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Abstract. This study presents the first public, academic, blinded controlled release evaluation of methane detection 

and quantification technologies in Europe. Conducted at the TotalEnergies Anomalies Detection Initiatives (TADI) 

site in France, the campaign tested eight commercial systems—including satellite, drone, and continuous monitoring 

platforms—under controlled single-blind conditions. Participants submitted methane emission rate estimates without 

prior knowledge of true release values. Performance was assessed through detection limit curves, parity plots, and 15 

statistical metrics including slope and R². False positive detection rates ranged from 0 to 11%. Quantification slopes 

ranged from 0.09 to 1.13, with a trend toward underestimation, and R2 values ranged from 0.08 to 0.97. Wind 

conditions—particularly low speeds and high variability—were a key factor affecting quantification accuracy, 

emphasizing the need for high-quality wind data integration. This study underscores the importance of rigorous, 

standardized testing to benchmark technology performance and inform regulatory efforts. Results highlight platform-20 

specific strengths and challenges, providing actionable insights for participants, policymakers, and regulators. These 

findings support the development of robust, validated methane measurement tools critical to achieving effective 

emissions monitoring and reduction strategies under evolving regulatory frameworks, such as those in the European 

Union. 

1 Introduction 25 

Methane, a potent greenhouse gas with a global warming potential significantly higher than carbon dioxide over a 20-

year period, is a critical target for emission-measuring technologies. Anthropogenic methane emissions contribute to 

30% of the global temperature increase since pre-industrial time; given methane's short atmospheric lifespan and 

strong near-term warming impact, it is an ideal candidate for mitigation efforts (Ocko et al., 2021; Smith et al., 2020). 

Monitoring emissions is increasingly central to global strategies to limit temperature rise, with both established and 30 

emerging technologies being deployed across sectors (IEA, 2022; Ravikumar et al., 2020). 

Targeting methane emissions from the oil and gas (O&G) sector—particularly upstream production—is one of the 

most cost-effective mitigation strategies when paired with appropriate policies (Kemp and Ravikumar, 2021). Recent 

initiatives, such as the U.S. Inflation Reduction Act and new European Union (EU) regulations, have reinforced the 

need for accurate detection and quantification (Official Journal of the European Union, 2024; United States 117th 35 

Congress: H.R. 5376, 2022). Historically, participants relied on extrapolated “bottom-up” estimates, but research 

shows these often underestimate true emissions compared to direct measurement approaches (Allen, 2014; Sherwin 

et al., 2024b; Zhang et al., 2020). Policymakers and industry are shifting toward measurement-based data, reflected in 

efforts like the Oil & Gas Methane Partnership (OGMP) 2.0, a collaboration between industry and the United Nations 

to improving methane reporting through direct measurement. 40 

Methane detection technologies are deployed globally using satellites, aircraft, drones, vehicles, and fixed ground-

based systems. Measurements fall into three categories: (1) in situ concentration, (2) active imaging, and (3) passive 

imaging. In situ sensors measure local methane concentrations on various platforms. Active imaging systems use 

lasers at methane-absorbing wavelengths. Passive imaging relies on backscattered sunlight at methane-absorbing 
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wavelengths, using aircraft, satellites, or fixed cameras. After measuring concentrations, algorithms—ranging from 45 

physical transport models to artificial intelligence—estimate emission rates from gas plumes.  

Controlled release experiments, where methane is emitted under known conditions, benchmark technology 

performance. Blinded testing, in which participants estimate emissions without prior knowledge of true values, is 

essential for generating trusted, independent results. Previous studies have shown the efficacy of many technologies 

in detecting and quantifying point source emissions, though some require further refinement before widespread 50 

deployment (Bell et al., 2022, 2023; Chen et al., 2024; El Abbadi et al., 2024; Ilonze et al., 2024; Rutherford et al., 

2023; Sherwin et al., 2024a). 

Over four weeks in June and September 2024, participants participated in controlled release testing at the 

TotalEnergies Anomalies Detection Initiatives (TADI) site in Pau, France. Independent, low- and high-volume single-

blind tests were conducted to evaluate 15 commercial and academic measurement systems deployed via aircraft, 55 

satellite, drone, vehicle, and fixed ground-based sensors. The eight commercial technologies, evaluated in this study, 

included drone-mounted technologies (Aeromon BH12, GSMA AUSEA, SeekOps SeekIR, Flylogix), fixed-ground 

level technologies (SENSIA’s Mileva 33 camera, SLB’s Methane Lidar camera, and the Sensirion Nubo Sphere 

solution), and satellite observations (GHGSat). The academic teams will be evaluated in a separate publication. 

