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Abstract. Process-based (PB) hydrological modeling is a long-standing capability used for simulating and predicting complex 9 

water processes over large, hydro-climatically diverse domains, yet PB model parameter estimation (calibration) remains a 10 

persistent challenge for large-domain applications. New techniques and concepts arising in the artificial intelligence (AI) 11 

context for hydrology point to new opportunities to tackle this problem in complex PB models. This study introduces a new 12 

scalable calibration framework that jointly trains a machine learning emulator for model responses across a large-sample 13 

collection of watersheds while leveraging sequential optimization to iteratively refine hydrological model parameters. We 14 

evaluate this strategy through a series of experiments using the Structure for Unifying Multiple Modeling Alternatives 15 

(SUMMA) hydrological modeling framework coupled with the mizuRoute channel routing model for streamflow simulation. 16 

This ‘large-sample emulator’ (LSE) approach integrates static catchment attributes, model parameters, and performance 17 

metrics, and yields a powerful new strategy for large-domain PB model parameter regionalization to unseen watersheds. The 18 

LSE approach is compared to using a more traditional individual basin calibration approach, in this case using a single-site 19 

emulator (SSE), trained separately for each basin. The jointly trained LSE framework achieves comparable or better 20 

performance to traditional individual basin calibration, while further enabling potential for probabilistic parameter 21 

regionalization to out-of-sample, unseen catchments. Motivated by the need to optimize complex hydrology models across 22 

continental-scale domains in support of applications in water security and prediction, this work demonstrates a strategy to 23 

leverage new insights from AI era hydrology research can help to surmount old challenges in the calibration and regionalization 24 

of large-domain PB models. 25 

Short summary. We present a new strategy to calibrate large-domain land/hydrology models over diverse and extensive 26 

regions. Using the Structure for Unifying Multiple Modeling Alternatives (SUMMA) and mizuRoute models, our approach 27 

integrates catchment attributes, model parameters, and performance metrics to optimize streamflow simulations. By leveraging 28 

recent innovations in machine learning methods and concepts for hydrology, we improve calibration outcomes and enable 29 

regionalization to ungauged basins, which is valuable for national-scale water security studies. 30 
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1 Introduction 125 

Hydrological modeling advances have significantly expanded our capacity to simulate and predict complex water-related 126 

processes. Such models provide critical information for water resource management and planning, flood hazard prevention, 127 

and climate resilience studies, among other applications. Accurate hydrologic simulations are vital in regions as expansive and 128 

diverse as the contiguous United States (CONUS), if not the globe, where variability in climate, land cover, and hydrological 129 

responses can be a challenge for the seamless implementation of land/hydrology models (LHMs: i.e., hydrologic models and/or 130 

the hydrologic components of land models). Traditional single-site calibration approaches that involve tuning model 131 

parameters for individual basins can be time-intensive, spatially non-generalizable and computationally costly, which limits 132 

their suitability for large-domain (national, continental, global) applications (Shen et al., 2023; Tsai et al., 2021; Herrera et al., 133 

2022). Because parameter estimation is vulnerable to sampling and input uncertainty and input errors, such basin-specific 134 

methods often lead to spatial inconsistencies in parameter estimates, limiting the model's generalizability across broader 135 

regions (Wagener and Wheater, 2006). 136 

Recent advances and applications in artificial intelligence (AI) -- a family of methods including machine learning (ML), deep 137 

learning (DL), large language models (LLMs) and other methods -- have been demonstrated to provide not only a skillful 138 

strategy for simulating hydrology (Kratzert et al., 2024; Nearing et al., 2024; Arsenault et al., 2023; Feng et al., 2020), but also 139 

for process-based (PB) hydrology model calibration. Calibration methods in hydrology are numerous and have a long history, 140 

advancing hand-in-hand with the proliferation of models ranging in complexity from low-dimensional conceptual schemes 141 

(commonly used in engineering applications and operational forecasting) to more explicit high resolution PB models used in 142 

watershed and Earth System science. The greater complexity of such models drove calibration method innovations such as 143 

surrogate modeling for individual basins (Gong et al., 2016; Adams et al., 2023), which enabled a less-costly interrogation of 144 

the model parameter space despite the models’ increased computational demand. Such techniques have even more recently 145 

been discovered by the Earth System modeling (ESM) community, which previously calibrated complex ESM components 146 

(e.g., ocean, atmosphere, land) through ad hoc manual parameter sensitivity testing and tuning. AI-based methods including 147 

model emulators are now increasingly used for exploring land model parameter uncertainty and constraining model 148 

implementations (Dagon et al., 2020; Watson-Parris et al., 2021; Bennett et al., 2024). 149 

ML hydrology modeling applications have yielded the remarkable (and perhaps in retrospect, unsurprising) finding that joint 150 

model training across many watersheds can learn robust, heterogeneous hydrometeorological relationships that enable them to 151 

predict hydrological behavior for unseen watersheds and time periods -- which represents a large step forward in solving the 152 

longstanding hydrological prediction-in-ungauged-basins challenge (PUB; Wagener et al., 2007; Hrachowitz et al., 2013). Mai 153 

et al. (2022) clearly demonstrated the superior performance of Long Short-Term Memory (LSTM) networks in out-of-sample 154 

temporal and spatial hydrologic simulation compared to a range of results from non-ML models. Such regionalization ability 155 

had not been achieved previously with conceptual and PB hydrology models, where joint multi-site or regional training more 156 
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often comes at a cost to individual basin model performance (Mizukami et al., 2017; Samaniego et al., 2010; Tsai et al., 2021; 164 

Kratzert et al., 2024), notwithstanding some gains in regional parameter coherence. Samaniego et al. (2010) achieved moderate 165 

success at parameter regionalization using a joint large-domain training solution involving calibrating the coefficients of 166 

transfer functions relating geophysical attributes (‘geo-attributes’) to model parameters, expanding on common pedotransfer 167 

concepts for soil parameters. Since then, ML and DL approaches, including differentiable modeling -- e.g., embedding of DL 168 

elements within conceptual models converted to differentiable form (Feng et al., 2020; Shen et al., 2023) -- and hybrid 169 

ML/conceptual models (Frame et al., 2022) have continued to advance, outperforming traditional models and showing new 170 

potential for generalizing to ungauged basins with diverse hydroclimatic conditions (Kratzert et al., 2024; Feng et al., 2020).   171 

Generally, emulator strategies have evolved along two primary lines: (i) emulating model performance by directly relating 172 

model parameters to one or more performance objective functions, without explicitly modeling the dynamic behavior of the 173 

system (Gong et al., 2016; Herrera et al., 2022; Maier et al., 2014; Razavi et al., 2012; Sun et al., 2023), and (ii) emulating key 174 

dynamic model states or fluxes, then using the resulting emulator outputs (e.g., time series) to cheaply explore parameter-175 

output sensitivities (Bennett et al., 2024; Maxwell et al., 2021). Importantly, this study explicitly focuses on the first strategy, 176 

emulation of model performance metrics, which originated primarily within hydrological modeling contexts. This choice 177 

greatly reduces the need to run the full hydrological model iteratively during calibration, substantially lowering computational 178 

expense and enabling scalable optimization for increasingly complex, large-domain hydrology models. 179 

The aim of the research described in this paper is to surmount traditional basin-specific calibration challenges by leveraging 180 

insights from recent AI-related progress in hydrology. The specific objective (and research sponsor motivation) for the study 181 

is to calibrate a PB LHM, the Structure for Unifying Multiple Modeling Alternatives (SUMMA; see Sect. 2.2) over the entire 182 

