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Abstract. Plastic films have been improving agricultural production and covering an increasing surface area of 

cropland in the last decades. Yet their use has been connected to the generation of plastic residues, potentially 

acting as a main secondary microplastic source in agricultural soils. Monitoring the generation of plastic film 

residues is crucial for identifying good management practices and assessing the risk of plastic use in agriculture. 10 

Remote sensing has been qualified as a valuable tool for monitoring macroplastic mainly on waters, while its use 

on agricultural soils is mostly unexplored. Our study combined proximal and remote sensing techniques to lay the 

foundations of UAV (Unmanned Aerial Vehicle) use for monitoring macroplastic film residues on cropland.  

Through proximal and UAV acquisitions of five-bands multispectral data (i.e., blue, green, red, red edge, near 

infrared), we highlighted the potential of off-the-shelf miniaturised sensors and identified possible workflows for 15 

detecting macroplastic film residues. Our findings highlight a greater efficacy of spatial resolution over spectral 

resolution, encouraging the use of high-resolution RGB cameras over multispectral cameras. Through proximal 

acquisitions of hyperspectral data, we built spectral libraries and located absorption peaks for the most commonly 

used plastic films. We highlighted that these absorption peaks unambiguously identify plastic films on cropland 

and offer the potential to distinguish plastic types, encouraging the development of sensors tailored for plastic 20 

detection. 

1. Introduction 

Soils are estimated to be a greater plastic sink than waters (Kedzierski et al., 2023; Lofty et al., 2022) and to 

potentially act as a plastic source for other environmental matrices through water and wind erosion (Rehm et al., 

2021; Rezaei et al., 2022). In experimental setups high to very high concentrations of plastic have been shown to 25 

degrade soil physicochemical properties and affect plant health (Zhang et al., 2022), but the threshold 

concentrations at which these effects occur are still poorly quantified. Most likely, the source and physiochemical 

properties of the plastic are important drivers (Wang et al., 2023b; Wang et al., 2023a; Liu et al., 2023), 

highlighting the necessity of tracing the origin of plastic contamination. Despite the scarce knowledge about the 
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toxicity to biota of current plastic exposure levels, the ubiquitous presence, persistence, bioaccumulation, and 30 

possible unknown effects of plastic threaten soil health and call for plastic contamination monitoring plans.  

Plastic in soil may span a wide range of polymers, shapes, sizes, and sources. One of the major sources and 

sinks of plastic are agricultural soils (Horton et al., 2017; Kawecki and Nowack, 2019), since plastic is extensively 

used in various ways to enhance productivity such as mulching and greenhouse films, or seed and fertiliser 

coatings (Fao, 2021; Eip-Agri Focus Group, 2021). Around 80 % of plastic use in European vegetable production 35 

is attributed to plastic films used as crop covers (Agriculture Plastic Environment Europe, 2019). While plastic 

films have been associated with the generation of macro- and microplastic residues (> 5 mm and < 5 mm, 

respectively (Thompson et al., 2004; Frias and Nash, 2019)) (Steinmetz et al., 2022), their use can increase crop 

production and reduce the use of water and agrochemicals (Lamont, 2017; Espí et al., 2006). Quantifying the 

residues generated after plastic film use and establishing monitoring tools is fundamental not only for assessing 40 

the environmental risk of plastic contamination, but also for identifying good management practices, aiming at a 

sustainable use of plastic films.  

Plastic covers used in agriculture are mainly LDPE films with thickness ranging from 15 to 200 microns and 

lifetime ranging from a single cropping season to multiple years (Scarascia-Mugnozza et al., 2011). Thicker films 

are generally more resistant to mechanical stress and less likely to produce residues (Steinmetz et al., 2022). 45 

The usage beyond lifetime and other management practices, like application and removal modes, may also affect 

the amount of residues generated (Fao, 2021; Eip-Agri Focus Group, 2021). Overall, earlier studies improved our 

understanding of plastic residue generation and concentration in soils but quantitative analyses are still 

hampered by the methodologies used for mapping plastic residues. Plastic is typically quantified by combining 

soil sampling and ex situ analyses, making comprehensive data collection and analysis on multiple fields slow. 50 

However, large-scale data collection is needed to cover the variety of plastic films used and management 

practices adopted.  

The broad area coverage and very high spatial resolution offered by UAVs (Unmanned Aerial Vehicles) 

(Colomina and Molina, 2014) potentially enables data collection on multiple fields and detection of objects in the 

size range of macroplastic. As research on plastic contamination started in the marine environment, UAV use has 55 

been explored to detect macroplastic on waters and coastal areas first and foremost (Veenstra and Churnside, 

2012; Martin et al., 2018), while applications on land are still limited.  

