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Abstract. Process-based (PB) hydrological modeling is a long-standing capability used for simulating and predicting 

complex water processes over large, hydro-climatically diverse domains, yet PB model parameter estimation (calibration) 

remains a persistent challenge for large-domain applications. New techniques and concepts arising in the artificial 

intelligence (AI) context for hydrology point to new opportunities to tackle this problem in complex PB models. This study 

introduces a new scalable calibration framework that jointly trains a machine learning emulator for model responses across a 

large-sample collection of watersheds while leveraging sequential optimization to iteratively refine hydrological model 

parameters. We evaluate this strategy through a series of experiments using the Structure for Unifying Multiple Modeling 

Alternatives (SUMMA) hydrological modeling framework coupled with the mizuRoute channel routing model for 

streamflow simulation. This ‘large-sample emulator’ (LSE) approach integrates static catchment attributes, model 

parameters, and performance metrics, and yields a powerful new strategy for large-domain PB model parameter 

regionalization to unseen watersheds. The LSE approach is compared to using a more traditional individual basin calibration 

approach, in this case using a single-site emulator (SSE), trained separately for each basin. The jointly trained LSE 

framework achieves comparable or better performance to traditional individual basin calibration, while further enabling 

potential for probabilistic parameter regionalization to out-of-sample, unseen catchments. Motivated by the need to optimize 

complex hydrology models across continental-scale domains in support of applications in water security and prediction, this 

work demonstrates a strategy to leverage new insights from AI era hydrology research can help to surmount old challenges 

in the calibration and regionalization of large-domain PB models. 

Short summary. We present a new strategy to calibrate large-domain land/hydrology models over diverse and extensive 

regions. Using the Structure for Unifying Multiple Modeling Alternatives (SUMMA) and mizuRoute models, our approach 

integrates catchment attributes, model parameters, and performance metrics to optimize streamflow simulations. By 

leveraging recent innovations in machine learning methods and concepts for hydrology, we improve calibration outcomes 

and enable regionalization to ungauged basins, which is valuable for national-scale water security studies. 
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1 Introduction 

Hydrological modeling advances have significantly expanded our capacity to simulate and predict complex water-related 

processes. Such models provide critical information for water resource management and planning, flood hazard prevention, 

and climate resilience studies, among other applications. Accurate hydrologic simulations are vital in regions as expansive 

and diverse as the contiguous United States (CONUS), if not the globe, where variability in climate, land cover, and 

hydrological responses can be a challenge for the seamless implementation of land/hydrology models (LHMs: i.e., 

hydrologic models and/or the hydrologic components of land models). Traditional single-site calibration approaches that 

involve tuning model parameters for individual basins can be time-intensive, spatially non-generalizable and 

computationally costly, which limits their suitability for large-domain (national, continental, global) applications (Shen et al., 

2023; Tsai et al., 2021; Herrera et al., 2022). Because parameter estimation is vulnerable to sampling and input uncertainty 

and input errors, such basin-specific methods often lead to spatial inconsistencies in parameter estimates, limiting the 

model's generalizability across broader regions (Wagener and Wheater, 2006). 

Recent advances and applications in artificial intelligence (AI) -- a family of methods including machine learning (ML), 

deep learning (DL), large language models (LLMs) and other methods -- have been demonstrated to provide not only a 

skillful strategy for simulating hydrology (Kratzert et al., 2024; Nearing et al., 2024; Arsenault et al., 2023; Feng et al., 

2020), but also for process-based (PB) hydrology model calibration. Calibration methods in hydrology are numerous and 

have a long history, advancing hand-in-hand with the proliferation of models ranging in complexity from low-dimensional 

conceptual schemes (commonly used in engineering applications and operational forecasting) to more explicit high 

resolution PB models used in watershed and Earth System science. The greater complexity of such models drove calibration 

method innovations such as surrogate modeling for individual basins (Gong et al., 2016; Adams et al., 2023), which enabled 

a less-costly interrogation of the model parameter space despite the models’ increased computational demand. Such 

techniques have even more recently been discovered by the Earth System modeling (ESM) community, which previously 

calibrated complex ESM components (e.g., ocean, atmosphere, land) through ad hoc manual parameter sensitivity testing 

and tuning. AI-based methods including model emulators are now increasingly used for exploring land model parameter 

uncertainty and constraining model implementations (Dagon et al., 2020; Watson-Parris et al., 2021; Bennett et al., 2024). 

ML hydrology modeling applications have yielded the remarkable (and perhaps in retrospect, unsurprising) finding that joint 

model training across many watersheds can learn robust, heterogeneous hydrometeorological relationships that enable them 

to predict hydrological behavior for unseen watersheds and time periods -- which represents a large step forward in solving 

the longstanding hydrological prediction-in-ungauged-basins challenge (PUB; Wagener et al., 2007; Hrachowitz et al., 

2013). Mai et al. (2022) clearly demonstrated the superior performance of Long Short-Term Memory (LSTM) networks in 

out-of-sample temporal and spatial hydrologic simulation compared to a range of results from non-ML models. Such 

regionalization ability had not been achieved previously with conceptual and PB hydrology models, where joint multi-site or 
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regional training more often comes at a cost to individual basin model performance (Mizukami et al., 2017; Samaniego et al., 

2010; Tsai et al., 2021; Kratzert et al., 2024), notwithstanding some gains in regional parameter coherence. Samaniego et al. 

(2010) achieved moderate success at parameter regionalization using a joint large-domain training solution involving 

calibrating the coefficients of transfer functions relating geophysical attributes (‘geo-attributes’) to model parameters, 

expanding on common pedotransfer concepts for soil parameters. Since then, ML and DL approaches, including 

differentiable modeling -- e.g., embedding of DL elements within conceptual models converted to differentiable form (Feng 

et al., 2020; Shen et al., 2023) -- and hybrid ML/conceptual models (Frame et al., 2022) have continued to advance, 

outperforming traditional models and showing new potential for generalizing to ungauged basins with diverse hydroclimatic 

conditions (Kratzert et al., 2024; Feng et al., 2020).   

Generally, emulator strategies have evolved along two primary lines: (i) emulating model performance by directly relating 

model parameters to one or more performance objective functions, without explicitly modeling the dynamic behavior of the 

system (Gong et al., 2016; Herrera et al., 2022; Maier et al., 2014; Razavi et al., 2012; Sun et al., 2023), and (ii) emulating 

key dynamic model states or fluxes, then using the resulting emulator outputs (e.g., time series) to cheaply explore 

parameter-output sensitivities (Bennett et al., 2024; Maxwell et al., 2021). Importantly, this study explicitly focuses on the 

first strategy, emulation of model performance metrics, which originated primarily within hydrological modeling contexts. 

This choice greatly reduces the need to run the full hydrological model iteratively during calibration, substantially lowering 

computational expense and enabling scalable optimization for increasingly complex, large-domain hydrology models. 

The aim of the research described in this paper is to surmount traditional basin-specific calibration challenges by leveraging 

insights from recent AI-related progress in hydrology. The specific objective (and research sponsor motivation) for the study 

is to calibrate a PB LHM, the Structure for Unifying Multiple Modeling Alternatives (SUMMA; see Sect. 2.2) over the entire 

CONUS for use in generating a large ensemble of future climate-informed hydrologic scenarios for use by US federal water 

agencies and others in water security applications -- e.g., agency guidance and long-term planning studies. Prior experience 

with individual basin calibration followed by regionalization, and associated performance limitations, motivated this 

investigation of possibilities for a more scalable and powerful approach.   

