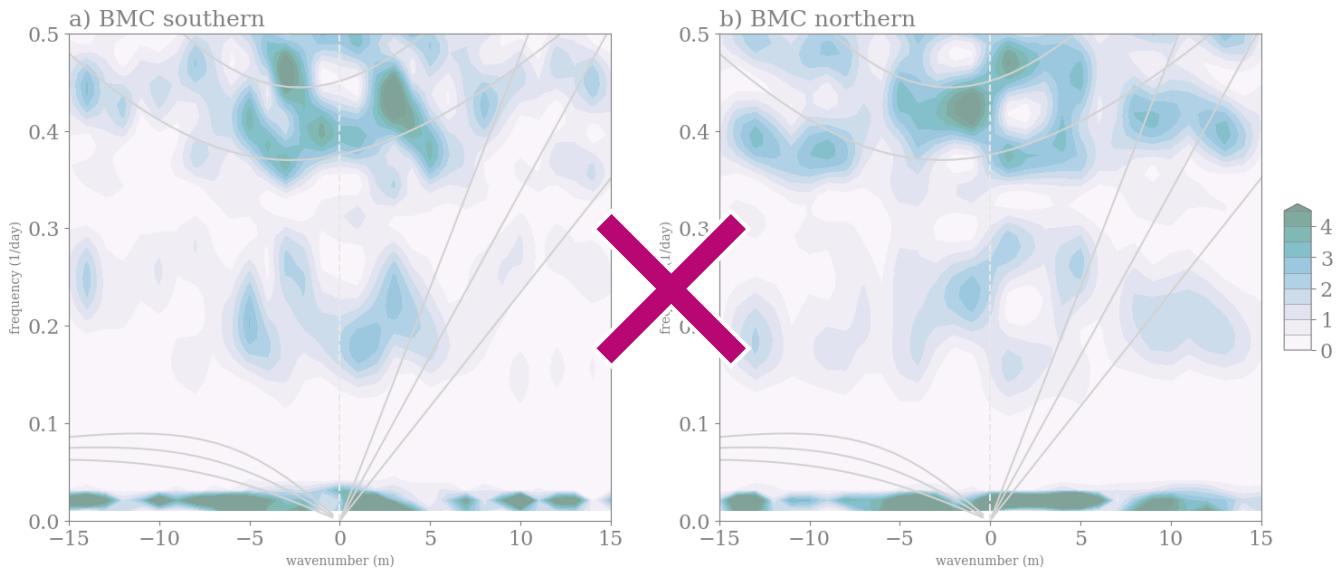
502 above the 90 percent percentile per year (top) and above the average per season (bottom).

503

504 Due to the proximity to the coastal slopes, the internal variability of the currents and transport in the WBCs results in a

505 broader number of dynamic interactions, different from those in the open ocean (Hughes et al., 2019). The wave propagation

506 from tropical regions in the Pacific follows the western South American coastline, which propagates and contributes to the
507 coastal dynamics in the Southwest Atlantic Ocean. Poli et al. (2022) reveal that Kelvin wave dispersion and Rossby wave
508 propagation from the Madden-Julian Oscillation are linked to the barotropic and baroclinic components of the coastal
509 trapped waves in the Southwest Atlantic Ocean.



510

511 To examine the waves occurring on the coastline in the model outputs, we plot a dispersion diagram following Wheeler and
512 Kiladis (1998). The diagram reveals the spectrum eccentricity of a determined location at a determined period in time,
513 enabling the dynamic patterns to be classified by frequency and wavenumbers. Figure 11 displays the distinctive patterns
514 during two distinct behaviors of the BMC separation: southern and northern extreme shifts. The wave patterns indicate that
515 this region is influenced by coastal and open ocean dynamics. ~~The~~In the diagram, the low-frequency energy waves of
516 positive and negative wavenumbers reveal the influence of eastward and westward Rossby wave propagation. ~~The~~The westward
517 pattern can ~~This region is affected by westward waves that could~~ be driven by MJO propagation (Poli et al., 2022), while the
518 eastward ~~pattern is~~waves are a response to the Indian Ocean Rossby Wave propagation from the Agulhas Current (Pontes
519 and Menvil, 2022). Another important pattern is the higher-frequency modes, whose behavior is similar to that of inertial
520 gravity waves, and ~~we~~ts associate this pattern with the coastal trapped wave disturbance. Despite the high frequency, the
521 inertial gravity waves in this region have shorter wavelengths. ~~Thus, the~~Their propagation is constrained in the region and is
522 mainly ~~affected by~~wind stress, interacting with the bottom topography, and ~~interactions~~with other wave patterns. ~~Their~~
523 propagation relies on (Alford et al., 2016). The driver is sustained by local variations in density and temperature on the ocean
524 surface due to wind forcing. The most important aspect of this pattern in the region is the interaction of inertial gravity waves
525 with the mesoscale and submesoscale motions (Alford et al., 2016).

