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Abstract. Many natural ecosystems are composed of heterogeneous patches differentiated by wetness levels and vegetation 

composition, resulting in fine-scale flux patterns across the different landcovers that can be challenging to quantify. Here, we 10 

present a case study at Stordalen Mire in subarctic Sweden, where we conducted Uncrewed Aerial Vehicle (UAV) 

measurements of CO2 mole fractions and combine them with a large-eddy simulation (LES) model through a site-level 

inversion method to differentiate the flux rate signatures from different patch types. We use the LES model EULAG (EUlerian 

LAGrangian) to simulate high-resolution flow patterns and benchmark the spatial variability of modelled concentrations with 

data from UAV-based grid surveys of CO2 mixing ratio. Coupling the inversion results with eddy-covariance (EC) flux 15 

measurements for the time of the UAV flight allows quantifying net CO2 fluxes for the individual landcover types. Model 

evaluation showed an R2 up to 0.70, with model uncertainties mostly related to the transport model uncertainty and the UAV 

sampling footprint that does not evenly sample landcover types. The inversion fluxes were subsequently compared to patch-

level chamber measurements of carbon dioxide from palsa, bog, and fen, and showed a good agreement in flux patterns across 

those patch types dominating the UAV-sampled footprint. Different landcover classification schemes were considered, and 20 

results showed a consistent improvement in the model performance when further representing the ecological and hydrological 

heterogeneities. Our novel technique shows promising results in estimating landcover-type flux heterogeneity within eddy-

covariance tower footprints, thus providing a basis for upscaling of EC fluxes to a larger domain. 

1 Introduction 

Landcover heterogeneity plays a major role in modulating greenhouse gas (GHG) emissions from natural biomes, thus 25 

affecting the estimation of GHG emissions at the global and local scales (Desai et al., 2008; Ludwig et al., 2024; Premke et 

al., 2016). This heterogeneity is represented by spatial variability across ecological (e.g., vegetation type and composition), 

hydrological (e.g., wetness level, water depth, lateral flow), chemical (e.g., pH, salinity, soil properties), and microbial (e.g., 

microbial communities and corresponding niches) characteristics (Arsenault et al., 2019; Bohn et al., 2013; Hu et al., 2024; 
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Kieckbusch et al., 2006; Oloo et al., 2016), the main drivers of the carbon dynamics and consequently carbon emissions (Cao 30 

et al., 2024; Li et al., 2024). Peatlands are one of the natural ecosystems exhibiting a high spatial variability that, in some cases, 

can result in patches with typical sizes of only up to few meters having strongly different biogeochemical fingerprints. This 

mosaic composition of wetlands results in heterogeneous patterns of greenhouse gas fluxes associated with the different 

patches forming a wetland (McNicol et al., 2017; Rey-Sanchez et al., 2018; Shahan et al., 2022), thus challenging landscape-

scale quantification of landcover specific-fluxes and consequently model’s estimations of such heterogeneous ecosystems 35 

(Bohn et al., 2013; Yazbeck & Bohrer, 2023).  

Several measurement techniques can be implemented to quantify patch-level emissions of greenhouse gases. A common 

approach is to use flux chamber measurements (Pumpanen et al., 2004), where usually an episodic quantification of the flux 

from a specific patch is taken over an area hardly exceeding 1m2, noting that with the use of auto-chambers, extended timeseries 

of chamber measurement are possible (Bubier et al., 2003; Holmes et al., 2022). Chambers provide information on GHG flux 40 

rate variability across patch-types and they are useful for hotspot detection (Anthony & Silver, 2024; Ojanen et al., 2012). 

However, upscaling flux rates from plot level (0.1 - 1m) to the whole patch-scale (100 - 1000 m) is challenging due to its 

relatively small spatio-temporal scales (Morin, 2019). On the other hand, eddy-covariance (EC) towers provide an estimate of 

flux rates at a larger spatio-temporal coverage allowing flux quantification over larger footprints through producing an effective 

net flux of the mixed landscape (Baldocchi, 2014). Although EC towers provide measurements at high temporal resolution, 45 

they cannot explicitly provide a direct quantification of the patch-level flux forming the underlying landscape (Chu et al., 2021; 

Matthes et al., 2014). Although several approaches have been implemented to upscale flux observations from chamber to EC 

footprint, bridging the gap between these different scales remains challenging (Fox et al., 2008; Simpson et al., 2019)  

The emergence of Uncrewed Aerial Vehicles (UAVs) opened the door for new measurement possibilities with a potential of 

bridging this scaling gap. UAVs are commonly used for investigating landscapes at high spatial resolution, e.g., through grid 50 

surveys of hyperspectral and/or thermal imagery that can be used to derive indices for vegetation classification (Doughty & 

Cavanaugh, 2019; Zheng et al., 2022; Zhuo et al., 2024), or other surface properties; however, the use of UAVs is not restricted 

to imagery but includes meteorological variables like wind speed, temperature and gas mole fractions (Andersen et al., 2018; 

Bolek et al., 2024; Bolek & Testik, 2022; Kunz et al., 2018; Neumann & Bartholmai, 2015; Wildmann & Wetz, 2022). UAV 

platforms equipped with gas analyzers can effectively quantify emission rates from point sources such as power plants by 55 

employing mass balance or Gaussian plume inversion techniques, as they can capture the spatial variability of concentration 

enhancements at various downwind distances and altitudes (Andersen et al., 2018; Shah et al., 2020; Shaw et al., 2021). Given 

the potential of UAVs for surveying and monitoring small-scale spatial heterogeneity, integrating UAV measurements with 

EC tower data could enhance our understanding of flux variability within the tower footprint (Bou-Zeid et al., 2020; Giannico 

et al., 2018). 60 

Nevertheless, UAV inversion could also be applied to infer patch-level and land surface fluxes. Mukhartova et al. (2024) 

present a theoretical framework and application for inferring the surface distribution of GHG fluxes over a complex vegetated 

terrain using a 3D hydrodynamic forward model linking UAV observations at two different heights to surface fluxes. Pirk et 
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al., (2022) couple UAV profile measurements of temperature and relative humidity to a Large-Eddy Simulation (LES) model 

within a Bayesian optimization framework to infer surface heat fluxes, showing a good match with EC data. Wang et al. (2019) 65 

apply a top-down modeling approach coupled with a light-use efficiency model to UAV multispectral and thermal imageries 

to derive flux maps of Gross Primary Production (GPP) and evapotranspiration and other relevant variables. Other UAV-based 

approaches not involving inversion techniques but incorporating an eddy-covariance set-up showed a potential in estimating 

patch-type fluxes from heterogeneous landscapes (Pirk et al., 2024; Sun et al., 2021).  