To this end, we present an ML-based model calibration and regionalization strategy and associated method evaluation 

experiments for the CONUS-wide implementation of SUMMA, which was also demonstrated for calibrating the hydrology 

component of an ESM land model in a companion paper by Tang et al. (2025). The large-sample emulator (LSE) approach 

employs a joint training strategy that combines model performance (i.e., response surface) emulation and parameter 

optimization scheme to estimate parameters jointly across diverse catchments, building on recent advances in the ML 

hydrologic modeling community. By training the emulator on a large sample catchment dataset to predict model performance 

as a function of catchment geo-attributes and parameters, we build the capacity for identifying optimal parameter sets across 

large, varied and unseen domains. We compare the LSE results with traditional single-site emulator (SSE) calibration, and 

3 

 



comment on avenues for further advances in this direction. This study evaluates whether the LSE framework can improve 

model calibration performance over the SSE, and whether the LSE enables effective regionalization of parameters to unseen 

basins through spatial cross-validation. The following sections describe and discuss the methods and results of a series of 

experiments with this approach as applied to a large collection of US watersheds. 

2 Methods 

2.1 Study domain 

The study focuses on CONUS, a region encompassing diverse hydrological conditions due to its varied climate, landforms, 

and vegetation types. To represent such variability, we utilize a subset of watersheds from the Catchment Attributes and 

Meteorology for Large-sample Studies (CAMELS) dataset, which combines static catchment attributes with 

hydrometeorological time series for use in benchmarking hydrological modeling applications (Newman et al., 2015; Addor 

et al., 2017). Such datasets are well-suited for large-domain modeling due to their rich suite of attributes, including climate 

indices, soil properties, land cover, and streamflow observations, which provide a comprehensive basis for model calibration, 

evaluation and regionalization over a diverse range of hydroclimate settings. We selected 627 headwater basins from the 671 

CAMELS basins, excluding those with nested interior basins to ensure independence and avoid overlapping drainage areas. 

Catchment boundaries for the modeling were updated from those provided in the original CAMELS dataset, correcting 

inaccuracies in boundary and drainage areas by using the original boundaries from the Geospatial Attributes of Gages for 

Evaluating Streamflow, version II dataset (Falcone, 2011), which are consistent with U.S. Geological Survey 

(USGS)-estimated drainage areas. The spatial unit for the calibration experiments is each CAMELS watershed. A 

comprehensive summary of the CAMELS basin characteristics is provided in Addor et al. (2017) and is not reproduced here. 
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Figure 1. Spatial distribution of selected headwater basins (red outlines) from the Catchment Attributes and Meteorology for 
Large-sample Studies (CAMELS) dataset (green areas) across the contiguous United States (CONUS). 

2.2 Process-based modeling with SUMMA and mizuRoute 

SUMMA is a PB LHM framework designed for flexibility in representing hydrological processes across diverse catchments 

(Clark et al., 2015a, 2015b, 2021). SUMMA solves generalized mass and energy conservation equations, offering multiple 

parameterization schemes for hydrological fluxes, and enabling flexible advanced numerical techniques to optimize solution 

performance. SUMMA represents watersheds with a hierarchical spatial organization centering on Grouped Response Units 

(GRUs) that are divisible into one or multiple Hydrologic Response Units (HRUs). GRU geometry is user-defined and has 

varied in usage from mesoscale catchment boundaries to fine or mesoscale resolution grid, as well as point-scale simulations. 

Such configurations allow SUMMA to represent the natural topography of the domain to the extent warranted by a given 

application, thereby improving the interpretability of model results (Gharari et al., 2020).  

Here as in other SUMMA modeling studies, runoff and subsurface discharge outputs from SUMMA simulations are 

subsequently input to the mizuRoute channel routing model (Mizukami et al., 2016), a flexible framework supporting 

multiple hydrologic routing methods to provide streamflow estimates at gage locations. MizuRoute organizes the routing 

domain using catchment-linked HRUs connected by stream segments (Mizukami et al., 2016, 2021). Currently five methods 

are offered in MizuRoute, of which the Diffusive Wave (DW) routing scheme, as implemented by Cortés-Salazar et al. 

(2023), was adopted here. Both SUMMA and mizuRoute model codes are open source and their development has been 
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extensively sponsored by the US water agencies (the Bureau of Reclamation and US Army Corps of Engineers, USACE) 

with growing support from other agencies in the US and internationally. 

For this study, SUMMA and mizuRoute are run at a nominal 3-hourly simulation timestep. The associated sub-daily forcing, 

including precipitation, temperature, specific humidity, shortwave and longwave radiation, wind speed, and air pressure, 

were derived from gridded datasets but spatially aggregated across each basin area, resulting in basin-averaged input time 

series. Specifically, precipitation and temperature forcings were derived from the Ensemble Meteorological Dataset for 

Planet Earth (EM-Earth), which provides hourly data with 0.1° spatial resolution, merging ground-station data with 

reanalysis for enhanced accuracy (Tang et al., 2022). EM-Earth integrates gap-filled ground station data with reanalysis 

estimates, offering improved accuracy over standalone reanalysis products. Similarly, wind speed, air pressure, shortwave 

and longwave radiation, and specific humidity inputs were derived from ERA5-Land, also at 0.1° spatial and hourly 

temporal resolutions (Muñoz-Sabater, 2021). To match the EM-Earth spatial configuration (a 0.05° offset), the ERA5-Land 

grids were interpolated, and the combined basin forcings dataset spanned the period 1950-2023.   

The initial (default) SUMMA configuration and parameters used in this study were developed in prior SUMMA and 

mizuRoute applications projects (e.g., Broman and Wood, 2021; Wood et al., 2021; Wood and Mizukami, 2022), based on 

expert judgment involving consultation with other model developers, evaluation of previous modeling experiments and 

sensitivity analyses, and model process algorithms that directly influence runoff generation. These choices include model 

physics selections, soil and aquifer configuration, spatial and temporal resolution, an a priori parameter set and target 

calibration parameters. The SUMMA model configuration adopted a single HRU per GRU, in which the GRU was the entire 

lumped area of each catchment. A maximum of 5 layers was specified for snow, and the subsurface included 3 soil layers 

with a total layer depth of 1.5m, underlain by an aquifer (bucket) with a maximum water holding capacity of 1.5m.  For the 

routing network, the MERIT-Hydro (Lin et al., 2019) stream channel topology was chosen.   

The SUMMA calibration parameters and physics configuration choices are summarized in Table 1 and Table A1 (appendix), 

respectively. Default values shown in Table 1 are taken from a representative basin (e.g., Basin ID: 05120500) for reference. 

Some default parameter values (e.g., soil or vegetation-related) vary across basins based on local attributes, and the values in 

this table may not be globally consistent across the domain. The first phase of the calibration process, via a Latin Hypercube 

Sampling (LHS) of the parameter space and model response, supported sensitivity analysis and refinement of parameter 

search bounds to focus trial values into likely behavioral areas and/or to avoid model convergence issues (e.g., the lowest 

theoretically possible values of the vGn_n parameter in SUMMA produces non-physical behavior). The calibration ‘trial’ 

parameter selection was designed to control major hydrologic process phenomena -- e.g., infiltration, evapotranspiration, soil 

storage and transmission, snow accumulation and melt, hillslope runoff attenuation, aquifer storage and release -- though 

identifying an efficient number of controlling parameters, versus conducting comprehensive parameter sensitivity assessment 

and selection optimization.  
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We note that the ‘default’ parameter values used here reflected prior study calibration efforts from a site-specific 

CAMELS-based SUMMA streamflow calibration project conducted by authors Wood and Mizukami (unpublished). The 

earlier effort used the Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) and calibrated 

many of the same parameters. However, the work used an earlier version of SUMMA and did not include mizuRoute 

routing, thus it forms only a baseline reference for our current parameter choices in this study. The prior effort’s 

SUMMA-CAMELS dataset, DDS calibration workflow and parameter selections later contributed to a SUMMA sensitivity 

study (Van Beusekom et al., 2022) and was published in associated repositories. 