This study advances methane detection through blinded controlled-release testing. Participants were evaluated on their 60 

ability to detect methane and quantify emission rates. Performance was assessed through detection limit curves and 

parity plots comparing true and submitted rates. This marks the first large-scale public, academic, blinded controlled-

release testing of methane measurement technologies in Europe. Accurate methane emissions inventories are essential 

for developing effective climate change mitigation strategies, ensuring impactful reduction efforts. By characterizing 

the state of methane measurement technologies and establishing transparent evaluation methods, this study supports 65 

the development of robust, reliable tools to meet the demand for precise emissions monitoring in Europe and beyond. 

2 Methods 

We tested eight commercially available technologies in a single-blind controlled release study conducted over four 

weeks in June and September 2024: June 17-21 (Week 1), June 24-28 (Week 2), September 9-13 (Week 3), and 

September 16-20 (Week 4). The study occurred at the TADI site in southwestern France, a research and development 70 

platform owned and operated by TotalEnergies. A full description of the test site can be found in the Supplemental 

Information (SI) Section 1.1. This section details the experimental setup, release procedures, participant technologies, 

data collection, and results submission methods.  
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Figure 1. Map of the TADI test site. The gas release platform is indicated in red, the gas release control room in green, 75 
and the campaign headquarters in blue. Approximate location of the fixed sensors from Sensirion, SLB, and Sensia are 

indicated as well as common paths for drone flights. 

2.1 Experimental setup 

The tests followed a single-blind format, in which participants were not told the true release rates, nor the location of 

the release points, nor whether the emission rate was non-zero in each time slot (participants were aware of the release 80 

start and stop time as a structured time format with announcement was used).  For ease of coordination and planning 

among the teams on site, a pre-determined schedule was followed (e.g., pre-planning was required to maximize safety 

and results for drone and plane operations). Each release occurred for approximately 45 minutes, followed with a 15-

minute break for plume dispersion, which ensures a return to background levels of methane concentration between 

tests. After the plume dispersion period, the next 45-minute period begins. The original experiment plan dictated 8 85 

scheduled releases every day, with each day following the same schedule (see SI Section 1.2.1 for detailed schedule).  

There were 40 releases scheduled each week, comprised of (1) non-zero, normal scale (i.e. 0-100 kg h-1 release rate) 

releases, (2) zero-releases to test for false positives, and (3) satellite-scale (i.e. >100 kg h-1) releases. The implemented 

daily schedule of releases varied somewhat depending on the weather and specific demands of the week. There were 

occasionally weather conditions (e.g., heavy rain, dense fog) that prevented measurements from some technology 90 

Maps Data: Google, ©2024 Airbus 
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types or imposed safety issues. The start and end of the release was announced to participants onsite over a radio, 

communicated to teams in the air overhead, and recorded in the campaign headquarters room. The release schedule 

was compiled in a spreadsheet and sent to all teams participating in that week. The release schedule and flowrates are 

discussed further in SI Sections 1.2.2-5.  

Participants were directed to measure concurrently except for drones and aircraft, which were staggered in an 95 

alternating fashion (i.e. one technology of each type in the air during a release) for safety. See SI Section 1.3 for more 

information on participant scheduling.  

2.2 Description of measurement technology  

Eight commercial participants participated in the testing, deploying solutions via satellite, drone, and fixed ground 

sensors and cameras. The Aeromon BH-12, SeekOps SeekIR, and Flylogix sensors measure methane using an in situ 100 

concentration measurement device attached to a drone and utilizing mass balance methods to quantify emission rates. 

The AUSEA sensor utilizes a similar technology, as described in Bonne et al. (2024) and Joly et al. (2016, 2020). 

GHGSat’s constellation of satellites (GHGSat-C) utilizes passive spectrometry technology (Diriker et al., 2022). 

Sensirion’s Nubo Sphere solution was comprised of twelve in situ fixed-point methane emission continuous 

monitoring sensors. The SLB Methane Lidar Camera is an active imaging sensor utilizing tunable diode laser 105 

absorption spectrometry (TDLAS) technology. SENSIA’s Mileva 33 camera is an optical gas imaging infrared sensor. 

Each team deploys proprietary algorithms along with the sensors to provide emission rate quantification estimates. 

Full descriptions of each participant’s technology and team can be found in SI Section 2. Table 1 contains the specific 

technology deployed by each participant, along with the week(s) they participated in testing.   

