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Abstract. Full-scale Earth System Models (ESMs) are too computationally expensive to keep pace with the growing demand

for climate projections across a large range of emissions pathways. Climate emulators, reduced-order models that reproduce

the output of full-scale models, are poised to fill this niche. However, the large number of emulation techniques available

and lack of a comprehensive theoretical basis to understand their relative strengths and weaknesses compromise fundamental

methodological comparisons. Here, we present a theoretical framework that connects disparate emulation techniques and use5

it to understand potential sources of emulator error focusing on memory effects, hidden variables, system noise, and nonlin-

earities. This framework includes popular emulation techniques such as pattern scaling and response functions, relating them

to less commonly used methods, such as Dynamic Mode Decomposition and the Fluctuation Dissipation Theorem (FDT). To

support our theoretical contributions, we provide practical implementation guidance for each technique. Using pedagogical ex-

amples including idealized box models and a modified Lorenz 63 model, we illustrate the expected errors from each emulation10

technique considered. We find that response function-based emulators outperform other techniques, particularly pattern scal-

ing, across all scenarios tested. Potential benefits and trade-offs from incorporating statistical mechanics in climate emulation

through the use of the FDT are discussed, along with the importance of designing future scenarios for ESMs with emulation in

mind. We argue that large-ensemble experiments utilizing the FDT could benefit climate modeling and impacts communities.

We conclude by discussing optimal use cases for each emulator, along with implications for ESMs based on our pedagogical15

model results.

1 Introduction

Earth-System Models (ESMs) are our most comprehensive tool to simulate the climate system, yet their high computational

cost limits the range and number of scenarios that can be investigated (Flato, 2011; Müller et al., 2018). Growing demand

for high-quality climate projections which differ from the scenarios considered within the Coupled Model Intercomparison20
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Project (CMIP) drives a need for computationally efficient alternatives (Eyring et al., 2016). Climate emulators - reduced order

models that reproduce the outputs of full-scale climate models - have seen a surge in popularity as they can be many orders of

magnitude faster than the parent models (Sudakow et al., 2022; Tebaldi et al., 2025). Their low computational costs also make

them an appealing tool to disseminate climate information to audiences beyond the climate science community.

Chaotic sensitivity renders prediction of the climate state infeasible beyond short time horizons (Lorenz, 2006, 2015). Cli-25

mate emulators must therefore target the statistics of climate variables, such as means, variances, or higher moments, rather

than simulating chaotic dynamics (Beusch et al., 2020; Souza et al., 2024; Wang et al., 2025). Many emulation techniques

exist to estimate the mean state and/or probability distribution of climate variables (Meinshausen et al., 2011; Castruccio et al.,

2014; Herger et al., 2015; Tebaldi and Knutti, 2018; Leach et al., 2021; Watson-Parris et al., 2022; Addison et al., 2024; Bassetti

et al., 2024; Bouabid et al., 2024), and in this work we explore methods that emulate the mean state of the system. In a recent30

review, Tebaldi et al. (2025) distinguished between five main categories of climate emulators, including linear pattern scaling,

statistical approaches, and machine learning algorithms. Following their categorization, we focus on linear pattern scaling and

its immediate extensions along with dynamical system/impulse response theory emulators.

In the climate context, the most commonly used emulation technique is pattern scaling (Santer et al., 1990), a simple linear

regression of local climate variables (e.g. temperature or precipitation anomaly) on the global mean temperature anomaly.35

Pattern scaling has been used and studied extensively since its development (Mitchell, 2003; Tebaldi and Arblaster, 2014;

Wells et al., 2023; Giani et al., 2024), with variations that capture seasonal anomalies, different mixes of greenhouse-gases,

and spatially heterogeneous forcings such as aerosols (Schlesinger et al., 2000; Herger et al., 2015; Mathison et al., 2024).

This approach produces accurate projections assuming exponential and fixed-pattern forcing, linear feedbacks, and linear and

time-independent dynamics, criteria that are roughly satisfied in a number of CMIP experiments (Giani et al., 2024). Memory40

effects in overshoot scenarios (forcing history, rather than only instantaneous forcing, affecting a future state) violate these

assumptions, causing this approach to break down for many decision-relevant scenarios.

Impulse response methods, commonly referred to as either response or Green’s functions, fill this memory effect gap by

encoding forcing history into the emulator, rather than relying only on the instantaneous forcing. These techniques have been

studied thoroughly in the contexts of dynamical systems and climate science (Joos and Bruno, 1996; Hasselmann et al., 1997;45

Lucarini et al., 2017; Orbe et al., 2018; Freese et al., 2024; Giorgini et al., 2024), and are an active area of research (Winkler

and Sierra, 2025). Response functions are popular due to their ease of interpretability and improvement in skill over pattern

scaling in capturing realistic dynamics (Womack et al., 2025). Pure linear response functions cannot account for nonlinear

effects, though hybrid schemes that incorporate machine learning (ML) may help resolve this issue (Winkler and Sierra, 2025).

Pattern scaling and linear response functions are prevalent in climate emulation literature, yet these approaches are only50

two methods among a broad spectrum of emulators, with each technique offering trade-offs in terms of complexity, data

requirements, and interpretability. For example, quasi-equilibrium emulation is closely related to pattern scaling, though only

a handful of studies explore the utility of this principal beyond the traditional choice of global mean temperature as emulator

input (Huntingford and Cox, 2000; Cao et al., 2015). Other techniques, such as Dynamic Mode Decomposition (DMD) and

2



its variants, are generally not classified as emulators despite their potential to identify and predict modes of variability in the55

climate system (Kutz et al., 2016; Gottwald and Gugole, 2020; Navarra et al., 2021; Mankovich et al., 2025).

We consider climate emulators as defined in Tebaldi et al. (2025), excluding Simple Climate Models (SCMs) and Earth

system Models of Intermediate Complexity (EMICs), though they share similarities with emulators. We also do not examine

ML emulators such as FourCastNet and NeuralGCM – while these techniques are promising for weather prediction, they

currently lack the stability required for reliable climate prediction (Pathak et al., 2022; Kochkov et al., 2024). Several studies60

have employed ML techniques to instead target the statistics of the climate, rather than weather (Lewis et al., 2017; Bassetti

et al., 2024; Wang et al., 2025; Bouabid et al., 2025), but these works focus on emulator implementation rather than theoretical

analysis.

In this work, we develop a framework connecting a spectrum of emulators through the Koopman and Fokker-Planck oper-

ators, which govern the evolution of stochastic processes. In doing so, we identify a gap in the Tebaldi et al. (2025) emulator65

typology: operator-based emulators, an area largely unexplored in existing climate emulator literature. While previous work

has connected operator frameworks with the Fluctuation Dissipation Theorem and thus, linear response theory (Cooper and

Haynes, 2011; Lucarini et al., 2017; Lembo et al., 2020; Zagli et al., 2024; Giorgini et al., 2025b), our contribution explicitly

demonstrates its utility in the context of climate emulation. Section 2 first presents our theoretical framework, highlighting

that the goal of many emulation techniques is to simplify complex climate dynamics into a linear set of modes associated70

with the Fokker-Planck and Koopman operators. We then apply this framework to identify potential sources of error within six

emulation techniques, analyzing them from both a theoretical and practical perspective (Sect. 2.3). In Sect. 3, we introduce a

series of experiments using simplified climate models and forcing scenarios designed to stress test and evaluate each emulator;

these experiments include box models and a modified version of the Lorenz 63 system. Section 4 contains the results of these

simplified climate model experiments, showing that response functions consistently outperform other emulators across poten-75

tial high-error scenarios. We conclude by discussing optimal use cases for each emulator, along with implications for ESMs

based on our pedagogical model results (Sect. 5).

2 Theoretical framework for climate emulation

In this section, we outline a theoretical framework for climate emulation based on the Koopman and Fokker-Planck operators.

Section 2.1 introduces our emulation target, a general, stochastic system, outlining potential sources of error when emulating80

this system. Section 2.2 then formalizes two complementary emulation strategies: emulating the full probability distribution,

or emulating a collection of statistical moments (e.g. mean, variance). We conclude this section by connecting theoretical and

practical (i.e. implementation) details for the six emulators of interest (Sect. 2.3). See Fig. 2 for a conceptual roadmap of

emulator theory and Table 1 for an overview of selected methods.

Throughout this section, we denote scalars with lowercase characters, vectors with lowercase, boldface italic characters,85

matrices with uppercase, boldface characters, and operators with script characters (e.g. N or L). We use x and nx to denote

the spatial coordinate and its dimensionality, along with t and nt to denote the temporal coordinate and its dimensionality. Our
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examples focus on climate anomalies relative to a background state, though these techniques are applicable to general chaotic

dynamical systems.

2.1 Problem setup90

A full-scale climate model is a deterministic, albeit chaotic, system. This chaos results in extreme sensitivity to initial con-

ditions, requiring emulation of the system’s statistics, rather than its dynamics (Lorenz, 2015). To understand the statistics of

the system and how they may change over time, we follow Hasselmann (1976) in modeling the evolution of a single climate

variable using a stochastic differential equation (SDE) (Fig. 2, box 1). We assume time-scale separation between slow climate

processes (e.g., ocean, cryosphere, land vegetation) and other, faster sources of variability.95

In this framework, the climate is regarded as the statistical mean of a process that appears stochastic in individual realizations.

We treat variations occurring either on timescales shorter than climate change (such as short-term weather fluctuations and

interannual variability) or in different realizations as stationary, stochastic noise. This allows us to parameterize their influence

on the statistics of the chaotic system:

∂w

∂t
=N (w)+F (t)+ εξ(t), (1)100

where w is the climate variable (or set of variables) of interest (e.g. temperature), F is an external forcing (e.g. CO2), N is

the operator governing the evolution of that variable (under slow climate processes), ξ is a white noise term (aggregated fast

effects, including weather and interannual variability), and ε is the noise standard deviation. We consider variables of interest

to be anomalies relative to some base state (e.g. temperature anomaly with respect to preindustrial conditions). N may involve

both linear and nonlinear terms in one or several fields, and we cannot directly represent this operator; this parameterization105

aggregates the effects of processes such as heat and momentum transfers. The operator may also be influenced by variables

we observe as well as unobserved hidden variables (e.g. aerosol forcing in a pattern scaling emulator with only global mean

temperature as an input). The noise standard deviation can also be state dependent, though we treat it as independent for this

exploration.

Climate emulators approximate Equation 1, either implicitly (pattern scaling) or explicitly (Dynamic Mode Decomposition),110

rendering them vulnerable to several potential sources of error. Figure 1 provides an overview of the sources of error we

consider across a range of scenarios: Errors can enter from the forcing if an emulator assumes only the instantaneous forcing is

significant and not the forcing history (Fig. 1 (a) - memory effects in an overshoot scenario). The presence of hidden variables

can lead to errors in some techniques (Fig. 1 (b) - localized aerosol effects when assuming well-mixed forcings), while other

techniques are sensitive to noise (Fig. 1 (c) - overfitting on internal variability). Finally, any linear emulation technique will115

break down in the presence of nonlinearities (Fig. 1 (d) - ice-albedo feedbacks).

2.2 Operator framework for emulators

Our operator framework simplifies complex, possibly nonlinear climate dynamics into a linear set of modes with associated

decay rates. We use the term operator to refer to an update rule that advances the system one timestep for a quantity of
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Scenario Emulator ErrorESM Pattern Source of Error

SSP119 Memory
Effects

SSP370 Hidden
Variables

SSP585 Nonlinearities

SSP585 Internal
Variability

a

b

d

c

Figure 1. Potential sources of emulator error by scenario. Emulator errors shown here are meant for illustrative purposes only; we introduce

experiments which reproduce these errors in simplified climate models (e.g. box models) in Sect. 3. (a) Pattern scaling emulator trained on

historical and SSP585, tested against SSP119 in 2100; error over northern North America results from memory effects. (b) Pattern scaling

emulator trained on historical, tested against SSP370 in 2050; error over India and SE Asia results from hidden variables (aerosols not

contained in training data). (c) High-order polynomial pattern scaling emulator trained on historical, tested against SSP585 in 2020; error

results from overfitting on internal variability. (d) Pattern scaling emulator trained on historical, tested against SSP585 in 2100; error results

from nonlinear feedbacks in the Arctic. All ScenarioMIP data shown are taken from the MPI Grand Ensemble (O’Neill et al., 2016; Maher

et al., 2019).

interest. An emulator attempts to approximate these modes, which are physically interpretable; for temperature, the decay rates120

correspond to heat-uptake timescales.

Table 1 summarizes emulation techniques discussed in this section, providing a short conceptual description of each method

along with their key assumptions. We focus on linear emulation techniques that target the mean state of a climate variable:

pattern scaling, the Fluctuation Dissipation Theorem (FDT), deconvolution, modal fitting, Dynamic Mode Decomposition

(DMD), and Extended DMD (EDMD). The FDT, deconvolution, and modal fitting emulators are all response function-based125

emulators, while EDMD and DMD are operator-based emulators.