Table 1. Selected calibration parameters with default values and ranges. 

Parameter name Default  Minimum Maximum Process importance 

k_soil 7.5e-06 1e-07 0.0001 
Hydraulic conductivity: regulates transmission of water 

through soil layers 

theta_sat 0.55 0.2 0.7 Soil porosity: influences water storage capacity 

aquiferBaseflowExp 2.0 1.0 4.0 Controls aquifer discharge 

aquiferBaseflowRate 0.001 0.0001 0.1 Controls aquifer discharge 

qSurfScale 5.0 1.0 20.0 Affects partitioning of direct runoff versus infiltration 

summerLAI 3.0 0.2 10.0 Regulates transpiration  

frozenPrecipMultip 1.0 0.5 2.5 Snow undercatch factor, scales winter precipitation 

routingGammaScale 18000.0 360.0 86400.0 Controls GRU combined runoff attenuation and delay 

routingGammaShape 2.5 1.0 5.0 Controls GRU combined runoff attenuation and delay 

Fcapil 0.06 0.01 0.11 
Affects refreeze of snowmelt within pack, timing of 

snowmelt runoff 

tempCritRain 273.16 270.16 276.16 Temperature threshold to discriminate rain from snow 

heightCanopyTop 20.0 2.0 50.0 
Impacts turbulent heat fluxes (sensible, latent); influences 

snow cycle timing and magnitude  

heightCanopyBottom 2.0 0.000 5.0 
Not directly calibrated; scaled proportionally to 

heightCanopyTop 
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windReductionParam 0.28 0.05 1.0 Impacts turbulent heat fluxes (sensible, latent) 

vGn_n 2.0 1.3 4.0 Van Genuchten ‘n’: regulates retention of water in soil layers 

2.3 ML-Based parameter estimation approach  

We apply and assess the LSE and related parameter estimation techniques introduced in Tang et al. (2025), a companion 

paper that focused on calibrating the hydrological components of the Community Terrestrial Systems Model (CTSM; 

Lawrence et al., 2019). For this study, the approach was further tailored to calibrate the combined SUMMA-mizuRoute 

model (e.g., channel routing was not used with CTSM). As noted in the Introduction, basin-specific calibration approaches 

can be computationally intensive and result in spatially discontinuous parameter fields, limiting their scalability and 

generalizability to large, diverse domains like CONUS. To assess whether the LSE can offer a more effective calibration 

strategy for large-domain SUMMA modeling, we run several experiments using the ML-based emulation strategy to 

optimize model parameters, focusing on two contrasting variations: the basin-specific single-site emulator (SSE) and the 

combined-basin joint LSE, which simultaneously calibrates multiple basins. The calibration period spans six water years, 

from October 1982 to September 1989, with the first year treated as spin-up and excluded from model evaluation. This 

period was selected based on its consistent data availability across basins and its use in previous large-sample studies, 

allowing for comparability and minimizing confounding effects from land use change or climate trends. Figure 2 provides a 

schematic overview of the iterative ML-based calibration workflow using SSE or LSE, including time series input data and 

selected parameters for each basin, initial sampling (‘iter-0’), emulator-based iterative optimization, and final parameter 

selection. Details are provided in the following sections. 
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Figure 2. The flowchart of the parameter optimization in this study, including target parameter selection, initial sampling 

(iter-0), iterative optimization cycles (iter-X) using emulators, and the selection of the final parameter set. For emulator 

inputs, the basin geo-attributes are only used for the large-sample emulator (LSE) approach. 

2.3.1 SSE-based calibration 

The SSE calibration approach optimizes model parameters for each basin separately. Our approach is based on other single 

site optimization approaches that use surrogate modeling (e.g., the MO-ASMO method of Gong et al., 2016) to represent the 

relationship between model parameters and objective function (OF) results. The initial step involves generating a large set of 

parameter combinations (400) using LHS for each basin. These parameter sets are used to run SUMMA-mizuRoute 

simulations, and their performance is quantified using one or more OFs, which serve as the minimization target for 
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calibration. These initial semi-random sampling and model OF evaluations are first used in selecting the form of the 

emulator to be used for each basin. Based on insights from Tang et al. (2025), two emulators—Gaussian process regression 

(GPR) and random forests (RF)—are assessed here via a five-fold training and cross-validation procedure on the initial LHS 

sample. The emulator with better performance is selected and then retrained on the complete initial parameter set, for each 

basin separately. We note that the emulator can also play a role in identifying and selecting optimal parameters for calibration 

as described in Tang et al. (2025), which provides details on that usage. 

Following this step, the main iterative calibration process begins. For each basin, the trained emulator is used within an 

optimization algorithm to explore the parameter space, searching for improved parameter sets that minimize the OF. In this 

study, a Genetic Algorithm (GA; Mitchell, 1996) is employed for single-objective calibration, whereas the Non-dominated 

Sorting Genetic Algorithm II (NSGA-II; Deb et al., 2002) is used for multi-objective calibration. Each iteration involves 

generating a new suite of emulator-predicted parameter sets (100), which are then used to run the SUMMA-mizuRoute 

model and calculate model OFs. These results are added to the existing previous parameter sets to retrain the emulator for 

further optimization, leading to the next iteration. This iterative process continues until a specified stopping criterion is met, 

such as achieving a performance threshold or completing a predetermined number of iterations. In this study, limited 

iterations (six following the initial LHS iter-0) combined with a greater number of trials per iteration helped reduce noise 

while improving calibration efficiency. The number of trials per iteration and other hyperparameters (Table A4) of the 

process were selected through sensitivity testing and also informed by the experimental outcomes of Tang et al. (2025).   

2.3.2 LSE-based calibration 

In contrast to the SSE, the LSE calibration approach includes all basins jointly in a single calibration process that estimates 

optimal parameters in all basins at once. The initial phase is similar to the SSE approach, where a large number of LHS 

selected parameter sets (e.g., 400 in this study) are generated for each of the 627 basins, and their performance in 

SUMMA-mizuRoute is evaluated. As in the SSE, the LHS parameter sets are unique for each basin to afford the maximum 

diversity in parameter trials across the associated model simulations (as in Baker et al., 2021). In contrast to the SSE, 

however, the emulator relies on additional static basin attributes to learn the parameter-performance responses of different 

types of basins. In this study, we choose 27 such ‘geo-attributes’ representing basin-specific geographic and climatic 

characteristics, such as soil properties, vegetation, and climate indices (Table A2). Including geo-attributes enables the 

emulator to estimate model performance (i.e., the OFs) conditioned on both parameter and attribute values, which means the 

LSE can be used to predict potentially optimal parameter sets for unseen basins where the performance is not known or 

cannot be measured, enabling its potential use in parameter regionalization, i.e., prediction in ungauged basins (PUB). 

We use the RF emulator for the LSE due to its speed and performance relative to GPR, which struggles to train on the much 

larger joint basin parameter trial dataset -- i.e., 400*627 or 250,800 samples for the initial sampling step, growing by 62,700 

new trials with each iteration. To start each calibration iteration, the trained RF emulator from the initial step (iter-0) or prior 
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iteration is used by an optimization algorithm to predict potentially improved parameter sets (100) for each basin 

individually. In multi-objective optimization, the NSGA-II inherently produces a pareto-set of optimized parameters, 

whereas for single-objective optimization, we achieve a pareto-set through randomized initializations of the GA. For each 

new trial in an iteration, static geo-attributes are held constant by restricting their search ranges to the basin-specific values, 

avoiding the specification of geo-attribute values that do not match those of the study basins. SUMMA is then run with the 

predicted trial parameters and new OF values are obtained, which are added to the emulator training sample to be used in 

subsequent iterations.  