Plastic materials are known to have unique absorption peaks in the SWIR (short wave infrared) (Kühn et al., 

2004), and hyperspectral imaging has already been used for detecting floating macroplastic (Garaba and 

Dierssen, 2018). On land, the use of SWIR absorption features has been investigated for non-destructive 60 

microplastic detection (Pahlawan et al., 2025). Hyperspectral imaging has been used for the detection plastic 

covered surfaces (Zhou et al., 2021) and pushed up to the identification of their functionality (e.g., greenhouses 

or photovoltaic panels) (Zhou et al., 2023). Bonifazi et al. (2023) have first shown the potential of using 
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absorption features and hyperspectral imaging for the ex situ recognition of macroplastic residues found on 

agricultural soils. Still, reference spectral libraries are currently not available for agricultural plastics, and their 65 

establishment has been shown to push forward remote sensing algorithms for plastic detection (Garaba et al., 

2018; Garaba et al., 2021). Despite the high potential of SWIR-based plastic detection, it must be considered that 

the absorption bands are typically available on hyperspectral sensors only, and their limited availability may 

hamper large-scale monitoring. Multispectral cameras offer a good compromise between data volume and 

spectral resolution, and the availability of off-the-shelf miniaturised sensors has favoured their use on low-70 

payload UAVs. To the best of our knowledge, multispectral cameras and the non-visible part of the spectrum in 

general have not been explored for remote sensing detection of plastics residues on agricultural soils. RGB 

cameras further decrease the complexity of data collection and analysis, and they increase spatial resolution at 

the cost of spectral resolution. Their use, coupled with deep learning, has been shown to result in reasonable 

plastic film residues mapping on cropland, but it has been limited to the detection of transparent film residues on 75 

cotton fields (Zhai et al., 2022; Qiu et al., 2022; Yang et al., 2024). Different film and soil types may require 

seeing beyond the visible. 

Our work aimed at a comprehensive assessment of UAV optical remote sensing use to detect different plastic 

film residues on cropland. We combined hyperspectral and multispectral proximal sensing with multispectral 

remote sensing to (i) build spectral libraries for the most common plastic films used in agriculture; (ii) define 80 

spectral changes occurring when moving from pristine plastic film to residue in soil; (ii) define possible workflows 

and sensors for detecting different plastic film residues using UAV technology.  

2. Methods 

2.1 Proximal sensing 

2.1.1 Experimental site and measuring devices 85 

Outdoor measurements of plastic film reflectance were carried out on a rooftop in Louvain-la-Neuve, Belgium, 

between 10:00 and 18:00 on 24 July 2022, with almost clear sky conditions. The measurements were performed 

through the parallel use of a spectroradiometer (ASD fieldspec 3; Fig. 1a; Malvern Panalytical, Ltd.), operated via 

an acquisition software (RS3; Malvern Panalytical, Ltd.), and a multispectral camera (Micasense RedEdge-MX 

RX02; Fig. 1b; AgEagle Aerial Systems, Inc.), using a setup similar to Crucil et al. (2019).  90 

The spectroradiometer was used with a fiberoptic cable mounted on a pistol grip (Fig. 1a) to acquire 

hyperspectral data with 3 nm spectral resolution in the 350–1000 nm region, and 10 nm spectral resolution in the 

1000–2500 nm region. The software automatically performed the conversion to reflectance measurements and 

output data at a 1 nm interval. A Spectralon panel (Fig. 1a) was used as a white reference to calibrate the 

https://doi.org/10.5194/egusphere-2025-3804
Preprint. Discussion started: 1 December 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

instrument about every 4 minutes, and all the spectra were obtained from the average of 75 spectra, each with 34 95 

ms of integration time. The fiberoptic tip was placed 11 cm above the targets at the nadir position, providing a 

conical field of view with a diameter of 4.9 cm.   

The multispectral camera used five imaging sensors to acquire spectral data centred at 475, 560, 668, 717, 842 

nm wavelengths – namely blue, green, red, red edge, and NIR (near infrared) bands – with bandwidths of 32, 27, 

16, 12, 57 nm, respectively. Images of a reflectance panel were acquired before every measurement and used to 100 

calibrate and convert data to reflectance values in a later stage. The camera was placed 70 cm above the targets 

at the nadir position, providing around 0.5 mm/pixel images. 

 

Figure 1 – Experimental setup used for acquiring reflectance measurements of plastic films from a 

spectroradiometer (i.e., ASD) (a) and a multispectral camera (b). The same batch of samples is represented on the 105 

left (a) and on the right part of the image (b). On the left side (a), rows and columns were labelled to show different 

samples and treatments: rows are labelled according to the film type, following the abbreviation in Table 1; columns 

are labelled according to the treatment (P: pristine, C: crumpled, D: dirty, C + D: crumpled and dirty).  

2.1.2 Plastic films, soil backgrounds, and experimental workflow 

The measurements were performed in case of eight different films (Table 1), where double-sided black and white 110 

films were used on both sides and virtually increased the number of films to 10. Each plastic film was analysed in 

four different conditions: pristine, crumpled, dirty, and crumpled and dirty. Crumpling was obtained by manually 

rubbing the films to obtain a homogenous and randomized crease pattern (Fig. 1a), while dirtiness was obtained 

by rolling the films into a dry soil volume, thus creating a layer of soil particles attached to the film (Fig. 1a). A 

field soil collected on arable land in the Belgian loam belt, classified as silt loam according to USDA classification, 115 

and a standard soil (LUFA 2.2), classified as sandy loam according to USDA classification, were used for the 
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experiment. Both soils were sieved down to 250 µm, to remove coarser organic and inorganic matter, and around 

40 g of soil were placed into 87 mm petri dishes. The plastic films were cut to fit into the petri dishes, then the 

four treatments were applied, and finally, the films were placed on the soil surface in the petri dishes (Fig. 1). 

