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1 Materials and method 

1.1 Nitrogen emission inventory 

This study categorizes the sources of NOx, NH3, PM2.5, and PM₁₀ into land-based anthropogenic sources and maritime shipping 15 

sources. For land-based anthropogenic emissions, we employed publicly available emission inventories. For maritime shipping 

sources, we developed bottom-up emission inventories using a ship emission model based on Automatic Identification System 

(AIS) data. 

Ship emission inventory 

The shipborne metal emission inventory in this study was developed using a bottom-up approach based on real-time AIS data 20 

for the entire year of 2017 (Yuan et al., 2023; Feng et al., 2019). The inventory was established using a fuel consumption-

based method, where emission factors for various species present in marine fuels were compiled and adjusted according to 

specific ship parameters. The resulting emissions were aggregated to generate the shipping-related nitrogen element emission 

inventory. The emission factors used in the calculations are listed in Table S1 and are expressed in units of g (kWh)-1. For 

cases where the engine load factor is below 20%, low-load adjustment factors for main engines are applied, as shown in Table 25 

S2. 

 

Table S1. Emission factors for micropollutants from ships (unit: g (kWh)-1) 

Pollutants Low-speed diesel engine Middle-speed diesel engine High-speed diesel engine 

NOx 18.1 14.1 13.2 

NH3 0.0049 0.0029 0.00023 

PM2.5 1.2788 1.2788 0.368 

PM10 1.39 1.39 0.4 
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Table S2. Main engine low load adjustment factor 

Load factor（%） NOx NH3 PM2.5 PM10 

1 11.47 5.99 19.17 19.17 

2 4.63 3.36 7.29 7.29 

3 2.92 2.49 4.33 4.33 

4 2.21 2.05 3.09 3.09 

5 1.83 1.79 2.44 2.44 

6 1.6 1.61 2.04 2.04 

7 1.45 1.49 1.79 1.79 

8 1.35 1.39 1.61 1.61 

9 1.27 1.32 1.48 1.48 

10 1.22 1.26 1.38 1.38 

11 1.17 1.21 1.3 1.3 

12 1.14 1.18 1.24 1.24 

13 1.11 1.14 1.19 1.19 

14 1.08 1.11 1.15 1.15 

15 1.06 1.09 1.11 1.11 

16 1.05 1.07 1.08 1.08 

17 1.03 1.05 1.06 1.06 

18 1.02 1.03 1.04 1.04 

19 1.01 1.01 1.02 1.02 

 

The specific calculation methods and formulas for ship emissions 

The ship emission model used in this study is based on the AIS database, and detailed information about the model has been 

documented in previous studies (Chen et al., 2017; Fan et al., 2016; Zhao et al., 2020). Since shipborne pollutant emissions 35 

primarily originate from main engines (ME), auxiliary engines (AE), and auxiliary boiler (AB), emissions of specific pollutants 

are calculated by multiplying the energy consumption of each engine (unit: kW·h) by the corresponding fuel-based emission 

factor (unit: g (kWh)-1). The overall modeling approach can be summarized as follows: ships are classified based on their 

attribute information, and different parameters—including emission factors, load factors, and low-load adjustment factors—

are assigned according to the type of engine and fuel used. These parameters are then combined with ship dynamic data (e.g., 40 

geographic coordinates, timestamps, and operational status) to compute the final ship emission inventory. Both the ship 

attribute information and dynamic data used in this process are sourced from the AIS database. 

The engine’s revolutions per minute (RPM) are used to determine the engine type. In this study, we adopt the same 

classification criteria as reported in previous research: if RPM > 1000 (Li et al., 2018), the ME is classified as a high-speed 

diesel engine (HSD); if 1000 ≥ RPM > 300, it is classified as a medium-speed diesel engine (MSD); and if RPM ≤ 300, it is 45 

classified as a slow-speed diesel engine (SSD). AEs are assumed to be of the MSD type. Furthermore, it is assumed that SSD-

type MEs use heavy fuel oil (HFO), HSD-type MEs use marine distillate oil (MDO), MSD-type MEs use a combination of 

heavy fuel products (HFP) and MDO, and MSD-type AEs use marine gas oil (MGO). 
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The formula for calculating the nitrogen emissions inventory for each ship is shown in Equation 

(1):50 

𝐸𝑖,𝑗,𝑘,𝑙 = ∑ 𝑃𝑗 × 𝐿𝐹𝑗,𝑙 × 𝑇𝑗,𝑙 × 𝐸𝐹𝑖,𝑗,𝑘 ×
𝐿𝐿𝐴𝐹𝑗

106
𝑛
𝑖=1 (1)

where i denotes the pollutant species (NOₓ, NH₃, PM₂.₅, PM₁₀); j represents the engine type (ME, AE, or AB); k refers to the 

fuel type (MDO, MGO, or HFO); l indicates the operational mode (normal cruising, slow cruising, maneuvering, anchoring, 

or berthing); and n corresponds to the number of AIS reporting intervals. E is the calculated emission amount (in tons); P is 

the rated engine power (kW); LF is the engine load factor (%); T is the operating time (h); and EF is the emission factor for 55 

metallic elements (g (kWh)-1). Considering that main engines operating under low-load conditions exhibit reduced combustion 

efficiency and consequently higher pollutant emissions, LLAF is applied when the load factor is below 20%. 