Emulating a probability distribution. Our governing system, Equation 1, simulates a variable of interest, w, forward in

time under a stochastic forcing. The trajectory of the time evolution of w is characterized by the probability distribution,

p(w,t). We therefore focus our efforts on emulating p(w,t) via the Fokker-Planck operator. This is a mathematical tool to
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Goal: Emulate the statistics
       of a chaotic system

Option 1: Option 2:

Target the full
probability distribution
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Approximate
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Figure 2. Conceptual flowchart for building an emulator through the joint Fokker-Planck/Koopman operator framework. Pop-outs show

specific emulation techniques, while the shaded color indicates which concept a class of emulators relates to. Dashed arrows indicate con-

ceptual/theoretical connections and solid arrows indicate a direct pathway. The overall process is as follows: (1) Select a climate variable

of interest, w, such as temperature, here parameterized as the output of a stochastic differential equation. (2) Choose an emulation target,

either the full probability distribution (option 1; 2a, 3a, 3c) or a statistical quantity such as the mean or variance (option 2; 2b, 3b, 3d). (3)

Construct an emulator by selecting an approximation for either the Fokker-Planck or Koopman operator, including their response function

representations; these options are connected through duality and are directly linked to linear response theory. (4) Given a new scenario of

interest, emulate selected variable. A summary of emulation techniques explored in this work (right side of this figure) can be found in Table

1.
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Table 1. Summary of emulation techniques discussed in this work including a short description and their key assumptions; a conceptual

overview of these methods can be found in Fig. 2. Fluctuation Dissipation Theorem assumptions are shared with deconvolution and modal

fitting emulation techniques. All techniques except the Fluctuation Dissipation Theorem additionally assume no hidden variables.

Technique Short Description Key Assumptions Pros Cons

Method I: Pattern Scaling

(Pattern Scaling and its Im-

mediate Extensions)

Time-invariant pattern

based on global mean

temperature

Climate is always near

equilibrium; response is

instantaneous; fixed spa-

tial pattern

Computationally

efficient

Structurally biased

with irreducible errors

Method II: Fluctuation

Dissipation Theorem (Dy-

namical System/Impulse

Response Theory)

Response functions de-

rived through perturbation

ensemble experiments

Perturbations are small;

data come from linear re-

sponse regime

Gives inter-

pretable physical

response

Requires nonstandard,

computationally ex-

pensive scenarios

Method III: Deconvolution

(Dynamical System/Impulse

Response Theory)

Response functions solved

for from any general ex-

periment

Quasi-equilibrium initial

condition; influence of

noise is small

Applicable to any

scenario

Sensitive to noise, can

give non-physical re-

sponses

Method IV: Modal Fitting

(Dynamical System/Impulse

Response Theory)

Response functions fit

from any general experi-

ment

Response is a decaying ex-

ponential; few significant

modes

Applicable to any

scenario

Requires initial guess,

can give non-physical

responses

Method V: Dynamic Mode

Decomposition (DMD)

(Operator-based Emulation)

Approximating system dy-

namics with a linear oper-

ator

Dynamics are approx. lin-

ear; training data capture

relevant dynamics

Gives inter-

pretable spa-

tiotemporal

information

Strong assumption of

linearity

Method VI: Extended DMD

(Operator-based Emulation)

Approximating system dy-

namics with nonlinear ba-

sis functions

Basis functions span

Koopman operator; dy-

namics are approx. linear

in new basis

Can theoretically

reproduce any

system behavior

Requires selection of

basis functions

evolve the probability distribution of a stochastic system forward in time. As this operator is linear, emulating it is equivalent130

to approximating a series of eigenvalues and eigenfunctions.

As shown by Hasselmann (1976), the time evolution of p(w,t) is given by the Fokker-Planck equation corresponding to the

governing SDE

∂

∂t
p(w,t) =− ∂

∂w
[p(w,t)(N (w)+F (t))] +D

∂2

∂w2
p(w,t), (2)

where D is a diffusion coefficient set by the noise term, D = ε2/2. The Fokker-Planck equation describes how the probability135

density evolves in time and can be viewed as an advection-diffusion process.
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Advection, which shifts the mean of p(w,t), occurs due to the deterministic action of the governing operator and the external

forcing. Because the advective term acts on the flux, it both shifts the mean and reshapes the density. Diffusion, which increases

the variance in p(w,t), is driven by system noise. Integrating Equation 2 forward diffuses the probability distribution, initially

increasing the variance of w until balanced by the mean-reverting drift (N (w)+F (t)). It is common practice to write a140

Fokker-Planck equation directly from an SDE, as there exists a general relationship between any SDE and its corresponding

Fokker-Planck equation; the full general derivation can be found in Denisov et al. (2009).

Importantly, the right hand side of Equation 2 is linear in the derivatives of w, allowing us to rewrite it in terms of the linear

Fokker-Planck operator, F ,

F(·) = ∂

∂w

[
D

∂

∂w
(·)− (·)(N (w)+F (t))

]
, (3)145

where the notation F(·) means the Fokker-Planck operator is acting on some arbitrary variable (in our case, p(w,t) in Equation

2). The Fokker-Planck operator (Fig. 2, box 3a) gives us a linear method to represent the time evolution of the probability

distribution. Linearity additionally allows us to decompose F into eigenvalues and eigenfunctions (continuous eigenvectors).

These are the target of our emulator, and our emulator skill is directly proportional to how well it can approximate those

eigenvalues and eigenfunctions, along with our estimate of p(w,0). This eigendecomposition is given by150

FfF = λFfF , (4)

where λF denotes an eigenvalue and fF denotes an eigenfunction of the Fokker-Planck operator. The collection of λF and fF

fully characterizes the system’s behavior. Our stochastic system evolves as a linear combination of probability distributions,

fF , each decaying at rate λF ; the real part of the eigenvalues controls the decay rate, while any imaginary components result in

oscillations over time. In the advection-diffusion analogy, each eigenfunction is a probability parcel that is carried and spread155

by the flow. The imaginary parts of the eigenvalues transport this parcel (shifting the mean) while the real parts act like an

effective diffusivity (increasing the variance). This tells us which physical behaviors dominate and on what timescales they

matter for climate prediction.

Unfortunately, in most cases we cannot obtain an explicit representation of the Fokker-Planck operator due to N being

nonlinear; see Appendix C for an analytic example of when this is possible. Because it acts on functions, the operator is160

infinite dimensional with infinitely many eigenpairs. This poses an immediate issue since computers have a finite amount of

memory. Finite dimensional matrix approximations of the Fokker-Planck operator have been studied (often framed through the

more general Perron-Frobenius operator) (Klus et al., 2016, 2018; Kaiser et al., 2019; Souza, 2024b, a; Souza and Silvestri,

2024), but require a large amount of data to reliably estimate the operator. For climate emulation this poses an additional issue,

as generating large enough ensembles to resolve p(w,t) is prohibitively expensive. Because of these difficulties, little work165

exists studying the Fokker-Planck/Perron-Frobenius operator in the climate context (Navarra et al., 2021), though methods that

reconstruct the full probability distribution of a climate variable using statistical methods (e.g. diffusion models and Gaussian

processes) implicitly represent it (Bassetti et al., 2024; Bouabid et al., 2024; Wang et al., 2025).

Emulating a statistical quantity. In practice, it is often easier to emulate statistical quantities, such as the mean or variance

of a climate variable. Many common emulation techniques (e.g. pattern scaling and response functions) target only the mean170
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of a single variable (Herger et al., 2015; Wells et al., 2023; Freese et al., 2024), though other work extends this to approximate

second order moments (Beusch et al., 2020; Wang et al., 2025). Relating these techniques requires the use of Koopman operator

theory (Fig. 2, box 3b), a linear framework for propagating statistical quantities (usually referred to in the Koopman literature

as statistical observables) forward in time (Mezić, 2013; Otto and Rowley, 2021). Emulator studies rarely link their methods to

Koopman theory, while literature that explicitly connects to the theory does not use the same emulator terminology (Slawinska175

et al., 2017; Navarra et al., 2021), though they accomplish similar prediction tasks. The Koopman operator allows for an

exact representation of nonlinear dynamics using a linear operator, making it appealing when studying complex systems. We

show how it can be used to emulate climate variables, simplifying nonlinear processes to the linear problem of emulating

physically-interpretable eigenvalues and eigenfunctions.

To derive the Koopman operator, we first define a general statistical quantity, g(w), whose expectation, ⟨·⟩, is given by180

⟨g(w)⟩=
∫
g(w)p(w,t)dw, (5)

We then take the time derivative of this expression, moving the partial derivative inside the integral to act only on p since g(w)

is independent of time. This allows us to substitute the resulting expression into the right hand side of Equation 2. Integrating

this by parts twice gives

∂

∂t
⟨g(w)⟩=

〈
[N (w)+F (t)]

∂

∂w
g(w)

〉
+D

〈
∂2

∂w2
g(w)

〉
, (6)185

where the diffusivity, D = ε2/2, is identical to the Fokker-Planck case. This form allows us to define the Koopman operator,

K. It is linear in its derivatives of w, and we rewrite it as

K(·) =N (w)
∂(·)
∂w

+D
∂2(·)
∂w2

, (7)

where the notation K(·) means the Koopman operator is acting on some arbitrary variable (g(w) in Equation 7). Substituting

this into Equation 6 gives190

∂

∂t
⟨g(w)⟩= ⟨Kg(w)⟩+F (t)

〈
∂

∂w
g(w)

〉
, (8)

This expression applies to any arbitrary statistical quantity (of which there are infinitely many), thus it can be used to integrate

every statistical quantity forward in time; it is an alternate way to represent the complete probability distribution by representing

each individual statistic. A useful choice is to select g(w) = w, giving

∂

∂t
⟨w⟩= ⟨Kw⟩+F (t), (9)195

which we will refer back to later.

Analogously to the Fokker-Planck operator, the Koopman operator provides a linear method to represent the time evolution

of our entire collection of statistical quantities. As before, we can perform an eigendecomposition on the Koopman operator

KfK = λKfK, (10)
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where λK denotes an eigenvalue and fK denotes an eigenfunction. The time evolution of our statistical quantity of interest200

is a linear combination of these eigenpairs. These can be used to identify dominant system dynamics and on what timescales

they emerge. Training an emulator is equivalent to approximating eigenpairs; reproducing these pairs accurately emulates the

behavior of the system.

However, approximations of the Koopman operator are limited by the same finite memory constraint as the Fokker-Planck

case and deriving analytic solutions is dependent on the exact form of N ; see Appendix C for an example of when ana-205

lytic approximations are possible. Matrix approximations of the Koopman operator are nevertheless more prevalent than their

Fokker-Planck counterparts (Schmid, 2010; Mezić, 2013; Williams et al., 2015; Otto and Rowley, 2021). Variants of these

methods have recently been implemented in the climate context to identify dominant modes of variability in the system (e.g.

El Niño-Southern Oscillation or Pacific decadal oscillation) (Navarra et al., 2021, 2024; Mankovich et al., 2025), but have not

been applied for the purpose of climate emulation. We outline two of these methods explicitly in Sect. 2.3.3.210

Two sides of the same coin. The Koopman operator advances all statistical quantities of interest, and provides an alternative

to the Fokker-Planck description of a distribution’s time evolution. Knowing every statistic is equivalent to knowing the full

distribution. Access to either operator fully characterizes our system, allowing us to emulate it. Mathematically, these operators

are dual (adjoint), where duality refers to two mathematical objects that contain alternate descriptions of the same information;

this property is how we derived the Koopman operator in the previous section. This is analogous to, but physically and mathe-215

matically distinct from adjoint methods in climate modeling. There, adjoints to dynamics (rather than statistics as is the case for

the Koopman/Fokker-Planck approach) are exploited to calculate gradients with respect to input parameters more efficiently,

which can be used to tune parameters and compute output sensitivities (Thuburn, 2005; Henze et al., 2007; Lyu et al., 2018).

Due to internal variability in the climate system, estimating the full probability distribution of a variable requires large

initial condition ensembles, incurring significant computational cost. This is exacerbated for variables such as precipitation,220

where internal variability masks the forced response to a greater degree (Blanusa et al., 2023). Reliably estimating the full

distribution at each timestep to approximate the Fokker-Planck operator from relatively coarse data is impractical. However,

under additional assumptions of quasi-ergodicity, we bolster our sampling power by assuming that the statistics do not change

sufficiently quickly over a given time period. We thus focus on emulating lower-order statistical quantities, presenting those

techniques in Sect. 2.3.225

Connecting to linear response theory. Linear response theory states that the climate system’s forced response (assuming

perturbations are small) is encoded by a response function, R(t). The response function is generated by the Koopman opera-

tor, K, where each eigenpair of the operator determines the characteristic timescales of the system. Considering temperature

anomaly as an example variable, fast modes map to rapid atmospheric adjustments, while slow modes capture deep ocean

heat uptake (Caldeira and Myhrvold, 2013). Response functions have been applied to a variety of climate problems (Joos and230

Bruno, 1996; Hasselmann et al., 2003; Joos et al., 2013; Orbe et al., 2018; Cimoli et al., 2023), including climate emulation

(Freese et al., 2024; Womack et al., 2025; Sandstad et al., 2025), though often without addressing the formal response theory

underlying these techniques. As was the case with the Koopman operator, more formal applications of response theory to
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climate science often do not share the same language as climate emulators despite the shared goal of predicting the climate’s

forced response (Lucarini et al., 2017; Lembo et al., 2020; Zagli et al., 2024).235

To make the relationship between response theory and the Koopman operator explicit in the context of emulation, we first

consider the system’s dynamics to be governed by an operator, K. When the system is subject to a small external perturbation,

this operator can be split into an unperturbed component, K0, and the perturbation itself, δK, such that K =K0 + δK. The

expectation value of a statistical quantity g under the perturbed dynamics can be approximated to first order as the sum of its

unperturbed evolution, ⟨g⟩0, and a linear correction, δ⟨g⟩.240

A general solution for this linear correction is provided by Ruelle’s response theory. For systems in a statistical steady state

(i.e., at equilibrium), this framework simplifies to the Fluctuation Dissipation Theorem (FDT) (Lucarini et al., 2025). The

FDT describes how a system (e.g. the Earth system) responds to perturbations (anthropogenic CO2 emissions) relative to some

baseline state (preindustrial conditions). The change in the ensemble average field, δ⟨g⟩, is obtained by convolving a forcing,

F (t), with the system’s response function, R(t)245

δ⟨g⟩=
t∫

−∞

R(s)F (t− s)ds. (11)

Formally, the response function is calculated by computing the temporal autocorrelation between the statistical quantity g and

the system’s score function, s,

R(t) = ⟨g(t′ = t)s(t′ = 0)⟩, (12)

where the score function of the steady-state distribution encodes how a small perturbation alters the system’s statistics; see250

Giorgini et al. (2024, 2025b) for more details. The connection to Koopman operator theory is that temporal autocorrelations

are expressed explicitly in terms of the Koopman operator, see Zagli et al. (2024).