CONUS for use in generating a large ensemble of future climate-informed hydrologic scenarios for use by US federal water 183 

agencies and others in water security applications -- e.g., agency guidance and long-term planning studies. Prior experience 184 

with individual basin calibration followed by regionalization, and associated performance limitations, motivated this 185 

investigation of possibilities for a more scalable and powerful approach.   186 

To this end, we present an ML-based model calibration and regionalization strategy and associated method evaluation 187 

experiments for the CONUS-wide implementation of SUMMA, which was also demonstrated for calibrating the hydrology 188 

component of an ESM land model in a companion paper by Tang et al. (2025). The large-sample emulator (LSE) approach 189 

employs a joint training strategy that combines model performance (i.e., response surface) emulation and parameter 190 

optimization scheme to estimate parameters jointly across diverse catchments, building on recent advances in the ML 191 

hydrologic modeling community. By training the emulator on a large sample catchment dataset to predict model performance 192 

as a function of catchment geo-attributes and parameters, we build the capacity for identifying optimal parameter sets across 193 

large, varied and unseen domains. We compare the LSE results with traditional single-site emulator (SSE) calibration, and 194 

comment on avenues for further advances in this direction. This study evaluates whether the LSE framework can improve 195 
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model calibration performance over the SSE, and whether the LSE enables effective regionalization of parameters to unseen 204 

basins through spatial cross-validation. The following sections describe and discuss the methods and results of a series of 205 

experiments with this approach as applied to a large collection of US watersheds. 206 

2 Methods 207 

2.1 Study domain 208 

The study focuses on CONUS, a region encompassing diverse hydrological conditions due to its varied climate, landforms, 209 

and vegetation types. To represent such variability, we utilize a subset of watersheds from the Catchment Attributes and 210 

Meteorology for Large-sample Studies (CAMELS) dataset, which combines static catchment attributes with 211 

hydrometeorological time series for use in benchmarking hydrological modeling applications (Newman et al., 2015; Addor et 212 

al., 2017). Such datasets are well-suited for large-domain modeling due to their rich suite of attributes, including climate 213 

indices, soil properties, land cover, and streamflow observations, which provide a comprehensive basis for model calibration, 214 

evaluation and regionalization over a diverse range of hydroclimate settings. We selected 627 headwater basins from the 671 215 

CAMELS basins, excluding those with nested interior basins to ensure independence and avoid overlapping drainage areas. 216 

Catchment boundaries for the modeling were updated from those provided in the original CAMELS dataset, correcting 217 

inaccuracies in boundary and drainage areas by using the original boundaries from the Geospatial Attributes of Gages for 218 

Evaluating Streamflow, version II dataset (Falcone, 2011), which are consistent with U.S. Geological Survey (USGS)-219 

estimated drainage areas. The spatial unit for the calibration experiments is each CAMELS watershed. A comprehensive 220 

summary of the CAMELS basin characteristics is provided in Addor et al. (2017) and is not reproduced here. 221 
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Figure 1. Spatial distribution of selected headwater basins (red outlines) from the Catchment Attributes and Meteorology for 225 
Large-sample Studies (CAMELS) dataset (green areas) across the contiguous United States (CONUS). 226 

2.2 Process-based modeling with SUMMA and mizuRoute 227 

SUMMA is a PB LHM framework designed for flexibility in representing hydrological processes across diverse catchments 228 

(Clark et al., 2015a, 2015b, 2021). SUMMA solves generalized mass and energy conservation equations, offering multiple 229 

parameterization schemes for hydrological fluxes, and enabling flexible advanced numerical techniques to optimize solution 230 

performance. SUMMA represents watersheds with a hierarchical spatial organization centering on Grouped Response Units 231 

(GRUs) that are divisible into one or multiple Hydrologic Response Units (HRUs). GRU geometry is user-defined and has 232 

varied in usage from mesoscale catchment boundaries to fine or mesoscale resolution grid, as well as point-scale simulations. 233 

Such configurations allow SUMMA to represent the natural topography of the domain to the extent warranted by a given 234 

application, thereby improving the interpretability of model results (Gharari et al., 2020).  235 

Here as in other SUMMA modeling studies, runoff and subsurface discharge outputs from SUMMA simulations are 236 

subsequently input to the mizuRoute channel routing model (Mizukami et al., 2016), a flexible framework supporting multiple 237 

hydrologic routing methods to provide streamflow estimates at gage locations. MizuRoute organizes the routing domain using 238 

catchment-linked HRUs connected by stream segments (Mizukami et al., 2016, 2021). Currently five methods are offered in 239 

MizuRoute, of which the Diffusive Wave (DW) routing scheme, as implemented by Cortés-Salazar et al. (2023), was adopted 240 

here. Both SUMMA and mizuRoute model codes are open source and their development has been extensively sponsored by 241 
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the US water agencies (the Bureau of Reclamation and US Army Corps of Engineers, USACE) with growing support from 248 

other agencies in the US and internationally. 249 

For this study, SUMMA and mizuRoute are run at a nominal 3-hourly simulation timestep. The associated sub-daily forcing, 250 

including precipitation, temperature, specific humidity, shortwave and longwave radiation, wind speed, and air pressure, were 251 

derived from gridded datasets but spatially aggregated across each basin area, resulting in basin-averaged input time series. 252 

Specifically, precipitation and temperature forcings were derived from the Ensemble Meteorological Dataset for Planet Earth 253 

(EM-Earth), which provides hourly data with 0.1° spatial resolution, merging ground-station data with reanalysis for enhanced 254 

accuracy (Tang et al., 2022). EM-Earth integrates gap-filled ground station data with reanalysis estimates, offering improved 255 

accuracy over standalone reanalysis products. Similarly, wind speed, air pressure, shortwave and longwave radiation, and 256 

specific humidity inputs were derived from ERA5-Land, also at 0.1° spatial and hourly temporal resolutions (Muñoz-Sabater, 257 

2021). To match the EM-Earth spatial configuration (a 0.05° offset), the ERA5-Land grids were interpolated, and the combined 258 

basin forcings dataset spanned the period 1950-2023.   259 

The initial (default) SUMMA configuration and parameters used in this study were developed in prior SUMMA and mizuRoute 260 

applications projects (e.g., Broman and Wood, 2021; Wood et al., 2021; Wood and Mizukami, 2022), based on expert judgment 261 

involving consultation with other model developers, evaluation of previous modeling experiments and sensitivity analyses, 262 

and model process algorithms that directly influence runoff generation. These choices include model physics selections, soil 263 

and aquifer configuration, spatial and temporal resolution, an a priori parameter set and target calibration parameters. The 264 

SUMMA model configuration adopted a single HRU per GRU, in which the GRU was the entire lumped area of each 265 

catchment. A maximum of 5 layers was specified for snow, and the subsurface included 3 soil layers with a total layer depth 266 

of 1.5m, underlain by an aquifer (bucket) with a maximum water holding capacity of 1.5m.  For the routing network, the 267 

MERIT-Hydro (Lin et al., 2019) stream channel topology was chosen.   268 

The SUMMA calibration parameters and physics configuration choices are summarized in Table 1 and Table A1 (appendix), 269 

respectively. Default values shown in Table 1 are taken from a representative basin (e.g., Basin ID: 05120500) for reference. 270 

Some default parameter values (e.g., soil or vegetation-related) vary across basins based on local attributes, and the values in 271 

this table may not be globally consistent across the domain. The first phase of the calibration process, via a Latin Hypercube 272 

Sampling (LHS) of the parameter space and model response, supported sensitivity analysis and refinement of parameter search 273 

bounds to focus trial values into likely behavioral areas and/or to avoid model convergence issues (e.g., the lowest theoretically 274 

possible values of the vGn_n parameter in SUMMA produces non-physical behavior). The calibration ‘trial’ parameter 275 

selection was designed to control major hydrologic process phenomena -- e.g., infiltration, evapotranspiration, soil storage and 276 

transmission, snow accumulation and melt, hillslope runoff attenuation, aquifer storage and release -- though identifying an 277 

efficient number of controlling parameters, versus conducting comprehensive parameter sensitivity assessment and selection 278 

optimization.  279 

Deleted: , and the280 
Deleted:  include281 
Deleted: . Precipitation282 

Deleted:  and hourly temporal283 

Deleted: Wind284 

Deleted: 2019285 

Deleted: and review of 286 
Deleted: parameterizations (i.e.,287 
Deleted: ) to assess their288 
Deleted: on 289 