526

527 The different ~~Different~~ energy spectra occur during the distinct events for mid-frequency waves, ~~which in the theory are~~
528 classified as mixed gravity-Rossby Waves and Kelvin Waves (Figure 11, ~~marked in grey and yellow~~). The propagation of
529 Kelvin Waves also relates to external forcing from equatorial sources (Hughes et al., 2019; Poli et al., 2022). ~~The~~The diagram
530 shows that ~~its energetic disturbance contributes to northern BMC displacement~~, which is ~~explained by the northward~~
531 propagation of these features ~~According to Poli et al. (2022), the MJO propagation trigger Kelvin Waves propagation in~~
532 Central Pacific that reaches the South Atlantic driving coastal trapped waves into the Southwest Atlantic Ocean. This results
533 in strong trigger for waves propagating northward (Poli et al., 2022), auxiliating the acceleration of the northern MC and
534 northern BMC. The diagram confirms that coastal trapped waves energetic disturbance contributes to northern BMC
535 displacement, which is presented here in response to rising temperatures in the Eastern Pacific. This result increases the
536 understanding of the drivers of extreme shifts in the BMC separation.

537

541 **Figure 11: Diagram with the interactions in the BMC region modifying its displacement (a). Frequency and wavenumber diagram**
 542 **during extreme meridional displacement of the BMC separation: ab) BMC southern in 2014, bc) BMC northern in 1997.** The
 543 spectrum reveals the frequency and wavenumber in the model SSH outputs band-pass series filtered between 40 and 130 days for
 544 the 300 m isobath between latitudes 20°S and 50°S. The diagram is for the transect along the 300m isobath, in orange.

545

546 5. Summary and Conclusions

547 This work analyzed the representation of the Southwestern Atlantic circulation using a 20-year MOM6 simulation at a 7 km
548 resolution, focusing on the variability of the WBCs. The results first explore the performance of the simulation, which has
549 proven to be skillful when compared to observational and reanalysis datasets. The Eddy-permitting resolution allows a better
550 representation of the SST and SSS fields than coarser resolution simulations. The model accurately captured surface ocean
551 circulation and temperature and salinity gradients. The maximum negative SST bias of 1.0°C is sufficiently good
552 performance for forecasting ocean conditions. The correspondence between density and MLD to the salinity and temperature
553 structure indicates that the model reproduces thermodynamic effects fairly. Their effects on the density field drive the
554 large-scale circulation, as highlighted by the global circulation and mesoscale features.

555

556 The transport of the currents in the simulation has evolved over decades in the Southwestern Atlantic WBCs. The BMC
557 separation is a region with stronger kinetic energy in the domain. Observing the components of the BMC variability can help
558 identify the location of eddy propagation and shelfbreak upwelling. Although it has been related to the bottom drag, the
559 enhanced southward shift in the BMC is also consistent with the heating trend in this study. The warming Atlantic is
560 followed by a modified BC transport with an increase of 6.65 ± 2.15 Sv in the southward flow per decade. This feature is
561 usually balanced by the conservation of the MC transport. The trends show enhanced northward transport of fresher and
562 colder waters from the ACC, which reduces the temperature by bringing cool waters to the region. Despite this, the trends
563 modify the location of the BMC separation, with a southward displacement of 0.93 ± 0.08 °/decade.

564

565 We show that the location of the BMC separation has extremes that relate to natural climate variability patterns in the Pacific
566 Ocean. The Pacific Ocean warming has a stronger correlation and enhanced activity during MC transport extremes and
567 northward BMC. The Nino1.2 (East Niño) and PDO indices corroborate this behavior. The impacts are explained by a
568 spectral analysis, which reveals Rossby and Kelvin Wave-like disturbances, in addition to the inertial gravity waves intrinsic
569 in the slope proximity. Eastward and westward propagating Rossby waves occur as a link between tropical disturbances
570 such as the MJO and the Agulhas Current (Guerra et al., 2018; Poli et al., 2022). The Kelvin wave disturbances appear to be
571 the main energy source for the BMC separation latitudinal shift, revealing strong spectral power for a northern BMC
572 positioning as they propagate northward. This indicates that although the warmer Atlantic enhances the southward shift in
573 the BMC separation, mechanisms intensified by the warmer Eastern Pacific can enhance the northward flow.

574

575 The NBC also presents reduced transport, but the model has captured a higher negative trend than that of the one in the BC.
576 The unbalanced reduction of 14.79 ± 2.85 Sv per decade for its retroflection weakly correlates with natural climate
577 variability patterns. Still, other contributing factors can explain the intense influences observed in the NBC activity. We
578 found that the transport trends occur alongside a positive current speed trend. Since much of the variability of the ocean

579 surface currents receives a direct contribution from the wind, weaker winds lead to reduced NBC eastward propagation with
580 fewer eddies. Along with the absence of winds, we show a reduced stratification pattern commonly linked to lower
581 temperatures and, consequently, the transport in adjacent layers. Additionally, the reduced transport registered by the model
582 in the tropical regions could be associated with the proximity to the northern boundaries and the modification of flow
583 pathways, which should be addressed in future research.

584

585 The coordinate system is also relevant to the deviated stratification structure captured by the model in the equatorial region.
586 Studies have indicated that the reduced mixing in the ocean interior is inherent to vertical z-coordinate system models,
587 especially in highly stratified regions (Adcroft et al., 2019; Griffies et al., 2000). This could contribute to the bias found in
588 the equatorial and Amazonian regions but also can lead to the lack of mixing in the La Plata basin outflow region.