Equation 11 is one way to state the Fluctuation Dissipation Theorem (FDT, Fig. 2, box 3d), a tool widely used in statistical

mechanics and one of the main features of linear response theory (Lucarini et al., 2017; Lembo et al., 2020). The FDT predicts

the first-order response of a statistical quantity due to external perturbations and is defined in terms of an ensemble average255

over a quantity of interest. As written, this form does not account for state- or time-dependent effects (i.e. one could consider

the alternate formulation:R=R(w,t, t′)), though extensions to capture these effects and higher order statistical moments have

been proposed (Metzler et al., 2018; Giorgini et al., 2025a, b; Winkler and Sierra, 2025).

Response function emulators approximate the left hand side of Equation 12 using a variety of techniques, which we outline

in more detail in Sect. 2.3.2. Their emulation goal is typically either to fit the eigenpairs which make up K explicitly (Sandstad260

et al., 2025), or to find a direct representation of R(t) (i.e. an implicit representation of K) (Lembo et al., 2020; Freese et al.,

2024; Womack et al., 2025). The former may be more easily interpretable through analyzing the explicit eigenpairs, while the

latter offers flexibility in allowing for parametric forms other than a decaying exponential.

Response theory builds upon the operator frameworks presented in the previous sections by providing a method to illustrate

how a given quantity responds to small changes in forcing. While the Fokker-Planck and Koopman perspectives offer complete265
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characterizations of the statistics of the system over time, response theory offers a practical approach to use this information to

predict how a quantity shifts under perturbations, described by the FDT.

2.3 Connecting emulators to theory

Following the framework from the previous section, we introduce several emulation techniques targeting the mean of a climate

variable (Fig. 2, pop-outs on right hand side). We use the example of estimating the expected (or annual-average) temperature270

anomaly, T (x, t), given an external forcing, F (t) (e.g. CO2 or other GHG emissions), though these techniques can be applied

to any climate field. Each technique relates explicitly to the Fokker-Planck or Koopman operator and/or the Fluctuation Dissi-

pation Theorem (FDT). We begin with methods that impose strong assumptions on the underlying data and progressively lift

those assumptions until we are left with the most general emulation techniques; headings follow the taxonomy of Tebaldi et al.

(2025) when possible.275

2.3.1 Pattern scaling and its immediate extensions

Method I: Pattern Scaling. Pattern scaling is arguably the most well-known climate emulation technique (Santer et al., 1990;

Mitchell, 2003; Tebaldi and Arblaster, 2014; Kravitz et al., 2017; Tebaldi and Knutti, 2018; Wells et al., 2023; Giani et al.,

2024); it is formally derived via the Koopman operator, and is a specific case of a more general quasi-equilibrium emulation

framework. It assumes that, at any given moment, the climate is in a quasi-equilibrium, rather than a transient, state and that280

changes in the forcing are small enough and/or the response of the system is fast enough to neglect system memory. Pattern

scaling also assumes that the response does not depend on the background climate state, only the instantaneous forcing. Despite

work showing that there are measurable differences between transient and quasi-equilibrium climate responses depending on

the transient warming rate (King et al., 2021), the success of pattern scaling has led to its continued use.

We first restate Equation 9 in terms of the quasi-equilibrium assumption and our climate variable of interest as285

∂

∂t
T (x, t) = L(x,x′)T (x′, t)+F (t)≈ 0, (13)

where L indicates that this is no longer the true Koopman operator and x and x′ indicate summation over spatial interactions,

i.e. how one location, x, is influenced by all other locations (including itself), x′; a more detailed description of the transition

from Equation 9 to 13 can be found in Appendix A4. We additionally assume T (x, t) here refers to the ensemble mean

temperature, which has the practical advantage of reducing the impact of internal variability on our emulator. Inverting this290

equation gives

T (x, t) =−L−1(x,x′)F (t), (14)

which is a more general formulation of pattern scaling based on a generic forcing, F (t). Alternate definitions of pattern

scaling have been explored previously, with a handful of studies developing extensions based on alternatives to global mean

temperature such as radiative forcing or a combination of factors (Huntingford and Cox, 2000; Cao et al., 2015). A traditional295

pattern scaling formulation makes the further assumption that the forcing is the global mean temperature anomaly, F (t) = T (t),
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and replaces L−1 with a low-order polynomial, leading to

T (x, t) = a0(x)+ a1(x)T (t)+
1

2
a2(x)T

2
(t)+ . . . , (15)

where ai(x) indicates the spatially varying pattern, and we typically keep only the first-order (a1(x)) term. Some work has

explored the utility of higher-order terms, such as the quadratic term, but found it limited in extrapolative ability and physical300

justification (Herger et al., 2015).

Although pattern scaling implicitly attempts to approximate the Koopman operator - the perfect linear representation of

the system - it is limited by its assumption of time-invariant, quasi-equilibrium dynamics. Truncating the operator with a

finite dimensional approximation and using only a single predictive field (here, annual-mean temperature) further reduces its

skill. Pattern scaling’s inability to reproduce the pattern effect and other nonlinear/state-dependent feedbacks illustrates these305

limitations (Stevens et al., 2016; Giani et al., 2024). In Sect. 2.3.3, we explore alternative low-order approximations of the

Koopman operator to resolve these issues.

Pattern scaling could be extended to the Fokker-Planck operator by shifting and rescaling the full probability distribution

based on global mean temperature, but this faces several limitations. Reliably estimating probability distributions requires large

ensembles, which are computationally expensive. An alternate approach is to use long preindustrial control runs to generate310

the initial probability distribution and attempt to learn the linear scaling factor through the shorter SSP experiments. However,

a simple linear shift may not capture scenario-dependent changes in the shape of the distribution; recent emulation work with

Gaussian process regression suggests these distributional shifts may be complex (Wang et al., 2025). When applying pattern

scaling to the Fokker-Planck operator, we must also ensure the process does not violate the normalization of the distribution

(i.e. the area under the curve must equal one).315

We implement pattern scaling by calculating the global mean temperature anomaly and solving

min
a(x)

||T (x, t)− a(x)T (x, t)||2. (16)

In Appendix A1 we show that pattern scaling has two irreducible sources of error when trained on a ScenarioMIP-like

forcing: (1) an equilibrium term, where pattern scaling converges to the wrong steady-state value when forcing plateaus and

(2) a memory term, where pattern scaling breaks down when the system responds slowly compared to changes in the forcing.320

The former stems from the mismatch between training pattern scaling in a transient regime and attempting to use it to project

an equilibrium condition. The latter cannot be accounted for within the pattern scaling framework, motivating the need for

methods that explicitly capture memory.

2.3.2 Dynamical system/impulse response theory

Emulators that represent the climate system through response functions connect to fundamental principles of statistical me-325

chanics and the Koopman/Fokker-Planck framework (Joos and Bruno, 1996; Hasselmann et al., 1997; Hasselmann, 2001;

Lucarini et al., 2017; Orbe et al., 2018; Lembo et al., 2020; Fredriksen et al., 2021, 2023; Cimoli et al., 2023; Freese et al.,

2024; Womack et al., 2025; Sandstad et al., 2025; Farley et al., 2025). Response function emulators relax the quasi-equilibrium
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assumption, assuming instead that the current transient climate state is close to some baseline climate state that is in statistical

equilibrium (generally preindustrial conditions). Perturbations to a field of interest are assumed to be small relative to magni-330

tude of that field. These methods enable us to capture memory effects by integrating the entire forcing time history rather than

only using the instantaneous forcing. One major benefit of this is that we can use them to represent regional shifts in surface

warming patterns over time (the pattern effect) (Bloch-Johnson et al., 2024).

The use of different methods to derive response functions affects their utility as an emulator. A key assumption behind the

Fluctuation Dissipation Theorem, for example, is that we have access to the governing equation, i.e. we are free to run large335

ensembles as needed. We begin this section assuming this is true, and relax this assumption later.

Method II: The Fluctuation Dissipation Theorem. In the case of a fully deterministic system with a zero initial condition,

simply forcing our system with a spatially explicit unit impulse (F (x, t) = δ(x, t)) is used to find the system’s response function

T (x,x′, t)|F (x′,t)=δ(x′,t) =R(x,x′, t), (17)340

where perturbations are applied at each spatial location, x′, to determine their influence on a location of interest, x; pulses can

also be applied at alternate times, t′, to determine how different time lags impact the response (e.g. seasonality), but we neglect

these effects to simplify our analysis.

In this case, we can derive our response function directly without the need for an ensemble of simulations, but real systems

are not this simple. Utilizing an impulse forcing naively in a chaotic system may lead to a single realization with behavior far345

from the expected forced response. For our nonlinear SDE, we use the Fluctuation Dissipation Theorem (FDT), to calculate a

response function from an ensemble. Our system’s response to a perturbation of magnitude ε is given by

R(x,x′, t) =
⟨Tε(x, t)−T0(x, t)⟩

|ε(x′)| , (18)

where T0(x, t) and Tε(x, t) correspond to unperturbed and perturbed initial condition ensembles, respectively. More detail on

this expression can be found in Marconi et al. (2008).350

With this definition, we implement the Fluctuation Dissipation Theorem by first spinning up a simulation to get a steady

state distribution from which we draw an ensemble of initial conditions, T0(x, t). We then create a copy of the initial condition

ensemble with an additional small perturbation, ε, applied to each member, Tε(t), and simulate every member from both

ensembles for a scenario of interest. Applying Equation 18 then gives us the response function, which can use to emulate a

variable of interest by convolving it with a forcing from a new scenario (Equation 11).355

Both the stochastic and deterministic approaches only yield an accurate estimate of the true response function when the

system is perturbed from a quasi-equilibrium rather than a transient state. For climate models, this is typically done with step

change CO2 experiments after a spin-up period. This method is common in the literature around climate response functions

and linear response theory (Lucarini et al., 2017; Lembo et al., 2020; Freese et al., 2024), though methods from the former

two citations have not been applied to climate emulation and the latter does not reference formal response theory. Repeating360

this perturbation exercise at multiple background climate states can produce state-dependent response functions, but it is

prohibitively expensive in practice.
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Analogously to our discussion of using the Koopman vs. Fokker-Planck operator, there also exists an extension of the FDT

to probability distributions. This relationship is given by

R(x,x′, t) =−⟨T (x, t)s(T (x′,0))⟩, (19)365

where s(w) =∇ lnp(w) is the score function of the steady-state distribution and encodes how a small perturbation alters the

system’s dynamics; more details can be found in (Giorgini et al., 2024).

The score function captures the direction a distribution shifts in response to a perturbation, and correlating it with a climate

variable explains how the expectation of that variable shifts. Appendix A5 outlines the link between this approach and the

Fokker-Planck operator. Analytical expressions for the score function are unavailable for most systems, necessitating machine370

learning techniques to learn the score function. This approach has achieved high skill in representing the response function

for several systems (Giorgini et al., 2024), though it has not yet been applied to the full climate system. We do not explore it

further in this work because of the machine learning infrastructure required to implement it.

The FDT faces accessibility issues in practice. First, there are high costs associated with this technique: a large ensemble

of ESM runs is often prohibitively expensive. Second, there are also some configurations we simply cannot access: formal375

response theory assumes perturbations can be applied in a straightforward manner, which is not always the case. Because

response functions are defined as a mapping from some perturbed input variable (e.g. CO2 or radiative forcing) to an output

variable of interest (e.g. temperature or precipitation), applying the FDT requires the ability to manually perturb a variable.

Climate models may not be configured to accommodate e.g. radiative forcing as an input. The FDT therefore cannot be applied

to derive radiative forcing response functions, though this is possible through other methods (Womack et al., 2025).380

Method III: Deconvolution. Without access to the true system to run specific perturbation experiments to find R(x,x′, t),

data-driven approaches can estimate it. Deconvolution has been used to calculate response functions in the climate emulation

context to derive spatially explicit response functions mapping effective radiative forcing to temperature (Womack et al., 2025).

It implicitly approximates the Koopman operator by deriving response functions that nominally correspond to Equation 11.

To derive the deconvolution algorithm, we assume the data we have (e.g. annual temperature anomaly) are taken from an385

ensemble average of a general scenario. We begin from the FDT (Equation 11), assuming that our experiment begins from a

quasi-equilibrium initial condition

T (x, t) =

t∫
0

R(x,s)F (t− s)ds. (20)

Treating this expression discretely, we rewrite it as a matrix expression and invert to solve for R(x, t) from any general

scenario390

R=
F−1T

∆t
, (21)

where F is a lower-triangular matrix with Ft=0 along the diagonal, Ft=1 on the first off-diagonal, and so on (a Toeplitz

matrix), and T is a matrix of temperature values with rows corresponding to the time dimension and columns corresponding
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to the spatial dimension. A more in-depth exploration of this process can be found in Womack et al. (2025). As written here,

deconvolution aggregates spatial interactions (i.e. does not include an x′ term), cutting down on data requirements. Extensions395

of this procedure can account for spatial interactions, though they require additional experiments with varying spatial forcings.

In practice, noisy data require us to apply regularization to Equation 21 to ensure matrix stability. We instead solve

min
R

||RF−T||2 +α||R||2, (22)

where α is the hyperparameter denoting the strength of our ridge regression. This simple ridge regression is equivalent to

placing a Gaussian prior on the response function and assuming that the simulated temperature data we collect are corrupted400

by Gaussian noise. We discuss the rationale of Gaussian noise further in Appendix B and outline our approach to tune the

hyperparameter α through maximum a posteriori optimization.