Table 1. Participant and deployed solution, technology type, and week(s) of controlled release testing. 110 

Participant Solution Name Technology Type Sensor Type 
Testing 

Weeks 

Aeromon BH-12 Sensor Drone In situ 1 

GSMA AUSEA Sensor Drone In situ 1 

Flylogix N/A Drone In situ 4 

SeekOps SeekIR Sensor Drone In situ 2 

GHGSat 
GHGSat-C2, C3, C4, C5, 

C7, and C8 (GHGSat-C) 
Satellite Passive imaging 1, 2, 3, 4 

Sensirion Nubo Sphere Continuous Monitor In situ 1, 2, 3, 4 

SLB Methane Lidar Camera Continuous Monitor Active imaging 3, 4 

SENSIA Mileva 33 Continuous Monitor Passive imaging 3, 4 

2.3 Data collection procedures 

Information about release flowrate, location, start and end time was recorded onsite by the site engineer. Deviations 

from the schedule were recorded by hand on the printed schedule and by the Stanford team. For each release, the input 

flowrate and associated uncertainty was recorded. Weather conditions, temperature, and prevailing windspeed and 
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direction was recorded on site every morning and afternoon, and high-resolution wind data was collected using a ZX 115 

300 Wind Lidar (i.e. wind speed and direction at various user-selected heights; see SI Section 3.2 for more 

information). Throughout their week(s) participating in the campaign, the participants measured the methane releases 

to provide an estimate of the release flowrate. Participants were required to bring and use their own wind measurement 

devices, if applicable to their technology. Each participant’s measurement technique is described in more detail in SI 

Section 2.  120 

2.4 Data submission and filtering process 

Participants were allowed four weeks from the completion of each testing week to submit results for that week. All 

the commercial participants submitted their estimates within the required timeframe. After all participants submitted 

their results, true release rates were unblinded in a single-stage process. The true release rates were given to the teams 

on a weekly basis. True release rates were only released after every participant participating in that week had submitted 125 

their results. TADI wind lidar data was also given to participants with the unblinded true release rates.  

During the data cleaning process, submitted estimates were categorized into one of three types: releases that teams 

measured and submitted a non-zero methane emission rate (“non-zero estimates”), releases for which teams submitted 

a methane emission rate of 0 kg h-1 (“zero estimates”), and releases for which teams did not submit any estimate (“N/A 

estimates”). The Stanford team developed three different criteria to filter and categorize each participants results: a 130 

strict data filtering criterion (Strict QC), the Stanford team’s criteria (Stanford QC), and a participant-submitted criteria 

(Participant QC). The methods used to categorize participant estimates are discussed in detail in SI Section 4 (see SI 

Table S4-2). Participants submitted zero-estimates differently (e.g., some reported in an estimate methane emission 

rate of 0 kg h-1, while others reported them as failed quantifications), resulting in the creation of the three different 

categorization methods. The Stanford QC process used additional data submitted with the estimates to determine 135 

whether the failed quantification was classified as a zero estimate (e.g., “no plume visible” or “below level of 

detection”) or N/A (e.g., clouds or heavy rain). The Stanford QC process was the default method used for data included 

in analysis. Table 2 details the number of measured releases, zero, non-zero, and total estimates submitted by the 

participant, and the minimum and maximum release rates passing the Stanford QC process.  

Table 2. Release counts by participant through the filtering process. 140 

Solution 
Measured 

Releasesa 

Stanford QC Passing 

Estimatesb 

Maximum Release 

Rate Passing 

Stanford QC [kg h-1] 

Minimum Release 

Rate Passing 

Stanford QC [kg h-1] Zero Non-Zero Total 

Aeromon BH-12 21 0 9 9 115.0 0.0 

GSMA AUSEA 14 1 12 13 47.66 0.0 

Flylogix 18 3 15 18 290.0 0.0 

SeekOps SeekIR 29 0 29 29 136.6 0.0 

GHGSat-C 12 0 1 1 136.6 136.6 
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Sensirion Nubo 

Sphere 
147 11 120 131 308.2 0.0 

SLB Methane 

Lidar Camera 
75 10 65 75 308.2 0.0 

SENSIA Mileva 33 71 4 67 71 308.2 0.0 
aMeasured releases is the number of releases that the participants measured during the testing periods. 

bThe Stanford QC passing estimates are those included in this analysis. 

3 Results 

The study results for each solution are presented in this section. Complicating the results analysis is the fact that 

several teams identified key issues with their data collection or treatment after true release rates were unblinded, 145 

discussed in more detail in Sect. 4.2. 