In collaboration with the effort described in Tang et al. (2025), the development of this calibration approach presented 

several challenges, which were tackled through extensive (albeit ad hoc) testing of different choices in the implementation. 

For example, one concern was hyperparameter selection, which required balancing the complexity of the emulator to prevent 

overfitting while ensuring adequate generalization. Hyperparameters for the RF and GA models were tuned using a 

combination of grid search and cross-validation. The computational demand of the LSE approach was significant; even using 

an emulator, it still requires conducting a large number of simulations to generate parameter sets based on optimization 

algorithms, as well as testing them in a computationally expensive LHM. To address this, the number of iterations was 

minimized while the number of parameter trials per iteration was increased, which we found improved efficiency without 

sacrificing accuracy. Additionally, we relied on parallel and high-performance computing (HPC) resources from the National 

Center for Atmospheric Research (NCAR) and engineered the HPC-specific workflow using load balancing in the emulator 

training and parameter optimization phases to reduce the overall computational cost and wall-clock time. Further discussion 

of these hyperparameter experiments and workflow development is beyond the scope of this paper and may be tackled in a 

subsequent publication.   

2.4 Experimental design and evaluation approach 

2.4.1 Experiments 

Our evaluation provides insight into the performance of different aspects of the approach through several experiments. First, 

we assess the emulator accuracy -- the agreement between the OFs predicted by the emulator and those simulated by the 

model. Next, we use a small set of metrics to assess the approach in three ways: (1) with the emulator trained on all of the 

study basins (‘all-basin’) for the calibration period; (2) with all-basin training for a temporally separate validation period; and 

(3) with a spatial cross-validation, in which the emulator is trained and separately tested on different parts of the study basin 

dataset.   

The first experiment compares the LSE and SSE approach results across all 627 basins during the calibration period. In a 

second experiment, temporal validation was performed by selecting the best performing parameter sets from the calibration 

period to simulate streamflow for an independent time period (October 2003 to September 2009) to assess the temporal 
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robustness of the calibrated parameters and their ability to generalize under varying meteorological conditions. This period 

has a similar length to the calibration period and is separated by multiple years, without further considerations imposed.  

A third experiment (termed LSE_CV) evaluates the LSE's capability for regionalization in unseen basins through using a 

spatial cross-validation training and testing approach. The basin dataset was divided through random sampling into five 

spatially distinct and (roughly) equally-sized folds. In each iteration of the LSE calibration process, four folds (80% of the 

basins) were used for training the emulator and the remaining fold (20% of the basins) was used for testing. Model 

parameters (and the emulator-predicted OF values) were predicted by the emulator for the test fold basins based solely on 

their geo-attributes. The parameter sets with the best emulator-predicted OFs were then selected for model simulation in the 

test fold basins, and OF results for the five test fold simulations were pooled after each iteration for assessment. Note, due to 

emulator error, the parameter set selected based on emulator-estimated performance for a test basin was rarely the best 

performing parameter set among the iteration trial options for that basin (a point discussed further below). The LSE_CV 

experiment is approximately 5 times more expensive than the others, given that 5 emulators must be trained, and after 

iteration-0, each iteration involves 5 rather than one model simulation per parameter trial number.   

2.4.2 Evaluation metrics and application 

The emulator's performance was evaluated using cross-validation techniques and statistical metrics to quantify its ability to 

predict the OF values based on parameter sets and catchment geo-attributes. As in Tang et al. (2025), we adopted the 

normalized Kling-Gupta Efficiency ( ), a version of the modified Kling-Gupta Efficiency ( ) (Kling et al., 2012; 𝑁𝐾𝐺𝐸' 𝐾𝐺𝐸'

Beck et al., 2020), as the OF for calibration.  was chosen to mitigate the influence of outliers, which 𝑁𝐾𝐺𝐸'

disproportionately affect the emulator's performance due to the amplified (unbounded) range of  values from poorly 𝐾𝐺𝐸'

performing basins and/or trials, and because the joint evaluation requires standardization across diverse basin flow error 

ranges. All  and  values reported in this study are computed based on daily streamflow. 𝐾𝐺𝐸' 𝑁𝐾𝐺𝐸'

The formulations for  and  are: 𝐾𝐺𝐸' 𝑁𝐾𝐺𝐸'

 ​ ​ ​ ​ ​ ​ ​ ​ (1) 𝐾𝐺𝐸' = 1 − (𝑟 − 1)2 + (β − 1)2 + (γ − 1)2

​ ​ ​ ​ ​ ​ ​ ​  ​ ​                (2) 𝑁𝐾𝐺𝐸' = 𝐾𝐺𝐸'

(2−𝐾𝐺𝐸')

where  is the linear correlation,  is the bias ratio, and  is the variability ratio.  ranges from  to 1, whereas 𝑟 β γ 𝐾𝐺𝐸' − ∞

 normalizes this range to [−1,1], which is necessary to balance the information weight of each basin during training. 𝑁𝐾𝐺𝐸'

This nonlinear rescaling prevents extremely poor-performing trials from dominating the learning process while preserving 

their rank order. In contrast to a hard cap on low  values, this smooth rescaling avoids discontinuities in the objective 𝐾𝐺𝐸'

function, improves emulator training stability, and provides a more interpretable optimization surface. 
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For each of the experiments, we take stock of the calibration performance after each calibration iteration (of 100 trials). This 

can be done by calculating the evaluation metrics considering each iteration separately, or by calculating them after each 

iteration and including prior iterations. The iteration-specific evaluation gives insight into the path of the calibration as it 

seeks improved parameters, while the cumulative evaluation shows the overall achievement of the calibration in finding 

optimal parameters by the end of each iteration. Most model performance results are shown in terms of the  metric (not 𝐾𝐺𝐸'

the optimization metric, which is less familiar to practitioners), and in the form of spatial maps and cumulative distribution 

functions (CDFs) of  values from all the basins. Both the LSE and SSE calibrations start with the same default 𝐾𝐺𝐸'

parameter configurations (iter-0) to ensure a consistent baseline for comparison. Improvements in  relative to the 𝐾𝐺𝐸'

default model results are analysed in some cases to illustrate the impact of both methods. 

3 Results 

3.1 Emulator performance 

To gauge whether the emulator is successful in learning the model performance metric response to variations in input 

parameters (and for the LSE, in geo-attributes), we first evaluate emulator performance by comparing its OF predictions (

) to the actual SUMMA model OF values across successive calibration iterations. For each iteration, the 𝑁𝐾𝐺𝐸'

emulator-based parameters and OF values are estimated from the simulations of the previous iteration, thus the simulations 

on which they are tested are independent (were not seen by the emulator previously). Scatter density plots for iterations 1-6, 

illustrating SSE, LSE calibrations and the LSE_CV experiment, aggregated across all basins, are shown in Figures 3-5, 

respectively. Figure 3 demonstrates that the SSE approach struggles to improve accuracy in predicting the model OF values 

progressively across subsequent iterations. While some improvements are observed (e.g., iteration-3), overall performance 

remains suboptimal, with low to moderate correlations and substantial scatter around the 1:1 line. These results suggest that 

the SSE approach is limited by a small training sample, resulting in emulator noise and only weakly capturing the 

relationship between parameters and OFs, without improving significantly as training progresses. It does tend to lead to 

overall model performance improvements (selected from the ensemble post hoc) as a result of a relatively broad (though 

inefficient) range of predicted parameter sets in each new iteration, the best of which yield strong performance.  
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Figure 3. A scatter density plot of emulator-predicted objective function (OF) values (normalized modified Kling-Gupta 

Efficiency; ) versus real model OF values for the single-site emulator (SSE) approach across six iterations, aggregated 𝑁𝐾𝐺𝐸'

across all basins. The Pearson correlation coefficient (R) is shown for each iteration (as in Figures 4 and 5). 