In this study, we leverage the UAV capability of sampling grid surveys of CO2 model fraction through coupling it to high 70 

resolution transport modeling, like LES, and eddy covariance measurement to derive patch-level fluxes from a heterogeneous 

landscape. We derive a submeso-scale inversion that, after solving the steady state transport of a tracer emitted from a 

heterogeneous surface, uses UAV-measured CO2 concentration to apply a linear optimization to derive scaling factors of patch-

level fluxes. We couple these results with EC tower measurements of NEE in order to quantify flux magnitudes of each patch 

type. With this submeso-scale inversion, we need one high resolution simulation using an LES model and then perform the 75 

optimization on the time-averaged output, thus, reducing the computational resources usually associated with optimization 

frameworks. Although we apply this technique to a pilot project investigating CO2 emissions from a northern peatland formed 

of a mixed patches of palsa, bogs, and fens, this method could be applied to other heterogeneous landscapes, and is therefore 

not necessarily restricted to wetlands. 

2 Methodology 80 

2.1 Study Site 

The study site is the Stordalen mire, located in subarctic Sweden (68°21’N, 19°02’E). The site is characterized by sporadic 

permafrost and exhibits significant small-scale variation in soil moisture and vegetation types (Bäckstrand et al., 2010; 

Sjögersten et al., 2023). This thawing permafrost peatland is situated close to the shoreline of Lake Torneträsk and is encircled 

by small, shallow post-glacial lakes. It consists of elevated, drained palsa areas underlain by ice-rich permafrost, ombrotrophic 85 

wet bogs dominated by sphagnum moss, permafrost-free fens characterized by sedge vegetation, and open water ponds, both 

permanent and those formed more recently due to permafrost thaw (Varner et al., 2022). The average annual near-surface air 

temperature at the site is 1.0°C and mean annual precipitation is approximately 330 mm per year, while rising temperatures 

are expected to accelerate permafrost loss (Callaghan et al., 2013). 

2.2 Field Measurements 90 

A UAV-based set up is used to get grid surveys of CO2 mole fractions within the area of interest, which is including the 

footprint of the local ICOS EC tower (see also below). The UAV carries a TriSonica Mini 2D anemometer for measuring wind 

characteristics along with temperature, humidity, and pressure. Additionally, a LI-850 analyzer was connected to the drone 

with the sampling inlet placed adjacent to the anemometer. The analyzer measures CO2 mixing ratio with a 10-seconds 
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averaged uncertainty of +/- 0.36 ppm (Bolek et al., 2024). We use two grid-surveys of CO2 mixing ratios taken in the course 95 

of a field campaign during September 11-14 2023 at Stordalen mire (Bolek et al., 2024). The grid-survey was split into three 

areas as shown in Figure 1, with each surveyed area sampled for about 14 minutes. The surveyed area is bounded by the 

Villasjön lake to the west, and includes heterogeneous patches of palsa, bog, and fens. The UAV was configured to maintain 

a constant speed while navigating a predetermined horizontal grid pattern at a constant altitude of 10 meters. The survey began 

with flight paths aligned along the east-west axis, followed by north-south routes, ensuring that intersection points were 100 

sampled twice at different times. Given a flight speed of 4 m/s and a sampling rate of 2 Hz, the spacing between each sampling 

point, represented by black circles in Figure 1, was approximately 2 meters. After filtering and despiking, the collected data in 

each area were aggregated into 10 spatial cells along both latitude and longitude, yielding a resolution of approximately 15–

20 meters. To refine the spatial representation, the averaged data were then interpolated using the ordinary Kriging method 

(Pereira et al., 2022). Further details about UAV data collection and processing can be found in Bolek et al. (2024). 105 

 

 

Figure 1: (a) Landcover classification within the Stordalen Mire study area at a grid resolution of 2x2 m based on Varner et al. 

(2022). Panel (b) shows the UAV-surveyed area in Stordalen mire using a satellite image from © Google Maps. The yellow line 

delineates the three target areas, and the black dots correspond to the points surveyed by the drone. The red triangle shows the EC 110 
tower location on the map. 

For the eddy-covariance data, we used data provided by the ICOS tower SE-Sto located in the center of the area of interest 

(Lundin et al., 2024). Palsa, bog, and fen patches are covered by the tower footprint. The measurement height is 2.2 m, and 

data of meteorological variables, energy and carbon fluxes is provided at half-hourly timestep. Chamber measurements of CO2 

fluxes from the different patches within the tower footprint were taken over the course of the growing season of 2023 during 115 

the months of May, July, and September. All measurements were taken during the daytime, mostly between 8:00 and 14:00 

local time. The chamber footprint covers an area of 491 cm2, the chamber hood had a height of 25 cm and was equipped with 

a fan, a probe for relative humidity and temperature probe, and a pressure sensor. An Aeris MIRA Ultra N2O/CO2 gas analyzer 
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was used for CO2 concentration sampling. More information on the chamber measurements performed can be found in Triches 

et al. (2025). 120 

2.3 Large-Eddy Simulation 

In order to simulate the transport at the time of the UAV flight, we used the Large-Eddy Simulation (LES) model EULAG, 

the Eulerian/semi-Lagrangian fluid solver (Prusa et al., 2008). EULAG is a well-established numerical tool for simulating 

atmospheric dynamics across various scales. It is particularly suited for high Reynolds number and stratified flows under 

gravity (Piotrowski & Smolarkiewicz, 2022; Smolarkiewicz et al., 2014). The model solves a soundproof form of the Euler 125 

equations, incorporating conservation laws for dry mass, momentum, and entropy, using a semi-implicit integration scheme. 