589

590 The analysis of the model output has proven helpful in diagnosing how the WBC dynamics are expected to vary under a
591 changing climate. We suggest that future experiments evaluate the efficiency of other coordinate systems in this domain. The
592 displacement of such energetic regions can cause tremendous impacts on marine ecosystems. We advise future research to
593 integrate a biogeochemistry model to diagnose this interaction specifically. Furthermore, an analysis comprising the
594 atmospheric feedback under the displaced WBCs is also recommended, as the Southwestern Atlantic Ocean presents an
595 important relationship with atmospheric systems (Laureanti et al., 2024).

596

597

598 *Code and Data Availability.* The datasets used for model validation and comparison are listed as follows: mixed-layer depth
599 (https://mld.ifremer.fr/Surface_Mixed_Layer_Depth.php, De Boyer Montéut et al., 2004), QSCAT wind speed
600 (<https://podaac.jpl.nasa.gov/QuikSCAT?tab=-mission-objectives§ions=about%2Bdata>, Hoffman and Leidner, 2005),
601 PIRATA (<https://www.pmel.noaa.gov/gtmba/pmel-theme/atlantic-ocean-pirata>, Servain et al., 1998) and World Ocean Atlas
602 2023 (<https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOA23>, Reagan et al.,
603 2023).

604

605 The datasets used to create the model forcing are listed as follows: ~~GLORYS12~~GLORYS12v1 reanalysis
606 (<https://doi.org/10.48670/moi-00021>, Global Ocean Physics Reanalysis, 2021), TPXO9 (<https://www.tpxo.net/home>, Egbert
607 and Erofeeva, 2002), GloFAS (<https://doi.org/10.24381/cds.a4fdd6b9>, Zsoter, 2019), GEBCO (<https://download.gebco.net/>,
608 Giribabu et al., 2023) SeaWiFS (<https://oceandata.sci.gsfc.nasa.gov/>, NASA, 2018) and ERA5
609 (<https://cds.climate.copernicus.eu/datasets>, Hersbach et al., 2023). The model source code is uploaded in
610 <https://zenodo.org/records/17252994> and scripts for setting-up are in <https://zenodo.org/records/17252554>. The model
611 outputs are available under the link
612 <http://antares.esm.rutgers.edu:8080/thredds/catalog/MOM6/ESMG/SWA14/exp.010/catalog.html>

613

614 *Author contributions.* The authors contributed equally to this work.

615

616 *Competing interests.* The authors declare no conflict of interest.

617

618 *Acknowledgements.* The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Finance
619 Code 001 for its financial support and the Earth System Modelling Laboratory at Rutgers University.

620 Part of this work used resources from the Centro Nacional de Processamento de Alto Desempenho em São Paulo

621 (CENAPAD-SP) in Brazil and also the high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX)

622 provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation.

623 SCC thanks CNPq for the grant no. 312742/2021-5.

624 6. References

625 Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean
626 circulation models, *Ocean Modelling*, 7, 269–284, <https://doi.org/10.1016/j.ocemod.2003.09.003>, 2004.

627 Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., Dunne, J. P., Griffies, S. M., Hallberg, R.,
628 Harrison, M. J., Held, I. M., Jansen, M. F., John, J. G., Krasting, J. P., Langenhorst, A. R., Legg, S., Liang, Z., McHugh, C.,
629 Radhakrishnan, A., Reichl, B. G., Rosati, T., Samuels, B. L., Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang,
630 B., Zadeh, N., and Zhang, R.: The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation
631 Features, *Journal of Advances in Modeling Earth Systems*, 11, 3167–3211, <https://doi.org/10.1029/2019MS001726>, 2019.

632 Aiki, H., Zhai, X., and Greatbatch, R. J.: Energetics of the global ocean the role of mesoscale eddies, chap. 4, pp. 109–134,
633 https://doi.org/10.1142/9789814696623_0004, 2015.

634 Alford, M. H., MacKinnon, J. A., Simmons, H. L., and Nash, J. D.: Near-Inertial Internal Gravity Waves in the Ocean.
635 Annual review of marine science, 8, 95–123, 2016.

636 Artana, C., & Provost, C.: Intense anticyclones at the global Argentine Basin array of the Ocean Observatory Initiative.
637 *Ocean Science*, 19(3), 953–971. <https://doi.org/10.5194/OS-19-953-2023>, 2023.

638 Artana, C., Provost, C., Poli, L., Ferrari, R. & Lellouche, J.-M.: Revisiting the Malvinas Current upper circulation and water
639 masses using a highresolution ocean reanalysis. *Journal of Geophysical Research. Oceans*, 126(6),
640 doi.org/10.1029/2021JC017271, 2021.

641 Artana, C., Provost, C., Lellouche, J.-M., Rio, M.-H., Ferrari, R., & Sennéchal, N.: The Malvinas Current at the Confluence
642 with the Brazil Current: Inferences from 25 years of Mercator Ocean reanalysis. *Journal of Geophysical Research: Oceans*,
643 124, 7178–7200, <https://doi.org/10.1029/2019JC015289>, 2019.