Figure 4 demonstrates the LSE approach's superior ability to progressively improve the prediction of the model OF values 

across iterations. Starting with moderate agreement in iteration-1 (R = 0.71), the emulator steadily improves, achieving 

strong correlations and reduced scatter as training progresses. Iterations 4-6, with R fluctuating between 0.90 and 0.94, 

suggest that the emulator's performance may have reached a limit in the available information. The more progressive upward 

trend of performance underscores the potential benefit of the jointly trained LSE approach relative to the SSE in more 

comprehensively learning and using the model relationship between parameters and OFs to more effectively search for 

parameter sets in the individual basins. 
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Figure 4. A scatter density plot between emulator-predicted OF values ( ) versus real model OF values for the LSE 𝑁𝐾𝐺𝐸'

approach across six iterations, aggregated across all basins. The lower-right scatter regions in early iterations reflect emulator 

overestimation, where predicted performance is high, but actual model performance is poor. This misalignment diminishes as 

the emulator improves over successive iterations.  

Figure 5 evaluates the LSE_CV approach, which represents parameter regionalization in unseen basins through spatial 

cross-validation (CV). From the initial iterations (e.g., iteration-1, R = 0.43), the emulator’s predictive performance rises 

more slowly, with some vacillation, and plateaus at much lower skill levels than for the LSE of Fig. 4, peaking at R = 0.56 by 

iteration-5. As expected, the LSE_CV performs worse than the LSE, which sees all basins in calibration, but nonetheless 

outperforms the SSE approach (Fig. 3). This indicates that the information gained from the large sample of basins provides 

additional stability in estimating parameters in an unseen basin over the information gained by the SSE (with the same 

number of trials) -- even when the SSE has learned directly (but only) from that basin. 
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Figure 5. A scatter density plot comparing emulator-predicted OF values ( ) to real model OF values for the LSE_CV 𝑁𝐾𝐺𝐸'

approach across six iterations, aggregated across all basins.   

3.2 Calibration performance 

The following analyses assess the implications of the apparent emulator strengths and weaknesses for the associated model 

simulations during calibration. Figure 6 illustrates the CDFs of  for both SSE and LSE calibration approaches across all 𝐾𝐺𝐸'

basins, comparing their evolution from the default parameter set through multiple iterations of calibration. The default 

configuration provides a baseline with a median  of 0.30, represented by the blue line, and each curve comprises the 𝐾𝐺𝐸'

best ‘cumulative’ basin model  across all basins after each iteration, including prior iteration results. 𝐾𝐺𝐸'

The SSE approach (Fig. 6a) shows the SSE calibration results, where the median  improves from the default value of 𝐾𝐺𝐸'

0.30 to 0.69 by iteration 6 (‘iter-6’). The largest gains are observed during iteration 0 (  of 0.52), after which the 𝐾𝐺𝐸'

improvement rate slows. In Figure 6b, the LSE approach begins with significant improvement in iteration 0, attaining a 
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median  across all basins of 0.52. Over subsequent iterations, the LSE approach gains skill, culminating in iteration 6 𝐾𝐺𝐸'

with a median  of 0.76. Overall, the LSE approach outperforms SSE in all iterations. By iteration 6, LSE achieves a 𝐾𝐺𝐸'

median  of 0.76 compared to 0.69 for SSE. Both approaches show diminishing returns after early iterations, but the 𝐾𝐺𝐸'

LSE's joint multi-basin calibration is more effective in progressively identifying performative parameter sets through each 

iteration. Notably, this superior performance is achieved through training the joint model emulator only 6 times, versus 

training 627*6 = 3,763 emulators to estimate calibration parameters when using the SSE.   

Figure 6. Comparison of calibration performance: cumulative distribution function (CDFs) of modified Kling-Gupta 

Efficiency ( ) for (a) SSE and (b) LSE calibration across all basins over six iterations, with median  values noted in 𝐾𝐺𝐸' 𝐾𝐺𝐸'

the legend. The blue line represents CDF and median  based on the default parameter set for all 627 basins. Both LSE 𝐾𝐺𝐸'

and SSE approaches start with the same iter-0. The x-axis range is set to [–1, 1] for visual clarity, and  no normalization or 

scaling has been applied to . 𝐾𝐺𝐸'

The geographic distribution of model performance is shown in Fig. 7, which compares individual basin  values for the 𝐾𝐺𝐸'

calibration period across the CONUS domain for the default parameter configuration, the SSE-based calibration, and 

LSE-based calibration. The default configuration results of Fig. 7a reflect a degree of indirect calibration (as noted in Section 

2.2) and provide a benchmark for this study’s calibration improvements. The general pattern of performance, with central US 

basins showing lower  values than west coast, eastern, and intermountain west basins, is consistent with results shown 𝐾𝐺𝐸'

in numerous other studies based on the CAMELS-US basin dataset, including the first (e.g., Newman et al., 2015).   
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The SSE-based calibration  values (Fig. 7b) show marked improvements in hydrological accuracy relative to the default 𝐾𝐺𝐸'

parameters (Fig. 5a), especially in the eastern United States, where high  values are achieved in many basins. However, 𝐾𝐺𝐸'

the results reveal significant spatial variability, with several western basins showing  values below zero. The LSE (Fig. 𝐾𝐺𝐸'

7c) demonstrates further improvement across nearly all basins, perhaps most notable in the Appalachian basins of the eastern 

U.S, and fewer basis with  values below zero (as is also clear from Fig. 6). A timeseries-based illustration of the 𝐾𝐺𝐸'

performance of LSE-based calibration for two basins is provided in Appendix Fig. B1 and Fig. B2. In Figure B1, calibration 

achieves a high-quality simulation of observed streamflow at daily and seasonal mean levels, while Fig. B2 shows a basin 

with notable daily and monthly improvements from calibration over the default simulation, but errors remaining in the 

seasonality of simulated streamflow.  

Figure 7 Comparison of  values for (a) default configuration, (b) SSE and (c) LSE calibration across the CONUS 𝐾𝐺𝐸'

(1982-1989). 

Although such CONUS-wide summaries of performance are useful, the contrast between SSE and LSE calibration 

performance can be stark when reviewed at the level of individual basins. Figure 8 shows an example of the parameter 

sampling trajectories of the SSE and LSE calibrations, as assessed using two model diagnostic performance metrics that 

were not used as the calibration objective: the mean absolute daily streamflow error, and a seasonality metric defined as the 

maximum long-term mean monthly absolute streamflow error -- i.e., the largest error in long-term mean monthly flow. The 

LHS-generated ‘iter-0’ parameters provide the starting point for searching the parameter space, which the SSE and LSE duly 

improve upon, each recommending parameters that lead to superior model performance in iteration 1. In subsequent 

iterations, however, the SSE parameter set performance regresses and vacillates, while the LSE parameter recommendations 

generally advance. For the SSE, the successive iterations of the parameter search have a broader performance spread and are 

more scattershot, while the LSE search tends to yield steady refinement in model performance. This behavior certainly varies 

by location, but the general character of each approach shown in Fig. 8 is consistent with  the rates of improvement shown in 

Fig. 6.  
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Figure 8 Illustration of the (a) SSE and (b) LSE parameter calibration progress across successive iterations, as measured by 

two metrics not used in calibration. Better model performance for both metrics (i.e., lower error) is found in the bottom left 

corner of each plot. Iter-0 contains 400 parameter sets, and subsequent iterations contain 100. The default simulation is from 

a previous SUMMA application after individual basin optimization with the DDS algorithm. 