Deconvolution can be applied to any general scenario that begins from a quasi-equilibrium initial condition. However, since

we require an explicit matrix inverse to perform deconvolution, it is sensitive to the frequency spectrum of the forcing data. If the

eigenvalues of the matrix F are very small (corresponding to near-zero frequencies) or the system is very noisy (corresponding405

to large differences in magnitudes between frequencies), the matrix becomes ill-conditioned, leading to an unstable response

function. To illustrate these challenges, an explicit frequency-based derivation is included in Appendix A2. In practice, we

regularize the system to avoid these issues (see Appendix B for details).

Method IV: Modal Fitting. Modal fitting is another data-driven technique to calculate response functions that retains some

physical interpretability by explicitly representing the climate’s response to a forcing as a series of decaying exponentials. The410

decay rates then represent the various timescales of the climate system (e.g. shallow vs. deep ocean heat uptake) and the modes

represent how those timescales interact spatially. It has been used for tasks such as estimating effective radiative forcing and

recently for climate emulation (Fredriksen et al., 2021, 2023; Sandstad et al., 2025).

To connect this approach to our framework, we begin from the same set of assumptions as deconvolution, but make the

additional assumption that our response function is exactly a decaying exponential; in this case, our response function is415

exactly a Green’s function as described in Appendix A3. We start from a restatement of Koopman response function definition

(Equation 11)

G(x,x′, t) = eL(x,x′)t, (23)

where x and x′ track spatial interactions as before. We assume we can represent the Koopman operator with a finite, linear

operator, L (Appendix A4).420

We then diagonalize the matrix L though an eigenvalue decomposition, giving

G(x,x′, t) = ev(x,n)Λ(n,n)v−1(n,x′)t, (24)

where Λ(n,n) and v(x,n) are matrices containing the system’s eigenvalues and eigenvectors, respectively, and n is the mode

number. Since the matrix exponential respects similarity transformations, we rewrite this exactly as the summation

G(x,x′, t) =

k∑
i=1

v(x,ni)e
λitv−1(ni,x

′), (25)425

16



where k is equal to total the number of eigenvalues in the system. In the case of a climate model, the dimension of k is

equivalent to the number of spatial dimensions. This may be much higher than the true number of modes that are significant

in determining e.g. the temperature response of the system. Instead of the explicit form above, we typically see an alternate

implementation, such as that in (Fredriksen et al., 2021, 2023) and (Sandstad et al., 2025). These show that one can fit an

alternate form given simply by430

G(t)≈R(t) =

3∑
i=1

αie
λjt, (26)

where using just three timescales (inter-annual, inter-decadal, and inter-centennial) is sufficient to represent the global mean

behavior of the climate system; these methods specify a range/initial guess of timescales to initialize the optimization routine.

As we are implementing this at a grid cell level, we opt for a hybrid approach, given by

Ri(t) =

3∑
j=1

αi,je
λit, (27)435

where i indicates the grid cell/region of interest, and j denotes the contribution from each timescale in a given region. We use

the three timescales given above as the initial guess for each lambda, along with an initial guess for αi,j ∀ i= j, assuming that

one mode is dominant for each box.

We thus need to solve

T̃ (αi,j ,λi) =

t∫
−∞

Ri(s)F (t− s)ds, (28)440

min
αi,j ,λi

||T − T̃ (αi,j ,λi)||2. (29)

For climate applications, the decay rates (λi) can span several orders of magnitude, which are difficult for the optimizer to

identify, even with normalization. This is exacerbated by the need to solve for the eigenvectors simultaneously, which are also

likely to have values that span several orders of magnitude; using more sophisticated optimization techniques than we apply

in our test case could potentially resolve this issue. When implementing this algorithm, we follow Fredriksen et al. (2021),445

providing an initial guess of the correct order of magnitude to our optimizer.

Modal fitting has two major benefits. First, by truncating the leading modes, we reduce the dimensionality of the problem

without the need for e.g. Empirical Orthogonal Functions (EOFs) or a Singular Value Decomposition (SVD). Second, we

require all ℜ(λi)< 0 (the real component of λi) to ensure response functions to decay to zero as t→∞, a requirement not

imposed on e.g. deconvolution and DMD. Because it is a best-fit problem, it naturally damps noise, making it well suited450

to systems with strong internal variability. However, this method can also be sensitive to local minima, requiring multiple

iterations or a stochastic fitting procedure to alleviate this issue. Fitting may also be expensive on fine grids, since the number

of eigenpairs scales with grid size, though we may not require all eigenpairs to accurately emulate the system.
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2.3.3 Operator-based emulation

The most general class of emulators are those that aim to directly approximate the Koopman operator. Every previous emulator455

can be thought of as a specific case of this general operator framework. Tebaldi et al. (2025) do not include operator-based

emulators in their classification, as they are not typically referred to explicitly as emulators. However, we classify them as such

to facilitate communication across disciplines with similar prediction goals.

The most common data-driven approximations of the Koopman operator are Dynamic Mode Decomposition (DMD) and

Extended DMD (EDMD) (Schmid, 2010; Williams et al., 2015). Schmid (2010) developed DMD to extract dynamic informa-460

tion from fluid flows, and it has since been used to identify dominant modes of variability within the climate system, including

El Nino–Southern Oscillation, North Atlantic Oscillation, and Pacific Decadal Oscillation (Kutz et al., 2016; Gottwald and

Gugole, 2020; Navarra et al., 2021; Franzke et al., 2022; Navarra et al., 2024; Mankovich et al., 2025). Under specific condi-

tions, DMD provides a finite-dimensional approximation of the Koopman operator (Schmid, 2022). EDMD expands this idea

to approximate Koopman eigenvalues and eigenfunctions directly (Williams et al., 2015). The bulk of the work surrounding465

EDMD is theoretical (Haseli and Cortés, 2019; Netto et al., 2021), as in practice it has several limitations that we outline later

in this section.

Method V: Dynamic Mode Decomposition (DMD). DMD assumes that the climate response is linear in w with respect

to an operator. If this is the true Koopman operator, this assumption holds by definition, provided it acts on the entire infinite

space of statistical climate fields, g(w). In practice, this leads to limitations based on how accurate the assumption of linearity470

is, which depends on the choice of variables; this approximation may hold better for a variable such as temperature, rather than

precipitation. To derive DMD, we begin from Equation 9 applied to our variable of interest

∂

∂t
T (x, t) =K(x,x′)T (x′, t)+F (x, t). (30)

DMD assumes that we separate our data in discrete snapshots, T (x, t0), T (x, t1), . . . , T (x, tn), which we assume are linearly

related475

Tn+1 = LTn +Fn, (31)

where we have used the subscript n as shorthand for tn and omitted the spatial dimension for conciseness. By discretizing,

we are no longer solving for the exact Koopman operator (as in the previous case), which we now denote L. This notation

is standard in DMD literature. The traditional DMD algorithm assumes autonomous dynamics, omitting the forcing term.

Equation 31 is referred to as DMD with control (DMDc) (Proctor et al., 2016), and has only recently been studied in the480

climate context (Mankovich et al., 2025).

To implement DMD, we collect our snapshots into matrices and invert this system, solving for L

L= [Tn+1 −Fn]T
+
n , (32)

where the superscript + denotes the Moore-Penrose pseudo-inverse of a matrix (required as it unlikely x and t will be the

same dimension, i.e. it is unlikely T is a square matrix) and F denotes a forcing matrix with the same dimension as our data;485
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assuming well-mixed forcing means each row is identical in the forcing matrix. This is the simplest form of DMD, though in

practice the Singular Value Decomposition (SVD) is often used to further reduce the dimensionality of the problem. This also

increases the algorithm’s robustness relative to real-world systems that are subject to noise (Schmid, 2010).

This approach suffers mainly from its strong assumption of linear dynamics, which can break down for complex systems.

Its success in identifying the dominant modes of variability in the climate suggests it may have utility as an explicit emulation490

technique (Kutz et al., 2016; Gottwald and Gugole, 2020; Franzke et al., 2022); future work will apply DMD to a full scale

climate model to test this hypothesis. Unfortunately, DMD only provides a reliable estimate for the Koopman operator if it

acts on a large set of statistical fields (more than simply the temperature anomaly when considering the full climate system)

and/or the dynamics governing the evolution of that quantity (or quantities) is linear, which is not the case in general. While the

dynamics producing the base climate state are nonlinear, the success of methods such as pattern scaling suggest the dynamics495

of anomalies may be close to linear. DMD assumes all hidden variables are accounted for and the observed quantities fully

describe the (linear) dynamics of our anomaly of interest. For example, the atmospheric temperature may be significantly

influenced by heat uptake in the deep ocean, which, if it is not explicitly accounted for, will lead to errors when applying

DMD. This motivates the need for a better algorithm for approximating the Koopman operator.

Method VI: Extended DMD (EDMD). As the baseline DMD algorithm is only able to approximate the Koopman operator500

in specific contexts, EDMD instead frames the problem such that we are deliberately trying to approximate the eigenvalues

and eigenfunctions of the Koopman operator. This, ideally, leads to more reliable approximation than DMD and thus, a better

emulator.

EDMD was introduced by Williams et al. (2015) as an explicit attempt to approximate the Koopman operator. The EDMD

procedure involves projecting variables of interest into a higher dimensional space that has a richer representation of the505

system dynamics. As an example, we consider the problem of emulating precipitation anomaly using global mean temperature

anomaly as the forcing. Precipitation may depend on the global mean temperature, T (t), but it also may depend on higher

order or nonlinear terms, such as (T (t))2, cos(T (t)), tanh(T (t)), etc. To implement EDMD, the user must select a set of

basis functions, ϕ(·), such as these, that provide a better representation of the system dynamics than in the purely linear DMD

case. Typical choices of basis functions as described by the original EDMD manuscript are Hermite polynomials, radial basis510

functions, and discontinuous spectral elements (Williams et al., 2015).

After choosing a set of basis functions, the EDMD problem statement is exactly the same as the original DMD algorithm.

Solve for K̃ from

ϕ(Tn+1) = K̃ϕ(Tn)+ψ(Fn), (33)

where ψ(·) is the basis chosen for the forcing, and can be the same or different than the forcing for the quantity of interest. We515

use K̃ here as we are explicitly trying to approximate the Koopman operator. We ensure the basis includes the physical field of

interest, e.g. ϕ(T) =
[
T,T2,T3, . . .

]
, where the first entry is the physical field. As in the case with DMD, we solve this as

K̃ = [ϕ(Tn+1)−ψ(Fn)]ϕ
+(Tn), (34)
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which we can use an SVD to solve more efficiently and reduce the influence of noise on the system. When applying this

method, we first use Equation 33 with an appropriate initial condition to emulate the solution in our high-order basis. We then520

must project our solution back into physical space. Since we chose our basis to include the original physical coordinate, this is

done by truncating the emulator output and keeping only the entries corresponding to T.

This method has seldom been applied to climate problems (Navarra et al., 2024), likely due to the limitations acknowledged

in Navarra et al. (2021), particularly the dimensionality of the problem. For a full climate model, DMD requires a matrix

solve of dimension (Nlat ×Nlon)
2 for a single variable, which is extremely costly. In the case of EDMD, this dimension grows525

with every basis function used. To accurately represent the Koopman operator for the climate system, we potentially require

many more variables and many basis functions, causing the problem to rapidly increase in complexity, though this may be

alleviated by emulating EOFs rather than gridded data. As with DMD, EDMD implicitly assumes no hidden variables, though

the choice of basis function can help alleviate this issue; e.g. if the hidden variables are higher order terms, EDMD may be

able to represent them accurately. The selection of basis functions typically requires some experimentation though, as it can be530

difficult to predict which set of functions will be best suited for a given application; exploiting physical relationships such as

the logarithmic relationship between CO2 concentration and temperature may help alleviate this issue, however. More work is

required to fully characterize the utility of EDMD for the climate system.

3 Experimental overview

Here we outline a set of experiments which reproduce the sources of error seen in Fig. 1, using them to evaluate the emulation535

techniques introduced in Sect. 2.3. We outline a climate box model with a simple local energy balance ODE in Sect. 3.1 and

Sect. 3.2, followed by a nonlinear, cubic Lorenz system in Sect. 3.3. Experiments using these two simple models highlight the

following potential sources of error: (1) memory effects, Fig. 1 (a); (2) hidden variables, Fig. 1 (b); (3) noise, Fig. 1 (c); (4)

weak nonlinearities, Fig. 1 (d). We then describe forcing scenarios applied to each system in Sect. 3.4.

3.1 Experiments 1 and 2: Climate Box Model540

A classical box model is a standard, easily-interpretable model for temperature evolution. We use this idealized box model as it

is the simplest system that includes the pattern effect and it is not necessarily meant to replicate CMIP experiments. We assume

the form of this model is given by a simple local energy balance

C(x)
∂T (x, t)

∂t
= λ(x)T (x, t)+R(x, t)+∇ ·F(x, t), (35)

similar to Armour et al. (2013) and Giani et al. (2024). C(x) is the local effective heat capacity, T (x, t) is the local temperature545

anomaly, λ(x) is the local feedback parameter, R(x, t) is the forcing function, and ∇ ·F(x, t) is the anomaly in heat flux

divergence; parameters for this model are listed in Table 2. Furthermore, we assume that the forcing function can be linearly

decomposed as a constant-amplitude spatial pattern and a variable time series: R(x, t) = r(x)R(t).
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We consider two configurations for our box model. The first corresponds to a horizontally coupled three box system repre-

senting atmospheric boxes over land, low-latitude ocean, and high-latitude ocean; ∇·F(x, t) =−k(x)∇T (x, t). We assume a550

constant diffusivity and discretize as, ∇ ·F(x, t) =−k (Ti+1(t)−Ti(t)), where i refers to the index of each box. We assume

uniform forcing into each box, and use this configuration for experiments one and three (memory effects and noise; noise

details can be found in Sect. 3.2). The second configuration corresponds to a vertically coupled two box system representing

the atmosphere and the ocean; this has the same form as the previous case, with the caveat that there is no forcing applied

into the oceanic box. We use this configuration for experiment two (hidden variables). We begin this system from a zero initial555

condition, aiming to simulate the temperature anomaly, rather than the absolute temperature.