644 Barré, N., Provost, C., & Saraceno, M.: Spatial and temporal scales of the Brazil–Malvinas Current confluence documented
645 by simultaneous MODIS Aqua 1.1-km resolution SST and color images. *Advances in Space Research*, 37(4), 770–786.
646 <https://doi.org/10.1016/J.ASR.2005.09.026>, 2006

647 Bonou, F. K., Noriega, C., Lefèvre, N., & Araujo, M.: Distribution of CO₂ parameters in the Western Tropical Atlantic
648 Ocean. *Dynamics of Atmospheres and Oceans*, 73, 47–60. <https://doi.org/10.1016/J.DYNATMOCE.2015.12.001>, 2016.

649 Brum, A. L., de Azevedo, J. L. L., de Oliveira, L. R., and Calil, P. H. R.: Energetics of the Brazil Current in the Rio Grande
650 Cone region, *Deep Sea Research Part I: Oceanographic Research Papers*, 128, 67–81,
651 <https://doi.org/10.1016/J.DSR.2017.08.014>, 2017.

652 Bueno, L. F., Costa, V. S., Mill, G. N., and Paiva, A. M.: Volume and Heat Transports by North Brazil Current Rings,
653 *Frontiers in Marine Science*, 9, <https://doi.org/10.3389/fmars.2022.831098>, 2022.

654 Campos, P. C., Möller, O. O., Piola, A. R., and Palma, E. D.: Seasonal variability and coastal upwelling near Cape Santa
655 Marta (Brazil), *Journal of Geophysical Research: Oceans*, 118, 1420–1433, <https://doi.org/10.1002/JGRC.20131>, 2013.

656 Chassignet, E. P. and Xu, X.: On the Importance of High-Resolution in Large-Scale Ocean Models,
657 <https://doi.org/10.1007/s00376-021-0385-7>, 2021.

658 Combes, V. and Matano, R. P.: A two-way nested simulation of the oceanic circulation in the Southwestern Atlantic, *Journal*
659 *of Geophysical Research: Oceans*, 119, 731–756, <https://doi.org/10.1002/2013JC009498>, 2014a.

660 Combes, V. and Matano, R. P.: Trends in the Brazil/Malvinas Confluence region, *Geophysical Research Letters*, 41,
661 8971–8977, <https://doi.org/10.1002/2014GL062523>, 2014b.

662 Combes, V. and Matano, R. P.: The Patagonian shelf circulation: Drivers and variability, *Progress in Oceanography*, 167,
663 24–43, <https://doi.org/10.1016/J.POCEAN.2018.07.003>, 2018.

664 de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: An
665 examination of profile data and a profile-based climatology, *Journal of Geophysical Research: Oceans*, 109,
666 <https://doi.org/10.1029/2004JC002378>, 2004.

667 Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, *Journal of Atmospheric and*
668 *Oceanic Technology*, 19, 183 – 204,
669 [https://doi.org/https://doi.org/10.1175/1520-0426\(2002\)019<0183:EIMOBO>2.0.CO;2](https://doi.org/https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2), 2002.

670 Ferrari, R., Artana, C., Saraceno, M., Piola, A. R., & Provost, C.: Satellite Altimetry and Current-Meter Velocities in the
671 Malvinas Current at 41°S: Comparisons and Modes of Variations. *Journal of Geophysical Research: Oceans*, 122(12),
672 9572–9590. <https://doi.org/10.1002/2017JC013340>, 2017.

673 Fox-Kemper, B., Danabasoglu, G., Ferrari, R., Griffies, S. M., Hallberg, R. W., Holland, M. M., Maltrud, M. E., Peacock, S.,
674 and Samuels, B. L.: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate
675 simulations, *Ocean Modelling*, 39, 61–78, <https://doi.org/10.1016/j.ocemod.2010.09.002>, modelling and Understanding the
676 Ocean Mesoscale and Submesoscale, 2011.

677 Franco, B. C., Defeo, O., Piola, A. R., Barreiro, M., Yang, H., Ortega, L., Gianelli, I., Castello, J. P., Vera, C., Buratti, C.,
678 Pájaro, M., Pezzi, L. P., and Möller, O. O.: Climate change impacts on the atmospheric circulation, ocean, and fisheries in
679 the southwest South Atlantic Ocean: a review, *Climatic Change*, 162, 2359–2377,
680 <https://doi.org/10.1007/S10584-020-02783-6>, 2020.

681 Garzoli, S. L. and Bianchi, A.: Time-space variability of the local dynamics of the Malvinas-Brazil confluence as revealed
682 by inverted echosounders, *Journal of Geophysical Research: Oceans*, 92, 1914–1922,
683 <https://doi.org/https://doi.org/10.1029/JC092iC02p01914>, 1987.

684 Garzoli, S. L. and Matano, R.: The South Atlantic and the Atlantic Meridional Overturning Circulation, *Deep Sea Research*
685 Part II: Topical Studies in Oceanography, 58, 1837–1847, <https://doi.org/10.1016/j.dsr2.2010.10.063>, climate and the
686 Atlantic Meridional Overturning Circulation, 2011.