Additionally, some petri dishes were left with soil only and used as a reference spectrum of the soil backgrounds 120 

(Fig. 1). The use of black nitrile rubber O-rings (Fig. 1) with 85 mm of outer diameter and 75 mm of inner 

diameter was necessary to fix the films in the petri dishes and prevent wind from blowing them away.  

The measurements were performed on a table covered with a black plastic film, and the samples were placed on 

a black painted wood board (Fig. 1) to minimise background reflectance. The petri dishes and the board were 

marked to allow for positioning the samples always at the same angle, minimising the influence of sample 125 

displacement on optical phenomena. The measurements were carried out in batches of a maximum of 25 

samples (Fig. 1). First, hyperspectral measurements were performed on individual samples (Fig. 1a). At the end 

of the batch, one multispectral image was acquired over all the samples in the batch (Fig. 1b) Overall, 82 

samples were analysed, i.e., (10 films x 4 treatments x 2 soil backgrounds) + 2 soils. For each sample, five 

replicate measurements were carried out throughout the day. 130 

Table 1 - Specifications of the plastic films used for the experiment 

Name 
Thickness 

(µm) 

Application 

mode 
Use Duration use Colour 

B_1 18 ± 2 

On the soil 

surface 

vegetables 

or fruits 

one growing 

season 
black B_2 18 ± 1 

BIO 15 ± 2 

BW_S 

WB_S 
99 ± 3 

asparagus 

multiple 

growing 

seasons 

black/white 
BW_L 

WB_L 
143 ± 5 

T_H 44 ± 2 

vegetables 

or fruits 
transparent T_S 157 ± 1 

large tunnel film 

for greenhouses 
T_L 185 ± 6 

 

https://doi.org/10.5194/egusphere-2025-3804
Preprint. Discussion started: 1 December 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

2.1.3 Data processing and analysis 

Hyperspectral data were processed in R through the package prospectr (Stevens and Ramirez-Lopez, 2025). 

First, noisy data at wavelengths below 400 nm and above 2400 nm were removed. Then, a Savitzky–Golay 135 

smoothing (Savitzky and Golay, 1964) was applied with a second order polynomial fit and a window size of 11 

nm. Finally, water vapour absorption regions, between 1350 and 1450 nm and between 1800 and 1950 nm, were 

removed. Two spectra, corresponding to one replicate of pristine BW_S on sandy–loam and one replicate of 

pristine BW_L on sandy–loam (Table 1), were removed by visual assessment because of excessive noise, 

probably due to rapidly changing light conditions. 140 

The multispectral images were pre-processed for radiometric calibration, vignetting correction, black level 

compensation and conversion to reflectance, following the procedure given by the original manufacturer 

(Micasense) and using the script provided by Crucil (2021). Following, mean reflectance values were extracted 

over circular areas of around 5 cm in diameter, centred in each petri dish. This was done to relate the reflectance 

of an imaging sensor to a non-imaging sensor having a field of view with 4.9 cm of diameter.  145 

Mean values and standard deviation of the five replicates were calculated for each sample ( 𝑖) and for each 

wavelength (𝜆). Mean spectra are presented for pristine films only. After calculating the average mean (𝜇̅𝑖) and 

the average standard deviation (𝜎𝑖) over the whole spectrum, the following coefficient of variation (CV) was used 

to describe the variation of measurements between replicates of the same sample: 

 𝐶𝑉𝑖 =
𝜎̅𝑖

𝜇̅𝑖
 (1) 

 150 

To compare the variability across specific groups of film colours and treatments, further aggregated means of the 

coefficient of variation were also calculated. 

To further compare the treatments, the difference in mean reflectance (𝜌̅) between the pristine and the treated 

film were calculated. For each treatment and for each wavelength, the difference (Δ𝜌) is expressed as: 

 Δ𝜌𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡,𝜆
=  𝜌̅𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒,𝜆 − 𝜌̅𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡,𝜆 (2) 

 155 

As similarities between spectra of the same film colour groups were observed, Δ𝜌 were aggregated for black, 

white, and transparent films through mean values. 