Table 2. Parameters for the three box model, adapted from Giani et al. (2024). The heat capacity of each box is given in terms of the effective

water depth, h(x): C(x) = ρwcwh(x), where ρw and cw are the density and specific heat capacity of water, respectively. Land, Low, and

High refer to atmospheric boxes over land, low-latitude ocean, and high-latitude ocean, respectively.

Parameter Symbol Land Low High

Effective Water Depth (m) h(x) 5 150 1500

Local Feedback (Wm−2K−1) λ(x) -0.86 -2.0 -0.67

3.2 Experiment 3: Noisy Box Model

As the default configuration for our box model is purely deterministic, we add a stochastic noise term to the forcing to replicate

the impact of inter-annual variability on the real climate system. To ensure the impact of this variability is similar to that of

the true system, we use CMIP6 piControl experiments to estimate the magnitude of the variability. Namely, we compute the560

standard deviations of piControl runs for three climate models (ACCESS-ESM1-5, MIROC6, MPI-ESM2-LR) and set the

magnitude of the variability as the multi-model average σ = 0.117K (Dix et al., 2023; Tatebe and Watanabe, 2023; Wieners

et al., 2023).

3.3 Experiment 4: Cubic Lorenz System

As the previous experiments are all defined by an operator which is linear in the quantity of interest, we additionally implement565

a weakly nonlinear, cubic Lorenz system. This provides a representation of the atmosphere that includes chaos, allowing us to

test the limits of these emulation techniques. In the standard Lorenz equations that represent a simplified model of atmospheric

convection (Lorenz, 1963), the steady state is a linear function of ρ, and the mean heat flux (⟨XY ⟩= ⟨Z⟩) is very nearly linear

(Souza and Doering, 2015). We modify the system to the cubic form shown below to illustrate another failure mode of simple

pattern scaling: the quasi-equilibrium value may not be a linear function of the forcing.570
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The cubic Lorenz equations are defined by the system

∂

∂t
X = σ(Y −X), (36)

∂

∂t
Y =−(Z +αZ3)X + ρ(t)X −Y, (37)

∂

∂t
Z =XY −βZ, (38)

with α= 1/1000. The steady-state mean of both X and Y are zero, while the steady-state behavior of ⟨Z⟩ is determined575

by ρ(t). Values for ρ(t) are chosen such that nonlinearities are weak, as all linear methods are expected to break down in

the presence of strong nonlinearities. These vary between experiments and are outlined in Table 4. We initialize this system

through an initial condition ensemble starting from ρ(t) = 28 with white noise applied to perturb the starting positions of each

ensemble member.

3.4 Scenarios580

We consider four scenarios of interest for both the box model and cubic Lorenz system, focusing on scenarios which have

CMIP analogues: (1) Abrupt, an abrupt increase in forcing, (2) High Emissions, an exponential increase in forcing, (3) Plateau,

an exponentially increasing in forcing that levels off, and (4) Overshoot, a forcing that sharply increases and decreases. De-

scriptions of each scenario are given in Table 3. Figure 3 shows ODE-integrated solutions for each scenario in each experiment,

and descriptions of experimental parameters can be found in Tables 4 and 5.585

Table 3. Conceptual overview of forcing scenarios considered in this work. These scenarios are used in all experiments outlined in Sect. 3,

and lists of experiment-specific parameters for each scenario can be found in Tables 4 and 5.

Scenario Short Description

Abrupt
An abrupt doubling of CO2 concentration; corresponds

roughly to the Abrupt2xCO2 CMIP experiment.

High Emissions
An exponential increase of CO2 concentration in time;

corresponds roughly to SSP585.

Plateau

An increase in CO2 concentration in time that follows

a hyperbolic tangent, increasing exponentially and then

tapering off; corresponds roughly to SSP245.

Overshoot

An increase in CO2 concentration in time that follows

a Gaussian profile, increasing and decreasingly rapidly;

inspired by SSP119, but decreases more quickly.
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Figure 3. ODE-integrated solutions for the three box model (top), two box model (middle), and cubic Lorenz system (bottom) for the (from

left to right) Abrupt, High Emissions, Plateau, and Overshoot scenarios. D = 0.55 [Wm−2K−1] for the three box experiment and D = 0.7

[Wm−2K−1] for the two box experiment. For the cubic Lorenz problem we show the mean value of Z over 5,000 ensemble members as

a line, and the shaded region indicates its standard deviation. Values shown are anomalies relative to a baseline of T = 0 (experiments one

through three) or ρ= 28 (experiment four).

3.5 Evaluation

To evaluate each emulation technique, we utilize Normalized Root Mean Square Error (NRMSE, Equation 39) given as a

percentage, as our primary evaluation metric:

NRMSE =
100

g(wk)

√∑Nyears

k=1 (g(wk)− ĝ(wk))
2

Nyears
. (39)

g(wk) indicates the mean of our quantity of interest over the period error is calculated over. We calculate NRMSE with respect590

to the entire time series. To compare performance across training datasets, we train each emulator on one scenario at a time,

testing against the others which are held out from the training (e.g. train on Abrupt and test on High Emissions).

We implement an alternate protocol for the cubic Lorenz system as there is no ground-truth to compare with due to chaos.

Instead, we compare the skill of each emulator when training on only a subset of the ensemble members for that experiment.

For example, given nensemble ensemble members for a given experiment, we construct a subset of n ensemble members without595
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Table 4. Forcing scenarios for each experiment, with the upper half of each row corresponding the box model and the lower half of each row

corresponding to the cubic Lorenz system. Parameters for the box model experiments are based on Giani et al. (2024) and (Armour et al.,

2013) and parameters for the cubic Lorenz system are chosen such that the system exhibits weakly nonlinear behavior. H(t) is the Heaviside

step function, and parameters for these scenarios are listed in Table 5.

Scenario Functional Form

Abrupt
F (t) = FabrH(t)

ρ(t) = ρ0,abr + ρ1,abr tanh(t− ηabr)

High Emissions
F (t) = Fhigh exp(t/τhigh)

ρ(t) = ρ0,high + ρ1,high exp(t/ηhigh)

Plateau
F (t) = Fplat +Fplat tanh(ωplat(t− τplat))

ρ(t) = ρ0,plat + ρ1,plat tanh(ωplat(t− τplat))

Overshoot
F (t) = Fover exp(−(t− τover)

2/(2σ2))

ρ(t) = ρ0,over + ρ1,over exp(−(t− ηover)
2/(2σ2))

Table 5. Scenario parameters used for the experiments in this study. Values for ρ0 are listed in the order Abrupt, High Emissions, Plateau,

and Overshoot. Box-model parameters have physical units to output temperature; the cubic-Lorenz parameters are dimensionless.

Box Model Cubic Lorenz System

Parameter Value Parameter Value

- - ρ0 [45, 28, 40, 28]

Fabr 3.7 Wm−2
ηabr 10

ρ1,abr 17

Fhigh
8.5 Wm−2

exp(τf/τhigh)
ρ1,high

30

exp(ηf/ηhigh)

τf 250 yr ηf 250

τhigh 50 yr ηhigh 50

F0,plat 2.25 Wm−2 ρ1,plat
12

tanh(5)

F1,plat
2.25 Wm−2

tanh(ωplatτplat)
τplat 150

ωplat 1/50 yr−1 ωplat 1/50

Fover 4 Wm−2 ρ1,over 30

τover 200 yr ηover 200

σover 42.47 σ 50

replacement, where n= 1 : nensemble−1, and train our emulator from that subset. We then test the emulator’s skill in emulating

the mean response given the ensemble average forcing. We repeat this subsampling exercise 10 times, recording the average
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performance over those trials. For the noisy three box model, we use the same protocol, additionally presenting the ground

truth of emulating the noiseless three box model.

4 Results600

Section 4.1 presents a summary of results across each of the emulation techniques outlined in Sect. 2.3 when emulating the

simplified climate systems presented in Sect. 3, with subsequent sections highlighting key results from individual experiments.

Section 4.2 contains the results for the three box model with significant memory effects (Fig. 1 (a)); the three boxes represent

atmospheric boxes over the land, low-latitude ocean and high-latitude ocean. We then report emulator performance on the

restricted two box model in Sect. 4.3. In this case we highlight the issue of hidden variables (Fig. 1 (b)) by only giving605

the emulators access to the temperature anomaly in only one of the two boxes during training; the two boxes represent an

atmospheric and oceanic box (forcing only into the atmosphere). This is followed by a version of the three box model with a

stochastic forcing to test the robustness of each method to noise (Fig. 1 (c)). Finally, we showcase results for the nonlinear, cubic

Lorenz system in Sect. 4.5 (Fig. 1 (d)), which tests emulator performance in the presence of chaos and weak nonlinearities.

In the case of models with multiple regions (boxes), we present only a single evaluation score, as relative performance across610

boxes was consistent for all cases analyzed.

4.1 Overall emulator performance

Figure 4 summarizes emulator performance in terms of Normalized Root Mean Square Error (NRMSE) across all four exper-

iments. For each experiment, there are four possible train/test scenarios (Abrupt, High Emissions, Plateau, and Overshoot).

We test on one scenario and train against the remaining three, showing median NRMSE over all train/test combinations. For615

experiments two and four, the pattern scaling emulator is trained to map forcing to quantity of interest, as these experiments

do not have a global mean temperature equivalent. Results for deconvolution are shown using the regularization presented

in Appendix B. Error values are calculated with a constant 40 ensemble members for experiment three and 4,000 ensemble

members for experiment four.

Response function based emulators (the FDT, deconvolution, and modal fitting methods) generally outperform other ap-620

proaches, demonstrating consistently lower NRMSE across most experiments. The FDT is particularly reliable relative to all

other methods, yielding consistently low errors across all four test cases, indicating its robustness regardless of scenario; while

it has higher error in the cubic Lorenz case, this is primarily a function of ensemble size (see Sect. 4.5). As FDT response

functions are, in principle, equation-driven rather than data-driven, they provide the perfect solution given a linear system

(experiments one through three) or enough realizations (experiment four). Deconvolution similarly performs well across all625

experiments, while modal fitting has high performance in experiments one, two, and three; both of these methods exhibit higher

errors in experiment four. For deconvolution, this is due to its sensitivity to noise as discussed in Sect. 2.3.2, while modal fit-

ting suffers because of an inability to reliably separate timescales and the need for an accurate initialization for its unknown

parameters, which we discuss in Sect. 4.4.
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Figure 4. Summary of emulator performance over all experiments considered in this work. For each experiment, there are four scenarios.

We show the median NRMSE value across all scenario train and test combinations, excluding the trivial case of training and testing on the

same dataset. Error values are calculated with 40 ensemble members for experiment three and 4,000 ensemble members for experiment four.

Emulator abbreviations are as follows: PS - Pattern Scaling, FDT - Fluctuation Dissipation Theorem, Deconv. - Deconvolution, Modal -

Modal Fitting, DMD - Dynamic Mode Decomposition, EDMD - Extended DMD. Diagonal hatching indicates response function emulators,

while cross hatching indicates operator-based emulators.

In contrast, pattern scaling consistently underperforms, exhibiting the highest error in all experiments except for the cubic630

Lorenz case. This is most likely due to the presence of strong memory effects in the box models, which pattern scaling cannot

capture by definition. DMD and EDMD outperform pattern scaling in experiments one and two, but exhibit much more variable

performance in experiments three and four. For the first three experiments, DMD and EDMD produce identical results. This is

because the models in these experiments are purely linear, and the use of any higher-order basis for EDMD leads to a drop in

skill. These methods struggle with the noisy three box model, and more in-depth results can be found in Sect. 4.4. While theory635

suggests DMD/EDMD would not be well-suited for the restricted two box problem due to the presence of hidden variables,

they outperform pattern scaling in practice. This is likely due to the simplicity of the problem, and more complex dependencies

on hidden variables would likely lead to further decreases in skill. The main advantage of EDMD over DMD begins to become

apparent in the cubic Lorenz experiment, where moving to a 3rd Hermite polynomial basis allows it to slightly outperform its

linear counterpart, though the variability in the system (Fig. 3) is a greater magnitude than this improvement in skill.640

4.2 Experiment 1: Three Box Model

The three box model experiment is meant to benchmark the baseline performance of each technique in the presence of strong

memory effects (Fig. 1 (a)). Figure 5 summarizes the results of four emulation techniques (pattern scaling, deconvolution,

modal fitting, and DMD) when trained and tested on different scenario combinations, while Fig. 6 compares the true (ODE-

integrated) solution to that obtained using the Fluctuation Dissipation Theorem.645
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Figure 5. NRMSE heatmaps for pattern scaling (a), deconvolution (b), modal fitting (c), and DMD (d) emulators trained and tested against

the three box model. Results are shown in percentages, where lighter values correspond to lower error (higher performance) and darker

values correspond to higher error (lower performance). Scenarios used for training are shown on the x-axis, while scenarios used for testing

are shown on the y-axis. We do not include results for training and testing on the same dataset.
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Pattern scaling (Method I) consistently underperforms relative to the other techniques presented in this section, exhibiting

the highest NRMSE values for all train/test combinations. It fails across almost every scenario due to the influence of long

timescales on the global mean temperature (strong memory effects). This experiment highlights pattern scaling’s brittleness

when key assumptions, such as exponential forcing (Giani et al., 2024), are violated. These assumptions are consistent in most

ScenarioMIP experiments however, leading to higher performance in practice relative to this simple example (Wells et al.,650

2023).