Incidentally, Fig. 8 also illustrates that despite recent critiques against calibrating hydrology models to integrated streamflow 

metrics such as the Nash Sutcliffe Efficiency ( ) and  (e.g., Brunner et al., 2021; Knoben et al., 2019), such metrics 𝑁𝑆𝐸 𝐾𝐺𝐸

can be effective in jointly optimizing hydrology model performance across multiple metric dimensions, hence their 

long-standing popularity in practice.   

3.3 Temporal validation of the SSE and LSE approaches 

Temporal validation (during the independent 2003–2009 period) of the SSE and LSE approaches shows that, as expected, 

calibration parameter performance for both falls relative to the calibration period. Figure 9 shows the  CDF curves with 𝐾𝐺𝐸'

the median of the distribution of each basin’s best performance (including all prior iterations) reaching 0.65 and 0.69 or the 

SSE and LSE, respectively, by the 6th iteration (best scores include the best of all prior iterations). The lower reduction in 

validation scores for the SSE than for the LSE may or may not be notable (i.e., it may be a study-specific result); if 

significant, it suggests that the best selected SSE parameters, even with lower overall performance in both calibration and 

temporal validation, may be slightly more robust to meteorological variability than those from the LSE.  
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Figure 9 Comparison of temporal validation (during the independent 2003–2009 period) performance: CDFs of the best 

 for (a) SSE and (b) LSE calibration across all basins over six iterations. The blue line represents the CDF and median 𝐾𝐺𝐸'

 based on the default parameter set over all basins. 𝐾𝐺𝐸'

The associated maps in Fig. 10 show the geographic distribution of the temporal validation median  scores for the SSE 𝐾𝐺𝐸'

and LSE approaches, and their change in value relative to their respective calibration scores. The pattern of values for the 

validation scores (parts a and c) are broadly similar, which is notable given that the LSE represents their joint calibration in 

contrast to the individual attention that each basin receives in the SSE. Higher  values are observed predominantly in 𝐾𝐺𝐸'

the mountainous portions of the western US, and in the midwest and eastern US. Lower  values are more prevalent in 𝐾𝐺𝐸'

the southwestern US and northern plains region.  

In general, areas that calibrated well under either method (Fig. 7) tended to hold up well in temporal validation. Plot parts (b, 

d) show the difference between the validation and best-calibrated , and regions with smaller differences indicate that the 𝐾𝐺𝐸'

calibrated parameter sets generalized well in time. The LSE-calibrated parameters led to slightly greater loss in skill in 

validation than did the SSE-calibrated parameters, and this effect was pronounced in the more challenging calibration 

regions noted above. Although the cause of this effect is unclear, a likely culprit is overtraining -- i.e., that the LSE harnesses 

more sequence-specific information than the SSE to gain a stronger calibration and validation performance. That said, if the 

objective of a modeling application is to calibrate a LHM for use over a large number of measured catchments, this analysis 
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nonetheless suggests that the LSE would provide both efficiency and skill improvements over the traditional basin-specific 

calibration.  

Figure 10 Temporal validation performance (during the independent 2003–2009 period) shown as spatial distribution across 

the CONUS. Panels illustrate (a) median  values for SSE calibration, (b) difference between validation and calibration 𝐾𝐺𝐸'

median  values for SSE (c) median  values for LSE calibration, and (d) difference between validation and 𝐾𝐺𝐸' 𝐾𝐺𝐸'

calibration median  values for LSE. 𝐾𝐺𝐸'
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3.4 Spatial cross-validation  

Figures 11 and 12 present results of the LSE_CV experiment, which tests SUMMA simulations using the parameter sets in 

each iteration (cumulative with prior iterations) that had the best emulator-predicted  values in each basin. Each 𝐾𝐺𝐸'

calibration iteration produces 100 recommended new parameter sets; thus, there is a need to decide a priori which set to 

select for testing in the unseen basins (as noted in Sect. 2.4.1). Because the emulator has some skill in estimating model 

performance given different parameter sets, we use its performance estimate as a basis for the selection. We briefly 

experimented with alternative selection strategies, none of which were superior, and also evaluated whether transferring a 

small ensemble (top 5-20 parameter sets based on emulator ranking) leads to better mean performance (it does, but ensemble 

modeling is not the focus of this effort). We compare LSE_CV results to those from LSE calibration parameter sets selected 

in the same way (based on the highest emulator-predicted  values), which leads to slightly lower performance than 𝐾𝐺𝐸'

assessing the best actual model  values, as shown in Fig. 6a. 𝐾𝐺𝐸'

In Figure 11, the contrast between the LSE_CV and LSE_all (from calibration) when using emulator-ranked parameter sets 

is striking. In both cases, median  values generally rise over six iterations, indicating that the approaches can find 𝐾𝐺𝐸'

improved parameters as they are run repetitively. Not surprisingly, the LSE_CV skill falls relative to the LSE all, and 

plateaus quickly. The LSE_all calibration achieves higher median emulator-predicted  values compared to LSE_CV in 𝐾𝐺𝐸'

every iteration, with a final median value of 0.73 for LSE_all compared to 0.43 for LSE_CV by iter-6. This discrepancy was 

larger than expected, and we review potential causes further in the Discussion section.  
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Figure 11 Comparison of calibration performance: CDFs of the best  for (a) LSE_CV across all folds and (b) LSE_all 𝐾𝐺𝐸'

across all basins over six iterations with median  values. 𝐾𝐺𝐸'

Useful context for the emulator-predicted LSE_CV results is provided in Appendix Fig. B3, which shows the best model 

performance selected post facto for unseen test basins using LSE_CV parameter sets (recall that 100 parameter sets are 

estimated in each iteration, but only one is tested in Fig. 11a). Achieving a median  value of 0.72 after six iterations, the 𝐾𝐺𝐸'

best performing results suggest that the LSE is capable of finding competitive parameter sets in unseen basins; rather, the 

challenge is knowing in advance which of the estimated parameter sets are best to use in parameter transfer. For applications 

in which an ensemble of predicted, pre-trained parameter sets is useful, this finding is useful, especially if the fitness of an 

ensemble of emulator-predicted parameter sets could be judged through additional relevant criteria (such as performance at 

indirectly related or downstream gages, or assessment of consistence with related hydrologic statistics or signatures), aiding 

the regionalization task.  

Figure 12 shows the geographic distribution of performance results for the LSE_CV, the LSE in calibration (which uses 

emulator-ranked best parameter sets, versus best model outcomes), and the LSE_CV difference from the default model 

performance (parts a-c, respectively). The calibrated LSE-based  values are significantly high across most basins, 𝐾𝐺𝐸'

demonstrating that substantial model performance may be achieved by directly calibrating parameters across all basins, 

benefiting from the full training dataset. The more uniform distribution of higher  values across different regions, 𝐾𝐺𝐸'

especially in the central and eastern U.S., highlights the LSE's ability to enhance accuracy over diverse hydroclimatic 
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conditions. The LSE_CV approach, illustrated in Fig.11a, shows improvement over the default model parameters for a 

majority of basins, with approximately 62% of basins achieving better values than the default configuration. However, there 

are multiple basins where LSE_CV underperforms compared to default parameters, particularly in complex, cold or arid 

regions. 