This integrator utilizes the multidimensional positive definite advection transport algorithm (MPDATA) for atmospheric flows 

(Smolarkiewicz, 2006). To account for turbulence, the model solves a prognostic equation for Turbulent Kinetic Energy (TKE) 

and applies a dynamic Smagorinsky model, where eddy viscosity is parameterized based on TKE (Schumann, 1991; Sorbjan, 

1996). EULAG has been extensively used as an LES model for statistical and applied studies (Englberger & Dörnbrack, 2017; 130 

Kilroy et al., 2024; Klonecki & Prunet, 2020; Schlutow et al., 2024; Strugarek et al., 2016; Wyszogrodzki et al., 2012; 

Ziemianski et al., 2021). 

2.3.1 EULAG Forcings and Input 

In our simulations, we use the Boussinesq approximation with cyclic boundary conditions. The domain size is 1024x1024x256 

m3 with a resolution of 2x2x2 m3. A "moving sponge/absorber" is utilized at the top boundary, where a Rayleigh damping 135 

scheme is applied above 200 m. This scheme specifically affects the horizontal wind component, gradually adjusting the flow 

toward the geostrophic wind. The model is spun up for 12.5 hours and an additional 30 minutes are run under steady state 

conditions, which are used for the analysis. We use the EC tower measurement for the time of the UAV flight to prescribe 

EULAG forcings. Using the same EC tower measurements, which provide the friction velocity u* and the corresponding wind 

speed, we derive the input roughness length and wind speed at the upper boundary conditions. Heat flux is not included in the 140 

simulations as neutral conditions dominate the time of measurement of the UAV flight (based on the EC-derived Obukhov 

length). All patch types were identically prescribed with the same input flux of the simulated tracer as a starting condition. 

Table 1 includes all details of EULAG forcing input parameters. 

Table 1. Input parameters and forcing conditions in EULAG. 

Forcing Variables Simulation 1 Simulation 2 

Wind speed (boundary conditions at start of 

sponge layer, i.e., 200m height) 

7.29 m/s 9.84 m/s 

Wind direction (boundary conditions at start of 

sponge layer, i.e., 200m height) 

104.1° 309.4° 

Land roughness length (for all land cover except 

lakes) 

0.02 m 0.02 m 

Lake roughness length (Jammet et al., 2017) 0.001 m 0.001 m 
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Forcing Variables Simulation 1 Simulation 2 

Latitude 68.35° 68.35° 

Unit flux (same for all land covers) 0.00001 kg CO2/kg air/s 0.00001 kg CO2/kg air/s 

 145 

2.3.2 Land cover configuration 

We adopted the landcover classification published in (Varner et al., 2022). In this study, 8 main land cover types are defined: 

palsa (or hummock), semi-wet bog, wet bog, fen (wet graminoid), tall shrub, open water, rock, and others. Since the focus of 

this study is on carbon emissions, the landcover considered in our simulations are palsa, bog, lake, fen, and shrubs. Other 

landcovers are included in the study area, but with no flux emissions. The classification resolution is 2x2 m2. The exact location 150 

of the simulated landscape was defined based on the wind direction (Figure 2). In Simulation 1, where the wind is coming 

from the southeast direction, the map is defined so that the target area for flux quantification is at its northwest, thus, reducing 

the effect of cyclic conditions and taking into account the effect of upstream roughness and transport on the concentration 

fields within the sampled area. As for Simulation 2, the wind is coming from the northwest direction, thus, the map section is 

defined so that the target area for flux quantification is at its southeast.  155 

 

 

Figure 2: Input topographies for Simulations 1 (a) and Simulation 2 (b). The black box refers the area sampled by the UAV and 

corresponding to the section shown in Figure 1. 

In order to evaluate the configuration options of our setup, specifically the impact of adding more landcovers to the model, we 160 

run four EULAG simulations with different numbers of landcover types included, focusing on Simulation 1. The simulations 

will be labeled as “lc_3”, lc_4”, “lc_5”, and “lc_6” where lc_ 3 refers to the simulation with 3 landcover types, lc_4 for the 
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simulation with 4 landcover types and so on. Table 2 includes the details of the classifications considered for the four different 

simulations and Figure 3 shows the corresponding simulated landcover map for each simulation. 

Table 2 Simulated landcover types for each of the four simulations, along with the corresponding land cover classifications from Varner et 165 
al. (2022), are included in each simulated landcover 

Simulation  Simulation Landcover 
Varner et al. 2022 classified landcovers 

included 

lc_3 

low vegetation palsa, semi-wet bog, wet bog 

tall vegetation fen, tall shrub 

lakes open water 

lc_4 

palsa palsa 

bog semi-wet bog, wet bog 

tall vegetation fen, tall shrub 

lakes open water 

lc_5 

palsa palsa 

bog semi-wet bog, wet bog 

fen fen 

tall shrub tall shrub 

lakes open water 

lc_6 

palsa palsa 

semi-wet bog semi-wet bog 

wet bog wet bog 

fen fen 

tall shrub tall shrub 

lakes open water 
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Figure 3: Landcover classification map used as input to EULAG for each of the different four different landcover configurations. 