3.1 Detection analysis 

The ability of methane detection technologies to correctly identify the presence of emissions is a fundamental 

requirement for effective emissions monitoring and mitigation. In this section, we evaluate the detection performance 

of each participant by categorizing reported measurements as true positives (TP), false positives (FP), true negatives 150 

(TN), or false negatives (FN). True positives indicate successful detection of a known release, while false negatives 

represent missed detections. Conversely, false positives occur when a participant reports a detection where no release 

was present, and true negatives confirm correct identification of zero-release events.  

The results presented here highlight the variability in detection capabilities across different technologies. As the start 

and stop time of each release was known by all the performers, the detection capability could be overestimated. Due 155 

to operational issues, the release schedule was not followed exactly by all the teams, meaning the minimum release 

detected presented could not be representative of the detection limit of the technology.  
Table 3. Summary of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) releases by 

participant. 

Solution TP FP TN FN 
TP 

(%) 

FP 

(%) 

TN 

(%) 

FN 

(%) 

Max Release 

Detected [kg h-1] 

Min Release 

Detected [kg h-1] 

Aeromon BH-12 8 1 0 0 89 11 0 0 115.0 0.01 

GSMA AUSEA 12 0 1 0 92 0 8 0 47.66 0.66 

Flylogix 15 0 1 2 83 0 6 11 290.0 0.19 

SeekOps SeekIR 28 1 0 0 97 3 0 0 136.6 0.01 

GHGSat-C 1 - - 0 100 - - 0 136.6 136.6 

Sensirion Nubo Sphere 119 1 6 5 91 1 5 4 308.2 0.19 

SLB Methane Lidar 

Camera 
64 1 2 8 85 1 3 11 308.2 0.29 

SENSIA Mileva 33 67 0 3 1 95 0 4 1 308.2 0.02 
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The percentages are calculated by dividing by the total number of non-zero releases included in the analysis. The table also 160 
includes the minimum and maximum release flowrates detected by each team (i.e. the participant reported in a quantification 

estimate for that release). A dash (-) indicates that that no releases were able to be categorized as FP / TN due to that solution not 
measuring any zero releases or no zero releases passed the Stanford QC process. 

Table 3 contains information on the TP, FP, TN, and FN performance for each participant, both in raw number of 

releases and percentage of releases included in solution analysis. Overall, the technologies saw a very low level of 165 

false positives and exhibited impressive detection capabilities. At most, a solution identified one false positive release, 

and more than half of the solutions did not report any false positives. The GSMA AUSEA sensor correctly categorized 

all their releases; as did GHGSat-C, although they only submitted one release for analysis. Notably, most solutions 

only incorrectly categorized one or two releases, such as Sensirion Nubo Sphere, Flylogix, SENSIA Mileva 33, 

Aeromon BH-12, and SeekOps SeekIR Sensor. Figure 2 visualizes the distribution of estimate categorizations for each 170 

participant for small (0-50 kg h-1) and large (50-350 kg h-1) release rates. 

The technologies varied widely in their implementation (e.g., space-based compared to a fixed sensor placed meters 

from the release point). Therefore, the minimum release detected in this experiment ranged widely between 

technologies, from 0.01 kg h-1 to 210 kg h-1. GHGSat-C was only given large releases to characterize their minimum 

detection limits, as their technologies can only observe comparatively large sources (see SI Section 1.2.3). Other than 175 

the satellite, all commercial solutions succeeded in detecting emission rates of less than 1 kg h-1. All the drone and 

fixed-sensor teams were able to detect releases under 0.5 kg h-1. Due to alternating flights, two of the drone 

technologies (Aeromon BH-12 and GSMA AUSEA) were not able to cover the full range of releases, meaning the 

minimum detection limits could then be lower than the one noted here. 
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 180 
Figure 2. Distribution of estimate categorizations for each tested technology group, with colors representing different 
result classifications: true positive, true negative, false positive (no false positives reported by teams), false negative, 

participant-filtered (measurements for which the participant determined quantification was not possible, e.g., failed the 
Participant QC criteria), and Stanford-filtered (measurements that failed the Stanford QC process). All measurements in 

this plot passed the Strict QC process. The y-axis is the number of releases, and the x-axis corresponds to the binned 185 
methane release flowrate. Releases conducted across all participants ranged from 0 to 310 kg CH4/h. Note the different y-

axis scales per row.  