Deleted: 0m290 
Deleted: 2291 
Deleted: Yamazaki292 



 

7 

 

Deleted: 7¶

Formatted ... [3]
Formatted ... [4]

We note that the ‘default’ parameter values used here reflected prior study calibration efforts from a site-specific CAMELS-293 

based SUMMA streamflow calibration project conducted by authors Wood and Mizukami (unpublished). The earlier effort 294 

used the Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) and calibrated many of the same 295 

parameters. However, the work used an earlier version of SUMMA and did not include mizuRoute routing, thus it forms only 296 

a baseline reference for our current parameter choices in this study. The prior effort’s SUMMA-CAMELS dataset, DDS 297 

calibration workflow and parameter selections later contributed to a SUMMA sensitivity study (Van Beusekom et al., 2022) 298 

and was published in associated repositories. 299 

Table 1. Selected calibration parameters with default values and ranges. 300 

Parameter name Default  Minimum Maximum Process importance 

k_soil 7.5e-06 1e-07 0.0001 
Hydraulic conductivity: regulates transmission of water 

through soil layers 

theta_sat 0.55 0.2 0.7 Soil porosity: influences water storage capacity 

aquiferBaseflowExp 2.0 1.0 4.0 Controls aquifer discharge 

aquiferBaseflowRate 0.001 0.0001 0.1 Controls aquifer discharge 

qSurfScale 5.0 1.0 20.0 Affects partitioning of direct runoff versus infiltration 

summerLAI 3.0 0.2 10.0 Regulates transpiration  

frozenPrecipMultip 1.0 0.5 2.5 Snow undercatch factor, scales winter precipitation 

routingGammaScale 18000.0 360.0 86400.0 Controls GRU combined runoff attenuation and delay 

routingGammaShape 2.5 1.0 5.0 Controls GRU combined runoff attenuation and delay 

Fcapil 0.06 0.01 0.11 
Affects refreeze of snowmelt within pack, timing of 

snowmelt runoff 

tempCritRain 273.16 270.16 276.16 Temperature threshold to discriminate rain from snow 

heightCanopyTop 20.0 2.0 50.0 
Impacts turbulent heat fluxes (sensible, latent); influences 

snow cycle timing and magnitude  

heightCanopyBottom 2.0 0.000 5.0 
Not directly calibrated; scaled proportionally to 

heightCanopyTop 
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windReductionParam 0.28 0.05 1.0 Impacts turbulent heat fluxes (sensible, latent) 

vGn_n 2.0 1.3 4.0 Van Genuchten ‘n’: regulates retention of water in soil layers 

2.3 ML-Based parameter estimation approach  364 

We apply and assess the LSE and related parameter estimation techniques introduced in Tang et al. (2025), a companion paper 365 

that focused on calibrating the hydrological components of the Community Terrestrial Systems Model (CTSM; Lawrence et 366 

al., 2019). For this study, the approach was further tailored to calibrate the combined SUMMA-mizuRoute model (e.g., channel 367 

routing was not used with CTSM). As noted in the Introduction, basin-specific calibration approaches can be computationally 368 

intensive and result in spatially discontinuous parameter fields, limiting their scalability and generalizability to large, diverse 369 

domains like CONUS. To assess whether the LSE can offer a more effective calibration strategy for large-domain SUMMA 370 

modeling, we run several experiments using the ML-based emulation strategy to optimize model parameters, focusing on two 371 

contrasting variations: the basin-specific single-site emulator (SSE) and the combined-basin joint LSE, which simultaneously 372 

calibrates multiple basins. The calibration period spans six water years, from October 1982 to September 1989, with the first 373 

year treated as spin-up and excluded from model evaluation. This period was selected based on its consistent data availability 374 

across basins and its use in previous large-sample studies, allowing for comparability and minimizing confounding effects 375 

from land use change or climate trends. Figure 2 provides a schematic overview of the iterative ML-based calibration workflow 376 

using SSE or LSE, including time series input data and selected parameters for each basin, initial sampling (‘iter-0’), emulator-377 

based iterative optimization, and final parameter selection. Details are provided in the following sections. 378 
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Figure 2. The flowchart of the parameter optimization in this study, including target parameter selection, initial sampling (iter-385 

0), iterative optimization cycles (iter-X) using emulators, and the selection of the final parameter set. For emulator inputs, the 386 

basin geo-attributes are only used for the large-sample emulator (LSE) approach. 387 

2.3.1 SSE-based calibration 388 

The SSE calibration approach optimizes model parameters for each basin separately. Our approach is based on other single 389 

site optimization approaches that use surrogate modeling (e.g., the MO-ASMO method of Gong et al., 2016) to represent the 390 

relationship between model parameters and objective function (OF) results. The initial step involves generating a large set of 391 

parameter combinations (400) using LHS for each basin. These parameter sets are used to run SUMMA-mizuRoute 392 

simulations, and their performance is quantified using one or more OFs, which serve as the minimization target for calibration. 393 
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These initial semi-random sampling and model OF evaluations are first used in selecting the form of the emulator to be used 397 

for each basin. Based on insights from Tang et al. (2025), two emulators—Gaussian process regression (GPR) and random 398 

forests (RF)—are assessed here via a five-fold training and cross-validation procedure on the initial LHS sample. The emulator 399 

with better performance is selected and then retrained on the complete initial parameter set, for each basin separately. We note 400 

that the emulator can also play a role in identifying and selecting optimal parameters for calibration as described in Tang et al. 401 

(2025), which provides details on that usage. 402 

Following this step, the main iterative calibration process begins. For each basin, the trained emulator is used within an 403 

optimization algorithm to explore the parameter space, searching for improved parameter sets that minimize the OF. In this 404 

study, a Genetic Algorithm (GA; Mitchell, 1996) is employed for single-objective calibration, whereas the Non-dominated 405 

Sorting Genetic Algorithm II (NSGA-II; Deb et al., 2002) is used for multi-objective calibration. Each iteration involves 406 

generating a new suite of emulator-predicted parameter sets (100), which are then used to run the SUMMA-mizuRoute model 407 

and calculate model OFs. These results are added to the existing previous parameter sets to retrain the emulator for further 408 

optimization, leading to the next iteration. This iterative process continues until a specified stopping criterion is met, such as 409 

achieving a performance threshold or completing a predetermined number of iterations. In this study, limited iterations (six 410 

following the initial LHS iter-0) combined with a greater number of trials per iteration helped reduce noise while improving 411 

calibration efficiency. The number of trials per iteration and other hyperparameters (Table A4) of the process were selected 412 

through sensitivity testing and also informed by the experimental outcomes of Tang et al. (2025).   413 

2.3.2 LSE-based calibration 414 

In contrast to the SSE, the LSE calibration approach includes all basins jointly in a single calibration process that estimates 415 

optimal parameters in all basins at once. The initial phase is similar to the SSE approach, where a large number of LHS selected 416 

parameter sets (e.g., 400 in this study) are generated for each of the 627 basins, and their performance in SUMMA-mizuRoute 417 

is evaluated. As in the SSE, the LHS parameter sets are unique for each basin to afford the maximum diversity in parameter 418 

trials across the associated model simulations (as in Baker et al., 2021). In contrast to the SSE, however, the emulator relies 419 

on additional static basin attributes to learn the parameter-performance responses of different types of basins. In this study, we 420 

choose 27 such ‘geo-attributes’ representing basin-specific geographic and climatic characteristics, such as soil properties, 421 

vegetation, and climate indices (Table A2). Including geo-attributes enables the emulator to estimate model performance (i.e., 422 

the OFs) conditioned on both parameter and attribute values, which means the LSE can be used to predict potentially optimal 423 

parameter sets for unseen basins where the performance is not known or cannot be measured, enabling its potential use in 424 

parameter regionalization, i.e., prediction in ungauged basins (PUB). 425 

We use the RF emulator for the LSE due to its speed and performance relative to GPR, which struggles to train on the much 426 

larger joint basin parameter trial dataset -- i.e., 400*627 or 250,800 samples for the initial sampling step, growing by 62,700 427 

new trials with each iteration. To start each calibration iteration, the trained RF emulator from the initial step (iter-0) or prior 428 
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iteration is used by an optimization algorithm to predict potentially improved parameter sets (100) for each basin individually. 449 