2.4 Submeso-scale Flux Inversion 170 

2.4.1 Derivation 

The submeso-scale inversion is applied on the 30 minutes averaged output of EULAG, after the model reaches a steady state, 

coupled with the UAV grid survey. The below equation lays down the assumption and derivation of the submeso-scale flux 

inversion. Eq .(1) represents the transport equation for a Reynolds averaged inert (passive) tracer: 

𝜕𝐶

𝜕𝑡
+ 𝛻. (𝑢𝐶) − 𝛻. (𝐾𝛻𝐶) = 0          (1) 175 

on the domain 𝛺 ⊂ 𝑅3 with flux boundary condition 
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−𝐾
𝜕𝐶

𝜕𝑧
= 𝑄(𝑥, 𝑦) on 𝜕𝛺           (2) 

where ∂Ω denotes the surface, i.e., all points (x, y, z) with 𝑧 = 𝑧0. 𝒖 is the Reynolds averaged wind, 𝐶 is the Reynolds averaged 

tracer concentration, 𝑡 denotes time, 𝐾 denotes the eddy diffusivity, and 𝑄 represents the surface flux. For brevity, we define 

the linear transport operator as 180 

𝑇𝐶 = 𝛻. (𝑢𝐶) − 𝛻. (𝐾𝛻𝐶)          (3) 

Let 𝑖 = 0, 1, . . . index the land cover classes 𝜕𝛺𝑖, e.g., grass, shrubs, open water body, where each landcover or patch-type is 

associated with its own surface flux (unit of kgCO2/kg air/s) as follows 

𝑄𝑖(𝑥, 𝑦) = {10−5 𝑖𝑓 (𝑥, 𝑦) ∈ 𝜕𝛺𝑖

0 𝑒𝑙𝑠𝑒
          (4) 

With 185 

∑ 𝜕𝛺𝑖𝑖 = 𝜕𝛺.            (5) 

Thus, all points on the surface belonging to the same land cover class are associated with same surface flux. EULAG would 

solve the transport equation outlined in Eq. (1) with a boundary condition defined in Eq. (2) for individual tracers: 

𝑇𝜑𝑖 = 0 on 𝛺 

−𝐾
𝜕𝜑𝑖

𝜕𝑧
= 𝑄𝑖(𝑥, 𝑦) on 𝜕𝛺;           (6) 190 

where 𝜑𝑖 is the tracer associated with a specific landcover type. Since we are dealing with linear transport of passive tracers, 

we can construct the tracer field as a linear combination of the patch-level associated fields 𝜑𝑖 as follows: 

𝐶(𝑥, 𝑦, 𝑧) = ∑ 𝑎𝑖𝜑𝑖(𝑥, 𝑦, 𝑧)𝑖           (7) 

where 𝑎𝑖 are scaling factors associated with each landcover. Multiplying equation (6) by 𝑎𝑖 and summing over 𝑖 leads to the 

below Eq. (8): 195 

𝑇𝐶 = 0 on 𝛺 

−𝐾
𝜕𝐶

𝜕𝑧
= ∑ 𝑄𝑖(𝑥, 𝑦)𝑖  on 𝜕𝛺,          (8) 

which leads to expression for the surface flux in terms of the scaling factors 

𝑄(𝑥, 𝑦) = ∑ 𝑎𝑖𝑄𝑖(𝑥, 𝑦)𝑖 .           (9) 

If observations of concentration or mole fractions of the tracer are available, the scaling factors 𝑎𝑖 may be computed from 200 

observations at points (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) by minimizing the below cost function: 
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𝐽 = ∑ (𝐶𝑀𝑜𝑑

𝑗
− 𝐶𝑂𝑏𝑠

𝑗
)

2

𝑗 .           (10) 

Where 𝐶𝑀𝑜𝑑

𝑗
 is the modeled averaged concentration and could be expressed as 𝐶𝑀𝑜𝑑

𝑗
= ∑ 𝑎𝑖𝜑𝑖(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗)𝑖  and 𝐶𝑂𝑏𝑠

𝑗
 is the 

observed averaged concentration at the points (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗). The resulting problem can be solved with the linear least square 

method, i.e., solving for 𝑎𝑖 minimizing by 𝐽, noting that the Reynolds averaging can be realized with a temporal average. In 205 

the case of our application 𝐶𝑂𝑏𝑠

𝑗
 are provided by the UAV grid surveys. EULAG provides 𝐶𝑀𝑜𝑑

𝑗
 for all defined landcover or 

patch-types, each associated with the input flux. Subsequently, linear optimization is applied to optimize for 𝑎𝑖, and thus derive 

the landcover fluxes by multiplying the optimized value of 𝑎𝑖 with the originally input flux 𝑄𝑖 . 

2.4.2 Applied Inversion and Flux Quantification 

From the EULAG output, we get the time-averaged 𝜑𝑖 over 30 minutes of steady-state simulation time at the same height as 210 

the UAV concentrations are provided. UAV concentrations are then converted from ppm to kg/kg to be consistent with EULAG 

concentrations. EULAG domain has a different background concentration than ambient concentration during the UAV flight, 

however, that would not affect our method as this latter relies on the concentration variability driven by fluxes regardless of 

the difference in background concentration between EULAG and UAV. Therefore, we subtract the mean concentration from 

observed and modeled concentrations, respectively, in order to remove the effect of background concentration, which is 215 

different in both modeled and observed datasets. We apply linear optimization to equation (10) solving for the 𝑎𝑖. Then, 𝑄𝑖  

values associated with each landcover type are derived by multiplying the unit flux that was originally input in EULAG 

(constant flux of 10-5 kg CO2/kg air/s in our case) with the optimized 𝑎𝑖.  

Note that the derived 𝑄𝑖  fluxes cannot be compared with ground-based measurements of fluxes, whether it is chambers or 

eddy-covariance due to the difference in background concentrations between the field and the model. However, the relative 220 

value of the landcover or patch-level fluxes compared to the mean flux value should hold. Therefore, having a measurement 

of ecosystem-scale total flux (i.e., NEE for carbon fluxes) for the time of UAV flight would provide us with the field-based 

mean flux, which could be used to scale the modeled landcover fluxes. Note though that the EC tower footprint corresponds 

to a sub-section of the simulated domain, therefore, the domain-wide mean flux cannot be used for the flux scaling but it should 

be restricted to the area sampled by the EC tower. Therefore, in order to perform the scaling a footprint model is needed to 225 

determine landcover type contribution to the EC flux within the area sampled by the EC tower. Using the Kljun et al., (2015) 

footprint model coupled with the same landcover classification used to prescribe the model’s landcover configuration (Varner 

et al., 2022), the contribution of each landcover type to the EC-derived flux is determined. The calculated landcover 

contribution is then used to get a modeled average flux weighted by the landcover contribution within the EC footprint. The 

relative value of the inversion-derived fluxes to this modelled weighted mean is coupled with the EC-derived fluxes to compute 230 

the quantitative value of each landcover type. 
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2.5 Inversion Uncertainty 