Figure 3 shows a normalized histogram of detected releases under 30 kg h-1 for each participant. For those solutions 

with false negatives emission categorization (Flylogix, Sensirion Nubo Sphere, SLB Methane Lidar Camera, and 

SENSIA Mileva 33), detection capabilities under 30 kg h-1 are visualized using logistic regression to plot a best fit 190 

line over a bin size of 6 kg h-1. This visualizes the probability of detection (POD) for the participants under this 

threshold and for this bin size.  
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Figure 3. Detection capabilities below 30 kg(CH₄)/h. This figure shows the probability of detection for participant-
quantified releases. Each release is marked by a vertical line at y = 0 if not detected and y = 1 if detected, ordered along 195 

the x-axis by release volume. Blue bars indicate the proportion of detected releases within each bin, with error bars 
representing 95% confidence intervals based on a binomial distribution. The darker blue line is the best fit of a logistic 

regression model on the probability data. GHGSat-C is excluded due to not measuring any releases below 30 kg(CH4) h-1. 
The x-axis is based on the true release rate. 

Flylogix and SENSIA Mileva 33 detected releases above 5 kg h-1 with 100% probability. Sensirion Nubo Sphere failed 200 

to detect one release above 5 kg h-1, in the 15 to 20 kg h-1 range, but otherwise detected all releases above 5 kg h-1. 

The SLB Methane Lidar Camera failed to detect one release above 5 kg h-1, in the 20 to 25 kg h-1 range, but otherwise 

detected all releases above 5 kg h-1. No false negative emissions were reported for the other technologies, so it was 

not possible to determine their detection limit, except to say it’s below the minimum release detected. For most 

participants, especially the aerial technologies, more samples are needed for a statistically robust characterization of 205 

POD. Detection capabilities below 5 kg h-1 of methane are shown in SI Section 5.  

3.2 Quantification analysis 

Accurate quantification of methane emissions is essential for compliance, reporting, and mitigation. This section 

evaluates each participant’s quantification performance by comparing estimated release rates to metered values, using 

parity plots, best-fit line slopes, R² values, and accuracy thresholds. We also examine how environmental factors, 210 

especially wind, affected results across platforms. 

After the true release rates and wind data were unblinded, participants identified issues with their quantification 

methods that contributed to discrepancies between the true and the estimated emission rates. Some participants 

investigated the causes for this performance and have published white papers detailing their analyses into why such 

performance occurred and how they will mitigate these issues in the future. A summary of these issues and citations 215 

to in-depth analyses, if published by a participant, are included in Sect. 4.2. All participants had the opportunity to 
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publish a whitepaper with their post-unblinding analyses to be included in this report. The analysis in this study uses 

the estimates submitted before unblinding of true release rates. 

Table 4 summarizes key quantification metrics for each participant, including the slope and R² of estimates relative to 

metered values—indicating systematic bias and consistency, respectively. We also report the percentage of estimates 220 

where the true release fell within the participant’s uncertainty bounds, and within 50–150% of the actual value. These 

metrics assess both the calibration of reported uncertainty and the practical accuracy of quantification. We also include 

the percentage of total emissions measured that were quantified by each participant. 

Table 4. Key metrics for quantification performance across all participants. 

Solution 

Qualified 

nonzero 

measurements 

Slope (R2) for 

all 

measurements 

Slope (R2) for 

measurements 

with true release 

rate < 100 kg h-1 

Participant 

estimate bounds 

encompassing the 

metered value (%) 

Participant 

estimates within 

50-150% of the 

true value (%) 

Total emissions 

quantified by 

each 

participant (%)  

Aeromon BH-12 8 0.47 (0.93) 0.40 (0.61) 25 38 46 

GSMA AUSEA 12 0.82 (0.82) 0.82 (0.82) 50 83 83 

Flylogix 15 0.59 (0.97) 0.40 (0.64) 60 33 49 

SeekOps 28 0.09 (0.13) 0.09 (0.07) 0 11 33 

GHGSat-C 1 N/Aa N/A 100 100 78 

Sensirion Nubo 

Sphere 
119 0.14 (0.08) 0.38 (0.10) 29 39 41.5 

SLB Methane 

Lidar Camera 
64 0.23 (0.59) 0.49 (0.71) N/Ab 28 36 

SENSIA Mileva 

33 
67 1.13 (0.87) 1.08 (0.71) 45 39 127 

Slope and R2 are associated with the linear equation of best using ordinal least squares. Column 5 shows the percent of 225 
measurements that included the true release rate within the upper and lower bounds of each estimate provided by each 

participant. Column 6 shows the percent of estimates that fell within +/- 50% of the true release rate. Column 7 contains the 
percent of true CH4 emissions quantified by each participant (the total emissions quantified by this solution compared to the total 

amount of methane emitted during these releases). 
aGHGSat-C only submitted one qualified nonzero measurement, meaning the slope and R2 values cannot be calculated. 230 
bThe SLB Methane Lidar Camera did not report in the upper and lower bounds of the release rate estimates they submitted, so we 
could not calculate the percentage of measurements within the intervals that contain the metered gas release rate. 