687 Garzoli, S. L., Ffield, A., Johns, W. E., and Yao, Q.: North Brazil Current retroflection and transports, *Journal of*
688 *Geophysical Research: Oceans*, 109, <https://doi.org/10.1029/2003JC001775>, 2004.

689 Giribabu, D., Hari, R., Sharma, J., Ghosh, K., Padiyar, N., Sharma, A., Bera, A. K., and Srivastav, S. K.: Assessment of
690 GEBCO 2023 Gridded Bathymetric Data in Shallow Waters Using the Seafloor from ICESat-2 Photons, *Preprint to Marine*
691 *Geophysical Research*, 2023, <https://doi.org/10.21203/rs.3.rs-3020167/v1>, 2023.

692 Goni, G. J., Bringas, F., and DiNezio, P. N.: Observed low frequency variability of the Brazil Current front, *Journal of*
693 *Geophysical Research: Oceans*, 116, <https://doi.org/10.1029/2011JC007198>, 2011.

694 Griffies, S. M., Böning, C., Bryan, F. O., Chassignet, E. P., Gerdes, R., Hasumi, H., Hirst, A., Treguier, A.-M., and Webb, D.:
695 Developments in ocean climate modelling, *Ocean Modelling*, 2, 123–192,
696 [https://doi.org/https://doi.org/10.1016/S1463-5003\(00\)00014-7](https://doi.org/https://doi.org/10.1016/S1463-5003(00)00014-7), 2000.

697 Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., Dunne, J. P., Goddard, P.,
698 Morrison, A. K., Rosati, A., Wittenberg, A. T., Yin, J., and Zhang, R.: Impacts on ocean heat from transient mesoscale
699 eddies in a hierarchy of climate models, *Journal of Climate*, 28, 952–977, <https://doi.org/10.1175/JCLI-D-14-00353.1>,
700 2015.

701 Guerra, L. A. A., Paiva, A. M., Chassignet, E. P.: On the translation of Agulhas rings to the western South Atlantic Ocean,
702 *Deep-Sea Research Part I*, 139, 104–113, 2018.

703 Guerrero, R. A., Piola, A. R., Fenco, H., Matano, R. P., Combes, V., Chao, Y., James, C., Palma, E. D., Saraceno, M., and
704 Strub, P. T.: The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations,
705 *Journal of Geophysical Research: Oceans*, 119, 7794–7810, <https://doi.org/10.1002/2014JC010113>, 2014.

706 Hallberg, R.: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects, *Ocean Modelling*,
707 72, 92–103, <https://doi.org/10.1016/j.ocemod.2013.08.007>, 2013.

708 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum,
709 I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to

710 present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 (Accessed on
711 24-Jan-2025)

712 Hoffman, R. N. and Leidner, S. M.: An Introduction to the Near–Real–Time QuikSCAT Data, *Weather and Forecasting*, 20,
713 476 – 493, [https://doi.org/https://doi.org/10.1175/WAF841.1](https://doi.org/10.1175/WAF841.1), 2005.

714 Hughes, C.W., Fukumori, I., Griffies, S.M., Huthnance, J.M., Minobe, S., Spence, P., Thompson, K.R., Wise, A.: Sea
715 Level and the Role of Coastal Trapped Waves in Mediating the Influence of the Open Ocean on the Coast. *Surv. Geophys.*,
716 40, 1467–1492, <https://doi.org/10.1007/s10712-019-09535-x>, 2019

717 Jackson, L., Hallberg, R., and Legg, S.: A Parameterization of Shear-Driven Turbulence for Ocean Climate Models, *Journal*
718 *of Physical Oceanography*, 38, 1033 – 1053, <https://doi.org/https://doi.org/10.1175/2007JPO3779.1>, 2008.

719 Jean-Michel, L., Eric, G., Romain, B.-B., Gilles, G., Angélique, M., Marie, D., Clément, B., Mathieu, H., Olivier, L. G.,
720 Charly, R., Tony, C., Charles-Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D., and Pierre-Yves, L. T.: The
721 Copernicus Global 1/12° Oceanic and Sea Ice ~~GLORYS12~~GLORYS12v1 Reanalysis, *Frontiers in Earth Science*, 9,
722 <https://doi.org/10.3389/feart.2021.698876>, 2021.

723 Kang, D., Curchitser, E. N., and Rosati, A.: Seasonal Variability of the Gulf Stream Kinetic Energy, *Journal of Physical*
724 *Oceanography*, 46, 1189 – 1207, <https://doi.org/https://doi.org/10.1175/JPO-D-15-0235.1>, 2016.

725 Kendall, M. G. *Rank Correlation Methods*, 4th edition, Charles Griffin, London, 1975.

726 Lago, L. S., Saraceno, M., Martos, P., Guerrero, R. A., Piola, A. R., Paniagua, G. F., Ferrari, R., Artana, C. I., and Provost,
727 C.: On the Wind Contribution to the Variability of Ocean Currents Over Wide Continental Shelves: A Case Study on the
728 Northern Argentine Continental Shelf, *Journal of Geophysical Research: Oceans*, 124, 7457–7472,
729 <https://doi.org/10.1029/2019JC015105>, 2019.