In multi-objective optimization, the NSGA-II inherently produces a pareto-set of optimized parameters, whereas for single-450 

objective optimization, we achieve a pareto-set through randomized initializations of the GA. For each new trial in an iteration, 451 

static geo-attributes are held constant by restricting their search ranges to the basin-specific values, avoiding the specification 452 

of geo-attribute values that do not match those of the study basins. SUMMA is then run with the predicted trial parameters and 453 

new OF values are obtained, which are added to the emulator training sample to be used in subsequent iterations.  454 

In collaboration with the effort described in Tang et al. (2025), the development of this calibration approach presented several 455 

challenges, which were tackled through extensive (albeit ad hoc) testing of different choices in the implementation. For 456 

example, one concern was hyperparameter selection, which required balancing the complexity of the emulator to prevent 457 

overfitting while ensuring adequate generalization. Hyperparameters for the RF and GA models were tuned using a 458 

combination of grid search and cross-validation. The computational demand of the LSE approach was significant; even using 459 

an emulator, it still requires conducting a large number of simulations to generate parameter sets based on optimization 460 

algorithms, as well as testing them in a computationally expensive LHM. To address this, the number of iterations was 461 

minimized while the number of parameter trials per iteration was increased, which we found improved efficiency without 462 

sacrificing accuracy. Additionally, we relied on parallel and high-performance computing (HPC) resources from the National 463 

Center for Atmospheric Research (NCAR) and engineered the HPC-specific workflow using load balancing in the emulator 464 

training and parameter optimization phases to reduce the overall computational cost and wall-clock time. Further discussion 465 

of these hyperparameter experiments and workflow development is beyond the scope of this paper and may be tackled in a 466 

subsequent publication.   467 

2.4 Experimental design and evaluation approach 468 

2.4.1 Experiments 469 

Our evaluation provides insight into the performance of different aspects of the approach through several experiments. First, 470 

we assess the emulator accuracy -- the agreement between the OFs predicted by the emulator and those simulated by the model. 471 

Next, we use a small set of metrics to assess the approach in three ways: (1) with the emulator trained on all of the study basins 472 

(‘all-basin’) for the calibration period; (2) with all-basin training for a temporally separate validation period; and (3) with a 473 

spatial cross-validation, in which the emulator is trained and separately tested on different parts of the study basin dataset.   474 

The first experiment compares the LSE and SSE approach results across all 627 basins during the calibration period. In a 475 

second experiment, temporal validation was performed by selecting the best performing parameter sets from the calibration 476 

period to simulate streamflow for an independent time period (October 2003 to September 2009) to assess the temporal 477 

robustness of the calibrated parameters and their ability to generalize under varying meteorological conditions. This period 478 

has a similar length to the calibration period and is separated by multiple years, without further considerations imposed.  479 
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A third experiment (termed LSE_CV) evaluates the LSE's capability for regionalization in unseen basins through using a 490 

spatial cross-validation training and testing approach. The basin dataset was divided through random sampling into five 491 

spatially distinct and (roughly) equally-sized folds. In each iteration of the LSE calibration process, four folds (80% of the 492 

basins) were used for training the emulator and the remaining fold (20% of the basins) was used for testing. Model parameters 493 

(and the emulator-predicted OF values) were predicted by the emulator for the test fold basins based solely on their geo-494 

attributes. The parameter sets with the best emulator-predicted OFs were then selected for model simulation in the test fold 495 

basins, and OF results for the five test fold simulations were pooled after each iteration for assessment. Note, due to emulator 496 

error, the parameter set selected based on emulator-estimated performance for a test basin was rarely the best performing 497 

parameter set among the iteration trial options for that basin (a point discussed further below). The LSE_CV experiment is 498 

approximately 5 times more expensive than the others, given that 5 emulators must be trained, and after iteration-0, each 499 

iteration involves 5 rather than one model simulation per parameter trial number.   500 

2.4.2 Evaluation metrics and application 501 

The emulator's performance was evaluated using cross-validation techniques and statistical metrics to quantify its ability to 502 

predict the OF values based on parameter sets and catchment geo-attributes. As in Tang et al. (2025), we adopted the 503 

normalized Kling-Gupta Efficiency (𝑁𝐾𝐺𝐸′), a version of the modified Kling-Gupta Efficiency (𝐾𝐺𝐸′) (Kling et al., 2012; 504 

Beck et al., 2020), as the OF for calibration. 𝑁𝐾𝐺𝐸′ was chosen to mitigate the influence of outliers, which disproportionately 505 

affect the emulator's performance due to the amplified (unbounded) range of 𝐾𝐺𝐸′ values from poorly performing basins 506 

and/or trials, and because the joint evaluation requires standardization across diverse basin flow error ranges. All 𝐾𝐺𝐸′ and 507 

𝑁𝐾𝐺𝐸′ values reported in this study are computed based on daily streamflow. 508 

The formulations for 𝐾𝐺𝐸′ and 𝑁𝐾𝐺𝐸′ are: 509 

𝐾𝐺𝐸! = 1 −)(𝑟 − 1)
" + (𝛽 − 1)" + (𝛾 − 1)"         (1) 510 

𝑁𝐾𝐺𝐸! = #$%!
("'#$%!)

                          (2) 511 

where 𝑟 is the linear correlation, 𝛽 is the bias ratio, and 𝛾 is the variability ratio. 𝐾𝐺𝐸′ ranges from −∞ to 1, whereas 𝑁𝐾𝐺𝐸′ 512 

normalizes this range to [−1,1], which is necessary to balance the information weight of each basin during training. This 513 

nonlinear rescaling prevents extremely poor-performing trials from dominating the learning process while preserving their 514 

rank order. In contrast to a hard cap on low 𝐾𝐺𝐸′ values, this smooth rescaling avoids discontinuities in the objective function, 515 

improves emulator training stability, and provides a more interpretable optimization surface. 516 

For each of the experiments, we take stock of the calibration performance after each calibration iteration (of 100 trials). This 517 

can be done by calculating the evaluation metrics considering each iteration separately, or by calculating them after each 518 

iteration and including prior iterations. The iteration-specific evaluation gives insight into the path of the calibration as it seeks 519 
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improved parameters, while the cumulative evaluation shows the overall achievement of the calibration in finding optimal 531 

parameters by the end of each iteration. Most model performance results are shown in terms of the 𝐾𝐺𝐸′ metric (not the 532 

optimization metric, which is less familiar to practitioners), and in the form of spatial maps and cumulative distribution 533 

functions (CDFs) of 𝐾𝐺𝐸′ values from all the basins. Both the LSE and SSE calibrations start with the same default parameter 534 

configurations (iter-0) to ensure a consistent baseline for comparison. Improvements in 𝐾𝐺𝐸′ relative to the default model 535 

results are analysed in some cases to illustrate the impact of both methods. 536 

3 Results 537 

3.1 Emulator performance 538 

To gauge whether the emulator is successful in learning the model performance metric response to variations in input 539 

parameters (and for the LSE, in geo-attributes), we first evaluate emulator performance by comparing its OF predictions 540 

(𝑁𝐾𝐺𝐸′) to the actual SUMMA model OF values across successive calibration iterations. For each iteration, the emulator-541 

based parameters and OF values are estimated from the simulations of the previous iteration, thus the simulations on which 542 

they are tested are independent (were not seen by the emulator previously). Scatter density plots for iterations 1-6, illustrating 543 

SSE, LSE calibrations and the LSE_CV experiment, aggregated across all basins, are shown in Figures 3-5, respectively. 544 