 

Figure 12 Comparison of performance (median sample ) between the LSE_CV, which uses spatial cross-validation for 𝐾𝐺𝐸'

regionalizing parameters to unseen basins, and the LSE_all calibration, which uses information from all basins. The 

LSE_CV performance difference from the default parameter performance is also shown. 

4 Discussion and conclusions  

This study investigates whether the challenge of calibrating large-domain implementations of complex, expensive PB 

land/hydrology models can be tackled through similar strategies to those now being advanced in the AI contexts (i.e., ML, 

DL and differentiable modeling). Such studies have shown that jointly training the DL or simple conceptual models (made 

differentiable) over large samples of catchments is not only viable but is recommended over individually calibrating such 

models on single basins. The reverse had generally been found for complex LHMs, but the recent emergence of ML model 

emulation strategies for complex models has provided an avenue for reassessing this consensus. In collaboration with a 

companion effort described in Tang et al. (2025), which focused on the CTSM land model, we develop and assess a 

large-sample emulator (LSE) based strategy for calibrating the SUMMA-mizuRoute modeling approach across CONUS 

watersheds. While our study focuses on small-to-medium basins in the CAMELS dataset, the LSE approach is being 

designed for application to large domains (regional to continental to global scale). Applying the emulator-guided calibration 

strategy to such larger regions may require adjustments to account for greater heterogeneity in factors such as spatial scale, 

dominant processes and land forms, flow routing complexity, meteorological input patterns, among others.   
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Our findings are, in short, promising. They suggest that a large-sample model response emulation approach has potential to 

become a preferred option for calibrating complex PB models over large domains as it has for ML and other AI-era modeling 

approaches. The generally higher performance achieved by the LSE relative to the SSE indicates that large-sample 

calibration can more effectively learn the model response surface to parameters, even for complex models, than is possible 

using local information alone. As noted by Kratzert et al. (2019) and others, the inclusion of static catchment attributes 

allows large-sample approaches to localize parameter influence and account for hydroclimatic variability across basins, 

which in turn leads to more efficient joint calibration and better overall model performance. Our SSE, while effective for 

some individual basin calibrations, did not reach the accuracy of the LSE when applied across diverse conditions, and 

pursued less efficient parameter search trajectories. In practice, the scalability of a strategy that jointly trains a single, 

low-cost model emulator for model calibration to yield usable parameter estimates for hundreds (or more) catchments at 

once is arguably attractive, given the main alternative for parameter regionalization is individually calibrating those 

catchments only as the first step toward training a separate parameter transfer scheme. 

While the LSE strategy still requires a set of PB model simulations for training, it offers a substantial computational 

advantage over traditional calibration approaches by drastically reducing the number of required simulations in subsequent 

iterations. Rather than incurring the cost of repeated full-model evaluations across basins, the emulator enables efficient 

exploration of the parameter space with far fewer model runs. As described in Section 2.3.2, we further improved efficiency 

by increasing the number of parameter trials per iteration while reducing the total number of iterations—an approach that 

maintained accuracy while accelerating convergence. This balance between emulator fidelity and computational cost 

demonstrates the practicality of the method for large-domain hydrological modeling. Looking ahead, we are optimistic that 

future enhancements such as adaptive sampling, transfer learning, or cross-domain emulator reuse could further reduce the 

up-front simulation demand, opening new possibilities for applying this approach to even more complex or higher-resolution 

modeling systems. 

The results of the LSE calibration (median  = 0.76) and validation (0.69) in this study are competitive with published 𝐾𝐺𝐸'

modeling studies using all or parts of the CAMELS catchment collection, though comparisons are inexact due to differences 

in factors such as basin selection, validation periods, and optimization objectives. For example, Feng et al. (2022) reported 

median temporal validation NSEs ranging from 0.62 to 0.75 for jointly calibrated DL and differentiable learning models, 

while Newman et al. (2015; 2017) achieved sample median NSE scores around 0.74 for calibration and 0.60–0.70 during 

temporal validation, using much simpler conceptual models (Sacramento and Snow-17), all individually trained.   

Yet in other regards, such as advancing capabilities for prediction in ungauged basins, it is also clear from these experiments 

that further understanding and improvements are needed. The median  score of 0.43 achieved in spatial cross validation 𝐾𝐺𝐸'

is inadequate for use in many regionalization applications, though we believe it is on par with what is currently achievable 

for complex PB models using site-specific basin calibration followed by similarity-based regionalization. For instance, the 
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performance is near the ungauged basin evaluation over CONUS reported in Song et al. (2025) for the US National Water 

Model 3.0, at  = 0.467. It moderately lags a new differentiable physics-informed ML model (δHBV2.0δUH) at 0.553 in 𝐾𝐺𝐸

the same study, and considerably lags results from pure DL approaches -- e.g., the impressive median NSE of 0.69 achieved 

by the PUB LSTM of Kratzert et al. (2019). Such studies are not controlled comparisons with this one or each other but 

nonetheless provide useful context.  

The lower performance of the LSE_CV relative to the LSE in spatial cross-validation validation may result from a 

combination of factors, including unexplained variability in the hydroclimatic settings and model response, and some 

overtraining to sample characteristics, which include meteorological input errors. This can also be attributed to (1) the 

reduced number of training samples in LSE_CV compared to LSE_all (20% fewer basins), and (2) the inherent difficulty of 

regionalizing parameters for ungauged locations, a well-documented challenge in hydrological modeling (Patil and Stieglitz, 

2015). Overall, the sample size used in this study (627) may be inadequate for high-quality regionalization. Nonetheless, we 

are optimistic that with further exploration and development, the regionalization performance of calibration based on an LSE 

approach will improve. We have not yet investigated potential refinements such as the feature engineering and selection of 

static geo-attributes to enhance transferability. Here we adopted those used in Tang et al. (2025), and these contained 

inconsistencies (e.g., meteorological attributes were not based on the model forcing dataset climatology). Using more 

catchments in training with better screening for representativeness is likely to strengthen the regionalization, especially as 

some basins were later found to have erroneous streamflow observations. Supporting work in the study (not shown here) 

indicated that some parts of the US improve when restricting training to a similarity-based watershed selection, while others 

fare better when trained on the full sample – thus a blend of similarity-based and full-domain emulation may prove superior. 

The selection strategy for predicted parameter sets to transfer and various hyperparameter choices also warrant further 

investigation. The question of spatial scale consistency between the training basins and the regionalization target basins may 

be critical to the success of its application in real-world large-domain uses; we suspect that the LSE approach remains robust 

under moderate scale inconsistencies, but further research is needed to understand these limits of spatial generalization.   

This effort along with Tang et al. (2025) represent initial forays into implementing such a ML-based joint calibration strategy 

for process models, and each raises as a suite of compelling papers that are beyond the current paper’s scope. This paper 

focuses on introducing, outlining and testing a new large-sample emulator framework, which necessitated substantial dataset, 

model and workflow development effort, while benchmarking the LSE against a logical baseline, the SSE, and qualitatively 

comparing it to other related studies using LSTMs, conceptual model and hybrid/differentiable models. We recognize the 

broader momentum within the ML/DL hydrology community toward methodological intercomparison and refinement, and 

look forward to undertaking such broader controlled comparisons and studies of methodological choices that were out of 

scope for this paper. We applied the method to lumped basin-scale PB model configurations for simulating streamflow, but 

the emulator framework itself is generalizable and could easily be adapted to models with different spatial structures, 

including gridded domains, levels of complexity, and to multivariate model fluxes and states.  
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Overall, we hope that these findings will update conventional wisdom about the ability of complex PBLHMs to compete 

with simpler conceptual models in performance, given that our temporal validation across hundreds of basins is on par with 

that of other published CAMELS-based conceptual modeling studies. Perhaps more importantly, we show that the power of 

large-sample model training underpinning recent advances in ML hydrology is extensible to complex PB hydrology models 

as well. We believe the work takes an important step toward addressing the longstanding challenge of applying such models 

of prediction in ungauged basins. With national water agencies and global modeling initiatives for land/hydrology and 

climate analysis and prediction continuing to seek unique multivariate insights from complex PB land/hydrology modeling 

approaches, we encourage further exploration of possibilities in this direction.   