730 Laureanti, N. C., Chou, S. C., Nobre, P., and Curchitser, E.: On the relationship between the South Atlantic Convergence
731 Zone and sea surface temperature during Central-East Brazil extreme precipitation events, *Dynamics of Atmospheres and*
732 *Oceans*, 105, 10.1016/j.dynatmoce.2023.101422, 2024.

733 Locarnini, R., Mishonov, A., Baranova, O., Boyer, T., Zweng, M., Garcia, H., Reagan, J., Seidov, D., Weathers, K., Paver,
734 C., Smolyar, I., and Locarnini, R.: *World Ocean Atlas 2018, Volume 1: Temperature*, 2019.

735 Lumpkin, R. and Garzoli, S.: Interannual to decadal changes in the western South Atlantic’s surface circulation, *Journal of*
736 *Geophysical Research: Oceans*, 116, <https://doi.org/10.1029/2010JC006285>, 2011.

737 Lumpkin, R. and Garzoli, S. L.: Near-surface circulation in the Tropical Atlantic Ocean, *Deep Sea Research Part I:*
738 *Oceanographic Research Papers*, 52, 495–518, <https://doi.org/10.1016/J.DSR.2004.09.001>, 2005.

739 Mann, H. B. Non-parametric tests against trend, *Econometrica* 1945, 13, 163-171.

740 Marcello, F., Tonelli, M., Ferrero, B., and Wainer, I.: Projected Atlantic overturning slow-down is to be compensated by a
741 strengthened South Atlantic subtropical gyre, *Communications Earth & Environment* 2023 4:1, 4, 1–15,
742 <https://doi.org/10.1038/s43247-023-00750-4>, 2023.

743 Mason, E., Pascual, A., Gaube, P., Ruiz, S., Pelegrí, J. L., and Delepoule, A.: Subregional characterization of mesoscale
744 eddies across the Brazil-Malvinas Confluence, *Journal of Geophysical Research: Oceans*, 122, 3329–3357,
745 <https://doi.org/10.1002/2016JC012611>, 2017.

746 Müller, V. and Melnichenko, O.: Meridional Eddy Heat Transport Variability in the Surface Mixed Layer of the Atlantic
747 Ocean, *Journal of Geophysical Research: Oceans*, 126, e2021JC017 789, <https://doi.org/10.1029/2021JC017789>, 2021.

748 NASA: Sea-viewing Wide Field-of-view Sensor (SeaWiFS) level-2 ocean color data,
749 <https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L2/OC/2018>, NASA Ocean Biology Processing Group distributed active
750 archive center, 2018.

751 NOAA, National Oceanic and Atmospheric Administration, Physical Sciences Laboratory (PSL). Climate Indices: Monthly
752 Atmospheric and Ocean Time-Series. Available online: <https://psl.noaa.gov/data/climateindices/list/> (accessed on 15 May
753 2024).

754 Nobre, P., Lemos, A. T., Giarolla, E., Camayo, R., Namikawa, L., Kampel, M., Rudorff, N., Bezerra, D. X., Lorenzzetti, J.,
755 and Gomes, J.: The 2019 northeast Brazil oil spill: scenarios, *Anais da Academia Brasileira de Ciências*, 94, e20210 391,
756 <https://doi.org/10.1590/0001-3765202220210391>, 2022.

757 Oliveira, L. R., Piola, A. R., Mata, M. M., and Soares, I. D.: Brazil Current surface circulation and energetics observed from
758 drifting buoys, *Journal of Geophysical Research: Oceans*, 114, 10 006, <https://doi.org/10.1029/2008JC004900>, 2009.

759 Palma, E. D., Matano, R. P., and Piola, A. R.: A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic
760 response to tidal and wind forcing, *Journal of Geophysical Research: Oceans*, 109, 8014,
761 <https://doi.org/10.1029/2004JC002315>, 2004.

762 Palma, E. D., Matano, R. P., and Piola, A. R.: A numerical study of the Southwestern Atlantic Shelf circulation: Stratified
763 ocean response to local and offshore forcing, *Journal of Geophysical Research: Oceans*, 113, 11 010,
764 <https://doi.org/10.1029/2007JC004720>, 2008.

765 Peterson, R. G.: The boundary currents in the western Argentine Basin, *Deep Sea Research Part A. Oceanographic Research
766 Papers*, 39, 623–644, [https://doi.org/https://doi.org/10.1016/0198-0149\(92\)90092-8](https://doi.org/https://doi.org/10.1016/0198-0149(92)90092-8), 1992.

767 Pezzi, L. P., Quadro, M. F., Lorenzzetti, J. A., Miller, A. J., Rosa, E. B., Lima, L. N., and Sutil, U. A.: The effect of Oceanic
768 South Atlantic Convergence Zone episodes on regional SST anomalies: the roles of heat fluxes and upper-ocean dynamics,
769 *Climate Dynamics*, 59, 2041–2065, <https://doi.org/10.1007/S00382-022-06195-3/TABLES/1>, 2022.