Figure 3 demonstrates that the SSE approach struggles to improve accuracy in predicting the model OF values progressively 545 

across subsequent iterations. While some improvements are observed (e.g., iteration-3), overall performance remains 546 

suboptimal, with low to moderate correlations and substantial scatter around the 1:1 line. These results suggest that the SSE 547 

approach is limited by a small training sample, resulting in emulator noise and only weakly capturing the relationship between 548 

parameters and OFs, without improving significantly as training progresses. It does tend to lead to overall model performance 549 

improvements (selected from the ensemble post hoc) as a result of a relatively broad (though inefficient) range of predicted 550 

parameter sets in each new iteration, the best of which yield strong performance.  551 
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Figure 3. A scatter density plot of emulator-predicted objective function (OF) values (normalized modified Kling-Gupta 566 

Efficiency; 𝑁𝐾𝐺𝐸′) versus real model OF values for the single-site emulator (SSE) approach across six iterations, aggregated 567 

across all basins. The Pearson correlation coefficient (R) is shown for each iteration (as in Figures 4 and 5). 568 

Figure 4 demonstrates the LSE approach's superior ability to progressively improve the prediction of the model OF values 569 

across iterations. Starting with moderate agreement in iteration-1 (R = 0.71), the emulator steadily improves, achieving strong 570 

correlations and reduced scatter as training progresses. Iterations 4-6, with R fluctuating between 0.90 and 0.94, suggest that 571 

the emulator's performance may have reached a limit in the available information. The more progressive upward trend of 572 

performance underscores the potential benefit of the jointly trained LSE approach relative to the SSE in more comprehensively 573 

learning and using the model relationship between parameters and OFs to more effectively search for parameter sets in the 574 

individual basins. 575 
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Figure 4. A scatter density plot between emulator-predicted OF values (𝑁𝐾𝐺𝐸′) versus real model OF values for the LSE 599 

approach across six iterations, aggregated across all basins. The lower-right scatter regions in early iterations reflect emulator 600 

overestimation, where predicted performance is high, but actual model performance is poor. This misalignment diminishes as 601 

the emulator improves over successive iterations.  602 

Figure 5 evaluates the LSE_CV approach, which represents parameter regionalization in unseen basins through spatial cross-603 

validation (CV). From the initial iterations (e.g., iteration-1, R = 0.43), the emulator’s predictive performance rises more 604 

slowly, with some vacillation, and plateaus at much lower skill levels than for the LSE of Fig. 4, peaking at R = 0.56 by 605 

iteration-5. As expected, the LSE_CV performs worse than the LSE, which sees all basins in calibration, but nonetheless 606 

outperforms the SSE approach (Fig. 3). This indicates that the information gained from the large sample of basins provides 607 

additional stability in estimating parameters in an unseen basin over the information gained by the SSE (with the same number 608 

of trials) -- even when the SSE has learned directly (but only) from that basin. 609 
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Figure 5. A scatter density plot comparing emulator-predicted OF values (𝑁𝐾𝐺𝐸′) to real model OF values for the LSE_CV 620 

approach across six iterations, aggregated across all basins.   621 

3.2 Calibration performance 622 

The following analyses assess the implications of the apparent emulator strengths and weaknesses for the associated model 623 

simulations during calibration. Figure 6 illustrates the CDFs of 𝐾𝐺𝐸′ for both SSE and LSE calibration approaches across all 624 

basins, comparing their evolution from the default parameter set through multiple iterations of calibration. The default 625 

configuration provides a baseline with a median 𝐾𝐺𝐸′ of 0.30, represented by the blue line, and each curve comprises the best 626 

‘cumulative’ basin model 𝐾𝐺𝐸′ across all basins after each iteration, including prior iteration results. 627 

The SSE approach (Fig. 6a) shows the SSE calibration results, where the median 𝐾𝐺𝐸′ improves from the default value of 628 

0.30 to 0.69 by iteration 6 (‘iter-6’). The largest gains are observed during iteration 0 (𝐾𝐺𝐸′ of 0.52), after which the 629 

improvement rate slows. In Figure 6b, the LSE approach begins with significant improvement in iteration 0, attaining a median 630 

𝐾𝐺𝐸′ across all basins of 0.52. Over subsequent iterations, the LSE approach gains skill, culminating in iteration 6 with a 631 
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median 𝐾𝐺𝐸′ of 0.76. Overall, the LSE approach outperforms SSE in all iterations. By iteration 6, LSE achieves a median 657 

𝐾𝐺𝐸′ of 0.76 compared to 0.69 for SSE. Both approaches show diminishing returns after early iterations, but the LSE's joint 658 

multi-basin calibration is more effective in progressively identifying performative parameter sets through each iteration. 659 

Notably, this superior performance is achieved through training the joint model emulator only 6 times, versus training 627*6 660 

= 3,763 emulators to estimate calibration parameters when using the SSE.   661 

Figure 6. Comparison of calibration performance: cumulative distribution function (CDFs) of modified Kling-Gupta 662 

Efficiency (𝐾𝐺𝐸′) for (a) SSE and (b) LSE calibration across all basins over six iterations, with median 𝐾𝐺𝐸′ values noted in 663 

the legend. The blue line represents CDF and median 𝐾𝐺𝐸′ based on the default parameter set for all 627 basins. Both LSE 664 

and SSE approaches start with the same iter-0. The x-axis range is set to [–1, 1] for visual clarity, and  no normalization or 665 

scaling has been applied to 𝐾𝐺𝐸′. 666 

The geographic distribution of model performance is shown in Fig. 7, which compares individual basin 𝐾𝐺𝐸′ values for the 667 

calibration period across the CONUS domain for the default parameter configuration, the SSE-based calibration, and LSE-668 

based calibration. The default configuration results of Fig. 7a reflect a degree of indirect calibration (as noted in Section 2.2) 669 

and provide a benchmark for this study’s calibration improvements. The general pattern of performance, with central US basins 670 

showing lower 𝐾𝐺𝐸′ values than west coast, eastern, and intermountain west basins, is consistent with results shown in 671 

numerous other studies based on the CAMELS-US basin dataset, including the first (e.g., Newman et al., 2015).   672 
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The SSE-based calibration 𝐾𝐺𝐸′ values (Fig. 7b) show marked improvements in hydrological accuracy relative to the default 689 

parameters (Fig. 5a), especially in the eastern United States, where high 𝐾𝐺𝐸′ values are achieved in many basins. However, 690 

the results reveal significant spatial variability, with several western basins showing 𝐾𝐺𝐸′ values below zero. The LSE (Fig. 691 

7c) demonstrates further improvement across nearly all basins, perhaps most notable in the Appalachian basins of the eastern 692 

U.S, and fewer basis with 𝐾𝐺𝐸′ values below zero (as is also clear from Fig. 6). A timeseries-based illustration of the 693 

performance of LSE-based calibration for two basins is provided in Appendix Fig. B1 and Fig. B2. In Figure B1, calibration 694 

achieves a high-quality simulation of observed streamflow at daily and seasonal mean levels, while Fig. B2 shows a basin with 695 

notable daily and monthly improvements from calibration over the default simulation, but errors remaining in the seasonality 696 

of simulated streamflow.  697 

Figure 7 Comparison of 𝐾𝐺𝐸′ values for (a) default configuration, (b) SSE and (c) LSE calibration across the CONUS (1982-698 

1989). 699 

Although such CONUS-wide summaries of performance are useful, the contrast between SSE and LSE calibration 700 

performance can be stark when reviewed at the level of individual basins. Figure 8 shows an example of the parameter sampling 701 

trajectories of the SSE and LSE calibrations, as assessed using two model diagnostic performance metrics that were not used 702 

as the calibration objective: the mean absolute daily streamflow error, and a seasonality metric defined as the maximum long-703 

term mean monthly absolute streamflow error -- i.e., the largest error in long-term mean monthly flow. The LHS-generated 704 

‘iter-0’ parameters provide the starting point for searching the parameter space, which the SSE and LSE duly improve upon, 705 

each recommending parameters that lead to superior model performance in iteration 1. In subsequent iterations, however, the 706 