Figure 4 presents a parity plot visualizing the agreement between participant-reported and true methane release rates. 

True metered release rate is given on the x-axis while participant estimated release rate is given on the y-axis. The 1:1 

parity line (y=x) represents perfect agreement. Datapoints above the 1:1 parity line indicate that the participant over-235 

estimated the release, while datapoints below the line indicate that the participant under-estimated the release. 

Additional plots calculating parity lines for releases with true emission rate under 100 kg(CH4)/h and over 10 

kg(CH4)/h as well as individual plots for each participant, are included in SI Sections 6.2-3.   
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Figure 4. Quantification accuracy of the participants. Metered release rate is on the x-axis. There is a small uncertainty 240 
associated with the true release flowrates, not shown in this figure. Participant reported quantification estimates are on 
the y-axis. The dashed line represents the x = y parity line. See Sect. 4.1 for discussion of quantification performance. 

3.3 Wind analysis 

Wind conditions significantly influence methane plume behavior, affecting detection and quantification accuracy. 

Variability in wind speed, direction, and turbulence can distort plume shape and movement, making accurate 245 

measurement more challenging—especially under rapidly changing conditions. We analyzed measurement 

performance across bins of average wind speed, wind speed CoV, and wind direction CoV to identify where different 

technologies perform best or face limitations. Wind data were collected using TADI’s ZX 300 Wind Lidar at 20 m 

height and were not available to participants until after unblinding. Wind statistics were calculated for each release 
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window. Coefficient of variation (CoV), defined as the standard deviation normalized by the mean, was used to assess 250 

variability. Results are shown in aggregate; participant specific results are in SI Section 7.1.  

The impact of wind conditions on quantification ability is more clearly visualized when looking at the combined 

results of all solutions, shown in Figure 5. As indicated by the slope of the parity line, quantification performance 

improves as wind speeds increase and the variability of wind speed and direction decrease. The figure suggests there 

is limited benefit once wind speeds are already >2 m s-1. The trend indicated by the combined data offers insights into 255 

how wind conditions can influence the quantification abilities of a broad swath of methane detection technologies. 

However, more measurements are needed per bin to fully understand whether minimum detection threshold or 

quantification ability varies with wind, which was not possible in this experiment.  

 
Figure 5. Parity plot for combined data of all solutions, binned into different wind conditions during the release. The first 260 
row bins the releases by average wind speed, the second row bins the releases by wind speed CoV, and the third row bins 

the releases by wind direction CoV. 

4 Discussion 

The results of this study provide valuable insights into the current capabilities and limitations of methane detection 

and quantification technologies. While most participants demonstrated strong detection performance, quantification 265 
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accuracy varied significantly across different platforms and environmental conditions. This section explores the key 

findings, discusses potential sources of error, and highlights the broader implications for methane emissions 

monitoring and regulatory frameworks. Although improvement on detection and quantification ability is encouraging, 

the performance of individual solutions of all technology types should be scrutinized before deploying for field 

operations, as results can vary between technologies.  270 

4.1 Detection and quantification performance 

The ground-based solutions exhibited strong capabilities in detecting even the smallest leaks, with some solutions 

correctly identifying releases with flowrates as low as 0.01 kg h-1. Continuous monitors’ detection ability improved 

upon performance seen in prior studies, with all solutions exhibiting a true positive rate of above 80% and a false 

positive rate of 1% or less. The probability of detection (POD) varied between the continuous monitor solutions, with 275 

a 90% POD for all the solutions from under 1 kg h-1 to 25 kg h-1 of methane. The quantification performance of the 

continuous monitoring solutions varied, with two of the three continuous monitoring solutions (Sensirion Nubo Sphere 

and SLB Methane Lidar Camera) significantly underestimating the true value of emissions rates. All three solutions’ 

quantification performance improved when focusing on methane releases under 100 kg h-1. This could mean that high-

volume emissions quantification is an area of improvement for continuous monitoring methane detection and 280 

quantification solutions; the fixed location of the sensors and the distance between the release source and the 

continuous monitors could also contribute to the underestimation trend. The results presented here improve upon the 

results found in previous blinded controlled release testing of continuous monitoring solutions, especially in terms of 

false positive rates and true positive detection. As in the previous studies, the continuous monitoring solutions tended 

toward an underestimation of true release rates, with the exception of SENSIA Mileva 33 (Bell et al., 2023; Chen et 285 

al., 2024; Day et al., 2024; Ilonze et al., 2024). These studies also tested both point sensor networks and imaging 

technologies, and in general quantification performance was poor, consistent with the results of the Sensirion Nubo 

Sphere and SLB Methane Lidar Camera in this study.   

