Author response to RC2 for “A framework for assessing and understanding sources of
error in Earth System Model emulation”
By Christopher B. Womack et al.

We first thank the two anonymous reviewers for their constructive comments and careful
engagement with our substantial manuscript. Their effort has helped us improve the
framing, quality, and clarity of our contribution.

We now respond to RC2, which is reproduced in black text below. Our responses follow
immediately in red text, and any additions to the manuscript are included in italic red
text.

Anonymous Referee #2

The authors make both conceptual and methodological contributions to the emulator
literature. Conceptually, they frame the climate system as a stochastic process whose
evolution can be described either through probability densities or statistical moments,
using operator theory and linear response. A key contribution is their demonstration of
how different emulation techniques connect to operator and response frameworks,
highlighting a current gap: the underexplored role of operator-based emulators.
Methodologically, they implement six emulation techniques and evaluate their skill on
toy climate models designed to test memory effects, hidden variables, internal
variability, and nonlinearities.

Overall, | find the contribution meaningful. Emulator development has so far been
largely driven by immediate data needs, and the field lacks a unifying conceptual
baseline. This paper takes an important step toward such a baseline and clarifies how
approaches from other disciplines fit into the emulator literature. | also find the
discussion of pattern scaling valuable, as it helps delineate the conditions under which
this widely used technique succeeds or fails.

| see some room for improvement, particularly regarding structure and clarity. Below, |
organize my comments along three dimensions: the theoretical framework, the
connection between emulators and theory, and the experimental design. Each section
starts with a summary of what | think the paper said followed by specific comments.
Feel free to use (or ignore) everything as you see fit.

Theoretical Groundwork



The paper frames the climate system as a stochastic process whose evolution over time
can be described using stochastic differential equations (SDEs). This description allows
the dynamics to be restated in terms of operators, which can act either on the
probability density (Perron—Frobenius/Fokker—Planck operator) or on observables
(Koopman operator). Observables include, but are not limited to, the moments of the
distribution (mean, variance, etc.). The two operators are dual: the Fokker—Planck view
evolves the density and integrates against the observable to obtain expectation values,
while the Koopman view evolves observables directly, with expectations computed with
respect to the initial distribution. The operator view allows the problem to be restated as
an eigenproblem (e.g., Fokker—Planck view = eigenfunctions are modes of probability
densities and eigenvalues represent decay rates). And linear response theory is
essentially about considering perturbations to they system and expressing them in
terms of solutions to the unperturbed system. More general than the
fluctuation-dissipation theorem (FDT) presented in the paper, would be Ruelle’s
response theory (not mentioned) as it applies to chaotic, non-equilibrium systems. | am
not an expert on SDEs, but found the concepts familiar from quantum mechanics
(Schrédinger picture vs. Heisenberg picture, Hamiltonian generators, perturbation
theory).

Comments / Suggestions:

1. Framing & readability: | found the theoretical framing very helpful and intuitive,
especially the explanations around L.145 ff. To make it more accessible, |
suggest separating the conceptual groundwork from the emulation idea:

- Introduce a dedicated “Theoretical Foundation” section to present the stochastic
framework and operator duality independently of the emulation target. | think this
would help establishing a common baseline first and to invite readers to only
read the part they are interested in.

- Then have a section “Connecting Emulators to Theory” where you introduce what
an emulator is meant to do (current 2.2).

- Finally, present “Experiments/Applications” (current 2.3 + 3).

Thank you for the thorough read and thoughtful structural comments. We agree that
explicitly separating the theoretical and experimental components of the manuscript
makes for a more streamlined reading experience. We have restructured the manuscript
as suggested, and will modify the end of the introduction to reflect these changes.

Changes to introduction (final paragraph): Section 2 first presents our theoretical
framework, highlighting that the goal of many emulation techniques is to simplify
complex climate dynamics into a linear set of modes associated with the Fokker-Planck
and Koopman operators. We then apply this framework to identify potential sources of



error within six emulation techniques, analyzing them from both a theoretical and
practical perspective (Sect. 2.3). In Sect. 3, we introduce a series of experiments using
simplified climate models and forcing scenarios designed to stress test and evaluate
each emulator; these experiments include box models and a modified version of the
Lorenz 63 system. Section 4 contains experimental results, showing that response
functions consistently outperform other emulators across potential high-error scenarios.
We conclude by discussing optimal use cases for each emulator, along with implications
for ESMs based on our pedagogical model results (Sect. 5).