770 Pilo, G. S., Mata, M. M., and Azevedo, J. L.: Eddy surface properties and propagation at Southern Hemisphere western
771 boundary current systems, *Ocean Science*, 11, 629–641, <https://doi.org/10.5194/OS-11-629-2015>, 2015.

772 Piola, A. R., Matano, R. P., Palma, E. D., Möller, O. O., and Campos, E. J. D.: The influence of the Plata River discharge on
773 the western South Atlantic shelf, *Geophysical Research Letters*, 32, 1–4, <https://doi.org/10.1029/2004GL021638>, 2005.

774 Poli, L., Artana, C., and Provost, C.: Topographically trapped waves around South America with periods between 40
775 and 130 days in a global ocean reanalysis. *Journal of Geophysical Research: Oceans*, 127, e2021JC018067, <https://doi.org/10.1029/2021JC018067>, 2022.

777 Pontes, G.M., Men viel, L.: Weakening of the Atlantic Meridional Overturning Circulation driven by subarctic freshening
778 since the mid-twentieth century. *Nature Geoscience*, 17, 1291–1298. <https://doi.org/10.1038/s41561-024-01568-1>, 2024

779 Reichl, B. G. and Hallberg, R.: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate
780 simulations., *Ocean Modelling*, 132, 112–129, <https://doi.org/10.1016/j.ocemod.2018.10.004>, 2018.

781 Reagan, James R., Boyer, Tim P., García, Hernán E., Locarnini, Ricardo A., Baranova, Olga K., Bouchard, Courtney, Cross,
782 Scott L., Mishonov, Alexey V., Paver, Christopher R., Seidov, Dan, Wang, Zhankun, Dukhovskoy, Dmitry (2023). World
783 Ocean Atlas 2023. Salinity and Temperature. NOAA National Centers for Environmental Information. Dataset.
784 <https://doi.org/10.25921/va26-hv25>. Accessed October 2025.

785 Risaro D. B., Chidichimo M. P., Piola A. R.: Interannual Variability and Trends of Sea Surface Temperature Around
786 Southern South America, *Frontiers in Marine Science*, 9, <https://www.frontiersin.org/articles/10.3389/fmars.2022.829144>,
787 2022.

788 Rocha, C. B., Silveira, I. C. D., Castro, B. M., and Lima, J. A. M.: Vertical structure, energetics, and dynamics of the Brazil
789 Current System at 22°S–28°S, *Journal of Geophysical Research: Oceans*, 119, 52–69,
790 <https://doi.org/10.1002/2013JC009143>, 2014.

791 Rodrigues, R. R., Taschetto, A. S., sen Gupta, A., & Foltz, G. R.: Common cause for severe droughts in South America and
792 marine heatwaves in the South Atlantic. *Nature Geoscience*, 12, 620–626. <https://doi.org/10.1038/s41561-019-0393-8>,
793 2019.

794 Ross, A. C., Stock, C. A., Adcroft, A., Curchitser, E., Hallberg, R., Harrison, M. J., Hedstrom, K., Zadeh, N., Alexander, M.,
795 Chen, W., Drenkard, E. J., du Pontavice, H., Dussin, R., Gomez, F., John, J. G., Kang, D., Lavoie, D., Resplandy, L.,
796 Roobaert, A., Saba, V., Shin, S.I., Siedlecki, S., and Simkins, J.: A high-resolution physical-biogeochemical model for
797 marine resource applications in the Northwest Atlantic (MOM6-COBALT-NWA12 v1.0), *Geoscientific Model
798 Development Discussions*, 2023, 1–65, <https://doi.org/10.5194/gmd-2023-99>, 2023.

799 Schiller, A. and Ridgway, K. R.: Seasonal mixed-layer dynamics in an eddy-resolving ocean circulation model, *Journal of
800 Geophysical Research: Oceans*, 118, 3387–3405, <https://doi.org/10.1002/JGRC.20250>, 2013.