In order to investigate if there is any bias or uncertainty associated with the optimization process, synthetic experiments were 

performed. The lc_5 set-up was run again with the only difference at the magnitude of input tracer fluxes, where random fluxes 

were assigned for each patch type instead of unit fluxes. The model was spun up according to the protocol described in section 235 

2.3.1. The output 30-minutes average concentrations were sampled at the location of the UAV-measurements and were 

considered as “observed” concentrations for the purpose of the synthetic experiment. Then, linear optimization was applied to 

the lc_5 original simulation (i.e., simulation with constant fluxes 10-5), and optimized fluxes were compared to the random 

fluxes that were initially prescribed to the synthetic experiment run. The output shows an exact match between both set of 

fluxes. We tried this approach at several heights and found that the match between prescribed and optimized fluxes holds as 240 

long as the analysis height is below the mixing height of the boundary layer. Thus, no uncertainty or bias is induced from the 

linear optimization process.  

To get the statistical uncertainty associated with the model, the 30 minutes simulation used in the inversion was consecutively 

repeated over 20 times, thus obtaining an ensemble of the optimized fluxes per patch type. In other words, after running the 

12.5 hours of spin up, the model was run for 10 hours where each half-hour was analyzed separately and is associated with a 245 

new set of fluxes, thus, resulting in an ensemble of 20 estimated fluxes per patch type. Therefore, the range of the optimized 

flux values per landcover type represents the model’s uncertainty. 

3 Results 

3.1 Model Evaluation 

To evaluate the model, we performed a linear regression between the UAV-observed and EULAG-modeled CO2 concentration 250 

derived from the optimized scaling factors. The linear regression metrics are summarized in Table 3. For Simulation 1, the 

linear regression R2 increased with the number of land cover classes, going from 0.52 to 0.70. The Root Mean Square Error 

(RMSE) computed from the observed and modelled concentrations decreased with increasing the number of land cover classes, 

where it ranged between 0.68 and 0.54 ppm. The Akaike Information Criterion (AIC) decreased with increasing the number 

of landcover types, thus, showing that increasing the number of simulated landcover types improve the model performance. 255 

Figure 3 shows the concentration fields as measured by the UAV and modelled by EULAG for the lc_5 set-up after accounting 

for the difference in background concentrations. Simulation 2 focused only on lc_5, and concentration evaluation results are 

shown in Figure 5 where the linear model R2 is 0.62 and corresponding RMSE of 0.24 ppm.  
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Table 3. Model evaluation metrics summary: The R2 of the linear regression between modelled and observed CO2 concentrations, the 

respective Akaike Information Criterion (AIC) and corresponding RMSE are listed for different numbers of land cover classes. 260 

Nb. Of simulated 

classes 

Linear 

regression R2 
RMSE [ppm] AIC 

3 0.52 0.68 13846 

4 0.60 0.62 13561 

5 0.69 0.55 12569 

6 0.70 0.54 12389 

 

 

Figure 4: Evaluation of modelled CO2 concentration fields at 10m height for Simulation 1 corresponding to the lc_5 configuration. 

Panel (a) shows a grid survey of the observed concentrations as measured by the UAV, panel (b) the corresponding modeled total 

concentrations. Panel (c) plots the results of the linear regression applied to modelled concentration vs. observed concentration. It 265 
must be noted that here we removed the spatial-temporal average modeled concentration from the modeled concentration values 

and added the UAV-observed spatial-temporal average, thus, accounting for the difference in background concentrations, which is 

constant offset in this case. Concentrations are reported in ppm. 

 

Figure 5: Similar to Fig. 4 but showing results for Simulation 2 corresponding to the lc_5 configuration. 270 

Table 4 shows the optimized patch-level fluxes corresponding to each of the landcover configurations for simulations 1 and 2. 

For Simulation 1, the patch-level fluxes differ between the four simulations; however, some patterns are preserved across the 

simulations. For example, bogs are mostly acting as a carbon sinks, while fens and palsa are mostly a carbon source. Large 

flux variation between land cover setups is observed for palsa, bog, and fen, while a much smaller variability is observed at 
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the level of lakes with a range of 1.87 to 4.08 μmol m-2 s-1, in addition of being a constant small source of carbon. A high flux 275 

is observed in lc_6 for wet bog, a consisting outlier for the set of flux values of the other patch-type and configurations. 

Simulation 2 fluxes show a different pattern than Simulation 1, where bog and shrubs are CO2 sources, while palsa and fen are 

sinks. Lakes showed emissions in agreement with Simulation 1. Note that flux values for Simulation 2 are much smaller than 

fluxes for Simulation 1. This is due to the fact that EC-derived NEE is larger in terms of magnitude for Simulation 1 (NEE = 

-3.29 μmol m-2 s-1) compared to Simulation 2 (NEE = -0.33 μmol m-2 s-1), which will consequently affect the patch-level fluxes. 280 

Patch-type fluxes derived from this inversion could be used to construct a flux map showing the flux distribution over the 

surveyed area and around it as shown in Figure 6. 

 

Table 4 Optimized patch-level fluxes corresponding to the four landcover configurations. CO2 flux unit is 𝝁mol m-2 s-1. 

Nb. Of 

simulated 

classes 

Simulation Palsa 
Semi-Wet 

Bog 
Wet Bog Lake Fen Shrub 

3 1 -3.34 2.92 13.45 

4 1 19.03 -16.27 4.08 1.98 

5 1 1.71 -6.32 3.24 11.70 2.84 

6 1 7.15 -4.54 -64.88 1.87 17.36 6.55 

5 2 -0.33 0.87 0.36 -0.30 0.72 

 285 

 

Figure 6: Flux map for the 5 classes landcover configuration for (a) Simulation 1 and (b) Simulation 2. Flux values are given in 𝝁mol 

m-2 s-1. 