Applying deconvolution (Method III) leads to much higher performance than pattern scaling when trained on either Abrupt,

Plateau, or Overshoot, but sees a drop in performance when trained on High Emissions. This is because the true solution is

an eigenfunction of the forcing (i.e. both the temperature response and forcing are exponentials), so the system is effectively

characterized by a single timescale, that of the forcing. Deconvolution loses skill due to difficulties identifying all the timescales655

in the system, leading to extrapolation errors when training on this scenario. When trained on either Plateau or Overshoot, we

see errors in emulating Abrupt, meaning that the emulator has not learned the true system response despite relatively high

performance in emulating the other scenarios. This is due to ill-conditioning of the F matrix in these scenarios, leading to a

response function that overfits these data; we discuss the limitations of training deconvolution with these scenarios further in

Sect. 5.660

Modal fitting (Method IV) exhibits two interesting properties: (1) training on High Emissions leads to poor extrapolative

capability and (2) training on Abrupt leads to the highest performance overall. The first is also caused by the solution being an

eigenfunction of the forcing. It is difficult for the optimization routine to determine the correct timescales, even when initialized

near the true values. This is true to a lesser degree in Plateau and Overshoot, which also do not display clean separation of time

scales like Abrupt.665

DMD (Method V) is able to capture all relevant timescales and interactions regardless of the scenario, with a maximum

of 5.8% NRMSE across all train/test combinations; this level of error results from training on High Emissions and testing on

Abrupt, as was the case with the modal fitting emulator. The method’s high skill here is due to the governing dynamics being

purely linear and there being no hidden variables, meaning all assumptions for applying DMD are accurate. Results for EDMD

(Method VI) are omitted from this section as they are identical to DMD.670

The Fluctuation Dissipation Theorem (Method II) has consistently high performance across all scenarios considered, with

NRMSE values of 0.80%, 0.50%, 0.75%, and 1.29% for the four scenarios shown in Fig. 6 (NRMSE values given by scenario

from left to right). These values are lower than any other technique on average. These errors are due to the integration scheme

with which we derive the FDT response function, as we only use a first-order integrator. Since it requires us to simulate two

scenarios (one perturbed and one unperturbed), error can accumulate between these simulations; decreasing the integrator time675

step or using a higher-order integrator (not shown) increases accuracy for this method. Despite this, the FDT gives us, up to the

precision of our integrator, the system’s true response function, which is a major advantage compared to the other techniques

which may or may not provide a physically-interpretable solution. The full implementation of the FDT requires a spatially

explicit response matrix with multiple perturbation runs, but for a more even comparison to the other techniques, we only

consider the well-mixed case here.680
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4.3 Experiment 2: Restricted Two Box Model

The restricted two box model investigates the impact of hidden variables (Fig. 1 (b)). This experiment is meant to test if an

emulator can learn the true system response if not all information is included in the training data. Figure 7 summarizes the

results of four emulation techniques (pattern scaling, deconvolution, modal fitting, and DMD) when trained and tested on

different scenario combinations. Restricting the data means there is only one temperature series, rather than the three in the685

previous case. We therefore cannot calculate a global mean, and use a modified definition of pattern scaling in this section,

mapping from forcing to temperature anomaly. As the FDT (Method II) has roughly equivalent performance to the previous

section and is not impacted by the introduction of hidden variables, we omit it from this section.
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Figure 7. NRMSE heatmaps for pattern scaling (a), deconvolution (b), modal fitting (c), and DMD (d) emulators trained and tested against

the restricted two box model. Results are shown in percentages, where lighter values correspond to lower error (higher performance) and

darker values correspond to higher error (lower performance). Scenarios used for training are shown on the x-axis, while scenarios used for

testing are shown on the y-axis. We do not include results for training and testing on the same dataset.

For all methods except deconvolution (Method III), we see a sharp drop in performance when introducing a hidden variable

into the system. Deconvolution exhibits the same failure mode when training on High Emissions as before but to a greater690

degree, along with the ill-conditioning failure mode when training on Plateau and Overshoot. Because this method treats each
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region as independent, it is more robust to the addition of hidden variables. It is able to capture the aggregate response of the

atmospheric box that includes the influence of the ocean, but would not be able to separate those effects; i.e. the response

function we derive is somewhat non-physical, though it can emulate the system effectively.

For the modal fitting emulator (Method IV), we initialize the optimization routine with guesses for both dominant modes695

(the fast atmospheric response and slower oceanic response). It is largely unsuccessful in identifying these modes, except in

the case of training with Abrupt. This scenario is unique in that both modes are visible in the atmospheric box alone (see the

leftmost plot in the middle row of Fig. 3). Training on either High Emissions or Overshoot appears promising at first, but

neither can extrapolate to Abrupt, meaning it effectively overfits on these scenarios and loses extrapolative capabilities. As

before, we see that training on High Emissions leads to the worst performance overall, as this scenario is characterized by only700

one effective timescale.

DMD (Method V) and by extension, EDMD (Method VI), experiences the sharpest decline in performance, with errors

increasing by several orders of magnitude in some cases. Both methods see lower error in emulating scenarios similar to

the training data (e.g. High Emissions vs. Plateau), but rapidly increasing error outside that regime. In addition to learning

timescales like the previous two methods, DMD and EDMD are attempting to learning spatial interactions as well, meaning705

they are disproportionately affected by the hidden variable. We can also frame this issue theoretically by stating that hidden

variables violate one of the fundamental assumptions of EDMD and DMD: the quantities we emulate are representative of all

relevant system dynamics. By hiding the oceanic box, neither algorithm can learn the true physical behavior of the system.

With EDMD, increases in polynomial order lead to further decreases in performance (not shown).

4.4 Experiment 3: Noisy Three Box Model710

Results of the noisy three box model show how noise affects each emulator (Fig. 1 (c)). Figure 8 summarizes the results of

four emulation techniques (pattern scaling, deconvolution, modal fitting, and DMD) when trained only on Abrupt and tested

against the other three scenarios; we choose to train only on Abrupt as it yielded high performance across all methods (except

pattern scaling), and we want to isolate the impact of noise. See Fig. 4 in Sect. 4.1 for performance metrics across all train/test

combinations with a constant ensemble size. Since the noise is added linearly, taking the difference between the perturbed and715

unperturbed ensembles effectively removes the noise when using the FDT (Method II). This leads to constant performance

regardless of ensemble size, which is shown in Fig. 4. We additionally omit EDMD (Method VI) as it gives no improvements

over DMD (Method V) in this linear case.

For these results, we evaluate performance relative to their noiseless baseline, rather than the absolute value of NRMSE;

although Abrupt led to high performance for most methods, each method has a different baseline and some methods (e.g.720

pattern scaling) performed poorly when trained on this scenario. All methods exhibit decreased performance in the noisy case

relative to the noiseless baseline.

Pattern scaling (Method I) experiences no change in performance as the number of ensemble members is increased, as the

linear regression smooths the data, reducing the impact of noise regardless of the ensemble size. With both deconvolution

(Method III) and modal fitting (Method IV), there is an almost random change in performance depending on the number of725
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Figure 8. NRMSE vs. number of ensemble members for pattern scaling (a), deconvolution (b), modal fitting (c), and DMD (d) emulators

trained on Abrupt and tested against the three remaining scenarios. Solid lines indicate the error in training/testing with noisy data, while the

dashed lines indicate error in training/testing with noiseless data.

ensemble members. This is because both methods regularize the data. Deconvolution requires extra regularization when the

system is noisy, or else the algorithm overfits on the noise, leading to extremely high error (>O(1010)). The regularization has

a similar effect to pattern scaling in making the expected performance of these algorithms more robust to noise. The variation

in performance is due to the random sampling of ensemble members, with combinations that exhibit high error skewing the

overall results. The error in DMD (Method V) is monotonically decreasing with ensemble size, though the presence of noise730

leads to a drop in performance relative to the noiseless baseline.

4.5 Experiment 4: Cubic Lorenz System

The cubic Lorenz system allows us to jointly investigate the impact of chaos/noise and weak nonlinear effects on our emulators

(Fig. 1 (c) and (d)). We run a 5,000 member ensemble as the variation in this experiment is much higher than the previous

noisy case. As in experiment two, we use a slightly modified definition of pattern scaling, mapping from forcing to quantity735

of interest (the ensemble mean of Z). Figure 9 summarizes emulator performance against the number of ensemble members,

while Fig. 10 shows the response function derived using the FDT.
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Figure 9. NRMSE vs. number of ensemble members for all emulators trained on Overshoot and tested against the three remaining scenarios.

Emulators are shown as pattern scaling (a), FDT (b), deconvolution (c), modal fitting (d), and DMD (e), and EDMD (f). The FDT is trained

on separate perturbation scenarios, and is therefore tested against all four scenarios. Unlike experiment three, there is no baseline/noiseless

skill to compare against.

Similar to the previous noisy experiment (Sect. 4.4), pattern scaling (Method I) exhibits a constant level of performance

independent of the number of ensemble members. The linear fitting process creates a strong artificial smoothing effect on the

data, diminishing the potential impact of noise. This is also the case with both deconvolution (Method III) and the modal fitting740

(Method IV) approach, both of which have little variability based on the number of ensemble members. The modal fitting

approach additionally requires an imaginary component to enforce oscillations in the response function similar to those in the

FDT result (Fig. 10). All approaches except DMD additionally show increased skill for smaller perturbations, i.e. higher skill

in predicting Plateau than Abrupt. This is likely because smaller forcings lead to smaller deviations from the theoretical limit

of response theory, which assumes small perturbations from the background state.745

The performance of the FDT (Method II) is strongly dependent on the number of ensemble members. Figure 10 illustrates

this point by showing how the response function derived using the FDT changes based on ensemble size. We treat the 50,000

member ensemble as our point of comparison, as further increases in ensemble size did not result in notable performance

improvements. Key features, such as the initial magnitude of the response along with the time to reach that magnitude are
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consistent across all ensemble sizes, but the three cases deviate after this initial peak. All three cases exhibit a similar frequency750

of oscillation over the time period tested, with noise in the 500 member ensemble influencing the longer-term behavior of that

response (between years 3-5). There are deviations from the 50,000 member response in the 5,000 member case as well, though

it is generally more in-phase than the 500 member ensemble. The NRMSE between the 50,000 and 5,000 member ensembles

is 166.22%, while the NRMSE between the 50,000 and 500 member ensembles is 546.06%. Both responses are far from the

ground truth, but the 5,000 member ensemble is much closer than the 500 member ensemble. Because the 5,000 member755

ensemble has such high error relative to the 50,000 member ensemble, the predictive skill shown in Fig. 4 and Fig. 9 does not

tell the full story. By further increasing ensemble size, we expect to see commensurate increases in accuracy when emulating

this system with the FDT.
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Figure 10. Response function for the cubic Lorenz system derived using the Fluctuation Dissipation Theorem with three sets of ensemble

members: 500, 5,000, and 50,000. We use ∆t= 0.01 and δ = 50∆t applied to the Y component of the system.

Despite the fact that this experiment violates the linearity assumption of DMD (Method V), it has relatively stable perfor-

mance of a similar order to the other methods tested. Predictive skill on High Emissions and Plateau increases with the number760

of ensemble members, as one would expect as noise is averaged out, but skill on Abrupt decreases, which seems to be coun-

terintuitive. In this case, we may not be introducing any further information about the coherent, underlying dynamics, which

is supported by other methods showing consistent performance in these regimes. Increasing the ensemble size is leading to

further refinement of the emulator’s its parameters for Overshoot and its more closely related scenarios (High Emissions and

Plateau). A deeper investigation is required to assess DMD’s suitability for Lorenz-like systems. EDMD (Method VI) does765

not exhibit this behavior, instead performing with consistent skill across all combinations. This is likely because the 3rd-order

Hermite polynomial used as the basis is well-suited to train on this scenario, illustrating the need for careful selection of basis

functions.

5 Discussion and Conclusions

While emulators of Earth System Models (ESMs) have recently surged in popularity, uncertainty regarding their performance770

under a variety of scenarios and the lack of a comprehensive theoretical framework for analysis have posed problems for efforts
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at fundamental methodological comparisons. Our framework for emulator design and analysis builds on ideas from statistical

mechanics and stochastic calculus, facilitating analysis of several emulation techniques from a theoretical and practical per-

spective. Our experiments based on simplified representations of the climate stress test a suite of emulators, including pattern

scaling, response functions, and operator-based emulators, in the presence of memory effects, hidden variables, noise, and non-775

linearities. Response function emulators consistently outperform other techniques, and the Fluctuation Dissipation Theorem

(FDT) provides a robust method to derive them, though it also requires its own experimental ensemble. Section 5.1 describes

emulator performance and key findings from our pedagogical examples, while Sect. 5.2 discusses the implications of our find-

ings for ESMs. Table 6 additionally summarizes our experimental findings, focusing on the robustness of different emulators

to different sources of error.780

Table 6. Summary of emulator capability by technique based on the results from Sect. 4. An ’X’ indicates a technique possess the listed

capability, while a ’∼’ indicates may meet this requirement if other conditions are met; we discuss these capabilities explicitly in Sect. 5.

Memory refers to an emulator’s ability to capture memory effects (Fig. 1 (a), experiment one), Hidden refers to an emulator’s skill in the

presence of hidden variables (Fig. 1 (b), experiment two), Noise refers to an emulator’s robustness to simulation noise (Fig. 1 (c), experiment

three), and Nonlin. refers to an emulator’s ability to capture weak nonlinear effects (Fig. 1 (d), experiment four).

Technique Memory Hidden Noise Nonlin.