Like continuous monitors, the drone technologies exhibited strong performance in detection of methane releases, while 

quantification performance varied. Overall, false positive rates remained low, and all true positive rates were above 290 

80%. The drone teams all succeeded in detecting releases below 0.7 kg h-1 and exhibited 90% POD of below 6 kg h-

1. The quantification performance varied significantly between participants, with impressive results for some solutions. 

There was an overall trend toward underestimation of the true release rate. Interestingly, mobile ground solutions’ 

quantification performance was generally better when including high-volume (>100 kg h-1) releases, with all 

participants except one exhibiting a best-fit slope farther from 1 when excluding large releases. When comparing these 295 

results to a previous controlled release study of mobile ground technologies, the mixed results found in this experiment 

offer some improvement (Ravikumar et al., 2019).  

The performance in this experiment of the remote sensing (satellite) solution is more difficult to assess because of the 

limited number of releases measured. With the data available to this study, detection limit is consistent with prior 

controlled release testing of aircraft and satellite solutions, with GHGSat-C detecting a release between 100 to 200 kg 300 
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h-1 (El Abbadi et al., 2024; Rutherford et al., 2023; Sherwin et al., 2024a). However, GHGSat-C had to filter a 

significant amount (11/12) of release measurements due to weather conditions (clouds and/or rain). The difficulties of 

deploying remote sensing solutions in regions that experience significant cloud cover is one of the takeaways of this 

study, as there are limited data points to make definitive conclusions on detection and quantification ability. Prior 

work showed detection of numerous events in desert environments (Sherwin et al., 2024b). Given global distribution 305 

of oil and gas resources, some regions will clearly be easily observed with remote sensing (e.g., Middle East, Texas, 

North Africa), while other regions may suffer from significant challenges due to clouds and/or sun angle (e.g., 

Venezuela, Nigeria with tropical clouds, or Russia, Alaska, North Sea with clouds and poor sun angle). Additional 

controlled release testing of methane detecting satellites, including GHGSat-C, is currently underway to better 

characterize their performance.  310 

4.2 Sources of error in quantification performance 

Complicating the assessment of quantification performance was the post-unblinding discovery of data issues that go 

beyond uncalibrated algorithms. Aeromon contacted the Stanford and TADI team soon after unblinding to identify a 

malfunctioning wind sensor they had deployed while testing. Aeromon has published a whitepaper arguing that the 

wind measurements taken from a sensor on-board the drone consistently recorded lower-than-expected wind speeds 315 

due to sensor malfunctions, which contributed to the consistent underestimation of emission rates seen in this 

campaign (Hamedani Raja et al., 2025).The SLB team concluded in their post-unblinding analysis that the Methane 

Lidar Camera’s anemometer also systematically underestimated the wind speed due to a wind shadow that was 

possibly related to the non-standard installation of the camera. The lower wind speeds again directly contributed to an 

underestimation of the true release rates (Doshi et al., 2025). Flylogix also credited underestimation of wind speeds 320 

with overall underestimation of their estimates in a whitepaper provided to the Stanford team but not released publicly. 

They stated that their weather station was unable to accurately measure wind speed and direction in the low wind 

conditions and was located too close to ground level. In all the analyses mentioned above, reprocessing the results 

with the unblinded wind data provided by the Stanford team improves quantification performance significantly. Wind 

field reconstruction in turbulent and sub-optimal conditions is fundamentally difficult, especially when dealing with 325 

low wind speeds and variable wind conditions present during the weeks of testing, leading to additional error in 

emission rate quantification. More testing is necessary to identify the level of wind observations that provide 

satisfactory information for release rate estimation.   

Additional teams acknowledged other sources of error. SeekOps identified three sources of error in their estimates: 

data transcription errors, sensor saturation, and a systematic underestimation bias possibly caused by wind processing 330 

(Gully-Santiago et al., 2025). The data transcription errors resulted in estimates being assigned to the wrong release 

time, while the sensor saturation means the estimates they reported should have been lower limits rather than direct 

estimations. Sensirion determined that their plume dispersion model is not fully applicable for wind speeds <1.5 m s-

1 and pointed to proximity between the sensor nodes and release points as a source of error in their algorithmic 

assumptions (Sensirion Connected Solutions, 2025). In their analysis, Flylogix also mentioned plume blowover (i.e., 335 

methane escaping above and possibly below the flight path), flight restrictions on the site, and deviation from their 
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standard operations as sources of error. Flylogix usually deploys a fixed-wing aircraft for offshore operations and 

modified their testing protocol to participate in the TADI tests. 