3.2 Model Assessment 

We used chamber-measured fluxes from fen, bog, and palsa plots at Stordalen mire sampled during the same day of the UAV 290 

flight to assess the modeled flux estimations. Due to differences in spato-temporal scales between flux chamber measurements 

and inversion-derived patch-level fluxes, it is not meaningful to directly compare the flux values at pixel level. Therefore, we 
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compared the flux patterns between different patches to the measured chamber fluxes for the same day of the UAV flight as 

shown in Figure 7. The fluxes correspond to the lc_5 run, with their respective uncertainty constrained as explained in section 

2.5. The lc_5 configuration was considered as chamber measurements were split between fen, bog, and palsa, thus, matching 295 

the classification of lc_5. Flux estimation shows to have a wide range per patch-type, with palsa, bog, and fen fluxes showed 

a higher variability than the other landcovers (lake, shrubs). Still, some patterns are conserved across all the simulations, 

specifically bog being the main sink between the different patches and fen being a comparatively high source; however, palsa 

varied between being a source and sink. Regarding additional landcover classes not covered by flux chambers, lakes have 

mostly low fluxes with low variability, while shrubs showed to be a source of carbon with a couple of outliers of high flux 300 

estimations. Each of the 20 simulations shown in Figure 7(a) has an associated R² value, corresponding to the R² of the linear 

regression between modeled and observed concentrations. The R2 ranged between 0.62 and 0.72 for the 20 runs, where the 

flux values corresponding to the run with the highest R2 showed the least variability in terms of flux values across the 5 

different landcovers as shown through the black dots in Figure 7 (a).  

Chamber measurements for the day of the UAV flight for Simulation 1 show that most of the plots are a source of carbon, 305 

where fen and palsa are consistently emitting carbon across all sampled plots and bog is a lower source on average with few 

plots showing a slight sink of carbon. Note that all chamber measurements are consistently higher than the EC-derived NEE 

for the time of drone flight (Figure 7 (b)), thus, challenging any match between the inversion fluxes and chamber fluxes. As 

for Simulation 2, there is a match between the estimated fluxes and chamber-measured fluxes, noting that in this case the EC-

derived NEE is more consistent with the chamber-measured values. The estimated fluxes for bog and fen are very close to the 310 

mean of chamber measurements, while fluxes simulated for palsa are underestimating the chamber mean. Thus, comparing 

both simulation fluxes to chamber data show a matching pattern between landcover fluxes but not for the three of them. For 

Simulation 1, a similar pattern is seen between bog and palsa but not for fen, while for Simulation 2 a similar pattern is seen 

between bog and fen but not for palsa. 

 315 

Figure 7: Comparison of inversion fluxes with chamber measurements taken the same day of the UAV flight. (a) The left panel 

corresponds to the ensemble of fluxes derived from the inversion of lc_5 set up corresponding to the inversion applied to 20 

consecutive EULAG runs. The black dots represent the inversion fluxes corresponding to the run with the highest R2 for the 

concentration linear regression. (b) The middle panel shows the range of chamber-measured fluxes for the day the UAV flight for 

Simulation 1, where the black dots correspond to the same dots as in panel (b). (c) The right panel shows the range of chamber-320 
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measured fluxes for the day the UAV flight for Simulation 2, where the black dots correspond to the inversion fluxes. CO2 flux unit 

is μmol m-2 s-1. The red line in all panels represents the EC-derived NEE for the time of the UAV flight. 

4 Discussion 

4.1 Model Evaluation 

The model evaluation shows good results in terms of linear regression between modelled and observed concentrations across 325 

all four different landcover classification, where R2 ranged between 0.52 and 0.70. The additional degrees of freedom linked 

to an increased number of simulated landcover types led to an increase in linear regression metrics and decrease in RMSE, 

which is expected although the improvement in the model metrics differs between different scenarios, especially at the level 

of the AIC. This consistent trend in improved model evaluation metrics shows that having a detailed landcover classification 

leads to a better inversion, even when weighing the enhanced agreement between model and observations against the degrees 330 

of freedom in the optimization using the AIC. Going from lc_3 to lc_6, the split was mostly done based on different wetness 

levels. Low vegetation was split between palsa and bog, where bog is mostly wetter than palsa. Tall vegetation was split 

between shrub and fen, where fen is wetter than shrubs. Finally, in a last step bog was split between wet and semi-wet. Thus, 

this emphasizes the importance of accounting for the heterogeneity in wetness levels across the landscape for a better 

estimation of patch-level fluxes. This is mostly apparent through the AIC. The largest drop in the AIC happens when going 335 

from lc_4 to lc_5, i.e., splitting tall vegetation between shrub and fen, which have the biggest contrast in wetness levels, where 

fens are much wetter than shrubs. The lowest drop in AIC happens when going from lc_5 to lc_6, i.e., splitting the bog between 

wet and semi-wet, where the contrast wetness is not as strong as in the earlier cases. This wetness contrast is coupled in an 

ecological contrast, where wet and semi-wet bogs correspond to the same or similar vegetation type while shrubs correspond 

to a different vegetation type. Although the AIC is a relative indicator, the corresponding decrease trend across different 340 

configurations could be an indicator of the impact hydrologic and ecological heterogeneity plays when quantifying patch-level 

fluxes. 