Lastly, the following three plastic indexes were calculated for hyperspectral data only: 

𝐻𝐼_1215 = (1216 − 1197)
𝜌1235 − 𝜌1197

1235 − 1197
+ 𝜌1197 − 𝜌1216 (Garaba and Dierssen, 2018) 

𝐻𝐼_1732 = (1729 − 1705)
𝜌1741 − 𝜌1705

1741 − 1705
+ 𝜌1705 − 𝜌1729 (Kühn et al., 2004) 
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𝑁𝐷_1715 =
𝜌̅1590𝑡𝑜1630 − 𝜌̅1695𝑡𝑜1735

𝜌̅1590𝑡𝑜1630 + 𝜌̅1695𝑡𝑜1735
 (Castagna et al., 2023) 

 

Where 𝜌𝑥  is the reflectance at the wavelength 𝑥 , and 𝜌̅𝑥 𝑡𝑜 𝑦  is the average reflectance from wavelength 𝑥  to 160 

wavelength 𝑦. HI (hydrocarbon indexes) are narrow-band indexes involving three bands, where the middle band 

represents the wavelength at the absorption peak, and the other two are approximately located before and after 

the absorption region. ND_1715 captures the same absorption region represented by HI_1732, but it is a 

broadband index calculated through a normalised difference between the reflectance before the absorption 

region and the reflectance at the absorption region. ND_1715 was calculated to assess better the potential of a 165 

multispectral imaging sensor on a moving platform, which may require broader bandwidths to increase signal-to-

noise ratio. To  differentiate index values of plastic films from other possible targets (i.e. soil and crop residues), 

we have extracted index values of soils and crop residues from open spectral libraries (Hively, 2021; Kokaly, 

2017). 

2.2 Remote sensing 170 

2.2.1 Test site and equipment 

An agricultural field located in the province of Córdoba, Spain (37°59'42.30" N, 4°27'40.41" W) was selected to 

test UAV capabilities in detecting plastic film residues (Fig. 2). The field is located next to the Guadalquivir River. 

The typical soil at this location is a calcaric Luvisol soil according to FAO classification (Junta De Andalucía, 

2005). Despite management practices not including the use of plastic directly on the field, a few plastic items 175 

were found on the field, probably resulting from littering, plastic contamination from neighboring fields, or plastic 

parts of machines used on the field.  

UAV images were acquired with a Phantom 4 pro (SZ DJI Technology Co., Ltd.) equipped with a downwelling 

light sensor and the same multispectral camera used in the proximal sensing experiment (Micasense RedEdge-

MX RX02; Fig. 1b; AgEagle Aerial Systems, Inc.). The images were acquired on 28 September 2022, between 180 

11:30 and 12:00, with clear sky conditions. Images of a reflectance panel were acquired before the flight and 

used for the radiometric calibration of the images in a later stage. The flight height was set to 7 m, providing 

images with a spatial resolution of around 0.5 cm/pixel. Additionally, two Reach RS2 RTK GNSS receivers (Emlid 

Tech Kft.) were used for placing the plastic films on the field and acquiring their coordinates. 
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 185 

Figure 2 – Location of the study area, distribution of plastic films in the study area (a), and field picture (b). The 

geometry of the study area was chosen to maximise the number of plastic films, that are represented by coloured 

dots (a). On the lower-left corner, the elevation was calculated relatively to the lowest point on the field to highlight 

tillage patterns. 

2.2.2 Plastic films and experimental workflow 190 

Three of the films used in the proximal sensing experiment were used for the remote sensing experiment. With 

reference to Table 1, the plastic films used were: B_1, WB_S, and T_H. Films were selected to have one black, 

one white, and one transparent film. The films were cut into 5 cm x 10 cm pieces, and two small holes on the long 

edges of the films were made to facilitate the penetration of metal spikes that were used to fix the plastic films 

into the soil. The plastic films were placed on the field using the GNSS receivers, following a random distribution 195 

of points previously generated with a GIS (Fig. 2a). After fixing the films into the soil, the metal spikes were 

covered with soil to avoid their influence on film reflectance. This left a film surface of around 5 cm x 5 cm 

uncovered and detectable. In total, 21 black films, 19 transparent films, and 13 white films were placed on the 

field (Fig. 2a). The experiment was originally designed to place a higher number of films, equally distributed 

among film colours, on a larger area. However, it was not possible to acquire images of the entire area, and the 200 

study area was restricted to that shown in Fig. 2. This resulted in an uneven distribution of films among the 

different colours. 

2.2.3 Data processing and analysis 

Pix4D mapper (Pix4D SA) was used to create orthophoto mosaics through a structure-from-motion algorithm. 

The same software was used to perform the conversion to reflectance measurements, using data from the 205 

downwelling light sensor and the reflectance panel. Reflectance of saturated pixels, acquired as no data by the 

multispectral camera, was set to the maximum reflectance of 1. The outputs of the pre-processing – five 
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orthophoto mosaics, each representing one of the five bands of the multispectral camera – were used for further 

analyses in ArcGIS Pro (Environmental Systems Research Institute, Inc.).  