2. SDE context: As | understood, Eq.1 is a special case derived by Hasselmann
under assumptions such as time-scale separation between fast (weather) and
slow (climate) variables, stationarity of the fast system, and viewing fast
processes as random forcing. A brief explanation of these conditions and the
meaning of each term (e.g., the white noise term representing aggregated
fast-variable effects) would aid clarity.

We agree, but want to draw a further distinction within the fast processes. The
stochastic term can also represent interannual variability in addition to weather. We will
add the following description around Eq. 1 to clarify these points.

Changes around Eq. 1: To understand the statistics of the system and how they may
change over time, we follow Hasselmann (1976) in modeling the evolution of a single
climate variable using a stochastic differential equation (SDE) (Fig. 2, box 1). We
assume time-scale separation between slow climate processes (e.g., ocean,
cryosphere, land vegetation) and other, faster sources of variability.

In this framework, the climate is regarded as the statistical mean of a process that
appears stochastic in individual realizations. We treat variations occurring either on
timescales shorter than climate change (such as short-term weather fluctuations and
interannual variability) or in different realizations as stationary, stochastic noise. This
allows us to parameterize their influence on the statistics of the chaotic system:

e = Nw) + F(o) + (),
where w is the climate variable (or set of variables) of interest (e.g. temperature), F is an
external forcing (e.g. CO,), IV is the operator governing the evolution of that variable

(under slow climate processes), ¢ is a white noise term (aggregated fast effects,
including weather and interannual variability), and € is the noise standard deviation.

3. Equation consistency: In Fig. 2 you write % = N(w, F) + e€while Eq. 2 is

w

5 = N(w) + F(t) + €& These are not equivalent if feedback parameters



depend on forcing. | don’t quite understand which formulation is used when and
why?

Thank you for catching this. Eq. 2 (and the discussion that follows) has the proper
formulation and the formulation in Fig. 2 is a typo. We will correct this in an updated
version of the figure (see end of document).

4. FDT introduction: Before directly introducing linear response theory via the FDT
(L.219 ff.), an intermediate step would help:
- Define an unperturbed generator KO and perturbation, 6K, so K = KO + 8K

- Then the perturbed expectation value of an observable g is
0 2
(9), =(9)," + 8(g), + 0(8").

- From there, Ruelle’s response theory provides the general solution, with FDT as
the special equilibrium case (Eq. 12)

perturbed

We agree that this helps connect the FDT to other topics in the manuscript, and have
added this intermediate step prior to introducing the FDT.

Changes to (newly labeled) Sect. 2.2: To make the relationship between response
theory and the Koopman operator explicit in the context of emulation, we first consider
the system's dynamics to be governed by an operator, K. When the system is subject to
a small external perturbation, this operator can be split into an unperturbed component,
K . and the perturbation itself, 8K, such that K = K 0 + 8K. The expectation value of a

statistical quantity g under the perturbed dynamics can be approximated to first order as
the sum of its unperturbed evolution, g)O, and a linear correction, §(g).

A general solution for this linear correction is provided by Ruelle's response theory. For
systems in a statistical steady state (i.e., at equilibrium), this framework simplifies to the
Fluctuation Dissipation Theorem (FDT) (Lucarini et al., 2025). The FDT describes how a
system (e.q. the Earth system) responds to perturbations (anthropogenic CO,
emissions) relative to some baseline state (preindustrial conditions). The change in the
ensemble average field, §(g), is obtained by convolving a forcing, F(t), with the
system's response function, R(t)

8(g) = | R(S)F(t — s)ds.