4.2 Flux Assessment 

Comparing lc_3 to lc_6 fluxes, we see that splitting the low vegetation areas into separate (palsa/bog) patches resulted in a 

higher sink strength in bogs, compared to palsa, which agrees with the chamber measurements showing similar patterns in 345 

Figure 7 (b). Similarly, splitting tall vegetation into fen and shrub shows that fens are a strong source for carbon, while shrubs 

are a smaller source with a range of estimated fluxes close to the palsa fluxes (Figure 7 (a)). Note that, based on the Varner et 

al. (2022) classification, palsa and shrubs are both considered types of palsa, thus sharing similar net CO2 emissions 

characteristics. Also, when palsa and bog are simulated as one combined landcover class (lc_3), the resulting flux is a sink, 

which agrees with the coarse classification of this scenario where most of the palsa/bog area is labeled a bog, thus, the resulting 350 

flux would be mostly a sink of CO2. Lake fluxes show the lowest uncertainty compared to other patch-types, with an estimated 



16 

 

flux ranging between 1.87 and 4.76 μmol m-2 s-1. A study summarizing EC flux measurements taken over the same lake in 

Stordalen over the years 2012-2014 by Jammet et al., (2017) reports a range between -1.5 and 1.5 μmol m-2 s-1 for the ice-free 

season. Taking this range as a reference, our estimations appear to be slightly over-estimating lake emissions. The optimized 

fluxes show that fens are acting as a source while palsa and bog are mostly a sink, which might be unexpected as fens usually 355 

take up more carbon through photosynthesis than bogs (Holmes et al., 2022); however, a similar pattern is seen in the chamber 

measurements (Figure 7 (b)), where fens represented higher emissions than bogs, thus agreeing with the emissions of the time 

of UAV measurement. This might be related to the fact that our experiments took place at the end of the growing season, when 

fens could experience positive fluxes during the day time (Holmes et al., 2022).  

For Simulation 1, there is a partial agreement in flux patterns between optimized fluxes and chamber fluxes, but in terms of 360 

absolute values, there is a mismatch in the flux range that varies between landcover types. For example, for palsa the inversion-

estimated flux range is between -6.65 and 4.13 μmol m-2 s-1, while the chamber flux range is between -0.64 and 3.05 μmol m-

2 s-1; however, for fen there is a large mismatch between the ranges, where the inversion fluxes range between 10.94 and 22.26 

μmol m-2 s-1, while chamber data have a range of 0.04 and 2.95 μmol m-2 s-1. Although the spatial scale mismatch between 

chamber plots and whole patch-level flux footprint contributes to the difference observed in flux values, there are other factors 365 

that contribute to this mismatch as well. One of these factors is the composition of landcover patches within the domain 

surveyed by the UAV. Although the grid survey depicted in Figure 1 is underlain by all simulated landcover types except 

lakes, this area is mostly covered by palsa and bog and is downwind of the lake bordering the mire from the east. As a 

consequence, very little impact from fen areas is captured by the UAV-surveyed mixing ratio, which could be one of the main 

reasons why fen fluxes are not well-constrained in the inversion and probably over-estimated. Similarly, this could be the 370 

reason why in the lc_6 configuration the sink strength in wet bogs is over-estimated - even though it is common to see high 

sinks for CO2 in wetter bogs (Sulman et al., 2010), our estimated flux value is probably unrealistically large. This is probably 

due to the fact that wet bogs are poorly represented within the UAV-surveyed area, and associated patch sizes are small so that 

this land cover type never dominates a single UAV observation footprint. Although the lakes are not directly surveyed by the 

UAV, their impact on the measured mixing ratio is well-captured by the UAV as it is located directly upwind of the surveyed 375 

area, thus, resulting in much closer values to previously observed fluxes from the lake as discussed earlier. Simulation 2 

showed a better match between chamber-measured fluxes and inversion fluxes, where for the three patch types the estimated 

fluxes fell within the range of measured fluxes, where fen and bog flux estimation through inversion are matching the mean 

of the chamber measurements fluxes. This is primarily due to the better agreement between EC- and chamber derived fluxes, 

so low EC-derived NEE flux also led to low fluxes from the inversion that matched the chamber results very well.  380 

4.3 Model Uncertainty 

Figure 7 (a) shows a large variability across patch types: palsa is estimated to have a median flux of 0.83 μmol m-2 s-1, bog -

6.46 μmol m-2 s-1, lake 3.35 μmol m-2 s-1, fen 13.80 μmol m-2 s-1, and shrubs 3.94 μmol m-2 s-1. However, for lc_5 where 20 

simulations were performed, the simulation corresponding to the largest R2 (0.72) and lowest RMSE (0.53 ppm) for the 
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concentration linear regression had the least variability of fluxes between patch type where flux estimation are as follows: 385 

palsa is -2.08 μmol m-2 s-1, bog is -3.17 μmol m-2 s-1, lake is 2.54 μmol m-2 s-1, fen is 11.48 μmol m-2 s-1, and shrubs is 3.01 

μmol m-2 s-1 (black dots in in Figure 7(a)). This comparison shows that the optimized fluxes reported in Figure 7 (a) are 

probably over-estimating the absolute value of the fluxes. Several sources of uncertainty exist that could bias our flux 

estimations. Most prominently, there is the uncertainty related to the LES modeling of the tracer transport (Lucas et al., 2016; 

Zhang, 2021), especially since the synthetic experiment showed that no uncertainty is associated with the linear optimization 390 

(section 2.5), in addition to the uncertainty that could arise from the steady-state assumption on which the inversion derivation 

is based upon.  

LES does resolve the turbulent transport but assuming steady state and applying inversion on the temporally averaged 

concentration implies losing a lot of the turbulent transport information. This effect could be depicted in figures 4 and 5 when 

comparing the modeled and observed concentration fields. Although the model is capturing the overall variation in the 395 

concentrations, it is missing the small-scale turbulent effect captured by the drone and not represented in our model, like in the 

case of the horizontal vortices shown Figure 4 (a) and not represented in Figure 4 (b) due to the 30-minutes averaging. In the 

context of modeling wind flow and turbulence for the time of the UAV flight, LES provides a solution of the turbulent transport 

field that agrees with measured meteorological conditions which are then used to force the model (Table 1); however, it is not 

necessarily the transport field that was present at the time of UAV flight. Thus, each LES post-spinup 30-minutes run represents 400 

one potential solution, and not the truth, which results in the flux uncertainty of Figure 7 (a). In addition, LES models resolve 

the larger, energy-containing turbulent eddies directly, while smaller sub-grid scale (SGS) eddies are approximated using a 

parameterization. The accuracy of LES depends on grid resolution—finer grids capture more turbulence but increase 

computational costs, while coarser grids rely more on SGS models, introducing potential errors. Uncertainties arise because 

SGS models approximate rather than resolve small-scale turbulence, leading to errors that can propagate to larger scales. These 405 

uncertainties affect the accuracy of transport modeling, thus influencing predictions of tracer concentrations, in our case CO2. 