1.2 WRF-CMAQ settling 

The WRF model in this study was configured with the following physical parameterization schemes: the Pleim-Xiu land 

surface model (Xiu and Pleim, 2001); the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) for both 60 

shortwave and longwave radiation processes (Clough et al., 2005); the Asymmetric Convective Model version 2 for PBL 

dynamics (Pleim, 2007); and the Kain-Fritsch cumulus parameterization scheme (Kain, 2004). MODIS land use data, 

categorized into 20 classes, were used to describe surface characteristics. For the CMAQ model configuration, the *aero7* 

aerosol module (Xu et al., 2018) and the cb6r5 gas-phase chemical mechanism (Amedro et al., 2020) were employed, which 

include detailed halogen chemistry (Lana et al., 2011; Sarwar et al., 2019). The M3Dry scheme was used to calculate dry 65 

deposition 错误!未找到引用源。  (Pleim and Ran, 2011); this scheme was updated in CMAQ version 5.4 to improve 

consistency with size-resolved aerosol observations (Pleim et al., 2022). Wet deposition was computed using the AQCHEM 

cloud chemistry module (Fahey et al., 2017). Initial and boundary conditions for the simulation domain were generated based 

on hemispheric seasonal average CMAQ outputs from the CMAS data repository (U.S. EPA: CMAQ Model Version 5.3 Input 

Data). 70 

The simulation domain covered the East Asia region, as shown in Figure S1, with a horizontal grid resolution of 36 km × 36 

km. Vertically, the model employed 27 terrain-following layers extending from the surface up to 100 hPa, with a surface layer 

thickness of approximately 40 meters. In the CMAQ model, two rows of grid cells were removed along the lateral boundaries 

of the WRF domain, resulting in a final d01 domain consisting of 257 × 117 grid cells. 

 75 

Figure S1. Simulation area of WRF-CMAQ 
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1.3 Solar radiation data 

We extracted solar radiation data for various regions and wetland types across East Asia in 2017 from the Global High-

Resolution (3-hourly, 10 km) Surface Solar Radiation Dataset (1983–2018, monthly) (Tang et al., 2019), provided by the 80 

National Tibetan Plateau Data Center of China. The resulting monthly average solar radiation values for different wetland 

types and regions in 2017 are summarized in Table S3, serving as input data for estimating carbon sequestration in wetlands. 

 

Table S3. Monthly average solar radiation on different regions and types of wetlands, Unit: MJ m-2 

Area Wetland type SOLAR_Win. 

（MJ/m2） 

SOLAR_Spr. 

（MJ/m2） 

SOLAR_Sum. 

（MJ/m2） 

SOLAR_Fal.

（MJ/m2） 
BS 

Salt marsh 742.41 1695.95 1679.16 1055.16 

Mangrove forest 0.00 0.00 0.00 0.00 

Tidal flat 744.74 1692.19 1664.24 1049.17 

YRD 

Salt marsh 738.79 1401.52 1654.70 955.57 

Mangrove forest 729.42 1273.19 1733.28 1019.35 

Tidal flat 746.43 1406.60 1633.48 958.49 

PRD 

Salt marsh 937.28 1235.46 1760.36 1278.45 

Mangrove forest 930.04 1239.17 1749.29 1262.07 

Tidal flat 927.20 1233.00 1754.40 1265.40 

BG 

Salt marsh 719.53 1312.66 1681.56 1174.08 

Mangrove forest 735.03 1294.45 1631.53 1179.13 

Tidal flat 764.97 1330.96 1670.05 1198.93 

KP 

Salt marsh 792.88 1662.33 1648.57 1122.10 

Mangrove forest 0.00 0.00 0.00 0.00 

Tidal flat 766.64 1648.79 1624.92 1119.63 

Kyushu 

Salt marsh 745.30 1529.65 1753.77 995.29 

Mangrove forest 0.00 0.00 0.00 0.00 

Tidal flat 758.80 1515.62 1733.77 984.74 

85 
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Table S4. The carbon sequestration capacity and oxygen release of different wetland types in different regions, Unit：g m-2 86 

Area Wetland type Wco2_Win. Wco2_Spr. Wco2_Sum. Wco2_Fal. Wo2_Win. Wo2_Spr. Wo2_Sum. Wo2_Fal. 

BS 

Salt marsh 526.07 1201.74 1189.84 747.68 384.06 1400.80 1386.93 871.53 

Mangrove forest 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 

Tidal flat 51.94 118.03 116.08 73.18  37.92 137.58 135.30 85.30 

YRD 

Salt marsh 523.50 993.11 1172.51 677.11 382.19 1157.61 1366.73 789.27 

Mangrove forest 1160.59 2025.79 2757.83 1621.89  847.30 2361.35 3214.65 1890.55 

Tidal flat 52.06 98.11 113.93 66.85 38.01 114.36 132.80 77.93 

PRD 

Salt marsh 664.15 875.44 1247.38 905.90 484.87 1020.45 1454.00 1055.96 

Mangrove forest 1479.79 1971.65 2783.31 2008.08 1080.34 2298.24 3244.35 2340.71 

Tidal flat 64.67 86.00 122.37 88.26 47.21 100.24 142.63 102.88 

BG 

Salt marsh 509.85 930.14 1191.54 831.94 372.22 1084.22 1388.91 969.75 

Mangrove forest 1169.51 2059.60 2595.94 1876.12 853.81 2400.76 3025.95 2186.89 

Tidal flat 53.35 92.83 116.48 83.62 38.95 108.21 135.78 97.47 

KP 

Salt marsh 561.83 1177.92 1168.17 795.11 410.17 1373.03 1361.67 926.82 

Mangrove forest 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tidal flat 53.47 115.00 113.33 78.09 39.04 134.05 132.11 91.03 

Kyushu 

Salt marsh 528.11 1083.90 1242.71 705.26 385.55 1263.45 1448.56 822.08 

Mangrove forest 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tidal flat 52.92 105.71 120.93 68.68 38.64 123.22 140.96 80.06 

87 
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