Formally, the response function is calculated by computing the temporal autocorrelation
between the statistical quantity g and the system's score function, s,

R(@®) = (gt = s’ = 0)),



where the score function of the steady-state distribution encodes how a small
perturbation alters the system's statistics; see Giorgini et al. (2024, 2025b) for more
details. The connection to Koopman operator theory is that temporal autocorrelations
are expressed explicitly in terms of the Koopman operator, see Zagli et al. (2024).

Connecting emulators to the theoretical groundwork

Earth system models generate data that implicitly obeys Eq. 1 (or its operator-based
equivalents), but they do not provide us with the exact operators or their solutions.
Instead, we observe samples, and the emulator’s task is to approximate either the full
distribution or selected observables from these samples. The key conceptual
contribution of the paper is to connect emulator-based approaches to operator and
response formulations. Modern probabilistic models such as Bayesian inference or
diffusion models are naturally connected to the state-based view (Fokker—Planck). For
example, diffusion models learn a score function (the gradient of the log density), which
directly appears in the Fokker—Planck operator. From this perspective, such emulators
can be seen as approximating the Fokker—Planck operator, and thus as providing an
entry point to linear response theory: score-based response functions are essentially
obtained by applying linear response but replacing the Fokker—Planck operator with the
learned score. Similarly, emulators that target specific observables (e.g., the mean of
the distribution) connect to the Koopman operator and can therefore be framed within
linear response theory as well. The authors explicitly work out these connections for six
emulation techniques, focusing on temperature anomalies, and discuss the errors each
emulator makes in approximating the underlying operators.

Comments / Suggestions:

1. Clarity and structure:

- This conceptual bridge between emulators and operator theory is central to your
paper. | recommend making it an independent section that explicitly highlights
these links and their implications for emulator errors (see comment on Framing in
the previous section)

- An additional table or expanded version of Table 1 would be very helpful. It could

- summarize pros/cons of each approach, e.g. the computational speed of pattern
scaling vs. its structural biases, or the expressiveness of score-based emulators
vs. challenges in accessibility and training. In addition, the conncetion of Table 1
to Fig. 2 could be strengthened by adding a column called Emulator type (or
adding brackets) that show Method | belongs to Pattern Scaling + Extensions;
Method Il + IV are impulse response emulators and Method V + VI to
Operator-Based emulation



- Figure 1 and Appendix A1 are excellent in motivating the error sources and in
giving an example of how your framework helps identifying them .

We agree that expanding Table 1 would improve its utility and can also help to clarify its
connection to Fig. 2. We will add an additional column to highlight key pros/cons of each
approach and clarify which emulator typology each method belongs to (see end of
document).

2. Data expectations: When first reading Section 2.2, | expected the framework to
be applied to CMIP6 data (reinforced by Fig. 1). It only became clear later.

We agree that there is a framing issue around this point. Based on this comment and
similar comments from Reviewer #1, we will make changes to the abstract and
introduction to clarify our contribution.

Ad(dition to abstract: To support our theoretical contributions, we provide practical
implementation details for each technique, along with discussion on the relative utility of
these emulation methods. We evaluate emulator performance using simplified climate
models, including box models and a modified version of the Lorenz 63 model, across a
series of experiments designed to highlight different potential sources of error.

Changes to the final paragraph of the introduction are given on p.2-3.

We will also include the following section as an addition to the discussion, titled
Implications for ESMs, to make the connections between our theoretical and
experimental results to ESMs explicit.

Implications for ESMs: While the lack of a common conceptual baseline has historically
hindered comparisons between emulator classes, our framework takes an important
step towards resolving this. Efforts such as ClimateBench, which provide a common
training and evaluation benchmark, have been useful to that end (Watson-Parris et al.,
2022), but emulator structural differences prevent this framework from being applied to
all existing emulation techniques. Additionally, the high computational burden of running
scenarios beyond those in the CMIP archive (for training or evaluation), prevents
rigorous assessment of emulator capability (e.qg., emulating the impact of individual
forcings) and generalizability (accuracy beyond ScenarioMIP). Results from
experiments such as the Detection and Attribution MIP (DAMIP) and Regional Aerosol
MIP (RAMIP) can help fill these gaps (Gillett et al., 2016, Wilcox et al., 2023), but the
field of ESM emulation is currently data-constrained. Our theoretical framework provides
value in this data-limited setting, as it allows us to evaluate the assumptions present in



many common emulators. Our results illustrate the potential sources of error different
emulator structural assumptions invite, giving us tools to assess and improve emulation
techniques independently of ESM results. As ESM outputs improve with CMIP7 and
beyond, this framework can help ensure emulators are prepared to train on those new
results.

