The authors make both conceptual and methodological contributions to the emulator
literature. Conceptually, they frame the climate system as a stochastic process whose
evolution can be described either through probability densities or statistical moments,
using operator theory and linear response. A key contribution is their demonstration of
how different emulation techniques connect to operator and response frameworks,
highlighting a current gap: the underexplored role of operator-based emulators.
Methodologically, they implement six emulation techniques and evaluate their skill on
toy climate models designed to test memory effects, hidden variables, internal
variability, and nonlinearities.

Overall, | find the contribution meaningful. Emulator development has so far been
largely driven by immediate data needs, and the field lacks a unifying conceptual
baseline. This paper takes an important step toward such a baseline and clarifies how
approaches from other disciplines fit into the emulator literature. | also find the
discussion of pattern scaling valuable, as it helps delineate the conditions under which
this widely used technique succeeds or fails.

| see some room for improvement, particularly regarding structure and clarity. Below, |
organize my comments along three dimensions: the theoretical framework, the
connection between emulators and theory, and the experimental design. Each section
starts with a summary of what | think the paper said followed by specific comments.
Feel free to use (or ignore) everything as you see fit.

Theoretical groundwork

The paper frames the climate system as a stochastic process whose evolution over time
can be described using stochastic differential equations (SDEs). This description allows
the dynamics to be restated in terms of operators, which can act either on the probability
density (Perron-Frobenius/Fokker—Planck operator) or on observables (Koopman
operator). Observables include, but are not limited to, the moments of the distribution
(mean, variance, etc.). The two operators are dual: the Fokker-Planck view evolves the
density and integrates against the observable to obtain expectation values, while the
Koopman view evolves observables directly, with expectations computed with respect
to the initial distribution. The operator view allows the problem to be restated as an
eigenproblem (e.g., Fokker—Planck view = eigenfunctions are modes of probability
densities and eigenvalues represent decay rates). And linear response theory is
essentially about considering perturbations to they system and expressing them in terms
of solutions to the unperturbed system. More general than the fluctuation-dissipation
theorem (FDT) presented in the paper, would be Ruelle’s response theory (not
mentioned) as it applies to chaotic, non-equilibrium systems. | am not an expert on
SDEs, but found the concepts familiar from quantum mechanics (Schrodinger picture vs.
Heisenberg picture, Hamiltonian generators, perturbation theory).

Comments / Suggestions:

1. Framing & readability: | found the theoretical framing very helpful and intuitive,
especially the explanations around L.145 ff. To make it more accessible, | suggest
separating the conceptual groundwork from the emulation idea:

- Introduce a dedicated “Theoretical Foundation” section to present the
stochastic framework and operator duality independently of the emulation



target. | think this would help establishing a common baseline first and to invite
readers to only read the part they are interested in.

- Then have a section “Connecting Emulators to Theory” where you introduce
what an emulator is meant to do (current 2.2).

- Finally, present “Experiments/Applications” (current 2.3 + 3).

2. SDE context: As | understood, Eq. 1 is a special case derived by Hasselmann under
assumptions such as time-scale separation between fast (weather) and slow
(climate) variables, stationarity of the fast system, and viewing fast processes as
random forcing. A brief explanation of these conditions and the meaning of each
term (e.g., the white noise term representing aggregated fast-variable effects) would
aid clarity.

3. Equation consistency: In Fig. 2 you write aa_v: =N(w,F) + e€while Eq. 2 s Z—f =
N(w) + F(t) + €€. These are not equivalent if feedback parameters depend on
forcing. | don’t quite understand which formulation is used when and why?

4. FDT introduction: Before directly introducing linear response theory via the FDT
(L.219 ff.), an intermediate step would help:

- Define an unperturbed generator K, and perturbation, 6K, so K = K, + 6K

- Then the perturbed expectation value of an observable gis (g)P*"""™** =

(90 +8(g) +0(6?).
- Fromthere, Ruelle’s response theory provides the general solution, with FDT as
the special equilibrium case (Eq. 12)

Connecting emulators to the theoretical groundwork

Earth system models generate data that implicitly obeys Eq. 1 (or its operator-based
equivalents), but they do not provide us with the exact operators or their solutions.
Instead, we observe samples, and the emulator’s task is to approximate either the full
distribution or selected observables from these samples. The key conceptual
contribution of the paper is to connect emulator-based approaches to operator and
response formulations. Modern probabilistic models such as Bayesian inference or
diffusion models are naturally connected to the state-based view (Fokker-Planck). For
example, diffusion models learn a score function (the gradient of the log density), which
directly appears in the Fokker-Planck operator. From this perspective, such emulators
can be seen as approximating the Fokker—Planck operator, and thus as providing an
entry point to linear response theory: score-based response functions are essentially
obtained by applying linear response but replacing the Fokker—Planck operator with the
learned score. Similarly, emulators that target specific observables (e.g., the mean of
the distribution) connect to the Koopman operator and can therefore be framed within
linear response theory as well. The authors explicitly work out these connections for six
emulation techniques, focusing on temperature anomalies, and discuss the errors
each emulator makes in approximating the underlying operators.