5 Conclusion 

This study is the first public, academic, blinded controlled release test of methane detection and quantification 340 

technologies in Europe. By evaluating eight commercial systems across platforms—including satellites, aircraft, 

drones, vehicles, and continuous monitors—we provide a transparent assessment of detection and quantification 

performance. While most technologies reliably detected emissions, quantification accuracy varied widely, 

highlighting both capabilities and limitations of current methods. A central finding is the strong influence of 

environmental conditions—especially wind speed and variability—on quantification accuracy. Low or unstable wind 345 

conditions posed challenges for many mobile and remote sensing solutions, underscoring the need for improved 

methodologies and interpretation under real-world atmospheric variability. 

One of the central themes of this study was the emphasis on collecting high-quality wind measurements, and a key 

conclusion is the significant role of wind conditions in quantification accuracy. Low wind speeds and high wind 

variability are non-optimal wind conditions in which to measure methane emissions. Further studies are needed to 350 

better characterize the impact of wind conditions on detection and quantification capabilities. However, wind speed, 

direction, and variability alone cannot fully explain the systematic underestimation observed across multiple 

participants. As discussed in Sect. 4.2, several teams identified key issues with their wind data after the unblinding of 

results. Such inconsistencies underscore the need for rigorous validation and cross-comparison of wind measurements 

to improve quantification reliability. 355 

This finding highlights a broader theme that methane detection and quantification solutions must place greater 

emphasis on collecting accurate and reliable wind data. Without high-quality wind information, even the most 

advanced methane measurement technologies face inherent limitations in their ability to provide accurate emission 

estimates. In many quantification methods, wind uncertainty translates nearly directly into quantification uncertainty. 

This observation aligns with prior controlled release studies, which have consistently demonstrated the importance of 360 

robust and accurate wind data in improving the precision and reliability of methane quantification methodologies. 

Conducting the experiment at an active industrial site introduced deployment constraints, including limiting where 

some technologies could operate. While realistic, these non-ideal conditions affected data collection for certain 

systems, which should be acknowledged while comparing the results to other controlled release experiments 

conducted under more ideal conditions. Some participants reported background concentrations of methane, possibly 365 

coming from surrounding industrial operations. While some of these constraints reflect the reality of operating on a 

site and are representative of the use case of these sensors, limitations of the test site and protocol required some 

deviation from real-world conditions. Another key difference between the experiment and real-world use cases is that 

participants were required to measure during their assigned week and release times, even if they would not usually 
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deploy in those conditions (e.g. low wind speeds). The study design, focused on mobile ground-based solutions, also 370 

posed challenges for evaluating aircraft, satellite, and continuous monitoring systems, which would have benefited 

from more observation time—particularly given Europe’s cloudier weather. As each technology type has distinct 

strengths, future studies may need tailored approaches to more effectively assess platform-specific performance. 

Future studies should consider technology-specific controlled release experiments to better evaluate each platform’s 

strengths and limitations. Tailored tests for drones, aircraft, satellites, or ground-based sensors would enable more 375 

precise assessment under relevant operational conditions. Allowing participants to measure only when external 

conditions, such as wind speed, are suitable for measurement is another consideration. Expanding testing to varied 

environments—such as offshore settings, low sun angles, extreme weather, and differing surface reflectivity—would 

improve understanding of how these factors affect detection and quantification. These conditions are common in key 

production regions, including offshore areas and high latitudes. Additionally, targeted experiments examining wind 380 

effects could help technologies refine quantification methods and uncertainty estimates by integrating or adjusting for 

wind data. Further controlled release studies should also require participants to submit information about wind data 

used in their analysis before unblinding. 

This research lays the groundwork for expanding standardized testing frameworks beyond North America and offers 

critical insights for policymakers, regulators, and industry stakeholders. As methane regulations evolve, especially in 385 

the EU, independent testing will be key to validating technologies and ensuring reported emissions reflect reality. 

Ultimately, this study demonstrates the importance of blinded controlled release testing in strengthening confidence 

in methane emission measurement data. Future work should help to refine quantification methods, broaden 

environmental testing, and integrate findings into emissions monitoring programs. Ongoing independent validation 

will be vital to building trust and driving effective methane emission reduction worldwide.  390 
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Code and data availability 

All data and code used in this study are available at 

https://github.com/amcmanemin2/TADI_controlled_release_2024. The repository includes scripts for data 

preprocessing, analysis, and figure generation, as well as documentation to reproduce the results presented in the 

manuscript. Additional details or support can be provided upon request. 395 
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