SSE parameter set performance regresses and vacillates, while the LSE parameter recommendations generally advance. For 707 

the SSE, the successive iterations of the parameter search have a broader performance spread and are more scattershot, while 708 

the LSE search tends to yield steady refinement in model performance. This behavior certainly varies by location, but the 709 

general character of each approach shown in Fig. 8 is consistent with  the rates of improvement shown in Fig. 6.  710 
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Figure 8 Illustration of the (a) SSE and (b) LSE parameter calibration progress across successive iterations, as measured by 725 

two metrics not used in calibration. Better model performance for both metrics (i.e., lower error) is found in the bottom left 726 

corner of each plot. Iter-0 contains 400 parameter sets, and subsequent iterations contain 100. The default simulation is from 727 

a previous SUMMA application after individual basin optimization with the DDS algorithm. 728 

Incidentally, Fig. 8 also illustrates that despite recent critiques against calibrating hydrology models to integrated streamflow 729 

metrics such as the Nash Sutcliffe Efficiency (𝑁𝑆𝐸) and 𝐾𝐺𝐸 (e.g., Brunner et al., 2021; Knoben et al., 2019), such metrics 730 

can be effective in jointly optimizing hydrology model performance across multiple metric dimensions, hence their long-731 

standing popularity in practice.   732 

3.3 Temporal validation of the SSE and LSE approaches 733 

Temporal validation (during the independent 2003–2009 period) of the SSE and LSE approaches shows that, as expected, 734 

calibration parameter performance for both falls relative to the calibration period. Figure 9 shows the 𝐾𝐺𝐸′ CDF curves with 735 

the median of the distribution of each basin’s best performance (including all prior iterations) reaching 0.65 and 0.69 or the 736 

SSE and LSE, respectively, by the 6th iteration (best scores include the best of all prior iterations). The lower reduction in 737 

validation scores for the SSE than for the LSE may or may not be notable (i.e., it may be a study-specific result); if significant, 738 

it suggests that the best selected SSE parameters, even with lower overall performance in both calibration and temporal 739 

validation, may be slightly more robust to meteorological variability than those from the LSE.  740 
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Figure 9 Comparison of temporal validation (during the independent 2003–2009 period) performance: CDFs of the best 𝐾𝐺𝐸′ 747 

for (a) SSE and (b) LSE calibration across all basins over six iterations. The blue line represents the CDF and median 𝐾𝐺𝐸′ 748 

based on the default parameter set over all basins. 749 

The associated maps in Fig. 10 show the geographic distribution of the temporal validation median 𝐾𝐺𝐸′ scores for the SSE 750 

and LSE approaches, and their change in value relative to their respective calibration scores. The pattern of values for the 751 

validation scores (parts a and c) are broadly similar, which is notable given that the LSE represents their joint calibration in 752 

contrast to the individual attention that each basin receives in the SSE. Higher 𝐾𝐺𝐸′ values are observed predominantly in the 753 

mountainous portions of the western US, and in the midwest and eastern US. Lower 𝐾𝐺𝐸′ values are more prevalent in the 754 

southwestern US and northern plains region.  755 

In general, areas that calibrated well under either method (Fig. 7) tended to hold up well in temporal validation. Plot parts (b, 756 

d) show the difference between the validation and best-calibrated 𝐾𝐺𝐸′, and regions with smaller differences indicate that the 757 

calibrated parameter sets generalized well in time. The LSE-calibrated parameters led to slightly greater loss in skill in 758 

validation than did the SSE-calibrated parameters, and this effect was pronounced in the more challenging calibration regions 759 

noted above. Although the cause of this effect is unclear, a likely culprit is overtraining -- i.e., that the LSE harnesses more 760 

sequence-specific information than the SSE to gain a stronger calibration and validation performance. That said, if the objective 761 

of a modeling application is to calibrate a LHM for use over a large number of measured catchments, this analysis nonetheless 762 

suggests that the LSE would provide both efficiency and skill improvements over the traditional basin-specific calibration.  763 
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Figure 10 Temporal validation performance (during the independent 2003–2009 period) shown as spatial distribution across 775 

the CONUS. Panels illustrate (a) median 𝐾𝐺𝐸′ values for SSE calibration, (b) difference between validation and calibration 776 

median 𝐾𝐺𝐸′ values for SSE (c) median 𝐾𝐺𝐸′ values for LSE calibration, and (d) difference between validation and calibration 777 

median 𝐾𝐺𝐸′ values for LSE. 778 

3.4 Spatial cross-validation  779 

Figures 11 and 12 present results of the LSE_CV experiment, which tests SUMMA simulations using the parameter sets in 780 

each iteration (cumulative with prior iterations) that had the best emulator-predicted 𝐾𝐺𝐸′ values in each basin. Each 781 

calibration iteration produces 100 recommended new parameter sets; thus, there is a need to decide a priori which set to select 782 
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for testing in the unseen basins (as noted in Sect. 2.4.1). Because the emulator has some skill in estimating model performance 785 

given different parameter sets, we use its performance estimate as a basis for the selection. We briefly experimented with 786 

alternative selection strategies, none of which were superior, and also evaluated whether transferring a small ensemble (top 5-787 

20 parameter sets based on emulator ranking) leads to better mean performance (it does, but ensemble modeling is not the 788 

focus of this effort). We compare LSE_CV results to those from LSE calibration parameter sets selected in the same way 789 

(based on the highest emulator-predicted 𝐾𝐺𝐸′ values), which leads to slightly lower performance than assessing the best 790 

actual model 𝐾𝐺𝐸′ values, as shown in Fig. 6a. 791 

In Figure 11, the contrast between the LSE_CV and LSE_all (from calibration) when using emulator-ranked parameter sets is 792 

striking. In both cases, median 𝐾𝐺𝐸′ values generally rise over six iterations, indicating that the approaches can find improved 793 

parameters as they are run repetitively. Not surprisingly, the LSE_CV skill falls relative to the LSE all, and plateaus quickly. 794 

The LSE_all calibration achieves higher median emulator-predicted 𝐾𝐺𝐸′ values compared to LSE_CV in every iteration, 795 

with a final median value of 0.73 for LSE_all compared to 0.43 for LSE_CV by iter-6. This discrepancy was larger than 796 

expected, and we review potential causes further in the Discussion section.  797 

Figure 11 Comparison of calibration performance: CDFs of the best 𝐾𝐺𝐸′ for (a) LSE_CV across all folds and (b) LSE_all 798 

across all basins over six iterations with median 𝐾𝐺𝐸′ values. 799 
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Useful context for the emulator-predicted LSE_CV results is provided in Appendix Fig. B3, which shows the best model 808 

performance selected post facto for unseen test basins using LSE_CV parameter sets (recall that 100 parameter sets are 809 

estimated in each iteration, but only one is tested in Fig. 11a). Achieving a median 𝐾𝐺𝐸′ value of 0.72 after six iterations, the 810 

best performing results suggest that the LSE is capable of finding competitive parameter sets in unseen basins; rather, the 811 

challenge is knowing in advance which of the estimated parameter sets are best to use in parameter transfer. For applications 812 

in which an ensemble of predicted, pre-trained parameter sets is useful, this finding is useful, especially if the fitness of an 813 

ensemble of emulator-predicted parameter sets could be judged through additional relevant criteria (such as performance at 814 

indirectly related or downstream gages, or assessment of consistence with related hydrologic statistics or signatures), aiding 815 

the regionalization task.  816 

Figure 12 shows the geographic distribution of performance results for the LSE_CV, the LSE in calibration (which uses 817 

emulator-ranked best parameter sets, versus best model outcomes), and the LSE_CV difference from the default model 818 

performance (parts a-c, respectively). The calibrated LSE-based 𝐾𝐺𝐸′ values are significantly high across most basins, 819 

demonstrating that substantial model performance may be achieved by directly calibrating parameters across all basins, 820 

benefiting from the full training dataset. The more uniform distribution of higher 𝐾𝐺𝐸′ values across different regions, 821 

especially in the central and eastern U.S., highlights the LSE's ability to enhance accuracy over diverse hydroclimatic 822 

conditions. The LSE_CV approach, illustrated in Fig.11a, shows improvement over the default model parameters for a majority 823 

of basins, with approximately 62% of basins achieving better values than the default configuration. However, there are multiple 824 

basins where LSE_CV underperforms compared to default parameters, particularly in complex, cold or arid regions. 825 