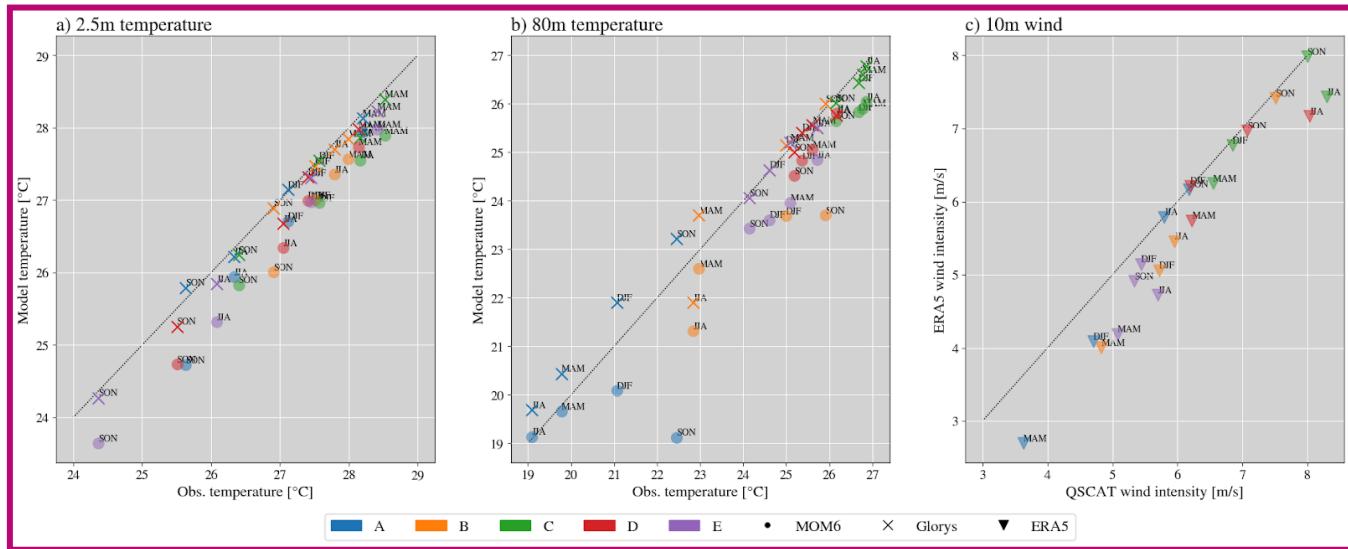
801 Servain, J., Busalacchi, A., McPhaden, M., Moura, A., Reverdin, G., Vianna, M., and Zebiak, S.: A pilot research moored
802 array in the tropical Atlantic (PIRATA), *Bulletin of The American Meteorological Society*, 79, 2019–2032,
803 [https://doi.org/10.1175/1520-0477\(1998\)079<2019:APRMAI>2.0.CO;2](https://doi.org/10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2), 1998.

804 Song, H., Marshall, J., McGillicuddy, D. J., and Seo, H.: Impact of current-wind interaction on vertical processes in the
805 Southern Ocean. *Journal of Geophysical Research: Oceans*, 125, e2020JC016046. <https://doi.org/10.1029/2020JC016046>,
806 2020

807 Stock, C. A., Pegion, K., Vecchi, G. A., Alexander, M. A., Tommasi, D., Bond, N. A., Fratantoni, P. S., Gudgel, R. G.,
808 Kristiansen, T., O'Brien, T. D., Xue, Y., and Yang, X.: Seasonal sea surface temperature anomaly prediction for coastal
809 ecosystems, *Progress in Oceanography*, 137, 219–236, <https://doi.org/10.1016/j.pocean.2015.06.007>, 2015.

810 Valerio, A. M., Kampel, M., Ward, N. D., Sawakuchi, H. O., Cunha, A. C., and Richey, J. E.: CO₂ partial pressure and fluxes
 811 in the Amazon River plume using in situ and remote sensing data, *Continental Shelf Research*, 215, 104–348,
 812 <https://doi.org/10.1016/J.CSR.2021.104348>, 2021.

813 Wright, D. G.: An Equation of State for Use in Ocean Models: Eckart's Formula Revisited, *Journal of Atmospheric and*
 814 *Oceanic Technology*, 14, 735 – 740,
 815 [https://doi.org/https://doi.org/10.1175/1520-0426\(1997\)014<0735:AEOSFU>2.0.CO;2](https://doi.org/https://doi.org/10.1175/1520-0426(1997)014<0735:AEOSFU>2.0.CO;2), 1997.


816 Wunsch, C. and Ferrari, R.: VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS,
 817 <https://doi.org/10.1146/annurev.fluid.36.050802.122121>, 36, 281–314,
 818 <https://doi.org/10.1146/ANNUREV.FLUID.36.050802.122121>, 2004.

819 Zsoter, E., Harrigan, S., Barnard, C., Wetterhall, F., Ferrario, I., Mazzetti, C., Alfieri, L., and Salamon, P. and Prudhomme, C.:
 820 River discharge and related historical data from the Global Flood Awareness System. v3.1.,
 821 <https://doi.org/10.24381/cds.a4fdd6b9>, accessed 03 November 2023, 2021.

822 Zweng, M., Reagan, J., Seidov, D., Boyer, T., Locarnini, R., Garcia, H., Mishonov, A., Baranova, O., Paver, C., and Smolyar,
 823 I.: *World Ocean Atlas 2018 Volume 2: Salinity*, 2019.

824

825 Supplementary material

827 Supplementary figure 1: As in Figure 5: Seasonal 2.5-m and 80-m temperatures and 10-m winds, compared against
 828 observations. The graphs display the temperature at 2.5 m (a) and 80 m (b) for the model and reanalysis compared to
 829 PIRATE buoy observations. In (c), the atmospheric forcing for the model, 10-m wind from ERA5, compared to QSCAT
 830 satellite observation (Hoffman and Leidner, 2005). Colors distinguish the buoy sites from A to E. The model data is

831 obtained with the z* vertical coordinate and marked with circles, extending from 1997 to 2017. The reanalysis from Glorys
832 takes crosses and ERA5 triangles. The seasons are named as DJF, MAM, JJA, and SON.
833