Other sources of uncertainty could arise from the landcover classification considered in this study and the UAV measurements, 

although they both showed to have low errors associated with them: for the land cover, Varner et al. (2022) report 0.4% a 

misclassification rate for the landcover classification, while Bolek et al. (2024) report an uncertainty less than 0.36 ppm for 

UAV measurements. Other sources of uncertainty arise from the errors associated with the EC measurement of NEE and the 410 

footprint model, although these errors would not affect the inversion-derived fluxes, but the computation of the quantitative 

flux values. This comprises, for example, the errors associated with the EC instrument noise, calibration drift, and data 

processing methods, as well as from the footprint model, which introduces uncertainty through assumptions about atmospheric 

stability, turbulence, and the spatial representation of flux contributions from heterogeneous surfaces. Uncertainty is also 

associated with chamber measurements used to compare the derived fluxes with, which can be affected by issues such as 415 

leakage, pressure effects, and alterations of the natural microclimate inside the chamber during sampling time.  

Through this inversion approach, it is challenging to provide a value for the uncertainty in the flux estimations as we do not 

have a patch-level scale measurement of the fluxes to compare our data with. Nevertheless, assessing the mismatch between 
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modeled and observed concentrations provides an estimate of the model uncertainty, where the lc_5 simulations result in 95% 

confidence interval of 1.08 ppm for Simulation 1 and 0.47 ppm for Simulation 2. 420 

4.3 Limitation, Applications, and Outlook 

A limitation of this study is the relatively small number of land cover classes, which introduces the “aggregation error”. To 

address this, future work could substantially increase the number of unknowns (i.e., classes) and incorporate “a priori” 

information—such as wetness, nutrient status, microtopography, or specific vegetation types—to better constrain the problem. 

A promising direction would be to move away from rigid, predefined landcover classes. A simple first step could involve 425 

subdividing existing landcover categories into smaller sectors and optimizing each separately. A more advanced approach 

might optimize pixel-by-pixel, perhaps incorporating spatial correlation length scales, followed by post hoc analysis to identify 

coherent clusters—and assess whether they align with the predefined structure. Implementing such strategies would require 

more extensive data, potentially including tailored UAV campaigns to provide balanced coverage across the mire, in addition 

to extensive computational power, especially if models like LES are involved, however, simpler transport models could be 430 

explored as this study relies on the steady state assumption. 

This small-scale inversion opens the door to further coupling UAV and EC measurements to derive patch level fluxes both 

within the EC tower footprint and in the surrounding landscape. Based on the inversion fluxes, it is possible to get the net 

carbon flux from larger areas, i.e. extrapolate measurements within the EC footprint area to the full mire area without having 

to assume matching land cover fractions in both domains. Since Simulation 1 has a SE wind, we use the Simulation 1 fluxes 435 

to get the net flux from the bog area surveyed by the drone (right two sections in Figure 1(b)), while we use Simulation 2 

fluxes to get the net flux from the palsa area (left section in Figure 1(b)) as the wind is coming from the NW in this case. Using 

the lc_5 configuration, we get a net flux of -1.45 μmol m-2 s-1 for Simulation 1 and a net flux of 0.18 μmol m-2 s-1 for Simulation 

2. Note that the EC-derived NEE for the same time of the UAV flights is -3.29 μmol m-2 s-1 and -0.33 μmol m-2 s-1, respectively. 

The mismatch between the EC-derived NEE and the whole-area-derived NEE emphasize the role the small-scale heterogeneity 440 

and tower footprint play when deriving total net fluxes of carbon, noting that this inversion technique could be leveraged in 

upscaling studies using EC-derived fluxes to derive landscape-wide fluxes. 

By applying this method during different periods over the course of the growing season, i.e., through flying the drone several 

times over the growing season, we could get a larger set of the patch-level fluxes that could be integrated over the whole 

growing season and result in season-long patch-level flux. In this study relying on just a couple of flights, we are able to 445 

estimate fluxes corresponding to the UAV flight time and/or any other time within similar meteorological and phenological 

conditions. Extending the results to represent patch-level carbon budgets for a full growing season is thus challenging; 

however, with further implementation of UAV flights within the EC tower footprint, patch-level carbon budgets could be 

possible. . In this case getting UAV measurements over different time of day is important to get patch-level flux contributions 

across different daytime conditions, notably nighttime conditions, although running LES under stable conditions could be 450 

challenging due to weak turbulence and strong stratification. It must be mentioned that this method would require a 
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considerable amount of computational resources for running high-resolution models like LES; however, simpler transport 

models could be considered especially when averaged transport processes for steady-state conditions are assumed. The 

uncertainty coupled with the flux estimation could be overcome by increasing the drone surveyed area to better represent the 

effect of all landcover on the measured mixing ratio. Note that the UAV-LES inversion presented in this study could be applied 455 

to any flux tower as long drone measurement and landcover classification are provided, and is not limited to arctic or peatland 

ecosystems. 

5 Conclusion  

Through a combination of LES modeling, gridded mixing ratio observations from a UAV platform, a landcover classification, 

and Eddy covariance measurements, patch level CO2 fluxes at 2x2m resolution could be derived from a structured sub-Arctic 460 

mire. Distinct flux signatures could be assigned for pre-assigned land cover types, separating sources and sinks, and deriving 

flux rates differing by more than one order of magnitude between landscape elements. Evaluation of the modeled concentration 

fields showed a good match with UAV observations of atmospheric CO2 concentrations, while assessment of the inversion 

flux rates through comparing them to flux chamber datasets for the same day of UAV flight showed an agreement in flux 

patterns between derived patch level fluxes and corresponding chamber fluxes, mostly for bog and palsa, the main landcover 465 

within the UAV sampled area footprint. This inversion technique opens the door for deriving patch-level fluxes from EC data, 

while bridging the scaling gap between patch-level fluxes (usually measured with chambers) and plot-level fluxes, thus 

suggesting a new method to upscaling to EC-derived fluxes to footprints larger than the EC tower footprint. 
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