Figure 12 Comparison of performance (median sample 𝐾𝐺𝐸′) between the LSE_CV, which uses spatial cross-validation for 826 

regionalizing parameters to unseen basins, and the LSE_all calibration, which uses information from all basins. The LSE_CV 827 

performance difference from the default parameter performance is also shown. 828 
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4 Discussion and conclusions  840 

This study investigates whether the challenge of calibrating large-domain implementations of complex, expensive PB 841 

land/hydrology models can be tackled through similar strategies to those now being advanced in the AI contexts (i.e., ML, DL 842 

and differentiable modeling). Such studies have shown that jointly training the DL or simple conceptual models (made 843 

differentiable) over large samples of catchments is not only viable but is recommended over individually calibrating such 844 

models on single basins. The reverse had generally been found for complex LHMs, but the recent emergence of ML model 845 

emulation strategies for complex models has provided an avenue for reassessing this consensus. In collaboration with a 846 

companion effort described in Tang et al. (2025), which focused on the CTSM land model, we develop and assess a large-847 

sample emulator (LSE) based strategy for calibrating the SUMMA-mizuRoute modeling approach across CONUS watersheds. 848 

While our study focuses on small-to-medium basins in the CAMELS dataset, the LSE approach is being designed for 849 

application to large domains (regional to continental to global scale). Applying the emulator-guided calibration strategy to 850 

such larger regions may require adjustments to account for greater heterogeneity in factors such as spatial scale, dominant 851 

processes and land forms, flow routing complexity, meteorological input patterns, among others.   852 

Our findings are, in short, promising. They suggest that a large-sample model response emulation approach has potential to 853 

become a preferred option for calibrating complex PB models over large domains as it has for ML and other AI-era modeling 854 

approaches. The generally higher performance achieved by the LSE relative to the SSE indicates that large-sample calibration 855 

can more effectively learn the model response surface to parameters, even for complex models, than is possible using local 856 

information alone. As noted by Kratzert et al. (2019) and others, the inclusion of static catchment attributes allows large-857 

sample approaches to localize parameter influence and account for hydroclimatic variability across basins, which in turn leads 858 

to more efficient joint calibration and better overall model performance. Our SSE, while effective for some individual basin 859 

calibrations, did not reach the accuracy of the LSE when applied across diverse conditions, and pursued less efficient parameter 860 

search trajectories. In practice, the scalability of a strategy that jointly trains a single, low-cost model emulator for model 861 

calibration to yield usable parameter estimates for hundreds (or more) catchments at once is arguably attractive, given the main 862 

alternative for parameter regionalization is individually calibrating those catchments only as the first step toward training a 863 

separate parameter transfer scheme. 864 

While the LSE strategy still requires a set of PB model simulations for training, it offers a substantial computational advantage 865 

over traditional calibration approaches by drastically reducing the number of required simulations in subsequent iterations. 866 

Rather than incurring the cost of repeated full-model evaluations across basins, the emulator enables efficient exploration of 867 

the parameter space with far fewer model runs. As described in Section 2.3.2, we further improved efficiency by increasing 868 

the number of parameter trials per iteration while reducing the total number of iterations—an approach that maintained 869 

accuracy while accelerating convergence. This balance between emulator fidelity and computational cost demonstrates the 870 

practicality of the method for large-domain hydrological modeling. Looking ahead, we are optimistic that future enhancements 871 
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such as adaptive sampling, transfer learning, or cross-domain emulator reuse could further reduce the up-front simulation 882 

demand, opening new possibilities for applying this approach to even more complex or higher-resolution modeling systems. 883 

The results of the LSE calibration (median 𝐾𝐺𝐸′ = 0.76) and validation (0.69) in this study are competitive with published 884 

modeling studies using all or parts of the CAMELS catchment collection, though comparisons are inexact due to differences 885 

in factors such as basin selection, validation periods, and optimization objectives. For example, Feng et al. (2022) reported 886 

median temporal validation NSEs ranging from 0.62 to 0.75 for jointly calibrated DL and differentiable learning models, while 887 

Newman et al. (2015; 2017) achieved sample median NSE scores around 0.74 for calibration and 0.60–0.70 during temporal 888 

validation, using much simpler conceptual models (Sacramento and Snow-17), all individually trained.   889 

Yet in other regards, such as advancing capabilities for prediction in ungauged basins, it is also clear from these experiments 890 

that further understanding and improvements are needed. The median 𝐾𝐺𝐸′ score of 0.43 achieved in spatial cross validation 891 

is inadequate for use in many regionalization applications, though we believe it is on par with what is currently achievable for 892 

complex PB models using site-specific basin calibration followed by similarity-based regionalization. For instance, the 893 

performance is near the ungauged basin evaluation over CONUS reported in Song et al. (2025) for the US National Water 894 

Model 3.0, at 𝐾𝐺𝐸 = 0.467. It moderately lags a new differentiable physics-informed ML model (δHBV2.0δUH) at 0.553 in 895 

the same study and considerably lags results from pure DL approaches -- e.g., the impressive median NSE of 0.69 achieved 896 

by the PUB LSTM of Kratzert et al. (2019). Such studies are not controlled comparisons with this one or each other but 897 

nonetheless provide useful context.  898 

The lower performance of the LSE_CV relative to the LSE in spatial cross-validation validation may result from a combination 899 

of factors, including unexplained variability in the hydroclimatic settings and model response, and some overtraining to sample 900 

characteristics, which include meteorological input errors. This can also be attributed to (1) the reduced number of training 901 

samples in LSE_CV compared to LSE_all (20% fewer basins), and (2) the inherent difficulty of regionalizing parameters for 902 

ungauged locations, a well-documented challenge in hydrological modeling (Patil and Stieglitz, 2015). Overall, the sample 903 

size used in this study (627) may be inadequate for high-quality regionalization. Nonetheless, we are optimistic that with 904 

further exploration and development, the regionalization performance of calibration based on an LSE approach will improve. 905 

We have not yet investigated potential refinements such as the feature engineering and selection of static geo-attributes to 906 

enhance transferability. Here we adopted those used in Tang et al. (2025), and these contained inconsistencies (e.g., 907 

meteorological attributes were not based on the model forcing dataset climatology). Using more catchments in training with 908 

better screening for representativeness is likely to strengthen the regionalization, especially as some basins were later found to 909 

have erroneous streamflow observations. Supporting work in the study (not shown here) indicated that some parts of the US 910 

improve when restricting training to a similarity-based watershed selection, while others fare better when trained on the full 911 

sample – thus a blend of similarity-based and full-domain emulation may prove superior. The selection strategy for predicted 912 

parameter sets to transfer and various hyperparameter choices also warrant further investigation. The question of spatial scale 913 
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consistency between the training basins and the regionalization target basins may be critical to the success of its application in 927 

real-world large-domain uses; we suspect that the LSE approach remains robust under moderate scale inconsistencies, but 928 

further research is needed to understand these limits of spatial generalization.   929 

This effort along with Tang et al. (2025) represent initial forays into implementing such a ML-based joint calibration strategy 930 

for process models, and each raises as a suite of compelling papers that are beyond the current paper’s scope. This paper 931 

focuses on introducing, outlining and testing a new large-sample emulator framework, which necessitated substantial dataset, 932 

model and workflow development effort, while benchmarking the LSE against a logical baseline, the SSE, and qualitatively 933 

comparing it to other related studies using LSTMs, conceptual model and hybrid/differentiable models. We recognize the 934 

broader momentum within the ML/DL hydrology community toward methodological intercomparison and refinement, and 935 

look forward to undertaking such broader controlled comparisons and studies of methodological choices that were out of scope 936 

for this paper. We applied the method to lumped basin-scale PB model configurations for simulating streamflow, but the 937 

emulator framework itself is generalizable and could easily be adapted to models with different spatial structures, including 938 

gridded domains, levels of complexity, and to multivariate model fluxes and states.  939 