The centre of each plastic film was found on the images and labelled according to film colour. Then, 312 random 210 

points were generated and labelled by visual interpretation. All the points were labelled as ‘soil’, and the 

subclasses ‘soil’, ‘shadow’, and ‘other’ – mainly representing vegetation residues or unidentified classes – were 

created to allow a better interpretation of the results. Together with the plastic films, these represented the 

ground observations, which were used for training and testing the classification with a 5-fold cross validation. A 

buffer of 1 cm was applied on training points to increase training features. The classification was performed 215 

through a random forest (Breiman, 2001), with the maximum number of trees set to 50 and the maximum depth 

of each tree set to 30. After classification, the images were post-processed using a majority filter on 4-connected 

pixels, increasing the minimum mapping unit to pixel neighbourhoods but minimizing isolated pixel artifacts. Four 

different datasets were created to compare the results of different spectral and spatial resolutions: 

1. Multispectral 0.5 cm: It contains the original five multispectral bands, plus the following vegetation index: 220 

NDVI (Normalized Difference Vegetation Index) =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
  (Tucker, 1979) 

2. Multispectral 1.2 cm: It contains the same six bands as the multispectral 0.5 cm dataset. The spatial 

resolution was reduced to 1.2 cm by resampling the raster through nearest neighbour. The resolution 

was chosen to simulate the resolution obtained from the same multispectral camera at 20 m of flight 

altitude. This flight altitude is needed to acquire RGB data at 0.5 cm of spatial resolution, following the 225 

specifications of the RGB camera mounted on a Phantom 4 Pro. 

3. RGB 0.5 cm: It contains the three original visible bands (i.e., red, green, blue).  

4. RGB+indexes 0.5 cm: In addition to the three original bands, three band ratios were calculated as 

follows: 

 
𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒
; 

𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
; 

𝐵𝑙𝑢𝑒

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛
 (3.1; 3.2; 3.3) 

 230 

This was done to ensure that at least one RGB dataset had the same number of bands as the 

multispectral datasets, hence providing the same number of input features into the random forest 

algorithm. 

The detection of the plastic films placed on the field was evaluated against the ground observations by 

calculating the producer accuracy. The presence of false positives instead (i.e., pixels classified as plastic but not 235 

covered by plastic) was checked by calculating the expected number of pixels covered by plastic, weighted by 

the producer accuracy, and comparing them with the actual number of pixels classified as plastic. For each film, 

the expected number plastic covered pixels (𝑁𝑝𝑖𝑥𝑒𝑙𝑠) was calculated as follows: 
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𝑁𝑝𝑖𝑥𝑒𝑙𝑠 = 𝑁𝑓𝑖𝑙𝑚𝑠  ×  

𝐴𝑓𝑖𝑙𝑚

𝐴𝑝𝑖𝑥𝑒𝑙
× 𝑃𝐴 (4) 

Where 𝑁𝑓𝑖𝑙𝑚𝑠  is the number of films placed on the field, 𝐴𝑓𝑖𝑙𝑚 is the area of a single film, 𝐴𝑝𝑖𝑥𝑒𝑙 is the area of a 

single pixel, and 𝑃𝐴 is the producer accuracy of the classification.  240 

3. Results 

3.1 Spectra of pristine films and plastic indexes 

On both soils, the spectra of the films are divided into three groups (Fig. 3): black (B_1, B_2, BIO, BW_S, BW_L), 

white (WB_S and WB_L), and transparent (T_H, T_S, T_L). White and black film reflectance is not particularly 

influenced by the background soil (Fig. 3). In contrast, transparent film reflectance changes according to the soil, 245 

with thinner films being closer to the soil spectra than thicker films (Fig. 3). Overall, the reflectance of pristine 

plastic films showed a high coefficient of variation of 40 % on average, while both soils had a similar coefficient of 

variation of around 4 %. The reflectance of black films is low across the entire spectrum, and the coefficient of 

variation is 71 % on average, ranging from 10 % for the B_2 on silt loam to 135 % for the BW_S on silt loam. 

White films have the highest mean reflectance and the lowest coefficient of variation, ranging from 6 % to 17 %. 250 

The two different white films present a similar spectral shape, being extremely reflective in the visible spectra, 

and decreasingly reflective through the SWIR, while the thicker film had higher reflectance across the whole 

spectra on both soils (Fig. 3). The transparent films generally follow the spectrum of the soil background, but the 

characteristic soil-shaped spectrum is interrupted by absorption peaks in the SWIR, which are shown by white 

films at the same wavelengths (Fig. 3). Specifically, the absorption peaks were found around the following 255 

wavelengths: 1215 nm, 1730 nm, 1765 nm, 2312 nm, and 2352 nm. As a result, HI_1215 and HI_1732 allow 

distinguishing white and transparent films, in both pristine and treated conditions, from soils and mixtures, and 

from crop residues (Fig. 4a,b), while black films do not show any relevant value. While both indices guarantee a 

complete separability between plastic and non-plastic, HI_1732 values are one order of magnitude greater than 

HI_1215. ND_1715 has values similar to HI_1732, but the broader spectral interval results in outliers for soils and 260 

mixtures, represented by rare minerals (e.g., Erionite, Xenotime) overlaying with ND_1715 values of plastic (Fig. 