Method I: Pattern Scaling X

Method II: Fluctuation Dis-

sipation Theorem
X X ∼ ∼

Method III: Deconvolution X X ∼ ∼

Method IV: Modal Fitting X ∼ X ∼

Method V: Dynamic Mode

Decomposition (DMD)
X ∼

Method VI: Extended DMD X ∼ ∼

5.1 Emulator performance and trade-offs

Each emulation technique considered in this work belongs to a spectrum of methods as defined by the joint Fokker-Planck/Koopman

operator framework. Some emulators on this spectrum demand strict assumptions (quasi-linear/pattern scaling), while others

are much more general (EDMD). There is a trade-off between the strictness of assumptions and emulator complexity, and re-

laxing these assumptions can shift the emulator’s optimal use case. More general techniques may require specifically designed785

experiments, and decreasing structural emulator error may come at the price of increased computational costs (e.g. the Fluc-

tuation Dissipation Theorem). Using this framework additionally identifies a gap in the current emulator typology as defined
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by Tebaldi et al. (2025), as we need to consider the potential role operator-based emulators can play in this ecosystem; e.g.

characterizing physical behavior in the system in addition to emulating it, as in Navarra et al. (2024).

Pattern scaling is a popular emulation technique because it is easy to implement, fast to apply, and its limits are well under-790

stood empirically (Mitchell, 2003; Tebaldi and Arblaster, 2014; Wells et al., 2023). Its efficiency makes it the method of choice

particularly for assessments of mean annual temperature in monotonic forcing scenarios (e.g. SSP5-8.5, 3-7.0, or 2-4.5) and

for understanding first-order trends of climate signals, even in the presence of internal variability. Previous work has shown

this approach is valid only when the forcing is exponential and has a fixed spatial pattern, along with linear dynamics and

feedbacks (Giani et al., 2024). Our results additionally show that pattern scaling exhibits two sources of irreducible error: a795

mismatch between the true and predicted patterns at equilibrium and the assumption that the climate must respond instan-

taneously to external forcings. If forcing history is important, such as in centennial-scale or strong overshoot experiments,

the single-pattern approximation breaks down, misrepresenting shifts in regional warming over time. This is also the case

with highly variable fields such as precipitation, where the first-order approximation may not capture significant trends. More

general quasi-equilibrium approaches show promise (e.g. mapping from forcing to temperature in experiments two and four),800

but have yet to be widely explored in the context of full-scale ESMs. Pattern scaling’s limitations push us towards emulation

techniques that can capture more complex dynamics.

Response functions are increasing in popularity as they can capture many processes of interest that are missed by pattern

scaling, such as the pattern and memory effects (Freese et al., 2024; Sandstad et al., 2025; Winkler and Sierra, 2025; Womack

et al., 2025). This makes them ideal for representing decision-relevant, non-monotonic forcing scenarios, such as temperature805

overshoots. Response function approaches assume a linear relationship between the input forcing and output variable interest

and that perturbations to the system are small (Lucarini et al., 2017). As a result, they are able to capture weakly nonlinear

effects, so long as perturbations remain within the linear response regime. They must be used with caution when nonlinear

effects are dominant or (depending on the technique) when internal variability is significant.

Despite its computational costs, deriving response functions with the Fluctuation Dissipation Theorem (FDT) offers a benefit810

over other response function techniques: it generates the system’s exact linear response. Deconvolution and modal-fitting, by

contrast, can produce non-physical output. As the FDT states, the response to small perturbations can be captured by R(t) if

the system statistics are approximately stationary and the dynamics drive the weakly perturbed system back to the unperturbed

state. The concept of climate is predicated on assuming the latter is true, further cementing the FDT’s utility in this context.

Because FDT-based response functions are physically interpretable, they support linear analyses of Earth system processes and815

serve as a reliable foundation for climate emulators (Lucarini and Chekroun, 2024).

Emulators that seek an explicit representation of the Koopman operator are potentially powerful tools as they are founded on

rigorous theory and are interpretable (Tu et al., 2014; Williams et al., 2015; Schmid, 2022). They can, in principle, reproduce

any behavior the climate system might exhibit. In practice, however, their utility is constrained by several factors. Both Dynamic

Mode Decomposition (DMD) and Extended DMD (EDMD) require the input and output variables of interest (e.g. radiative820

forcing and temperature) to completely characterize the dynamics of the system, rendering them sensitive to hidden variables.

DMD additionally requires linearity between inputs and outputs, which is often violated in practice (Schmid, 2010). EDMD
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relaxes this assumption by using a higher-dimensional space at the cost of selecting an appropriate (and often problem-specific)

set of basis functions (Williams et al., 2015). The choice of basis functions is a major consideration with this method, and we

may have been able to improve our implementation of EDMD further with a different choice. Solving the resulting large825

eigenvalue problems with either algorithm can be computationally demanding, and EDMD and DMD can be sensitive to noise,

potentially overfitting to data. Despite these challenges, operator methods allow us to identify dominant modes of variability

in the climate system. They can also, in theory, be used to capture state-dependent and non-stationary processes, though this

again requires a careful selection of basis functions and a large amount of training data. While EDMD and DMD attempt to

approximate the Koopman operator, they are simplified representations and in many cases do not closely approximate the true830

operator. Despite this, the Koopman and Fokker-Planck operators provide the most useful theoretical basis as they offer a way

to directly link disparate forms of emulators. These techniques have the potential to be highly generalizable to scenarios beyond

the training data as they can reproduce the system’s true dynamics, but further research is required to determine the potential

of using operator-based methods directly for climate emulation.

Emulator performance varies depending on the experimental setup, highlighting that emulators are often designed to be835

application specific and not completely general. Figure 4 provides an overview of these results, but each emulator had the

potential for high performance depending on the application. For example, pattern scaling performs poorly on all experiments,

but shows high skill regardless of the experiment when trained and tested against High Emissions; this is not shown, as the

case where the training and testing datasets are the same is trivial (near zero error) for all emulation techniques. However, this

illustrates that pattern scaling has utility if used on scenarios with exponential forcing, more akin to ScenarioMIP (O’Neill840

et al., 2016); see (Giani et al., 2024) for further discussion. Future work will further examine the role training data plays in

emulator development.

Whether emulators learn physically interpretable representations of the system they are emulating remains an open question,

though our process of testing an emulator’s extrapolative capability suggests that some techniques do learn the system’s true

behavior. The clearest example of this is the FDT, which performed consistently well across all scenarios. This is to be expected845

as the theory behind the FDT shows that it calculates the physical impulse response of the system (Lucarini et al., 2017;

Giorgini et al., 2024). Pattern scaling on the other hand, by definition, does not learn realistic behavior unless the system is

fully determined by the pattern scaling coefficients. For other techniques, the results are less clear. For example, the modal

fitting approach is able to extrapolate successfully in any of the first three experiments when trained on Abrupt, but not when

trained on High Emissions, further supporting the need for an effort focused on quantifying the impact of training data on850

climate emulators. Deconvolution and DMD also exhibit mixed levels of extrapolative skill, leading to difficulties in making

a consistent argument about interpretability from our results. This is especially the case for DMD, as the L matrix we derive

is not easily mappable to the true underlying parameters of e.g. the coupled three box model, as this problem is effectively

underdetermined; we are solving for twelve DMD parameters, whereas the full system is determined by three heat capacities,

three feedback parameters, and one diffusion coefficient. Future work will investigate the possibility of learning true system855

parameters from these emulated representations.
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5.2 Implications for ESMs

While the lack of a common conceptual baseline has historically hindered comparisons between emulator classes, our frame-

work takes an important step towards resolving this. Efforts such as ClimateBench, which provide a common training and

evaluation benchmark, have been useful to that end (Watson-Parris et al., 2022), but emulator structural differences prevent860

it from being applied to all existing emulation techniques. Additionally, the high computational burden of running scenarios

beyond those in the CMIP archive (for training or evaluation), prevents rigorous assessment of emulator capability (e.g., emu-

lating the impact of individual forcings) and generalizability (accuracy beyond ScenarioMIP). Results from experiments such

as the Detection and Attribution MIP (DAMIP) and Regional Aerosol MIP (RAMIP) can help fill these gaps (Gillett et al.,

2016; Wilcox et al., 2023), but the field of ESM emulation is currently data-constrained. Our theoretical framework and ped-865

agogical experiments provide value in this data-limited setting, as they allow us to evaluate the assumptions present in many

common emulators. Our results illustrate the potential sources of error different emulator structural assumptions invite, giving

us tools to assess and improve emulation techniques independently of ESM results. As ESMs improve, this framework can

help ensure emulators are prepared to train on those new results.

Our pedagogical experiments provide a useful tool to isolate and examine individual sources of error relevant to emulating870

ESMs (Fig. 1). Though our simplified models are limited in that they lack much of the complexity of full-scale ESMs, our

experiments highlight that emulator errors can be proactively resolved through structural changes in emulation, regardless of

the parent model. For example, our results further support the growing body of literature on the utility of response functions

(Freese et al., 2024; Womack et al., 2025; Winkler and Sierra, 2025). Response functions offer improvements over pattern

scaling, particularly when considering memory effects in decision-relevant scenarios. They may also better emulate longer875

(post-2100) scenarios by accounting for regional pattern shifts, though longer ESM runs, such as the extensions proposed in

ScenarioMIP for CMIP7, are required to test this (Van Vuuren et al., 2025). Existing emulators of ESMs may also benefit from

incorporating response functions. For example, recent work into hybrid emulation using a generative model conditioned on

pattern scaling could be extended by conditioning on response functions instead (Bouabid et al., 2025).

Several promising emulation techniques explored here, including the Fluctuation Dissipation Theorem (FDT), Dynamic880

Mode Decomposition (DMD), and Extended DMD (EDMD), have seen uses in climate science but have yet to be applied

directly as emulators of ESM outputs as defined by Tebaldi et al. (2025). An intermediate step for either the FDT or EDMD

may be to first emulate an EMIC, helping determine useful training scenarios without the cost of a full ESM. Our results

suggest further research into these techniques is warranted, as they may represent more complex dynamics than other methods.

In this context, the FDT stands apart as the most promising technique for emulating general dynamical systems, as evidenced885

by its skill in this and other recent work (Giorgini et al., 2025b). However, using the FDT to derive response functions through

perturbations requires a full initial condition ensemble for every perturbed grid cell/region (Lucarini et al., 2017; Lembo et al.,

2020), similar to the Green’s Function MIP (Bloch-Johnson et al., 2024), and is likely prohibitively expensive for full ESMs.

The score-based FDT (Sect. 2.3) provides a remedy, using statistical learning methods to learn the score function and thus the
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system response (Giorgini et al., 2025b). Regardless of the derivation method, our results suggest response functions are the890

dominant emulation technique both in terms of accuracy and interpretability.

Most work studying climate emulation focuses on developing and implementing new approaches in an application-specific

manner. Our results show the utility of an operator-based framework for systematic analysis and comparison of climate em-

ulation techniques. The main benefit of this framework is providing a toolkit for understanding trade-offs between emulator

complexity and performance while connecting emulation techniques to fundamental principles of statistical mechanics and895

stochastic systems. We find that memory effects, internal variability, hidden variables, and nonlinearities are potential error

sources, and that response function-based emulators consistently outperform other methods, such as pattern scaling and DMD,

across all experiments. Emulator performance varies by experimental setup, particularly through the choice of training data, and

further work is required to fully characterize these effects. This framework currently relies on simple experiments, and further

work is needed to determine if operator-based methods like EDMD can be practically realized to emulate nonlinear processes900

in full-scale climate models. Our analysis also highlights the FDT’s potential for deriving robust, physically-interpretable

response functions, though its computational cost is a potential barrier. As interpretability is an ongoing discussion in the emu-

lator community, investing resources in physically-grounded methods like the FDT may go a long way towards increasing the

utility of emulators not just for emulation, but for linear system analysis.

Code and data availability. All code to reproduce this work is available at https://doi.org/10.5281/zenodo.17572065 (Womack, 2025). The905

raw data from CMIP6 were retrieved through the Earth System Grid Federation interface at https://aims2.llnl.gov/search/cmip6/. Figs. 2 - 10

were produced using scientific color maps from Crameri (2023).

Appendix A: Additional derivations

A1 Pattern scaling errors

To understand the potential sources of error in pattern scaling, we start from the linear equation for temperature evolution910

∂

∂t
T (x, t) =K(x,x′)T (x′, t)+P (x)F (t), (A1)

where T (x, t) is the spatially explicit temperature, K(x,x′) is the Koopman operator that governs the autonomous system

dynamics, P (x) is the spatial forcing pattern, and F (t) is the time series of the forcing.

We can examine errors in pattern scaling by considering the case in which the pattern scaled temperature, TPS(x, t), is

trained using an exponential forcing, F (t) = et/τ , where τ indicates the growth rate of the exponential. Forcing our governing915

equation with this yields

TPS(x, t) =

[
1

τ
δ(x−x′)−K(x,x′)

]−1

P (x′)et/τ . (A2)
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Here δ(x−x′) is the Dirac delta, so 1
τ δ−K plays the role of 1

τ I−K in discretized form; we assume τ lies outside the spectrum

of K so the inverse exists. Factoring out the exponential from this expression leaves us with

a1(x) =

[
1

τ
δ(x−x′)−K(x,x′)

]−1

P (x′). (A3)920

a1(x) is therefore the spatial scaling pattern used as our emulator. Inserting T (x, t) = a1(x)F (t) into the governing equation

with the same exponential forcing, leaving us with

1

τ
a1(x) =K(x,x′)a1(x

′)+P (x). (A4)

This identity expresses how the pattern, a1(x), balances internal dynamics with an external forcing.