Our pedagogical experiments provide a useful tool to isolate and examine individual
sources of error when emulating ESMs (Fig. 1). Though our simplified models are
limited in that they lack much of the complexity of full-scale ESMs, our experiments
highlight that emulator errors can be proactively resolved through structural changes,
regardless of the parent model. For example, our results further support the growing
body of literature on the utility of response functions (Freese et al., 2024, Womack et al.,
2025; Winkler and Sierra, 2025). Response functions offer improvements over
traditional pattern scaling, particularly when considering memory effects in
decision-relevant scenarios. They may also emulate longer (post-2100) scenarios by
accounting for regional pattern shifts, though longer ESM runs, such as the extensions
proposed in ScenarioMIP for CMIP7, are required to test this (Van Vuuren et al., 2025).
Existing emulators of ESMs may also benefit from incorporating response functions, c.f.,
recent work into hybrid emulation using generative machine learning methods in
addition to pattern scaling (Bouabid et al., 2025).

Several promising emulation techniques explored here, including the Fluctuation
Dissipation Theorem (FDT), Dynamic Mode Decomposition (DMD), and Extended DMD
(EDMD), have seen uses in climate science but have yet to be applied directly as
emulators of ESM outputs as defined by Tebaldi et al. (2025). An intermediate step for
either the FDT or EDMD and DMD may be to first emulate an EMIC, helping determine
useful training scenarios without the cost of a full ESM. Our results suggest further
research into these techniques is warranted, as they may represent more complex
dynamics than other methods. In this context, the FDT stands apart as the most
promising technique for emulating general dynamical systems, as evidenced by its skill
in this and other recent work (Giorgini et al., 2025b). However, using the FDT to derive
response functions through perturbations requires a full initial condition ensemble for
every perturbed grid cell/region (Lucarini et al., 2017, Lembo et al., 2020), similar to the
Green’s Function MIP (Bloch-Johnson et al., 2024), and is likely prohibitively expensive
for full ESMs. The score-based FDT (Sect. 2.3) provides a remedy, using statistical
learning methods to learn the score function and thus the system response (Giorgini et
al., 2025b). Regardless of the derivation method, our results suggest response
functions are the dominant emulation technique both in terms of accuracy and
interpretability.



Most work studying climate emulation focuses on developing and implementing new
approaches in an application-specific manner. Our results show the utility of an
operator-based framework for systematic analysis and comparison of climate emulation
techniques. The main benefit of this framework is providing a toolkit for understanding
trade-offs between emulator complexity and performance while connecting emulation
techniques to fundamental principles of statistical mechanics and stochastic systems.
We find that memory effects, internal variability, hidden variables, and nonlinearities are
potential error sources, and that response function-based emulators consistently
outperform other methods, such as pattern scaling and DMD, across all experiments.
Emulator performance varies by experimental setup, particularly through the choice of
training data, and further work is required to fully characterize these effects. This
framework currently relies on simple experiments, and further work is needed to
determine if operator-based methods like EDMD can be practically realized to emulate
nonlinear processes in full-scale climate models. Our analysis also highlights the FDT’s
potential for deriving robust, physically-interpretable response functions, though its
computational cost is a potential barrier. As interpretability is an ongoing discussion in
the emulator community, investing resources in physically-grounded methods like the
FDT may go a long way towards increasing the utility of emulators not just for
emulation, but for linear system analysis.