Overall, we hope that these findings will update conventional wisdom about the ability of complex PBLHMs to compete with 940 

simpler conceptual models in performance, given that our temporal validation across hundreds of basins is on par with that of 941 

other published CAMELS-based conceptual modeling studies. Perhaps more importantly, we show that the power of large-942 

sample model training underpinning recent advances in ML hydrology is extensible to complex PB hydrology models as well. 943 

We believe the work takes an important step toward addressing the longstanding challenge of applying such models of 944 

prediction in ungauged basins. With national water agencies and global modeling initiatives for land/hydrology and climate 945 

analysis and prediction continuing to seek unique multivariate insights from complex PB land/hydrology modeling approaches, 946 

we encourage further exploration of possibilities in this direction.   947 

Appendix A. SUMMA configuration 948 

Table A1 SUMMA default model decisions (physics configuration) for this study. 949 

Model decision Chosen option Model decision description 

soilCatTbl STAS Soil-category dataset  

vegeParTbl 
MODIFIED_IGBP_MO

DIS_NOAH 
Vegetation category dataset 

soilStress NoahType Function for soil moisture control on stomatal resistance 
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stomResist BallBerry Function for stomatal resistance 

num_method itertive Choice of numerical method 

fDerivMeth analytic Method used to calculate flux derivatives 

LAI_method specified Method used to determine LAI and SAI 

f_Richards mixdform Form of Richard's equation 

groundwatr bigBuckt Choice of groundwater parameterization 

hc_profile constant Choice of hydraulic conductivity profile 

bcUpprTdyn nrg_flux Type of upper boundary condition for thermodynamics 

bcLowrTdyn zeroFlux Type of lower boundary condition for thermodynamics 

bcUpprSoiH liq_flux Type of upper boundary condition for soil hydrology 

bcLowrSoiH drainage Type of lower boundary condition for soil hydrology 

veg_traits Raupach_BLM1994 Parameterization for vegetation roughness length and displacement height 

canopyEmis difTrans Parameterization for canopy emissivity 

snowIncept lightSnow Parameterization for snow interception 

windPrfile logBelowCanopy wind profile through the canopy 

astability louisinv Stability function 

canopySrad BeersLaw Canopy shortwave radiation method 

alb_method conDecay Albedo representation 

compaction anderson Compaction routine 

snowLayers CLM_2010 Method to combine and sub-divide snow layers 

thCondSnow jrdn1991 Thermal conductivity representation for snow 

thCondSoil funcSoilWet Thermal conductivity representation for soil 
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spatial_gw localColumn Method for the spatial representation of groundwater 

subRouting timeDlay Method for sub-grid routing 

 999 

Table A2 Geo-attributes used in the large-sample emulator (LSE) training. 1000 

Attribute Name Relevance Description Unit 

mean_elev Topography Catchment mean elevation m above sea level 

mean_slope Topography Catchment mean slope m/km 

area_gauges2 Topography Catchment area (GAC) km2 

p_mean Climate Mean daily precipitation mm/day 

pet_mean Climate Mean daily PET (estimated) mm/day 

aridity Climate Aridity (PET/P ratio) - 

p_seasonality Climate Seasonality and timing - 

frac_snow Climate Fraction of precipitation as snow - 

high_prec_freq Climate Frequency of high precipitation days/year 

high_prec_dur Climate Average duration of high precipitation days 

low_prec_freq Climate Average frequency of low precipitation days/year 

low_prec_dur Climate Average duration of low precipitation days 

frac_forest Landcover Forest fraction - 

lai_max Landcover Maximum monthly LAI - 

lai_diff Landcover Difference between max and min LAI - 
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dom_land_cover Landcover Dominant land cover type - 

dom_land_cover_frac Landcover Fraction of the catchment area of dominant land cover - 

soil_depth_pelletier Soil Depth to bedrock m 

soil_depth_statsgo Soil Soil depth (maximum) m 

soil_porosity Soil Volumetric porosity  - 

soil_conductivity Soil Saturated hydraulic conductivity  cm/h 

max_water_content Soil Maximum water content m 

sand_frac Soil Sand fraction % 

silt_frac Soil Silt fraction % 

clay_frac Soil Clay fraction % 

carbonate_rocks_frac Geology Fraction of the catchment with carbonate rocks - 

geol_permeability Geology Subsurface permeability m2 

 1037 

Table A3 Summary of default and LSE-calibrated parameter values across all basins, including the percent change from default 1038 

values and the range (min–max) of LSE-calibrated values. For parameters with basin-specific default values, the default 1039 

median is used for comparison. 1040 

Parameter name Default LSE median % Change LSE min LSE max Default type 

k_soil 2.92e-06 1.29e-05 +342.3 7.41e-08 0.0098 Varying 

theta_sat 0.38 0.57 +49.0 0.247 0.7 Varying 

aquiferBaseflowExp 1.24 1.69 +36.2 1 4 Varying 

aquiferBaseflowRate 0.0789 0.0426 - 46.0 0.0001 0.1 Varying 

qSurfScale 5.47 3.47 -36.6 1 19.99 Varying 
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summerLAI 3.48 4.8 +37.9 0.0107 19.95 Varying 

frozenPrecipMultip 0.855 0.795 -7.0 0.5 2.499 Varying 

routingGammaScale 51902 30970 -40.3 360.02 86399.92 Varying 

routingGammaShape 2.886 1.55 -46.3 1 4.99 Varying 

Fcapil 0.0143 0.0222 +55.6 0.009 0.1099 Varying 

tempCritRain 273.16 271.74 -0.5 270.16 276.16 Constant 

heightCanopyTop 4.67 5.46 +16.9 0.154 57.9 Varying 

windReductionParam 0.28 0.23 -19.2 0.05 0.9995 Constant 

vGn_n 1.51 1.34 -11.1 1.3 4 Varying 

 1053 

Table A4 Summarizing the key hyperparameters used in our calibration framework. 1054 

Method Hyperparameter Value / Setting Notes 

Genetic Algorithm (GA) 

Population size   100  

Crossover probability 0.9 SimulatedBinaryCrossover 

Crossover eta  15 SimulatedBinaryCrossover 

Mutation eta  20 PolynomialMutation 

Sampling method  FloatRandomSampling Continuous variables 

Stopping criterion Max generations   No early stopping used   

Random Forest (RF)  
n_estimators  100 Number of trees  

max_depth 40 Maximum depth of each tree 
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Appendix B 1056 

Figure B1 An example basin illustrates how simulated streamflow using LSE calibrated parameter values aligns significantly 1057 

better with observations compared to simulations using a priori (i.e., default) parameters. 1058 
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Figure B2 Same with Fig. B1 but showing an example basin where the LSE calibration shows lesser improvement regarding 1067 

the seasonal streamflow compared to a priori (i.e., default) parameters, while for the daily and monthly series, the improvement 1068 

is still notable. 1069 
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Figure B3 Comparison of the best model 𝐾𝐺𝐸′ CDFs for LSE_CV over six iterations, selected post facto, and including 1073 

sample median 𝐾𝐺𝐸′ values. 1074 

Code and dataset availability 1075 

The SUMMA model is available at https://github.com/CH-Earth/summa/ and the mizuRoute model is available from 1076 

https://github.com/ESCOMP/mizuRoute. The original CAMELS dataset is available at 1077 

https://gdex.ucar.edu/dataset/camels.html. EM-Earth forcings are available at https://doi.org/10.20383/102.0547. ERA5-Land 1078 

data is available at https://doi.org/10.24381/cds.e2161bac. The LSE-based SUMMA optimization codes are available at  1079 

https://github.com/NCAR/opt_landhydro and relevant data sets are available at https://doi.org/10.5281/zenodo.16422768. 1080 
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