Comments / Suggestions:
1. Clarity and structure:
- This conceptual bridge between emulators and operator theory is central to your
paper. | recommend making it an independent section that explicitly highlights



these links and their implications for emulator errors (see comment on Framing
in the previous section)

- An additional table or expanded version of Table 1 would be very helpful. It could
summarize pros/cons of each approach, e.g. the computational speed of
pattern scaling vs. its structural biases, or the expressiveness of score-based
emulators vs. challenges in accessibility and training. In addition, the
conncetion of Table 1 to Fig. 2 could be strengthened by adding a column called
Emulator type (or adding brackets) that show Method | belongs to Pattern
Scaling + Extensions; Method Il + IV are impulse response emulators and Method
V + VI to Operator-Based emulation

- Figure 1 and Appendix A1 are excellent in motivating the error sources and in
giving an example of how your framework helps identifying them .

2. Data expectations: When first reading Section 2.2, | expected the framework to be
applied to CMIP6 data (reinforced by Fig. 1). It only became clear later.

3. Assumptions in pattern scaling vs. impulse response vs. operator-based
modelling:

- InL. 268 & 299 ff: you righty point out that pattern scaling assumes time-
invariance and quasi equilibrium and then mention equilibrium conditions in L.
314 ff. again in terms of FDT. | found the mentioning of two types of equlibrium
conditions a bit fuzzy upon first reading and | think it wuld make sense to be a bit
more explicit

- InL. 440 ff. you introduce operator-bsed emualtors as the most general class.
This makes sense because the previously introduced emulators have some
equilibrium assumptions. | feel like the generalisability of this emulator-based
framework could be highlighted a bit more; consider making the assumptionsin
Fig. 2 (arrow from 3b to 3d) more explicit

4. Conclusions: Your reflections in L. 838 ff. are supper fitting. For me, the theoretical
contributions were the most compelling part of the paper, since many existing
studies implement emulators more naively. As you argue, the lack of a conceptual
baseline makes it hard to integrate insights across disciplines, and | would
encourage you to highlight this contribution more strongly throughout the
manuscript.

Experimental approach (sources of error)

The authors employ four simple climate models (a two-box model, a three-box model, a
noisy box model, and a cubic Lorenz system) and drive each with four structurally
distinct forcing pathways (abrupt, transient high-emissions, plateau, and overshoot).
For each experiment, they train their emulators on data from one scenario and test
them against all other scenarios, thereby comparing performance across settings. The
experimental design is deliberately simple: it targets errors arising from dynamical
features such as memory, hidden variables, noise, and nonlinearities, rather than
errors linked to spatial heterogeneity. This choice has clear advantages—the box-model
experiments are transparent, reproducible, and well-suited for stress-testing emulator
failure modes—but it also carries disadvantages, as spatial patterns are not
represented and emulator performance is reduced to a single aggregated metric across
boxes.



Comments / Suggestions:

1.

@

Data expectations: Reiterating the previous point. Initially, | found the experimental
set-up somewhat confusing, as | expected the tests to involve spatially resolved
ESM data. The title, abstract, and introduction explicitly mention ESMs; Fig. 1 also
presents spatially resolved data; and in Section 2.2 the term “spatial” led me to
expect an evaluation of spatial error. In practice, however, the experiments are
based on box models with at most three degrees of “spatial” resolution. Applying
your framework to toy models is, in my view, valuable—as it provides a controlled
setting for isolating and examining specific effects—but | think this would be clearer
if explicitly framed as a proof-of-concept.

Averaging of results: The data only ever shows a single evaluation score, while
sometimes the models have multiple boxes. Do you average across boxes?

Table 6 summarizes the experimental findings well.

| appreciated the conclusionsin L. 816 ff.

Other minor suggestions
Fig. 2:

o Add areference to Table 1 to the description (helpful for understanding the
boxes on the right given you refer to Fig.2 already in L.77, but mention the
Methods I-VI only from L.115 onwards)

o Whatis the difference between solid and dashed arrows (e.g., going from 2b
to 3b as opposed to 3b to 3d)?

L. 759: Non-linearities as opposed to nonlinearities throughout the remainder of the
manuscript