3. Assumptions in pattern scaling vs. impulse response vs. operator-based
modelling:

- InL. 268 & 299 ff: you righty point out that pattern scaling assumes time-
invariance and quasi equilibrium and then mention equilibrium conditions in L.
314 ff. again in terms of FDT. | found the mentioning of two types of equlibrium
conditions a bit fuzzy upon first reading and | think it wuld make sense to be a bit
more explicit

- In L. 440 ff. you introduce operator-bsed emualtors as the most general class.
This makes sense because the previously introduced emulators have some
equilibrium assumptions. | feel like the generalisability of this emulator-based
framework could be highlighted a bit more; consider making the assumptions in
Fig. 2 (arrow from 3b to 3d) more explicit

On the equilibrium condition of pattern scaling, we agree that this can be more explicit
and will make the following changes.

Changes to final paragraph of 2.3.1 Pattern scaling and its immediate extensions: In
Appendix A1 we show that pattern scaling has two irreducible sources of error when
trained on a ScenarioMIP-like forcing: (1) an equilibrium term, where pattern scaling
converges to the wrong steady-state value when forcing plateaus and (2) a memory



term, where pattern scaling breaks down when the system responds slowly compared
to changes in the forcing. The former stems from the mismatch between training pattern
scaling in a transient regime and attempting to use it to project an equilibrium condition.
The latter cannot be accounted for within the pattern scaling framework, motivating the
need for methods that explicitly capture memory.

On the generalizability of operator-based emulators, we agree, and will add the
following discussion to address this and the limitations of data-driven methods to
approximate these operators.

Ad(dition to discussion: While EDMD and DMD attempt to approximate the Koopman
operator, they are simplified representations and in many cases do not closely
approximate the true operator. Despite this, the Koopman and Fokker-Planck operators
provide the most useful theoretical basis as they offer a way to directly link disparate
forms of emulators. These techniques have the potential to be highly generalizable to
scenarios beyond the training data as they can reproduce the system's true dynamics,
but further research is required to determine the potential of using operator-based
methods directly for climate emulation.

We will also include a legend in Fig. 2 to help clarify assumptions (see end of
document).

4. Conclusions: Your reflections in L.838 ff. are supper fitting. For me, the
theoretical contributions were the most compelling part of the paper, since many
existing studies implement emulators more naively. As you argue, the lack of a
conceptual baseline makes it hard to integrate insights across disciplines, and |
would encourage you to highlight this contribution more strongly throughout the
manuscript.

We are glad the value of a shared conceptual framework resonated with the reviewer.
We also agree this contribution can be more explicit, and will emphasize this point.

From paragraph one of Implications for ESMs: Our theoretical framework provides value
in this data-limited setting, as it allows us to evaluate the assumptions present in many
common emulators. Our results illustrate the potential sources of error different
emulator structural assumptions invite, giving us tools to assess and improve emulation
techniques independently of ESM results. As ESM outputs improve with CMIP7 and
beyond, this framework can help ensure emulators are prepared to train on those new
results.



Experimental approach (sources of error)

The authors employ four simple climate models (a two-box model, a three-box model, a
noisy box model, and a cubic Lorenz system) and drive each with four structurally
distinct forcing pathways (abrupt, transient high-emissions, plateau, and overshoot). For
each experiment, they train their emulators on data from one scenario and test them
against all other scenarios, thereby comparing performance across settings. The
experimental design is deliberately simple: it targets errors arising from dynamical
features such as memory, hidden variables, noise, and nonlinearities, rather than errors
linked to spatial heterogeneity. This choice has clear advantages—the box-model
experiments are transparent, reproducible, and well-suited for stress-testing emulator
failure modes—but it also carries disadvantages, as spatial patterns are not represented
and emulator performance is reduced to a single aggregated metric across boxes.

Comments / Suggestions:

1. Data expectations: Reiterating the previous point. Initially, | found the
experimental set-up somewhat confusing, as | expected the tests to involve
spatially resolved ESM data. The title, abstract, and introduction explicitly
mention ESMs; Fig. 1 also presents spatially resolved data; and in Section 2.2
the term “spatial” led me to expect an evaluation of spatial error. In practice,
however, the experiments are based on box models with at most three degrees
of “spatial” resolution. Applying your framework to toy models is, in my view,
valuable—as it provides a controlled setting for isolating and examining specific
effects—but | think this would be clearer if explicitly framed as a proof-of-concept.