4c). For both transparent and white films, the indexes generally have higher values for films with a higher 

thickness (Fig. 4).  
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Figure 3 – Spectra of pristine plastic films and of soils used as background. On the left side, spectra acquired on silt 265 

loam; on the right side, spectra acquired on sandy loam. Film colours are represented by different colours, and 

variation within film colours are represented by line shapes. Abbreviation of film types refer to Table 1. 

 

Figure 4 – Boxplots of plastic index values for plastic films, soils, and crop residues. Values for all black films (i.e., 

B_1, B_2, BW_S, BW_L, BIO) were aggregated, as they did not represent any relevant value. Abbreviations of film 270 

types refer to Table 1. 

3.2 Reflectance of plastic film as residues on soil 

Compared to pristine films, the treatments decreased the reflectance variability between replicate of 

hyperspectral measurements. The average coefficient of variation was reduced to 30 % for crumpled films, 9 % 
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for crumpled and dirty films, and 9 % for dirty films. Overall, crumpling did not influence plastic film reflectance, as 275 

the changes in reflectance are within the range of the coefficient of variation for all the films (Fig. 5). On the 

contrary, the presence of soil on the film surface influenced plastic film reflectance (Fig. 5). This is particularly 

evident in the case of white films, where the reflectance of pristine films is substantially higher compared to dirty 

films in the visible spectra, while the differences between the spectra are reduced for higher wavelengths (Fig. 5). 

Black film reflectance also changes when covered by soil, and the differences between spectra increase for 280 

higher wavelengths, as soil reflectance increases (Fig. 5). Transparent films are the ones affected the least by 

treatments, with some changes induced by the presence of soil in the case of sandy loam only (Fig. 5). All these 

differences were consistently observed for the multispectral measurements in proximal sensing, despite generally 

higher coefficients of variation (e.g., 45 % for pristine films and 15 % for soils, on average).  

 285 

Figure 5 – Mean difference in reflectance between pristine films and treatments, presented for two different soils 

used as background in the proximal sensing experiment. Different data acquisition modes are represented by 

shapes, while different film colours are represented by the colour scale. 

3.3 Plastic film detection from UAV 

The spectral separability between films and soil observed in proximal sensing is confirmed by the multispectral 290 

acquisitions from the UAV (Fig. 6). White films have the highest spectral separability from non-plastic classes, 
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especially in the bands of the visible spectra, while the reflectance slightly overlays with other non-plastic 

elements when approaching the infrared (Fig. 6). Transparent film reflectance largely overlays with the 

reflectance of soil and other non-plastic elements, while black films are quite distinct from soils, especially in the 

infrared bands, where soil reflectance increases (Fig. 6). Overall, all the 0.5 cm datasets had similar 295 

performances in detecting the plastic films placed on the field (Fig. 7a), while the multispectral 1.2 cm dataset 

had higher omission errors. The difference between the 1.2 cm dataset and the 0.5 cm datasets mainly consists 

in the missed detection of transparent films (Fig. 7a). White films placed on the field were detected with all four 

datasets in almost every fold, while black films had a generally higher and more fluctuating omission error (Fig. 

7a).   300 

Despite the good performances in detecting the plastic films placed on the field, all the datasets overestimated 

the presence of plastic on the field (Fig. 7b). Overall, plastic overestimation ranges from an average of 21 times 

for multispectral 1.2 cm dataset to 44 times for RGB 0.5 cm dataset. Black films encountered the highest 

overestimation compared to the other films, with RGB datasets having a higher overestimation compared to 

multispectral datasets (Fig. 7b). After black films, transparent films showed the second highest overestimation, 305 

finally followed by white films (Fig. 7b). The overestimation was generally related to the confusion of black films 

with shadows, white films with highly reflective pixels, and transparent films with soil (Fig. 8).  

 

Figure 6 – Reflectance of plastic films divided by colour (i.e., black, transparent, white), compared to soil reflectance, 

shadow, and other non-plastic objects found on the experimental site. 310 
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Figure 7 – On the left side, accuracy (i.e., producer accuracy) of plastic detection with four different datasets (a), 

separated by film and aggregated (i.e., ‘all’). Error bars represent the standard deviation of the producer accuracy 

within the 5-fold cross validation; the numbers below the bars (N) represent the average number of points used for 

validation. On the right side, factor of plastic overestimation of four different datasets, separated by film and 315 

aggregated (b). Error bars represent the standard deviation of the overestimation within the 5-fold cross validation.  