We now consider an alternate scenario with an arbitrary forcing, Falt, that is not the exponential forcing used for training.925

We denote the error between the true solution and our emulator as

T ′(x, t) = Talt(x, t)− a1(x)Falt(t). (A5)

We then recognize that Talt(x, t) = T ′(x, t)+ a1(x)Falt(t). Inserting this into our governing equation and using the identity

from Equation A4 gives an equation describing the evolution of errors over time

∂

∂t
T ′(x, t) =K(x,x′)T ′(x′, t)+

1

τ
a1(x)Falt(t)− a1(x)

∂

∂t
Falt(t) (A6)930

From this expression, we see that there are two distinct sources of error in pattern scaling when trained on an exponential

(ScenarioMIP-like forcing). The first corresponds to an equilibrium-offset. If Falt(t) asymptotes to a constant Ff , the time

derivative in Equation A6 vanishes, leaving us with

lim
t→∞

T ′(x, t) =−1

τ
K−1(x′,x)a1(x)Ff . (A7)

Since we assume K−1 exists, there does not exist a non-zero vector such that K−1(x′,x)a1(x) = 0. Therefore the temperature935

produced by pattern scaling does not perfectly match the true equilibrium pattern.

The second source of error occurs in the transient case. When Falt(t) varies in time, the final term in Equation A6 does

not go to zero. If Falt(t) changes more quickly than the training growth rate (i.e. ∂Falt(t)
∂t > 1

τ Falt(t)), then pattern scaling

under-predicts the true temperature change. Conversely, very slow changes in Falt(t) lead to an over-prediction of the true

temperature change. A non-negligible rate of change term signals that system memory will be significant in that scenario.940

Physically, the first error arises because the system’s equilibrium pattern depends on its slow internal modes, whereas the

second arises because those modes cannot keep pace with forcing that accelerates faster (or slower) than the training rate τ .

A2 Deconvolution instabilities

Deconvolution can amplify noise or in the worst case, cause the response function to blow up entirely. Here we identify

where those instabilities arise. While issues with deconvolution are apparent in the time domain, they are easier to diagnose in945
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frequency space. We use the Fourier transform (denoted by F) to rewrite convolution as multiplication:

F [g(wt)] = F

 ∞∫
−∞

dτ R(x, τ)F (t− τ)

 (A8)

ĝ(wω) = R̂(x,ω)F̂ (ω), (A9)

where g(wt) is our statistical quantity of interest, R(x, t) is the response function, F (t) is the forcing, the hat denotes the

(continuous-time) Fourier transform, and ω is the angular frequency. Recovering the response function therefore becomes950

division:

R̂(ω) =
ĝ(wω)

F̂ (ω)
, (A10)

R(t) = F−1

[
ĝ(wω)

F̂ (ω)

]
, (A11)

where F−1 denotes the inverse Fourier transform. In discrete space, we use the fast Fourier transform.

If F̂ (ω) has any near-zero frequencies, dividing by it causes R̂(ω)→∞ at those frequencies. The corresponding time-955

domain process requires an explicit matrix inverse, where small eigenvalues translate into an ill-conditioned matrix. Addi-

tionally, if |F̂ (ω)| spans several orders of magnitude, the ratio ĝ(wω)/F̂ (ω) amplifies high-frequency measurement noise and

round-off error. The condition number of the corresponding matrix becomes very large, yielding an unstable of estimate of

R(x, t).

These issues are also encountered in signal processing, where a system is said to lack a spectral inverse (i.e. zeros in the960

frequency domain) if it exhibits the above issues (Yeung and Kong, 1986; Zazula and Gyergyek, 1993). Even in the absence of

noise, the relatively flat spectrum of a true impulse response makes it difficult to recover directly. A dominant eigenvalue can

obscure the weaker ones.

A3 Distinction between Green’s and response functions

A scalar field, w(t), governed by the linear time-invariant equation965

∂

∂t
w(t) = Lw(t)+F (t), (A12)

has a corresponding Green’s function, G(t), that solves

∂

∂t
G(t) = LG(t)+ δ(t), G(t < 0) = 0. (A13)

For a linear operator, L, the solution is

G(t) =H(t)eLt, (A14)970
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where H(t) is the Heaviside step function and eLt is a matrix exponential. From this, any general forcing produces a response

given by

w(t) =

t∫
0

G(τ)F (t− τ)dτ. (A15)

A response function, on the other hand, is either an empiral or equation-driven function that reproduces the system’s lin-

earized output but is not required to satisfy Equation A13. When the underlying dynamics are nonlinear, as is the case in975

climate models, a true Green’s function does not exist. In practice however, the success of techniques such as pattern scaling

illustrates that temperature response is very nearly linear for most of the globe, suggesting that data-derived response functions

may closely approximate Green’s functions for certain variables.

A4 Transitioning from K to L

We begin from a vector form of Equation 6, the expectation of a statistical field g(w), where bold symbols are used to explicitly980

denote vectors. The vector w represents a set of state variables, wi, at discrete points in space. The evolution of ⟨g(w)⟩ is

∂

∂t
⟨g(w)⟩=

〈
[Ni(w, t)+Fi(t)]

∂

∂wi
g(w)

〉
+D

〈
∂2

∂w2
i

g(w)

〉
. (A16)

We consider the case where g(w) = wi to find the evolution of the mean of the state variables themselves. Substituting this

gives

∂

∂t
⟨wi⟩= ⟨Ni(w, t)⟩+Fi(t). (A17)985

We then define a steady baseline state, w, as

⟨Ni(w, t)⟩=−F i, (A18)

where F i is constant in time. Deviations from the baseline satisfy

∂

∂t
⟨w′

i⟩= ⟨Ni(w+w′, t)−Ni(w, t)⟩+F ′
i (t), (A19)

where F ′
i (t) is the time-varying component of the forcing. We then use a first-order Taylor expansion around w to write990

∂

∂t
⟨wi⟩ ≃

∂Ni

∂wj

∣∣∣∣
w

⟨w′
j⟩+F ′

i (t) = Lij⟨w′
j⟩+F ′

i (t), (A20)

where the derivative term, ∂Ni

∂wj
, can be pulled out of the expectation because the baseline state is not stochastic. To conclude,

we rewrite this with ⟨w′
i⟩= T (xi, t) and drop the discrete notation for space

∂

∂t
T (x, t) = L(x,x′)T (x, t)+F (x, t). (A21)
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A5 FDT relationship to Fokker-Planck and Koopman995

Here we show how the Fluctuation Dissipation Theorem (FDT) relates to the Fokker-Planck operator. The result shows that a

linear response function can be computed directly from the forward operator of the unperturbed system.

Let w represent our full system state. Consider an equation of the form

∂w

∂t
= f0(w, t)+ f1(w, t)+ εξ(t), (A22)

where f0 governs the unperturbed system dynamics and f1 governs the perturbed system dynamics. The Fokker-Planck equa-1000

tion corresponding to this is

∂tp+∇ ·
[
(f0 + f1)p−

ε2

2
∇p

]
= 0. (A23)

Without loss of generality, we decompose p= p0 + p1, where p0 satisfies

∂tp0 +∇ ·
(
f0p0 −

ε2

2
∇p0

)
= 0. (A24)

Then p1 must exactly satisfy,1005

∂tp1 +∇ ·
(
f0p1 + f1p0 + f1p1 −

ε2

2
∇p1

)
= 0 (A25)

The perturbation variables (f1 and p1) form a higher order term that we neglect, giving

∂tp1 +∇ ·
(
f0p1 −

ε2

2
∇p1

)
≈−∇ · (f1p0). (A26)

The solution to this is

p1(w, t) =−e−F0t∇ · (f1p0), (A27)1010

assuming that p1(w,0) = 0, i.e. there is no perturbation at t= 0, and F0 is the unperturbed (time-independent) Fokker-Planck

operator. Multiplying through by an arbitrary statistical quantity of the state, g(w), and integrating with respect to w then

yields the first order perturbation in g(w)∫
g(w)p1(w, t)dw =

∫
g(w)e−F0t∇ · (f1p0)dw. (A28)

The quantity on the left hand side is the expected value of the perturbed statistical quantity as a function of time. The right1015

hand side is the cross correlation of the statistical quantity, g, with h≡∇ · (f1p0)/p0 with respect to the unperturbed system.

Noting the Koopman operator is the adjoint of the Fokker-Planck operator gives(
e−F0t

)∗
= e−K0t, (A29)

where ∗ indicates the adjoint (conjuate transpose in finite dimensions) and F∗ =K, giving an expression for the response

function in terms of the Koopman operator.1020
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Alternatively, we can connect the Fokker-Planck operator to the FDT through the score function. Consider the score function

of the state given by

s(w) =∇w lnp0(w). (A30)

For a small, instantaneous perturbation applied at t= 0, the linear response of the mean field at a lag t is given by

R(t) =−⟨g(wt)s(w0)⟩p0 , (A31)1025

where the angle brackets denote an average over the stationary ensemble. We express this correlation with a joint probability

density as

R(t) =−
∫ ∫

p(w0,wt)g(wt)s(w0)dwt dw0, (A32)

Using Bayes’ theorem, we factor the joint probability density as

p(w0,wt) = p0(w0)p(wt|w0), (A33)1030

where p(wt|w0) is the conditional probability from w0 to wt. For dynamics governed by the Fokker-Planck operator, F , we

have

p(wt|w0) = eFtδ(w0 −wt). (A34)

We then insert this expression into Equation A32 and integrate over wt:

R(t) =−
∫
p0(w0)e

Ftg(w0)s(w0)dw0. (A35)1035

Therefore, the linear response function can be obtained by propagating the unperturbed field with eFt and correlating the result

with the stationary score function.

Appendix B: Regularization for response functions

Estimating a response function from noisy data requires using deconvolution to invert an often ill-conditioned matrix. We

choose to model the noise in our field of interest, g(W), with a Gaussian noise term: ε∼N (0,σ2I). Rather than applying an1040

ad-hoc smoothing algorithm, we cast the problem in a Bayesian framework, placing a Gaussian prior on the response matrix:

R∼N (0,λ2I). Our measurement model is therefore

g(W) = FR+ ε. (B1)

We have dropped ∆t and the spatial pattern for conciseness, but this analysis can easily be repeated including those terms.
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Under this probabilistic model, we frame the task of estimating R as finding the vector that maximizes the response function1045

probability given the observable data we have collected, i.e. p(R|g(W)). This term is called the maximum a posteriori (MAP).

As it is more convenient to work with log probabilities, we recast this problem as

max
R

logp(R | g(W)). (B2)

Using Bayes theorem, maximizing the log-posterior,

logp(R | g(W)) =− 1

2σ2
∥g(W)−FR∥2 − 1

2λ2
∥R∥2 +const, (B3)1050

is equivalent to solving

min
R

∥g(W)−FR∥2 +α∥R∥2, α= σ2/λ2. (B4)

Thus ridge regression is equivalent to placing a Gaussian prior on the response function and assuming that the data we collect

are corrupted by Gaussian noise.

To avoid making an arbitrary choice for our noise and prior variance hyperparameters parameters, σ2 and λ2, we propose1055

to compute their maximum likelihood estimates under the distribution of the field of interest. We maximize the marginal

likelihood evidence,

p(g(W) | σ2,λ2) =

∫
p(g(W) |R,σ2)p(R,λ2)dR (B5)

=N (g(W | 0,Σ) , (B6)

with covariance Σ= σ2I+λ2FFT . Maximizing the log-evidence,1060

−1

2

(
log |Σ|+ g(W)TΣ−1g(W)

)
+const, (B7)

has no closed-form solution for a general F, so we determine σ2 and λ2 numerically.

Appendix C: Analytic examples

In this appendix, we use a 1D Ornstein-Uhlenbeck (OU) process to analytically derive the Fokker-Planck operator, the Koop-

man operator, the eigenpairs of both operators, and the linear response function for the system obtained in two ways: (1) by1065

directly solving the forced stochastic differential equation (SDE) and (2) by correlation with the score function.

C1 Fokker-Planck and Koopman operator derivation

We define the OU SDE as

dwt =−wtdt+
√
2dWt, (C1)
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where wt is the statistical field of interest and Wt is a Wiener process. The drift coefficient, −wt, relaxes the state toward zero,1070

while the diffusion coefficient,
√
2, gives a unit variance.

We write the Fokker-Planck equation corresponding to this OU process directly:

∂

∂t
p(w,t) =

∂

∂w
(wp)+

∂2

∂w2
p, (C2)

where p(w,t) is the probability density function of the field. The stationary solution of this expression is the standard normal

probability density:1075

p0(w) =
1√
2π
e−

w2

2 . (C3)

From the previous result, we explicitly write the Fokker-Planck operator governing the evolution of the probability density

as

F(·) = ∂

∂w

[
w(·)+ ∂

∂w
(·)

]
. (C4)

To find the eigenfunctions, ϕ(w), with Fϕ(w) = λϕ(w), we introduce the ansatz ϕ(w) = h(w)e−
w2

2 , giving1080

h′′(w)−wh′(w)−λh(w) = 0, (C5)

whose solutions are Hermite polynomials, Hn(w), with eigenvalues λ=−n for n= 0, 1, 2, . . . .

C2 Response function via direct diagnosis

Adding a deterministic forcing, F (t), to our OU process gives

dyt = (−yt +F (t))dt+
√
2dWt. (C6)1085

Taking the expected value of this and assuming ⟨y(0)⟩= 0 gives

d

dt
⟨y⟩=−⟨y⟩+F (t), (C7)

whose solution is given by

⟨y(t)⟩=
t∫

0

e−τF (t− τ)dτ, (C8)

where the response function is R(t) = e−t for t≥ 0.1090

C3 Response function via correlation with score function

The stationary score function is given by

s(w) =∇w lnp0(w) =−w, (C9)
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where we can make this simplification since the stationary probability distribution is given by a standard normal.

The Fluctuation Dissipation Theorem predicts1095

R(t) =−⟨w(t)s(w(0))⟩= e−t, (C10)

which agrees exactly with the direct solution above.
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