In light of this and comments from Reviewer #1, we agree that we need to reframe our
contribution and clarify the role the simplified climate models play while addressing their
limitations in representing more complex climate processes. We will make changes
throughout to state this explicitly and clarify that our work focuses on simplified
problems, such as the previously stated changes to the abstract and introduction.

From paragraph two of Implications for ESMs: Our pedagogical experiments provide a
useful tool to isolate and examine individual sources of error when emulating ESMs
(Fig. 1). Though our simplified models are limited in that they lack much of the
complexity of full-scale ESMs, our experiments highlight that emulator errors can be
proactively resolved through structural changes, regardless of the parent model.

2. Averaging of results: The data only ever shows a single evaluation score, while
sometimes the models have multiple boxes. Do you average across boxes?



Yes, we average this score across boxes as relative performance across boxes was
consistent for all cases analyzed. We will add a comment to clarify this.

Addition to the introductory paragraph of Results section: In the case of models with
multiple regions (boxes), we present only a single evaluation score as relative
performance across boxes was consistent for all cases analyzed.

3. Table 6 summarizes the experimental findings well.
4. | appreciated the conclusions in L.816 ff.

Other minor suggestions
- Fig. 2:
e Add a reference to Table 1 to the description (helpful for understanding the
boxes on the right given you refer to Fig.2 already in L.77, but mention the
Methods I-VI only from L.115 onwards)

We agree, and will add a reference to Table 1 in the description of Fig. 2.

e What is the difference between solid and dashed arrows (e.g., going from
2b to 3b as opposed to 3b to 3d)?

The solid arrows indicate a direct step or result, whereas the dashed arrows indicate a
theoretical connection. We have added a legend to Fig. 2 to help clarify this along with
the color-coding in the figure (updated Fig. 2 included at the end of this document).

- L. 759: Non-linearities as opposed to nonlinearities throughout the remainder of
the manuscript

This is an artifact of LaTeX line breaks, and we will modify the document to ensure this
line break doesn’t occur.



Updated Fig. 2:
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Updated Table 1:

Table 1. Summary of emulation techniques discussed in this work including a short description and their key assumptions; a conceptual

overview of these methods can be found in Fig. 2. Fluctuation Dissipation Theorem assumptions are shared with deconvolution and modal

fitting emulation techniques. All techniques except the Fluctuation Dissipation Theorem additionally assume no hidden variables.

Technique

Short Description

Key Assumptions

Pros / Cons

Method I: Pattern Scaling
(Pattern Scaling and its Im-
mediate Extensions)

Method II:
Dissipation Theorem (Dy-

Fluctuation
namical System/Impulse
Response Theory)
Method III: Deconvolution
(Dynamical System/Impulse
Response Theory)

Method IV: Modal Fitting
(Dynamical System/Impulse
Response Theory)

Method V: Dynamic Mode
(DMD)
(Operator-based Emulation)

Decomposition

Method VI: Extended DMD

(Operator-based Emulation)

Time-invariant pattern based on

global mean temperature

Response  functions  derived
through perturbation ensemble

experiments

Response functions solved for

from any general experiment

Response functions fit from any

general experiment

Approximating system dynamics

with a linear operator

Approximating system dynamics

with nonlinear basis functions

Climate is always near equilib-

rium; response is instantaneous;

fixed spatial pattern
Perturbations are small, data
come from linear response
regime

Quasi-equilibrium initial condi-

tion; influence of noise is small

Response is a decaying exponen-

tial; few significant modes

Dynamics are approx. linear;
training data capture relevant dy-

namics

Basis functions span Koopman
operator; dynamics are approx.

linear in new basis

Computationally efficient /
Structurally biased with ir-

reducible errors

Gives interpretable phys-
ical response / Requires
nonstandard, computation-

ally expensive scenarios

Applicable to any scenario /
Sensitive to noise, can give

non-physical responses

Applicable to any scenario
/ Requires initial guess, can

give non-physical responses

Gives interpretable spa-

tiotemporal  information
/ Strong assumption of
linearity

Can theoretically reproduce
any system behavior / Re-
quires selection of basis

functions