Appendix A. SUMMA configuration 

Table A1 SUMMA default model decisions (physics configuration) for this study. 

Model decision Chosen option Model decision description 

soilCatTbl STAS Soil-category dataset  

vegeParTbl 
MODIFIED_IGBP_MO

DIS_NOAH 
Vegetation category dataset 

soilStress NoahType Function for soil moisture control on stomatal resistance 

stomResist BallBerry Function for stomatal resistance 

num_method itertive Choice of numerical method 

fDerivMeth analytic Method used to calculate flux derivatives 

LAI_method specified Method used to determine LAI and SAI 

f_Richards mixdform Form of Richard's equation 

groundwatr bigBuckt Choice of groundwater parameterization 

hc_profile constant Choice of hydraulic conductivity profile 

bcUpprTdyn nrg_flux Type of upper boundary condition for thermodynamics 

bcLowrTdyn zeroFlux Type of lower boundary condition for thermodynamics 

bcUpprSoiH liq_flux Type of upper boundary condition for soil hydrology 
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bcLowrSoiH drainage Type of lower boundary condition for soil hydrology 

veg_traits Raupach_BLM1994 Parameterization for vegetation roughness length and displacement height 

canopyEmis difTrans Parameterization for canopy emissivity 

snowIncept lightSnow Parameterization for snow interception 

windPrfile logBelowCanopy wind profile through the canopy 

astability louisinv Stability function 

canopySrad BeersLaw Canopy shortwave radiation method 

alb_method conDecay Albedo representation 

compaction anderson Compaction routine 

snowLayers CLM_2010 Method to combine and sub-divide snow layers 

thCondSnow jrdn1991 Thermal conductivity representation for snow 

thCondSoil funcSoilWet Thermal conductivity representation for soil 

spatial_gw localColumn Method for the spatial representation of groundwater 

subRouting timeDlay Method for sub-grid routing 

 

Table A2 Geo-attributes used in the large-sample emulator (LSE) training. 

Attribute Name Relevance Description Unit 

mean_elev Topography Catchment mean elevation m above sea level 

mean_slope Topography Catchment mean slope m/km 

area_gauges2 Topography Catchment area (GAC) km2 

p_mean Climate Mean daily precipitation mm/day 

pet_mean Climate Mean daily PET (estimated) mm/day 

aridity Climate Aridity (PET/P ratio) - 
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p_seasonality Climate Seasonality and timing - 

frac_snow Climate Fraction of precipitation as snow - 

high_prec_freq Climate Frequency of high precipitation days/year 

high_prec_dur Climate Average duration of high precipitation days 

low_prec_freq Climate Average frequency of low precipitation days/year 

low_prec_dur Climate Average duration of low precipitation days 

frac_forest Landcover Forest fraction - 

lai_max Landcover Maximum monthly LAI - 

lai_diff Landcover Difference between max and min LAI - 

dom_land_cover Landcover Dominant land cover type - 

dom_land_cover_frac Landcover Fraction of the catchment area of dominant land cover - 

soil_depth_pelletier Soil Depth to bedrock m 

soil_depth_statsgo Soil Soil depth (maximum) m 

soil_porosity Soil Volumetric porosity  - 

soil_conductivity Soil Saturated hydraulic conductivity  cm/h 

max_water_content Soil Maximum water content m 

sand_frac Soil Sand fraction % 

silt_frac Soil Silt fraction % 

clay_frac Soil Clay fraction % 

carbonate_rocks_frac Geology Fraction of the catchment with carbonate rocks - 

geol_permeability Geology Subsurface permeability m2 
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Table A3 Summary of default and LSE-calibrated parameter values across all basins, including the percent change from 

default values and the range (min–max) of LSE-calibrated values. For parameters with basin-specific default values, the 

default median is used for comparison. 

Parameter name Default LSE median % Change LSE min LSE max Default type 

k_soil 2.92e-06 1.29e-05 +342.3 7.41e-08 0.0098 Varying 

theta_sat 0.38 0.57 +49.0 0.247 0.7 Varying 

aquiferBaseflowExp 1.24 1.69 +36.2 1 4 Varying 

aquiferBaseflowRate 0.0789 0.0426 - 46.0 0.0001 0.1 Varying 

qSurfScale 5.47 3.47 -36.6 1 19.99 Varying 

summerLAI 3.48 4.8 +37.9 0.0107 19.95 Varying 

frozenPrecipMultip 0.855 0.795 -7.0 0.5 2.499 Varying 

routingGammaScale 51902 30970 -40.3 360.02 86399.92 Varying 

routingGammaShape 2.886 1.55 -46.3 1 4.99 Varying 

Fcapil 0.0143 0.0222 +55.6 0.009 0.1099 Varying 

tempCritRain 273.16 271.74 -0.5 270.16 276.16 Constant 

heightCanopyTop 4.67 5.46 +16.9 0.154 57.9 Varying 

windReductionParam 0.28 0.23 -19.2 0.05 0.9995 Constant 

vGn_n 1.51 1.34 -11.1 1.3 4 Varying 

 

Table A4 Summarizing the key hyperparameters used in our calibration framework. 

Method Hyperparameter Value / Setting Notes 

Genetic Algorithm (GA) 

Population size   100  

Crossover probability 0.9 SimulatedBinaryCrossover 

Crossover eta  15 SimulatedBinaryCrossover 
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Mutation eta  20 PolynomialMutation 

Sampling method  FloatRandomSampling Continuous variables 

Stopping criterion Max generations   No early stopping used   

Random Forest (RF)  
n_estimators  100 Number of trees  

max_depth 40 Maximum depth of each tree 
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Appendix B 

Figure B1 An example basin illustrates how simulated streamflow using LSE calibrated parameter values aligns 

significantly better with observations compared to simulations using a priori (i.e., default) parameters. 
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Figure B2 Same with Fig. B1 but showing an example basin where the LSE calibration shows lesser improvement regarding 

the seasonal streamflow compared to a priori (i.e., default) parameters, while for the daily and monthly series, the 

improvement is still notable. 
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Figure B3 Comparison of the best model  CDFs for LSE_CV over six iterations, selected post facto, and including 𝐾𝐺𝐸'

sample median  values. 𝐾𝐺𝐸'

Code and dataset availability 

The SUMMA model is available at https://github.com/CH-Earth/summa/ and the mizuRoute model is available from 

https://github.com/ESCOMP/mizuRoute. The original CAMELS dataset is available at 

https://gdex.ucar.edu/dataset/camels.html. EM-Earth forcings are available at https://doi.org/10.20383/102.0547. ERA5-Land 

data is available at https://doi.org/10.24381/cds.e2161bac. The LSE-based SUMMA optimization codes are available at  

https://github.com/NCAR/opt_landhydro and relevant data sets are available at https://doi.org/10.5281/zenodo.16422768. 
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