 

Figure 8 – Detail of the true colour images (a–c) and associated classification results (d–f) obtained with the 
multispectral 0.5 cm dataset. On images (a–c), the exact location of the plastic films is highlighted. On image (a), the 

example of a highly reflective soil region is highlighted. 320 
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4. Discussion 

4.1 Spectral reflectance of plastic film residues 

A spectral library of white, black, and transparent films was built, nearly covering all plastic film colours used in 

agriculture. Within white and transparent films, differences related to thickness and transparency of the films 

mainly affected the mean reflectance, while the resulting spectral shapes were highly comparable (Fig. 3). 325 

Differences between black films can hardly be observed, as spectra are flat and the reflectance is low, producing 

a low signal-to-noise ratio and high coefficient of variations.  The mean reflectance of white and transparent films 

showed much higher variability across replicate measurements compared to soils, resulting in higher coefficients 

of variation. This is related to both the experimental design and the optical properties of the films. In fact, the 

measurements were acquired around 4 hours before and 4 hours after solar noon, with solar zenith angle ranging 330 

from 32° to 59°, and solar azimuth angle ranging from 103° to 262° (Suncalc.Org). Moreover, the plastic films 

have a smooth surface, which leads away from the assumption of Lambertian reflector – typically adopted in 

remote sensing – and causes specular reflection to take over diffuse reflection phenomena (Goddijn-Murphy and 

Dufaur, 2018; Goddijn-Murphy et al., 2017). This is particularly evident in the case of pristine films, which had the 

highest coefficient of variation, while the presence of soil on the film surface increases the roughness of the films, 335 

favouring diffuse reflection and decreasing the variability of the reflectance between replicates. The implications 

for plastic residue detection are mostly positive, as particle deposition is expected on land, while specular 

reflection may be a limiting factor in other applications, such as detection of clean plastic films with satellite data. 

Despite a decrease in the coefficient of variation, we did not find any relevant influence of crumpling on film 

reflectance, while soil was the main driver of changes in reflectance between pristine and treated films (Fig. 5). 340 

Changes in plastic film reflectance were particularly evident for white films in the visible spectra, where the 

distance between the spectra of plastic films and soil is the highest (Fig. 3, Fig. 5). The presence of soil did not 

have a particular influence on plastic absorption peaks, enabling plastic identification through spectral indexes, 

also on soil-covered plastic films (Fig. 4). However, as the amount of soil on the film increases, a progressive 

deterioration of plastic spectra is expected, until reaching a soil cover at which plastic films will not be detectable 345 

anymore. Identifying this threshold of soil cover will be helpful in delineating the boundaries of remote sensing 

use for detecting plastic film residues on cropland. We suggest using indoor spectroscopy to that aim, exploiting 

a higher signal-to-noise ratio and better control on the amount of soil placed on the films compared to outdoor 

measurements, where wind can remove soil particles from the film surface. We also advise against using a 

contact probe in indoor spectroscopy, as we experienced plastic film surface melting in contact with the light 350 

source. 
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4.2 Use of multispectral and true colour UAV images for plastic film detection 

Film spectra acquired from UAV were highly comparable with the proximal sensing acquisitions. White films had 

very high reflectance for shorter wavelengths and decreasing reflectance for higher wavelengths, transparent 

films had reflectance similar to soil, and black films had a very low reflectance. It must be accounted for, though, 355 

that the reflectance of white films was highly influenced by assigning the maximum reflectance of 1 to no data 

values, corresponding to saturated pixels. This particularly influenced the blue and green bands, where the 

number of saturated pixels was more than half, while the red and red edge bands had around 20 % and 10 % of 

saturated pixels, respectively, and the NIR had no saturated pixels. 

Good performances were achieved in detecting true positives of plastic films (Fig. 7a). Despite the presence of 360 

other plastic residues on the field, plastic films were overestimated compared to the expected number of plastic-

covered pixels (Fig. 7b). Specifically, black films had the highest overestimation, which was due to the presence 

of shadows on the field (Fig. 8a). In our study area, recent tillage practices induced soil clod formation and 

emphasized the impact of shadows (Fig. 2). However, surface microtopography is always expected on arable 

land, and we identify shadows as the main limiting factor in black film detection, similarly to previous works 365 

dealing with black plastic detection (Iordache et al., 2022; Shan et al., 2018). White films were slightly 

overestimated in correspondence of highly reflective soil regions (Fig. 8a). As with shadows, the topography of 

our study area might have emphasized the issue, creating soil surface angles that result in specular reflection. 

While techniques like brightness thresholding could improve the results of the classification (Iordache et al., 

2022), their implementation and effectiveness may be site-specific, and a few measures could be adopted during 370 

data collection to address the challenges related to the illumination geometry. Possible solutions are multi-

temporal flights, high-resolution DSM (Digital Surface Model), or flying with a homogenous cloud cover and the 

highest solar elevation angle possible.  

While transparent films had a lower overestimation compared to black films (Fig. 7b), the source of error is 

related to a strong spectral overlay with soil in the visible and near infrared (Fig. 3, Fig. 6), rather than a structural 375 

flaw of the survey. In this case, the only solution to substantially improve plastic detection may be limited to 

having sensors with bands located in the SWIR. The additional bands on the multispectral camera did not show a 

substantial improvement in transparent plastic detection, especially when compared with RGB+indexes 0.5 cm 

dataset (Fig. 7). For black films, the datasets showed similar producer accuracies, but the multispectral datasets 

showed a lower overestimation compared to the RGB datasets (Fig. 7). However, the difference in spatial 380 

resolution must be considered, as coarser pixel size negatively affects both the areal estimates and the minimum 

mapping unit. At the same time, for equal pixel size, RGB cameras allow for increasing flight height, consequently 

reducing flight time and increasing area coverage. Overall, the results of our study suggest that the increased 
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spatial resolution of an RGB camera should be favoured over the higher spectral resolution of multispectral 

cameras.  385 

Lastly, it needs to be highlighted that using more sophisticated algorithms like deep learning and image 

segmentation techniques would likely increase detection accuracy. However, our experimental setup might have 

introduced bias when using textural features (e.g., fixed size and shape of plastic films, placement of plastic films 

under soil clods) and finding the best image classification algorithm goes beyond the scope of our study. Instead, 

a random forest allowed us to relate the results to spectral features, and to define which sensors and survey 390 

workflow are best suited for plastic films detection on soil.  

4.3 A new generation of sensors for monitoring plastic on soil 

We have shown potential workflows for detecting plastic film residues with RGB or multispectral cameras. 

However, the accuracy of these approaches will be site and film specific. A clear sandy soil may represent the 

optimal site for detecting black films, providing a good contrast between the film and the background, and 395 

reducing the complexity of the topography by limiting the formation of soil clods. At the same time, such soils are 

more likely to induce sensor saturation and a lower contrast with clear films, making the detection of white films 

harder. On the contrary, a dark clay soil may provide a good environment for white film detection, while black film 

detection would be limited by a decreased contrast and eventually hindered by the presence of soil clods and 

direct sunlight. In general, plastics do not show any unique feature in the visible and near infrared (Fig. 3), and 400 

their spectral separation with currently available multispectral broadband sensors is colour-driven. 

While the use of plastic absorption bands in the aquatic environment may be limited by water absorption features 

(Knaeps et al., 2021; Moshtaghi et al., 2021; Garaba and Dierssen, 2018), their use is extremely promising for 

soils, with plastic indexes providing an unambiguous identification of the plastic residue (Fig. 4). Even the 

broadband index ND_1715 resulted very effective in identifying plastic films from other elements that could 405 

possibly be found on cropland – except for some rare minerals that will not be found on arable land (Fig. 4c) – 

encouraging the development of multispectral cameras tailored to plastic detection. The availability of broad 

bands related to SWIR absorption features on miniaturised sensors, together with high-resolution visible bands, 

would reduce costs, data volume, and complexity of currently available hyperspectral sensors, representing a 

milestone for monitoring any non-black plastic residue on land. 410 

Additionally, according to Castagna et al. (2023), remote sensing offers the potential to distinguish at least three 

plastic types, exploiting the different locations of absorption features in the SWIR. PE, PP, and PVC – the most 

produced plastic types in Europe and the most used polymers in agriculture (Plastics Europe Aisbl, 2024) – have 

similar absorption features, and their distinction might be challenging (Castagna et al., 2023). PET instead – the 

fourth most produced plastic type in Europe (Plastics Europe Aisbl, 2024) – has different absorption features, and 415 

it can be distinguished from PE, PP, and PVC by using narrow-band indexes (Castagna et al., 2023). On 
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agricultural land, this could mean distinguishing plastic residues generated by agricultural management from 

plastic residues generated by littering (e.g., PET bottles). Building spectral libraries and characterising the 

absorption peaks of the most common plastic residues is key to direct future efforts in developing new sensors, 

which we identify as a necessary to monitor soil plastic contamination. The introduction of legal limits on plastic 420 

concentration in soil may not be far off, as initial regulatory examples begin to emerge (Meixner et al., 2020). This 

will likely drive demand for faster and standardized monitoring and increase the appeal of a sensor for on-soil 

plastic detection. Moreover, as macroplastic residues can fragment into microplastic (Yang et al., 2022; Song et 

al., 2017; Julienne et al., 2019), reliable macroplastic monitoring will also support better microplastic 

assessments.  425 

5. Conclusion 

The introduction of miniaturised multispectral imaging sensors has boosted the use of UAV remote sensing. 

Compared to RGB cameras, multispectral sensors provide access to a few additional bands, typically at the cost 

of reduced spatial resolution and increased complexity of use. The additional bands available on commercial 

multispectral sensors are mostly designed for vegetation monitoring, while the detection of plastic residues still 430 

relies on the identification of their colour. Within current technologies, our results support using RGB cameras for 

monitoring plastic film residues on agricultural soils with UAVs, favouring spatial resolution over spectral 

resolution. However, the accuracy of these techniques will be highly dependent on the type of soil and on the 

colour of the residue. 

The use of plastic absorption bands provides an unambiguous identification of the plastic residue, especially on 435 

soils. Currently, these bands are available only on expensive and complex sensors, hampering their use for 

monitoring large scales, at which remote sensing is most needed. Plastics are ubiquitous, persistent, and 

bioaccumulative contaminant that require monitoring plans, and the development of miniaturised sensors 

targeting plastic detection may represent a pivotal moment for assessing the risk of plastic contamination on land. 

We expect this work to promote further the exploration of remote sensing potential for monitoring soil plastic 440 

contamination and to encourage building and sharing spectral libraries of plastic residues commonly found on 

soils. 
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